UBIFS: fix output format of INUM_WATERMARK
[deliverable/linux.git] / fs / ubifs / file.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23 /*
24 * This file implements VFS file and inode operations for regular files, device
25 * nodes and symlinks as well as address space operations.
26 *
27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28 * the page is dirty and is used for optimization purposes - dirty pages are
29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30 * the budget for this page. The @PG_checked flag is set if full budgeting is
31 * required for the page e.g., when it corresponds to a file hole or it is
32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33 * it is OK to fail in this function, and the budget is released in
34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35 * information about how the page was budgeted, to make it possible to release
36 * the budget properly.
37 *
38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39 * implement. However, this is not true for 'ubifs_writepage()', which may be
40 * called with @i_mutex unlocked. For example, when flusher thread is doing
41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
45 *
46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49 * set as well. However, UBIFS disables readahead.
50 */
51
52 #include "ubifs.h"
53 #include <linux/aio.h>
54 #include <linux/mount.h>
55 #include <linux/namei.h>
56 #include <linux/slab.h>
57
58 static int read_block(struct inode *inode, void *addr, unsigned int block,
59 struct ubifs_data_node *dn)
60 {
61 struct ubifs_info *c = inode->i_sb->s_fs_info;
62 int err, len, out_len;
63 union ubifs_key key;
64 unsigned int dlen;
65
66 data_key_init(c, &key, inode->i_ino, block);
67 err = ubifs_tnc_lookup(c, &key, dn);
68 if (err) {
69 if (err == -ENOENT)
70 /* Not found, so it must be a hole */
71 memset(addr, 0, UBIFS_BLOCK_SIZE);
72 return err;
73 }
74
75 ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
76 ubifs_inode(inode)->creat_sqnum);
77 len = le32_to_cpu(dn->size);
78 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
79 goto dump;
80
81 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
82 out_len = UBIFS_BLOCK_SIZE;
83 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
84 le16_to_cpu(dn->compr_type));
85 if (err || len != out_len)
86 goto dump;
87
88 /*
89 * Data length can be less than a full block, even for blocks that are
90 * not the last in the file (e.g., as a result of making a hole and
91 * appending data). Ensure that the remainder is zeroed out.
92 */
93 if (len < UBIFS_BLOCK_SIZE)
94 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
95
96 return 0;
97
98 dump:
99 ubifs_err(c, "bad data node (block %u, inode %lu)",
100 block, inode->i_ino);
101 ubifs_dump_node(c, dn);
102 return -EINVAL;
103 }
104
105 static int do_readpage(struct page *page)
106 {
107 void *addr;
108 int err = 0, i;
109 unsigned int block, beyond;
110 struct ubifs_data_node *dn;
111 struct inode *inode = page->mapping->host;
112 loff_t i_size = i_size_read(inode);
113
114 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
115 inode->i_ino, page->index, i_size, page->flags);
116 ubifs_assert(!PageChecked(page));
117 ubifs_assert(!PagePrivate(page));
118
119 addr = kmap(page);
120
121 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
122 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
123 if (block >= beyond) {
124 /* Reading beyond inode */
125 SetPageChecked(page);
126 memset(addr, 0, PAGE_CACHE_SIZE);
127 goto out;
128 }
129
130 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
131 if (!dn) {
132 err = -ENOMEM;
133 goto error;
134 }
135
136 i = 0;
137 while (1) {
138 int ret;
139
140 if (block >= beyond) {
141 /* Reading beyond inode */
142 err = -ENOENT;
143 memset(addr, 0, UBIFS_BLOCK_SIZE);
144 } else {
145 ret = read_block(inode, addr, block, dn);
146 if (ret) {
147 err = ret;
148 if (err != -ENOENT)
149 break;
150 } else if (block + 1 == beyond) {
151 int dlen = le32_to_cpu(dn->size);
152 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
153
154 if (ilen && ilen < dlen)
155 memset(addr + ilen, 0, dlen - ilen);
156 }
157 }
158 if (++i >= UBIFS_BLOCKS_PER_PAGE)
159 break;
160 block += 1;
161 addr += UBIFS_BLOCK_SIZE;
162 }
163 if (err) {
164 struct ubifs_info *c = inode->i_sb->s_fs_info;
165 if (err == -ENOENT) {
166 /* Not found, so it must be a hole */
167 SetPageChecked(page);
168 dbg_gen("hole");
169 goto out_free;
170 }
171 ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
172 page->index, inode->i_ino, err);
173 goto error;
174 }
175
176 out_free:
177 kfree(dn);
178 out:
179 SetPageUptodate(page);
180 ClearPageError(page);
181 flush_dcache_page(page);
182 kunmap(page);
183 return 0;
184
185 error:
186 kfree(dn);
187 ClearPageUptodate(page);
188 SetPageError(page);
189 flush_dcache_page(page);
190 kunmap(page);
191 return err;
192 }
193
194 /**
195 * release_new_page_budget - release budget of a new page.
196 * @c: UBIFS file-system description object
197 *
198 * This is a helper function which releases budget corresponding to the budget
199 * of one new page of data.
200 */
201 static void release_new_page_budget(struct ubifs_info *c)
202 {
203 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
204
205 ubifs_release_budget(c, &req);
206 }
207
208 /**
209 * release_existing_page_budget - release budget of an existing page.
210 * @c: UBIFS file-system description object
211 *
212 * This is a helper function which releases budget corresponding to the budget
213 * of changing one one page of data which already exists on the flash media.
214 */
215 static void release_existing_page_budget(struct ubifs_info *c)
216 {
217 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
218
219 ubifs_release_budget(c, &req);
220 }
221
222 static int write_begin_slow(struct address_space *mapping,
223 loff_t pos, unsigned len, struct page **pagep,
224 unsigned flags)
225 {
226 struct inode *inode = mapping->host;
227 struct ubifs_info *c = inode->i_sb->s_fs_info;
228 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
229 struct ubifs_budget_req req = { .new_page = 1 };
230 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
231 struct page *page;
232
233 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
234 inode->i_ino, pos, len, inode->i_size);
235
236 /*
237 * At the slow path we have to budget before locking the page, because
238 * budgeting may force write-back, which would wait on locked pages and
239 * deadlock if we had the page locked. At this point we do not know
240 * anything about the page, so assume that this is a new page which is
241 * written to a hole. This corresponds to largest budget. Later the
242 * budget will be amended if this is not true.
243 */
244 if (appending)
245 /* We are appending data, budget for inode change */
246 req.dirtied_ino = 1;
247
248 err = ubifs_budget_space(c, &req);
249 if (unlikely(err))
250 return err;
251
252 page = grab_cache_page_write_begin(mapping, index, flags);
253 if (unlikely(!page)) {
254 ubifs_release_budget(c, &req);
255 return -ENOMEM;
256 }
257
258 if (!PageUptodate(page)) {
259 if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
260 SetPageChecked(page);
261 else {
262 err = do_readpage(page);
263 if (err) {
264 unlock_page(page);
265 page_cache_release(page);
266 ubifs_release_budget(c, &req);
267 return err;
268 }
269 }
270
271 SetPageUptodate(page);
272 ClearPageError(page);
273 }
274
275 if (PagePrivate(page))
276 /*
277 * The page is dirty, which means it was budgeted twice:
278 * o first time the budget was allocated by the task which
279 * made the page dirty and set the PG_private flag;
280 * o and then we budgeted for it for the second time at the
281 * very beginning of this function.
282 *
283 * So what we have to do is to release the page budget we
284 * allocated.
285 */
286 release_new_page_budget(c);
287 else if (!PageChecked(page))
288 /*
289 * We are changing a page which already exists on the media.
290 * This means that changing the page does not make the amount
291 * of indexing information larger, and this part of the budget
292 * which we have already acquired may be released.
293 */
294 ubifs_convert_page_budget(c);
295
296 if (appending) {
297 struct ubifs_inode *ui = ubifs_inode(inode);
298
299 /*
300 * 'ubifs_write_end()' is optimized from the fast-path part of
301 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
302 * if data is appended.
303 */
304 mutex_lock(&ui->ui_mutex);
305 if (ui->dirty)
306 /*
307 * The inode is dirty already, so we may free the
308 * budget we allocated.
309 */
310 ubifs_release_dirty_inode_budget(c, ui);
311 }
312
313 *pagep = page;
314 return 0;
315 }
316
317 /**
318 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
319 * @c: UBIFS file-system description object
320 * @page: page to allocate budget for
321 * @ui: UBIFS inode object the page belongs to
322 * @appending: non-zero if the page is appended
323 *
324 * This is a helper function for 'ubifs_write_begin()' which allocates budget
325 * for the operation. The budget is allocated differently depending on whether
326 * this is appending, whether the page is dirty or not, and so on. This
327 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
328 * in case of success and %-ENOSPC in case of failure.
329 */
330 static int allocate_budget(struct ubifs_info *c, struct page *page,
331 struct ubifs_inode *ui, int appending)
332 {
333 struct ubifs_budget_req req = { .fast = 1 };
334
335 if (PagePrivate(page)) {
336 if (!appending)
337 /*
338 * The page is dirty and we are not appending, which
339 * means no budget is needed at all.
340 */
341 return 0;
342
343 mutex_lock(&ui->ui_mutex);
344 if (ui->dirty)
345 /*
346 * The page is dirty and we are appending, so the inode
347 * has to be marked as dirty. However, it is already
348 * dirty, so we do not need any budget. We may return,
349 * but @ui->ui_mutex hast to be left locked because we
350 * should prevent write-back from flushing the inode
351 * and freeing the budget. The lock will be released in
352 * 'ubifs_write_end()'.
353 */
354 return 0;
355
356 /*
357 * The page is dirty, we are appending, the inode is clean, so
358 * we need to budget the inode change.
359 */
360 req.dirtied_ino = 1;
361 } else {
362 if (PageChecked(page))
363 /*
364 * The page corresponds to a hole and does not
365 * exist on the media. So changing it makes
366 * make the amount of indexing information
367 * larger, and we have to budget for a new
368 * page.
369 */
370 req.new_page = 1;
371 else
372 /*
373 * Not a hole, the change will not add any new
374 * indexing information, budget for page
375 * change.
376 */
377 req.dirtied_page = 1;
378
379 if (appending) {
380 mutex_lock(&ui->ui_mutex);
381 if (!ui->dirty)
382 /*
383 * The inode is clean but we will have to mark
384 * it as dirty because we are appending. This
385 * needs a budget.
386 */
387 req.dirtied_ino = 1;
388 }
389 }
390
391 return ubifs_budget_space(c, &req);
392 }
393
394 /*
395 * This function is called when a page of data is going to be written. Since
396 * the page of data will not necessarily go to the flash straight away, UBIFS
397 * has to reserve space on the media for it, which is done by means of
398 * budgeting.
399 *
400 * This is the hot-path of the file-system and we are trying to optimize it as
401 * much as possible. For this reasons it is split on 2 parts - slow and fast.
402 *
403 * There many budgeting cases:
404 * o a new page is appended - we have to budget for a new page and for
405 * changing the inode; however, if the inode is already dirty, there is
406 * no need to budget for it;
407 * o an existing clean page is changed - we have budget for it; if the page
408 * does not exist on the media (a hole), we have to budget for a new
409 * page; otherwise, we may budget for changing an existing page; the
410 * difference between these cases is that changing an existing page does
411 * not introduce anything new to the FS indexing information, so it does
412 * not grow, and smaller budget is acquired in this case;
413 * o an existing dirty page is changed - no need to budget at all, because
414 * the page budget has been acquired by earlier, when the page has been
415 * marked dirty.
416 *
417 * UBIFS budgeting sub-system may force write-back if it thinks there is no
418 * space to reserve. This imposes some locking restrictions and makes it
419 * impossible to take into account the above cases, and makes it impossible to
420 * optimize budgeting.
421 *
422 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
423 * there is a plenty of flash space and the budget will be acquired quickly,
424 * without forcing write-back. The slow path does not make this assumption.
425 */
426 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
427 loff_t pos, unsigned len, unsigned flags,
428 struct page **pagep, void **fsdata)
429 {
430 struct inode *inode = mapping->host;
431 struct ubifs_info *c = inode->i_sb->s_fs_info;
432 struct ubifs_inode *ui = ubifs_inode(inode);
433 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
434 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
435 int skipped_read = 0;
436 struct page *page;
437
438 ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
439 ubifs_assert(!c->ro_media && !c->ro_mount);
440
441 if (unlikely(c->ro_error))
442 return -EROFS;
443
444 /* Try out the fast-path part first */
445 page = grab_cache_page_write_begin(mapping, index, flags);
446 if (unlikely(!page))
447 return -ENOMEM;
448
449 if (!PageUptodate(page)) {
450 /* The page is not loaded from the flash */
451 if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) {
452 /*
453 * We change whole page so no need to load it. But we
454 * do not know whether this page exists on the media or
455 * not, so we assume the latter because it requires
456 * larger budget. The assumption is that it is better
457 * to budget a bit more than to read the page from the
458 * media. Thus, we are setting the @PG_checked flag
459 * here.
460 */
461 SetPageChecked(page);
462 skipped_read = 1;
463 } else {
464 err = do_readpage(page);
465 if (err) {
466 unlock_page(page);
467 page_cache_release(page);
468 return err;
469 }
470 }
471
472 SetPageUptodate(page);
473 ClearPageError(page);
474 }
475
476 err = allocate_budget(c, page, ui, appending);
477 if (unlikely(err)) {
478 ubifs_assert(err == -ENOSPC);
479 /*
480 * If we skipped reading the page because we were going to
481 * write all of it, then it is not up to date.
482 */
483 if (skipped_read) {
484 ClearPageChecked(page);
485 ClearPageUptodate(page);
486 }
487 /*
488 * Budgeting failed which means it would have to force
489 * write-back but didn't, because we set the @fast flag in the
490 * request. Write-back cannot be done now, while we have the
491 * page locked, because it would deadlock. Unlock and free
492 * everything and fall-back to slow-path.
493 */
494 if (appending) {
495 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
496 mutex_unlock(&ui->ui_mutex);
497 }
498 unlock_page(page);
499 page_cache_release(page);
500
501 return write_begin_slow(mapping, pos, len, pagep, flags);
502 }
503
504 /*
505 * Whee, we acquired budgeting quickly - without involving
506 * garbage-collection, committing or forcing write-back. We return
507 * with @ui->ui_mutex locked if we are appending pages, and unlocked
508 * otherwise. This is an optimization (slightly hacky though).
509 */
510 *pagep = page;
511 return 0;
512
513 }
514
515 /**
516 * cancel_budget - cancel budget.
517 * @c: UBIFS file-system description object
518 * @page: page to cancel budget for
519 * @ui: UBIFS inode object the page belongs to
520 * @appending: non-zero if the page is appended
521 *
522 * This is a helper function for a page write operation. It unlocks the
523 * @ui->ui_mutex in case of appending.
524 */
525 static void cancel_budget(struct ubifs_info *c, struct page *page,
526 struct ubifs_inode *ui, int appending)
527 {
528 if (appending) {
529 if (!ui->dirty)
530 ubifs_release_dirty_inode_budget(c, ui);
531 mutex_unlock(&ui->ui_mutex);
532 }
533 if (!PagePrivate(page)) {
534 if (PageChecked(page))
535 release_new_page_budget(c);
536 else
537 release_existing_page_budget(c);
538 }
539 }
540
541 static int ubifs_write_end(struct file *file, struct address_space *mapping,
542 loff_t pos, unsigned len, unsigned copied,
543 struct page *page, void *fsdata)
544 {
545 struct inode *inode = mapping->host;
546 struct ubifs_inode *ui = ubifs_inode(inode);
547 struct ubifs_info *c = inode->i_sb->s_fs_info;
548 loff_t end_pos = pos + len;
549 int appending = !!(end_pos > inode->i_size);
550
551 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
552 inode->i_ino, pos, page->index, len, copied, inode->i_size);
553
554 if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
555 /*
556 * VFS copied less data to the page that it intended and
557 * declared in its '->write_begin()' call via the @len
558 * argument. If the page was not up-to-date, and @len was
559 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
560 * not load it from the media (for optimization reasons). This
561 * means that part of the page contains garbage. So read the
562 * page now.
563 */
564 dbg_gen("copied %d instead of %d, read page and repeat",
565 copied, len);
566 cancel_budget(c, page, ui, appending);
567 ClearPageChecked(page);
568
569 /*
570 * Return 0 to force VFS to repeat the whole operation, or the
571 * error code if 'do_readpage()' fails.
572 */
573 copied = do_readpage(page);
574 goto out;
575 }
576
577 if (!PagePrivate(page)) {
578 SetPagePrivate(page);
579 atomic_long_inc(&c->dirty_pg_cnt);
580 __set_page_dirty_nobuffers(page);
581 }
582
583 if (appending) {
584 i_size_write(inode, end_pos);
585 ui->ui_size = end_pos;
586 /*
587 * Note, we do not set @I_DIRTY_PAGES (which means that the
588 * inode has dirty pages), this has been done in
589 * '__set_page_dirty_nobuffers()'.
590 */
591 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
592 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
593 mutex_unlock(&ui->ui_mutex);
594 }
595
596 out:
597 unlock_page(page);
598 page_cache_release(page);
599 return copied;
600 }
601
602 /**
603 * populate_page - copy data nodes into a page for bulk-read.
604 * @c: UBIFS file-system description object
605 * @page: page
606 * @bu: bulk-read information
607 * @n: next zbranch slot
608 *
609 * This function returns %0 on success and a negative error code on failure.
610 */
611 static int populate_page(struct ubifs_info *c, struct page *page,
612 struct bu_info *bu, int *n)
613 {
614 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
615 struct inode *inode = page->mapping->host;
616 loff_t i_size = i_size_read(inode);
617 unsigned int page_block;
618 void *addr, *zaddr;
619 pgoff_t end_index;
620
621 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
622 inode->i_ino, page->index, i_size, page->flags);
623
624 addr = zaddr = kmap(page);
625
626 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
627 if (!i_size || page->index > end_index) {
628 hole = 1;
629 memset(addr, 0, PAGE_CACHE_SIZE);
630 goto out_hole;
631 }
632
633 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
634 while (1) {
635 int err, len, out_len, dlen;
636
637 if (nn >= bu->cnt) {
638 hole = 1;
639 memset(addr, 0, UBIFS_BLOCK_SIZE);
640 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
641 struct ubifs_data_node *dn;
642
643 dn = bu->buf + (bu->zbranch[nn].offs - offs);
644
645 ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
646 ubifs_inode(inode)->creat_sqnum);
647
648 len = le32_to_cpu(dn->size);
649 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
650 goto out_err;
651
652 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
653 out_len = UBIFS_BLOCK_SIZE;
654 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
655 le16_to_cpu(dn->compr_type));
656 if (err || len != out_len)
657 goto out_err;
658
659 if (len < UBIFS_BLOCK_SIZE)
660 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
661
662 nn += 1;
663 read = (i << UBIFS_BLOCK_SHIFT) + len;
664 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
665 nn += 1;
666 continue;
667 } else {
668 hole = 1;
669 memset(addr, 0, UBIFS_BLOCK_SIZE);
670 }
671 if (++i >= UBIFS_BLOCKS_PER_PAGE)
672 break;
673 addr += UBIFS_BLOCK_SIZE;
674 page_block += 1;
675 }
676
677 if (end_index == page->index) {
678 int len = i_size & (PAGE_CACHE_SIZE - 1);
679
680 if (len && len < read)
681 memset(zaddr + len, 0, read - len);
682 }
683
684 out_hole:
685 if (hole) {
686 SetPageChecked(page);
687 dbg_gen("hole");
688 }
689
690 SetPageUptodate(page);
691 ClearPageError(page);
692 flush_dcache_page(page);
693 kunmap(page);
694 *n = nn;
695 return 0;
696
697 out_err:
698 ClearPageUptodate(page);
699 SetPageError(page);
700 flush_dcache_page(page);
701 kunmap(page);
702 ubifs_err(c, "bad data node (block %u, inode %lu)",
703 page_block, inode->i_ino);
704 return -EINVAL;
705 }
706
707 /**
708 * ubifs_do_bulk_read - do bulk-read.
709 * @c: UBIFS file-system description object
710 * @bu: bulk-read information
711 * @page1: first page to read
712 *
713 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
714 */
715 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
716 struct page *page1)
717 {
718 pgoff_t offset = page1->index, end_index;
719 struct address_space *mapping = page1->mapping;
720 struct inode *inode = mapping->host;
721 struct ubifs_inode *ui = ubifs_inode(inode);
722 int err, page_idx, page_cnt, ret = 0, n = 0;
723 int allocate = bu->buf ? 0 : 1;
724 loff_t isize;
725
726 err = ubifs_tnc_get_bu_keys(c, bu);
727 if (err)
728 goto out_warn;
729
730 if (bu->eof) {
731 /* Turn off bulk-read at the end of the file */
732 ui->read_in_a_row = 1;
733 ui->bulk_read = 0;
734 }
735
736 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
737 if (!page_cnt) {
738 /*
739 * This happens when there are multiple blocks per page and the
740 * blocks for the first page we are looking for, are not
741 * together. If all the pages were like this, bulk-read would
742 * reduce performance, so we turn it off for a while.
743 */
744 goto out_bu_off;
745 }
746
747 if (bu->cnt) {
748 if (allocate) {
749 /*
750 * Allocate bulk-read buffer depending on how many data
751 * nodes we are going to read.
752 */
753 bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
754 bu->zbranch[bu->cnt - 1].len -
755 bu->zbranch[0].offs;
756 ubifs_assert(bu->buf_len > 0);
757 ubifs_assert(bu->buf_len <= c->leb_size);
758 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
759 if (!bu->buf)
760 goto out_bu_off;
761 }
762
763 err = ubifs_tnc_bulk_read(c, bu);
764 if (err)
765 goto out_warn;
766 }
767
768 err = populate_page(c, page1, bu, &n);
769 if (err)
770 goto out_warn;
771
772 unlock_page(page1);
773 ret = 1;
774
775 isize = i_size_read(inode);
776 if (isize == 0)
777 goto out_free;
778 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
779
780 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
781 pgoff_t page_offset = offset + page_idx;
782 struct page *page;
783
784 if (page_offset > end_index)
785 break;
786 page = find_or_create_page(mapping, page_offset,
787 GFP_NOFS | __GFP_COLD);
788 if (!page)
789 break;
790 if (!PageUptodate(page))
791 err = populate_page(c, page, bu, &n);
792 unlock_page(page);
793 page_cache_release(page);
794 if (err)
795 break;
796 }
797
798 ui->last_page_read = offset + page_idx - 1;
799
800 out_free:
801 if (allocate)
802 kfree(bu->buf);
803 return ret;
804
805 out_warn:
806 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
807 goto out_free;
808
809 out_bu_off:
810 ui->read_in_a_row = ui->bulk_read = 0;
811 goto out_free;
812 }
813
814 /**
815 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
816 * @page: page from which to start bulk-read.
817 *
818 * Some flash media are capable of reading sequentially at faster rates. UBIFS
819 * bulk-read facility is designed to take advantage of that, by reading in one
820 * go consecutive data nodes that are also located consecutively in the same
821 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
822 */
823 static int ubifs_bulk_read(struct page *page)
824 {
825 struct inode *inode = page->mapping->host;
826 struct ubifs_info *c = inode->i_sb->s_fs_info;
827 struct ubifs_inode *ui = ubifs_inode(inode);
828 pgoff_t index = page->index, last_page_read = ui->last_page_read;
829 struct bu_info *bu;
830 int err = 0, allocated = 0;
831
832 ui->last_page_read = index;
833 if (!c->bulk_read)
834 return 0;
835
836 /*
837 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
838 * so don't bother if we cannot lock the mutex.
839 */
840 if (!mutex_trylock(&ui->ui_mutex))
841 return 0;
842
843 if (index != last_page_read + 1) {
844 /* Turn off bulk-read if we stop reading sequentially */
845 ui->read_in_a_row = 1;
846 if (ui->bulk_read)
847 ui->bulk_read = 0;
848 goto out_unlock;
849 }
850
851 if (!ui->bulk_read) {
852 ui->read_in_a_row += 1;
853 if (ui->read_in_a_row < 3)
854 goto out_unlock;
855 /* Three reads in a row, so switch on bulk-read */
856 ui->bulk_read = 1;
857 }
858
859 /*
860 * If possible, try to use pre-allocated bulk-read information, which
861 * is protected by @c->bu_mutex.
862 */
863 if (mutex_trylock(&c->bu_mutex))
864 bu = &c->bu;
865 else {
866 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
867 if (!bu)
868 goto out_unlock;
869
870 bu->buf = NULL;
871 allocated = 1;
872 }
873
874 bu->buf_len = c->max_bu_buf_len;
875 data_key_init(c, &bu->key, inode->i_ino,
876 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
877 err = ubifs_do_bulk_read(c, bu, page);
878
879 if (!allocated)
880 mutex_unlock(&c->bu_mutex);
881 else
882 kfree(bu);
883
884 out_unlock:
885 mutex_unlock(&ui->ui_mutex);
886 return err;
887 }
888
889 static int ubifs_readpage(struct file *file, struct page *page)
890 {
891 if (ubifs_bulk_read(page))
892 return 0;
893 do_readpage(page);
894 unlock_page(page);
895 return 0;
896 }
897
898 static int do_writepage(struct page *page, int len)
899 {
900 int err = 0, i, blen;
901 unsigned int block;
902 void *addr;
903 union ubifs_key key;
904 struct inode *inode = page->mapping->host;
905 struct ubifs_info *c = inode->i_sb->s_fs_info;
906
907 #ifdef UBIFS_DEBUG
908 struct ubifs_inode *ui = ubifs_inode(inode);
909 spin_lock(&ui->ui_lock);
910 ubifs_assert(page->index <= ui->synced_i_size >> PAGE_CACHE_SHIFT);
911 spin_unlock(&ui->ui_lock);
912 #endif
913
914 /* Update radix tree tags */
915 set_page_writeback(page);
916
917 addr = kmap(page);
918 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
919 i = 0;
920 while (len) {
921 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
922 data_key_init(c, &key, inode->i_ino, block);
923 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
924 if (err)
925 break;
926 if (++i >= UBIFS_BLOCKS_PER_PAGE)
927 break;
928 block += 1;
929 addr += blen;
930 len -= blen;
931 }
932 if (err) {
933 SetPageError(page);
934 ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
935 page->index, inode->i_ino, err);
936 ubifs_ro_mode(c, err);
937 }
938
939 ubifs_assert(PagePrivate(page));
940 if (PageChecked(page))
941 release_new_page_budget(c);
942 else
943 release_existing_page_budget(c);
944
945 atomic_long_dec(&c->dirty_pg_cnt);
946 ClearPagePrivate(page);
947 ClearPageChecked(page);
948
949 kunmap(page);
950 unlock_page(page);
951 end_page_writeback(page);
952 return err;
953 }
954
955 /*
956 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
957 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
958 * situation when a we have an inode with size 0, then a megabyte of data is
959 * appended to the inode, then write-back starts and flushes some amount of the
960 * dirty pages, the journal becomes full, commit happens and finishes, and then
961 * an unclean reboot happens. When the file system is mounted next time, the
962 * inode size would still be 0, but there would be many pages which are beyond
963 * the inode size, they would be indexed and consume flash space. Because the
964 * journal has been committed, the replay would not be able to detect this
965 * situation and correct the inode size. This means UBIFS would have to scan
966 * whole index and correct all inode sizes, which is long an unacceptable.
967 *
968 * To prevent situations like this, UBIFS writes pages back only if they are
969 * within the last synchronized inode size, i.e. the size which has been
970 * written to the flash media last time. Otherwise, UBIFS forces inode
971 * write-back, thus making sure the on-flash inode contains current inode size,
972 * and then keeps writing pages back.
973 *
974 * Some locking issues explanation. 'ubifs_writepage()' first is called with
975 * the page locked, and it locks @ui_mutex. However, write-back does take inode
976 * @i_mutex, which means other VFS operations may be run on this inode at the
977 * same time. And the problematic one is truncation to smaller size, from where
978 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
979 * then drops the truncated pages. And while dropping the pages, it takes the
980 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
981 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
982 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
983 *
984 * XXX(truncate): with the new truncate sequence this is not true anymore,
985 * and the calls to truncate_setsize can be move around freely. They should
986 * be moved to the very end of the truncate sequence.
987 *
988 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
989 * inode size. How do we do this if @inode->i_size may became smaller while we
990 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
991 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
992 * internally and updates it under @ui_mutex.
993 *
994 * Q: why we do not worry that if we race with truncation, we may end up with a
995 * situation when the inode is truncated while we are in the middle of
996 * 'do_writepage()', so we do write beyond inode size?
997 * A: If we are in the middle of 'do_writepage()', truncation would be locked
998 * on the page lock and it would not write the truncated inode node to the
999 * journal before we have finished.
1000 */
1001 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1002 {
1003 struct inode *inode = page->mapping->host;
1004 struct ubifs_inode *ui = ubifs_inode(inode);
1005 loff_t i_size = i_size_read(inode), synced_i_size;
1006 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
1007 int err, len = i_size & (PAGE_CACHE_SIZE - 1);
1008 void *kaddr;
1009
1010 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1011 inode->i_ino, page->index, page->flags);
1012 ubifs_assert(PagePrivate(page));
1013
1014 /* Is the page fully outside @i_size? (truncate in progress) */
1015 if (page->index > end_index || (page->index == end_index && !len)) {
1016 err = 0;
1017 goto out_unlock;
1018 }
1019
1020 spin_lock(&ui->ui_lock);
1021 synced_i_size = ui->synced_i_size;
1022 spin_unlock(&ui->ui_lock);
1023
1024 /* Is the page fully inside @i_size? */
1025 if (page->index < end_index) {
1026 if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
1027 err = inode->i_sb->s_op->write_inode(inode, NULL);
1028 if (err)
1029 goto out_unlock;
1030 /*
1031 * The inode has been written, but the write-buffer has
1032 * not been synchronized, so in case of an unclean
1033 * reboot we may end up with some pages beyond inode
1034 * size, but they would be in the journal (because
1035 * commit flushes write buffers) and recovery would deal
1036 * with this.
1037 */
1038 }
1039 return do_writepage(page, PAGE_CACHE_SIZE);
1040 }
1041
1042 /*
1043 * The page straddles @i_size. It must be zeroed out on each and every
1044 * writepage invocation because it may be mmapped. "A file is mapped
1045 * in multiples of the page size. For a file that is not a multiple of
1046 * the page size, the remaining memory is zeroed when mapped, and
1047 * writes to that region are not written out to the file."
1048 */
1049 kaddr = kmap_atomic(page);
1050 memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
1051 flush_dcache_page(page);
1052 kunmap_atomic(kaddr);
1053
1054 if (i_size > synced_i_size) {
1055 err = inode->i_sb->s_op->write_inode(inode, NULL);
1056 if (err)
1057 goto out_unlock;
1058 }
1059
1060 return do_writepage(page, len);
1061
1062 out_unlock:
1063 unlock_page(page);
1064 return err;
1065 }
1066
1067 /**
1068 * do_attr_changes - change inode attributes.
1069 * @inode: inode to change attributes for
1070 * @attr: describes attributes to change
1071 */
1072 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1073 {
1074 if (attr->ia_valid & ATTR_UID)
1075 inode->i_uid = attr->ia_uid;
1076 if (attr->ia_valid & ATTR_GID)
1077 inode->i_gid = attr->ia_gid;
1078 if (attr->ia_valid & ATTR_ATIME)
1079 inode->i_atime = timespec_trunc(attr->ia_atime,
1080 inode->i_sb->s_time_gran);
1081 if (attr->ia_valid & ATTR_MTIME)
1082 inode->i_mtime = timespec_trunc(attr->ia_mtime,
1083 inode->i_sb->s_time_gran);
1084 if (attr->ia_valid & ATTR_CTIME)
1085 inode->i_ctime = timespec_trunc(attr->ia_ctime,
1086 inode->i_sb->s_time_gran);
1087 if (attr->ia_valid & ATTR_MODE) {
1088 umode_t mode = attr->ia_mode;
1089
1090 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1091 mode &= ~S_ISGID;
1092 inode->i_mode = mode;
1093 }
1094 }
1095
1096 /**
1097 * do_truncation - truncate an inode.
1098 * @c: UBIFS file-system description object
1099 * @inode: inode to truncate
1100 * @attr: inode attribute changes description
1101 *
1102 * This function implements VFS '->setattr()' call when the inode is truncated
1103 * to a smaller size. Returns zero in case of success and a negative error code
1104 * in case of failure.
1105 */
1106 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1107 const struct iattr *attr)
1108 {
1109 int err;
1110 struct ubifs_budget_req req;
1111 loff_t old_size = inode->i_size, new_size = attr->ia_size;
1112 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1113 struct ubifs_inode *ui = ubifs_inode(inode);
1114
1115 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1116 memset(&req, 0, sizeof(struct ubifs_budget_req));
1117
1118 /*
1119 * If this is truncation to a smaller size, and we do not truncate on a
1120 * block boundary, budget for changing one data block, because the last
1121 * block will be re-written.
1122 */
1123 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1124 req.dirtied_page = 1;
1125
1126 req.dirtied_ino = 1;
1127 /* A funny way to budget for truncation node */
1128 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1129 err = ubifs_budget_space(c, &req);
1130 if (err) {
1131 /*
1132 * Treat truncations to zero as deletion and always allow them,
1133 * just like we do for '->unlink()'.
1134 */
1135 if (new_size || err != -ENOSPC)
1136 return err;
1137 budgeted = 0;
1138 }
1139
1140 truncate_setsize(inode, new_size);
1141
1142 if (offset) {
1143 pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1144 struct page *page;
1145
1146 page = find_lock_page(inode->i_mapping, index);
1147 if (page) {
1148 if (PageDirty(page)) {
1149 /*
1150 * 'ubifs_jnl_truncate()' will try to truncate
1151 * the last data node, but it contains
1152 * out-of-date data because the page is dirty.
1153 * Write the page now, so that
1154 * 'ubifs_jnl_truncate()' will see an already
1155 * truncated (and up to date) data node.
1156 */
1157 ubifs_assert(PagePrivate(page));
1158
1159 clear_page_dirty_for_io(page);
1160 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1161 offset = new_size &
1162 (PAGE_CACHE_SIZE - 1);
1163 err = do_writepage(page, offset);
1164 page_cache_release(page);
1165 if (err)
1166 goto out_budg;
1167 /*
1168 * We could now tell 'ubifs_jnl_truncate()' not
1169 * to read the last block.
1170 */
1171 } else {
1172 /*
1173 * We could 'kmap()' the page and pass the data
1174 * to 'ubifs_jnl_truncate()' to save it from
1175 * having to read it.
1176 */
1177 unlock_page(page);
1178 page_cache_release(page);
1179 }
1180 }
1181 }
1182
1183 mutex_lock(&ui->ui_mutex);
1184 ui->ui_size = inode->i_size;
1185 /* Truncation changes inode [mc]time */
1186 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1187 /* Other attributes may be changed at the same time as well */
1188 do_attr_changes(inode, attr);
1189 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1190 mutex_unlock(&ui->ui_mutex);
1191
1192 out_budg:
1193 if (budgeted)
1194 ubifs_release_budget(c, &req);
1195 else {
1196 c->bi.nospace = c->bi.nospace_rp = 0;
1197 smp_wmb();
1198 }
1199 return err;
1200 }
1201
1202 /**
1203 * do_setattr - change inode attributes.
1204 * @c: UBIFS file-system description object
1205 * @inode: inode to change attributes for
1206 * @attr: inode attribute changes description
1207 *
1208 * This function implements VFS '->setattr()' call for all cases except
1209 * truncations to smaller size. Returns zero in case of success and a negative
1210 * error code in case of failure.
1211 */
1212 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1213 const struct iattr *attr)
1214 {
1215 int err, release;
1216 loff_t new_size = attr->ia_size;
1217 struct ubifs_inode *ui = ubifs_inode(inode);
1218 struct ubifs_budget_req req = { .dirtied_ino = 1,
1219 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1220
1221 err = ubifs_budget_space(c, &req);
1222 if (err)
1223 return err;
1224
1225 if (attr->ia_valid & ATTR_SIZE) {
1226 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1227 truncate_setsize(inode, new_size);
1228 }
1229
1230 mutex_lock(&ui->ui_mutex);
1231 if (attr->ia_valid & ATTR_SIZE) {
1232 /* Truncation changes inode [mc]time */
1233 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1234 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1235 ui->ui_size = inode->i_size;
1236 }
1237
1238 do_attr_changes(inode, attr);
1239
1240 release = ui->dirty;
1241 if (attr->ia_valid & ATTR_SIZE)
1242 /*
1243 * Inode length changed, so we have to make sure
1244 * @I_DIRTY_DATASYNC is set.
1245 */
1246 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1247 else
1248 mark_inode_dirty_sync(inode);
1249 mutex_unlock(&ui->ui_mutex);
1250
1251 if (release)
1252 ubifs_release_budget(c, &req);
1253 if (IS_SYNC(inode))
1254 err = inode->i_sb->s_op->write_inode(inode, NULL);
1255 return err;
1256 }
1257
1258 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1259 {
1260 int err;
1261 struct inode *inode = dentry->d_inode;
1262 struct ubifs_info *c = inode->i_sb->s_fs_info;
1263
1264 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1265 inode->i_ino, inode->i_mode, attr->ia_valid);
1266 err = inode_change_ok(inode, attr);
1267 if (err)
1268 return err;
1269
1270 err = dbg_check_synced_i_size(c, inode);
1271 if (err)
1272 return err;
1273
1274 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1275 /* Truncation to a smaller size */
1276 err = do_truncation(c, inode, attr);
1277 else
1278 err = do_setattr(c, inode, attr);
1279
1280 return err;
1281 }
1282
1283 static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1284 unsigned int length)
1285 {
1286 struct inode *inode = page->mapping->host;
1287 struct ubifs_info *c = inode->i_sb->s_fs_info;
1288
1289 ubifs_assert(PagePrivate(page));
1290 if (offset || length < PAGE_CACHE_SIZE)
1291 /* Partial page remains dirty */
1292 return;
1293
1294 if (PageChecked(page))
1295 release_new_page_budget(c);
1296 else
1297 release_existing_page_budget(c);
1298
1299 atomic_long_dec(&c->dirty_pg_cnt);
1300 ClearPagePrivate(page);
1301 ClearPageChecked(page);
1302 }
1303
1304 static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1305 {
1306 struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1307
1308 nd_set_link(nd, ui->data);
1309 return NULL;
1310 }
1311
1312 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1313 {
1314 struct inode *inode = file->f_mapping->host;
1315 struct ubifs_info *c = inode->i_sb->s_fs_info;
1316 int err;
1317
1318 dbg_gen("syncing inode %lu", inode->i_ino);
1319
1320 if (c->ro_mount)
1321 /*
1322 * For some really strange reasons VFS does not filter out
1323 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1324 */
1325 return 0;
1326
1327 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1328 if (err)
1329 return err;
1330 mutex_lock(&inode->i_mutex);
1331
1332 /* Synchronize the inode unless this is a 'datasync()' call. */
1333 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1334 err = inode->i_sb->s_op->write_inode(inode, NULL);
1335 if (err)
1336 goto out;
1337 }
1338
1339 /*
1340 * Nodes related to this inode may still sit in a write-buffer. Flush
1341 * them.
1342 */
1343 err = ubifs_sync_wbufs_by_inode(c, inode);
1344 out:
1345 mutex_unlock(&inode->i_mutex);
1346 return err;
1347 }
1348
1349 /**
1350 * mctime_update_needed - check if mtime or ctime update is needed.
1351 * @inode: the inode to do the check for
1352 * @now: current time
1353 *
1354 * This helper function checks if the inode mtime/ctime should be updated or
1355 * not. If current values of the time-stamps are within the UBIFS inode time
1356 * granularity, they are not updated. This is an optimization.
1357 */
1358 static inline int mctime_update_needed(const struct inode *inode,
1359 const struct timespec *now)
1360 {
1361 if (!timespec_equal(&inode->i_mtime, now) ||
1362 !timespec_equal(&inode->i_ctime, now))
1363 return 1;
1364 return 0;
1365 }
1366
1367 /**
1368 * update_ctime - update mtime and ctime of an inode.
1369 * @inode: inode to update
1370 *
1371 * This function updates mtime and ctime of the inode if it is not equivalent to
1372 * current time. Returns zero in case of success and a negative error code in
1373 * case of failure.
1374 */
1375 static int update_mctime(struct inode *inode)
1376 {
1377 struct timespec now = ubifs_current_time(inode);
1378 struct ubifs_inode *ui = ubifs_inode(inode);
1379 struct ubifs_info *c = inode->i_sb->s_fs_info;
1380
1381 if (mctime_update_needed(inode, &now)) {
1382 int err, release;
1383 struct ubifs_budget_req req = { .dirtied_ino = 1,
1384 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1385
1386 err = ubifs_budget_space(c, &req);
1387 if (err)
1388 return err;
1389
1390 mutex_lock(&ui->ui_mutex);
1391 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1392 release = ui->dirty;
1393 mark_inode_dirty_sync(inode);
1394 mutex_unlock(&ui->ui_mutex);
1395 if (release)
1396 ubifs_release_budget(c, &req);
1397 }
1398
1399 return 0;
1400 }
1401
1402 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1403 {
1404 int err = update_mctime(file_inode(iocb->ki_filp));
1405 if (err)
1406 return err;
1407
1408 return generic_file_write_iter(iocb, from);
1409 }
1410
1411 static int ubifs_set_page_dirty(struct page *page)
1412 {
1413 int ret;
1414
1415 ret = __set_page_dirty_nobuffers(page);
1416 /*
1417 * An attempt to dirty a page without budgeting for it - should not
1418 * happen.
1419 */
1420 ubifs_assert(ret == 0);
1421 return ret;
1422 }
1423
1424 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1425 {
1426 /*
1427 * An attempt to release a dirty page without budgeting for it - should
1428 * not happen.
1429 */
1430 if (PageWriteback(page))
1431 return 0;
1432 ubifs_assert(PagePrivate(page));
1433 ubifs_assert(0);
1434 ClearPagePrivate(page);
1435 ClearPageChecked(page);
1436 return 1;
1437 }
1438
1439 /*
1440 * mmap()d file has taken write protection fault and is being made writable.
1441 * UBIFS must ensure page is budgeted for.
1442 */
1443 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma,
1444 struct vm_fault *vmf)
1445 {
1446 struct page *page = vmf->page;
1447 struct inode *inode = file_inode(vma->vm_file);
1448 struct ubifs_info *c = inode->i_sb->s_fs_info;
1449 struct timespec now = ubifs_current_time(inode);
1450 struct ubifs_budget_req req = { .new_page = 1 };
1451 int err, update_time;
1452
1453 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1454 i_size_read(inode));
1455 ubifs_assert(!c->ro_media && !c->ro_mount);
1456
1457 if (unlikely(c->ro_error))
1458 return VM_FAULT_SIGBUS; /* -EROFS */
1459
1460 /*
1461 * We have not locked @page so far so we may budget for changing the
1462 * page. Note, we cannot do this after we locked the page, because
1463 * budgeting may cause write-back which would cause deadlock.
1464 *
1465 * At the moment we do not know whether the page is dirty or not, so we
1466 * assume that it is not and budget for a new page. We could look at
1467 * the @PG_private flag and figure this out, but we may race with write
1468 * back and the page state may change by the time we lock it, so this
1469 * would need additional care. We do not bother with this at the
1470 * moment, although it might be good idea to do. Instead, we allocate
1471 * budget for a new page and amend it later on if the page was in fact
1472 * dirty.
1473 *
1474 * The budgeting-related logic of this function is similar to what we
1475 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1476 * for more comments.
1477 */
1478 update_time = mctime_update_needed(inode, &now);
1479 if (update_time)
1480 /*
1481 * We have to change inode time stamp which requires extra
1482 * budgeting.
1483 */
1484 req.dirtied_ino = 1;
1485
1486 err = ubifs_budget_space(c, &req);
1487 if (unlikely(err)) {
1488 if (err == -ENOSPC)
1489 ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1490 inode->i_ino);
1491 return VM_FAULT_SIGBUS;
1492 }
1493
1494 lock_page(page);
1495 if (unlikely(page->mapping != inode->i_mapping ||
1496 page_offset(page) > i_size_read(inode))) {
1497 /* Page got truncated out from underneath us */
1498 err = -EINVAL;
1499 goto out_unlock;
1500 }
1501
1502 if (PagePrivate(page))
1503 release_new_page_budget(c);
1504 else {
1505 if (!PageChecked(page))
1506 ubifs_convert_page_budget(c);
1507 SetPagePrivate(page);
1508 atomic_long_inc(&c->dirty_pg_cnt);
1509 __set_page_dirty_nobuffers(page);
1510 }
1511
1512 if (update_time) {
1513 int release;
1514 struct ubifs_inode *ui = ubifs_inode(inode);
1515
1516 mutex_lock(&ui->ui_mutex);
1517 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1518 release = ui->dirty;
1519 mark_inode_dirty_sync(inode);
1520 mutex_unlock(&ui->ui_mutex);
1521 if (release)
1522 ubifs_release_dirty_inode_budget(c, ui);
1523 }
1524
1525 wait_for_stable_page(page);
1526 return VM_FAULT_LOCKED;
1527
1528 out_unlock:
1529 unlock_page(page);
1530 ubifs_release_budget(c, &req);
1531 if (err)
1532 err = VM_FAULT_SIGBUS;
1533 return err;
1534 }
1535
1536 static const struct vm_operations_struct ubifs_file_vm_ops = {
1537 .fault = filemap_fault,
1538 .map_pages = filemap_map_pages,
1539 .page_mkwrite = ubifs_vm_page_mkwrite,
1540 };
1541
1542 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1543 {
1544 int err;
1545
1546 err = generic_file_mmap(file, vma);
1547 if (err)
1548 return err;
1549 vma->vm_ops = &ubifs_file_vm_ops;
1550 return 0;
1551 }
1552
1553 const struct address_space_operations ubifs_file_address_operations = {
1554 .readpage = ubifs_readpage,
1555 .writepage = ubifs_writepage,
1556 .write_begin = ubifs_write_begin,
1557 .write_end = ubifs_write_end,
1558 .invalidatepage = ubifs_invalidatepage,
1559 .set_page_dirty = ubifs_set_page_dirty,
1560 .releasepage = ubifs_releasepage,
1561 };
1562
1563 const struct inode_operations ubifs_file_inode_operations = {
1564 .setattr = ubifs_setattr,
1565 .getattr = ubifs_getattr,
1566 .setxattr = ubifs_setxattr,
1567 .getxattr = ubifs_getxattr,
1568 .listxattr = ubifs_listxattr,
1569 .removexattr = ubifs_removexattr,
1570 };
1571
1572 const struct inode_operations ubifs_symlink_inode_operations = {
1573 .readlink = generic_readlink,
1574 .follow_link = ubifs_follow_link,
1575 .setattr = ubifs_setattr,
1576 .getattr = ubifs_getattr,
1577 .setxattr = ubifs_setxattr,
1578 .getxattr = ubifs_getxattr,
1579 .listxattr = ubifs_listxattr,
1580 .removexattr = ubifs_removexattr,
1581 };
1582
1583 const struct file_operations ubifs_file_operations = {
1584 .llseek = generic_file_llseek,
1585 .read = new_sync_read,
1586 .write = new_sync_write,
1587 .read_iter = generic_file_read_iter,
1588 .write_iter = ubifs_write_iter,
1589 .mmap = ubifs_file_mmap,
1590 .fsync = ubifs_fsync,
1591 .unlocked_ioctl = ubifs_ioctl,
1592 .splice_read = generic_file_splice_read,
1593 .splice_write = iter_file_splice_write,
1594 #ifdef CONFIG_COMPAT
1595 .compat_ioctl = ubifs_compat_ioctl,
1596 #endif
1597 };
This page took 0.078147 seconds and 5 git commands to generate.