UBIFS: fix assertion warning
[deliverable/linux.git] / fs / ubifs / gc.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23 /*
24 * This file implements garbage collection. The procedure for garbage collection
25 * is different depending on whether a LEB as an index LEB (contains index
26 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28 * nodes to the journal, at which point the garbage-collected LEB is free to be
29 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31 * to be reused. Garbage collection will cause the number of dirty index nodes
32 * to grow, however sufficient space is reserved for the index to ensure the
33 * commit will never run out of space.
34 *
35 * Notes about dead watermark. At current UBIFS implementation we assume that
36 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
37 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
38 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
39 * Garbage Collector has to synchronize the GC head's write buffer before
40 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
41 * actually reclaim even very small pieces of dirty space by garbage collecting
42 * enough dirty LEBs, but we do not bother doing this at this implementation.
43 *
44 * Notes about dark watermark. The results of GC work depends on how big are
45 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
46 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
47 * have to waste large pieces of free space at the end of LEB B, because nodes
48 * from LEB A would not fit. And the worst situation is when all nodes are of
49 * maximum size. So dark watermark is the amount of free + dirty space in LEB
50 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
51 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
52 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
53 * good, and GC takes extra care when moving them.
54 */
55
56 #include <linux/slab.h>
57 #include <linux/pagemap.h>
58 #include <linux/list_sort.h>
59 #include "ubifs.h"
60
61 /*
62 * GC may need to move more than one LEB to make progress. The below constants
63 * define "soft" and "hard" limits on the number of LEBs the garbage collector
64 * may move.
65 */
66 #define SOFT_LEBS_LIMIT 4
67 #define HARD_LEBS_LIMIT 32
68
69 /**
70 * switch_gc_head - switch the garbage collection journal head.
71 * @c: UBIFS file-system description object
72 * @buf: buffer to write
73 * @len: length of the buffer to write
74 * @lnum: LEB number written is returned here
75 * @offs: offset written is returned here
76 *
77 * This function switch the GC head to the next LEB which is reserved in
78 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
79 * and other negative error code in case of failures.
80 */
81 static int switch_gc_head(struct ubifs_info *c)
82 {
83 int err, gc_lnum = c->gc_lnum;
84 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
85
86 ubifs_assert(gc_lnum != -1);
87 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
88 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
89 c->leb_size - wbuf->offs - wbuf->used);
90
91 err = ubifs_wbuf_sync_nolock(wbuf);
92 if (err)
93 return err;
94
95 /*
96 * The GC write-buffer was synchronized, we may safely unmap
97 * 'c->gc_lnum'.
98 */
99 err = ubifs_leb_unmap(c, gc_lnum);
100 if (err)
101 return err;
102
103 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
104 if (err)
105 return err;
106
107 c->gc_lnum = -1;
108 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM);
109 return err;
110 }
111
112 /**
113 * data_nodes_cmp - compare 2 data nodes.
114 * @priv: UBIFS file-system description object
115 * @a: first data node
116 * @a: second data node
117 *
118 * This function compares data nodes @a and @b. Returns %1 if @a has greater
119 * inode or block number, and %-1 otherwise.
120 */
121 int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
122 {
123 ino_t inuma, inumb;
124 struct ubifs_info *c = priv;
125 struct ubifs_scan_node *sa, *sb;
126
127 cond_resched();
128 sa = list_entry(a, struct ubifs_scan_node, list);
129 sb = list_entry(b, struct ubifs_scan_node, list);
130 ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
131 ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
132
133 inuma = key_inum(c, &sa->key);
134 inumb = key_inum(c, &sb->key);
135
136 if (inuma == inumb) {
137 unsigned int blka = key_block(c, &sa->key);
138 unsigned int blkb = key_block(c, &sb->key);
139
140 if (blka <= blkb)
141 return -1;
142 } else if (inuma <= inumb)
143 return -1;
144
145 return 1;
146 }
147
148 /*
149 * nondata_nodes_cmp - compare 2 non-data nodes.
150 * @priv: UBIFS file-system description object
151 * @a: first node
152 * @a: second node
153 *
154 * This function compares nodes @a and @b. It makes sure that inode nodes go
155 * first and sorted by length in descending order. Directory entry nodes go
156 * after inode nodes and are sorted in ascending hash valuer order.
157 */
158 int nondata_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
159 {
160 int typea, typeb;
161 ino_t inuma, inumb;
162 struct ubifs_info *c = priv;
163 struct ubifs_scan_node *sa, *sb;
164
165 cond_resched();
166 sa = list_entry(a, struct ubifs_scan_node, list);
167 sb = list_entry(b, struct ubifs_scan_node, list);
168 typea = key_type(c, &sa->key);
169 typeb = key_type(c, &sb->key);
170 ubifs_assert(typea != UBIFS_DATA_KEY && typeb != UBIFS_DATA_KEY);
171
172 /* Inodes go before directory entries */
173 if (typea == UBIFS_INO_KEY) {
174 if (typeb == UBIFS_INO_KEY)
175 return sb->len - sa->len;
176 return -1;
177 }
178 if (typeb == UBIFS_INO_KEY)
179 return 1;
180
181 ubifs_assert(typea == UBIFS_DENT_KEY || typea == UBIFS_XENT_KEY);
182 ubifs_assert(typeb == UBIFS_DENT_KEY || typeb == UBIFS_XENT_KEY);
183 inuma = key_inum(c, &sa->key);
184 inumb = key_inum(c, &sb->key);
185
186 if (inuma == inumb) {
187 uint32_t hasha = key_hash(c, &sa->key);
188 uint32_t hashb = key_hash(c, &sb->key);
189
190 if (hasha <= hashb)
191 return -1;
192 } else if (inuma <= inumb)
193 return -1;
194
195 return 1;
196 }
197
198 /**
199 * sort_nodes - sort nodes for GC.
200 * @c: UBIFS file-system description object
201 * @sleb: describes nodes to sort and contains the result on exit
202 * @nondata: contains non-data nodes on exit
203 * @min: minimum node size is returned here
204 *
205 * This function sorts the list of inodes to garbage collect. First of all, it
206 * kills obsolete nodes and separates data and non-data nodes to the
207 * @sleb->nodes and @nondata lists correspondingly.
208 *
209 * Data nodes are then sorted in block number order - this is important for
210 * bulk-read; data nodes with lower inode number go before data nodes with
211 * higher inode number, and data nodes with lower block number go before data
212 * nodes with higher block number;
213 *
214 * Non-data nodes are sorted as follows.
215 * o First go inode nodes - they are sorted in descending length order.
216 * o Then go directory entry nodes - they are sorted in hash order, which
217 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent
218 * inode number go before direntry nodes with higher parent inode number,
219 * and direntry nodes with lower name hash values go before direntry nodes
220 * with higher name hash values.
221 *
222 * This function returns zero in case of success and a negative error code in
223 * case of failure.
224 */
225 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
226 struct list_head *nondata, int *min)
227 {
228 struct ubifs_scan_node *snod, *tmp;
229
230 *min = INT_MAX;
231
232 /* Separate data nodes and non-data nodes */
233 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
234 int err;
235
236 ubifs_assert(snod->type != UBIFS_IDX_NODE);
237 ubifs_assert(snod->type != UBIFS_REF_NODE);
238 ubifs_assert(snod->type != UBIFS_CS_NODE);
239
240 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
241 snod->offs, 0);
242 if (err < 0)
243 return err;
244
245 if (!err) {
246 /* The node is obsolete, remove it from the list */
247 list_del(&snod->list);
248 kfree(snod);
249 continue;
250 }
251
252 if (snod->len < *min)
253 *min = snod->len;
254
255 if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
256 list_move_tail(&snod->list, nondata);
257 }
258
259 /* Sort data and non-data nodes */
260 list_sort(c, &sleb->nodes, &data_nodes_cmp);
261 list_sort(c, nondata, &nondata_nodes_cmp);
262 return 0;
263 }
264
265 /**
266 * move_node - move a node.
267 * @c: UBIFS file-system description object
268 * @sleb: describes the LEB to move nodes from
269 * @snod: the mode to move
270 * @wbuf: write-buffer to move node to
271 *
272 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
273 * destroys @snod. Returns zero in case of success and a negative error code in
274 * case of failure.
275 */
276 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
277 struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
278 {
279 int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
280
281 cond_resched();
282 err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
283 if (err)
284 return err;
285
286 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
287 snod->offs, new_lnum, new_offs,
288 snod->len);
289 list_del(&snod->list);
290 kfree(snod);
291 return err;
292 }
293
294 /**
295 * move_nodes - move nodes.
296 * @c: UBIFS file-system description object
297 * @sleb: describes the LEB to move nodes from
298 *
299 * This function moves valid nodes from data LEB described by @sleb to the GC
300 * journal head. This function returns zero in case of success, %-EAGAIN if
301 * commit is required, and other negative error codes in case of other
302 * failures.
303 */
304 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
305 {
306 int err, min;
307 LIST_HEAD(nondata);
308 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
309
310 if (wbuf->lnum == -1) {
311 /*
312 * The GC journal head is not set, because it is the first GC
313 * invocation since mount.
314 */
315 err = switch_gc_head(c);
316 if (err)
317 return err;
318 }
319
320 err = sort_nodes(c, sleb, &nondata, &min);
321 if (err)
322 goto out;
323
324 /* Write nodes to their new location. Use the first-fit strategy */
325 while (1) {
326 int avail;
327 struct ubifs_scan_node *snod, *tmp;
328
329 /* Move data nodes */
330 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
331 avail = c->leb_size - wbuf->offs - wbuf->used;
332 if (snod->len > avail)
333 /*
334 * Do not skip data nodes in order to optimize
335 * bulk-read.
336 */
337 break;
338
339 err = move_node(c, sleb, snod, wbuf);
340 if (err)
341 goto out;
342 }
343
344 /* Move non-data nodes */
345 list_for_each_entry_safe(snod, tmp, &nondata, list) {
346 avail = c->leb_size - wbuf->offs - wbuf->used;
347 if (avail < min)
348 break;
349
350 if (snod->len > avail) {
351 /*
352 * Keep going only if this is an inode with
353 * some data. Otherwise stop and switch the GC
354 * head. IOW, we assume that data-less inode
355 * nodes and direntry nodes are roughly of the
356 * same size.
357 */
358 if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
359 snod->len == UBIFS_INO_NODE_SZ)
360 break;
361 continue;
362 }
363
364 err = move_node(c, sleb, snod, wbuf);
365 if (err)
366 goto out;
367 }
368
369 if (list_empty(&sleb->nodes) && list_empty(&nondata))
370 break;
371
372 /*
373 * Waste the rest of the space in the LEB and switch to the
374 * next LEB.
375 */
376 err = switch_gc_head(c);
377 if (err)
378 goto out;
379 }
380
381 return 0;
382
383 out:
384 list_splice_tail(&nondata, &sleb->nodes);
385 return err;
386 }
387
388 /**
389 * gc_sync_wbufs - sync write-buffers for GC.
390 * @c: UBIFS file-system description object
391 *
392 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
393 * be in a write-buffer instead. That is, a node could be written to a
394 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
395 * erased before the write-buffer is sync'd and then there is an unclean
396 * unmount, then an existing node is lost. To avoid this, we sync all
397 * write-buffers.
398 *
399 * This function returns %0 on success or a negative error code on failure.
400 */
401 static int gc_sync_wbufs(struct ubifs_info *c)
402 {
403 int err, i;
404
405 for (i = 0; i < c->jhead_cnt; i++) {
406 if (i == GCHD)
407 continue;
408 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
409 if (err)
410 return err;
411 }
412 return 0;
413 }
414
415 /**
416 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
417 * @c: UBIFS file-system description object
418 * @lp: describes the LEB to garbage collect
419 *
420 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
421 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
422 * required, and other negative error codes in case of failures.
423 */
424 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
425 {
426 struct ubifs_scan_leb *sleb;
427 struct ubifs_scan_node *snod;
428 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
429 int err = 0, lnum = lp->lnum;
430
431 ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
432 c->need_recovery);
433 ubifs_assert(c->gc_lnum != lnum);
434 ubifs_assert(wbuf->lnum != lnum);
435
436 /*
437 * We scan the entire LEB even though we only really need to scan up to
438 * (c->leb_size - lp->free).
439 */
440 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
441 if (IS_ERR(sleb))
442 return PTR_ERR(sleb);
443
444 ubifs_assert(!list_empty(&sleb->nodes));
445 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
446
447 if (snod->type == UBIFS_IDX_NODE) {
448 struct ubifs_gced_idx_leb *idx_gc;
449
450 dbg_gc("indexing LEB %d (free %d, dirty %d)",
451 lnum, lp->free, lp->dirty);
452 list_for_each_entry(snod, &sleb->nodes, list) {
453 struct ubifs_idx_node *idx = snod->node;
454 int level = le16_to_cpu(idx->level);
455
456 ubifs_assert(snod->type == UBIFS_IDX_NODE);
457 key_read(c, ubifs_idx_key(c, idx), &snod->key);
458 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
459 snod->offs);
460 if (err)
461 goto out;
462 }
463
464 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
465 if (!idx_gc) {
466 err = -ENOMEM;
467 goto out;
468 }
469
470 idx_gc->lnum = lnum;
471 idx_gc->unmap = 0;
472 list_add(&idx_gc->list, &c->idx_gc);
473
474 /*
475 * Don't release the LEB until after the next commit, because
476 * it may contain data which is needed for recovery. So
477 * although we freed this LEB, it will become usable only after
478 * the commit.
479 */
480 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
481 LPROPS_INDEX, 1);
482 if (err)
483 goto out;
484 err = LEB_FREED_IDX;
485 } else {
486 dbg_gc("data LEB %d (free %d, dirty %d)",
487 lnum, lp->free, lp->dirty);
488
489 err = move_nodes(c, sleb);
490 if (err)
491 goto out_inc_seq;
492
493 err = gc_sync_wbufs(c);
494 if (err)
495 goto out_inc_seq;
496
497 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
498 if (err)
499 goto out_inc_seq;
500
501 /* Allow for races with TNC */
502 c->gced_lnum = lnum;
503 smp_wmb();
504 c->gc_seq += 1;
505 smp_wmb();
506
507 if (c->gc_lnum == -1) {
508 c->gc_lnum = lnum;
509 err = LEB_RETAINED;
510 } else {
511 err = ubifs_wbuf_sync_nolock(wbuf);
512 if (err)
513 goto out;
514
515 err = ubifs_leb_unmap(c, lnum);
516 if (err)
517 goto out;
518
519 err = LEB_FREED;
520 }
521 }
522
523 out:
524 ubifs_scan_destroy(sleb);
525 return err;
526
527 out_inc_seq:
528 /* We may have moved at least some nodes so allow for races with TNC */
529 c->gced_lnum = lnum;
530 smp_wmb();
531 c->gc_seq += 1;
532 smp_wmb();
533 goto out;
534 }
535
536 /**
537 * ubifs_garbage_collect - UBIFS garbage collector.
538 * @c: UBIFS file-system description object
539 * @anyway: do GC even if there are free LEBs
540 *
541 * This function does out-of-place garbage collection. The return codes are:
542 * o positive LEB number if the LEB has been freed and may be used;
543 * o %-EAGAIN if the caller has to run commit;
544 * o %-ENOSPC if GC failed to make any progress;
545 * o other negative error codes in case of other errors.
546 *
547 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
548 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
549 * commit may be required. But commit cannot be run from inside GC, because the
550 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
551 * And this error code means that the caller has to run commit, and re-run GC
552 * if there is still no free space.
553 *
554 * There are many reasons why this function may return %-EAGAIN:
555 * o the log is full and there is no space to write an LEB reference for
556 * @c->gc_lnum;
557 * o the journal is too large and exceeds size limitations;
558 * o GC moved indexing LEBs, but they can be used only after the commit;
559 * o the shrinker fails to find clean znodes to free and requests the commit;
560 * o etc.
561 *
562 * Note, if the file-system is close to be full, this function may return
563 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
564 * the function. E.g., this happens if the limits on the journal size are too
565 * tough and GC writes too much to the journal before an LEB is freed. This
566 * might also mean that the journal is too large, and the TNC becomes to big,
567 * so that the shrinker is constantly called, finds not clean znodes to free,
568 * and requests commit. Well, this may also happen if the journal is all right,
569 * but another kernel process consumes too much memory. Anyway, infinite
570 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
571 */
572 int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
573 {
574 int i, err, ret, min_space = c->dead_wm;
575 struct ubifs_lprops lp;
576 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
577
578 ubifs_assert_cmt_locked(c);
579
580 if (ubifs_gc_should_commit(c))
581 return -EAGAIN;
582
583 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
584
585 if (c->ro_media) {
586 ret = -EROFS;
587 goto out_unlock;
588 }
589
590 /* We expect the write-buffer to be empty on entry */
591 ubifs_assert(!wbuf->used);
592
593 for (i = 0; ; i++) {
594 int space_before = c->leb_size - wbuf->offs - wbuf->used;
595 int space_after;
596
597 cond_resched();
598
599 /* Give the commit an opportunity to run */
600 if (ubifs_gc_should_commit(c)) {
601 ret = -EAGAIN;
602 break;
603 }
604
605 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
606 /*
607 * We've done enough iterations. Indexing LEBs were
608 * moved and will be available after the commit.
609 */
610 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
611 ubifs_commit_required(c);
612 ret = -EAGAIN;
613 break;
614 }
615
616 if (i > HARD_LEBS_LIMIT) {
617 /*
618 * We've moved too many LEBs and have not made
619 * progress, give up.
620 */
621 dbg_gc("hard limit, -ENOSPC");
622 ret = -ENOSPC;
623 break;
624 }
625
626 /*
627 * Empty and freeable LEBs can turn up while we waited for
628 * the wbuf lock, or while we have been running GC. In that
629 * case, we should just return one of those instead of
630 * continuing to GC dirty LEBs. Hence we request
631 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
632 */
633 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
634 if (ret) {
635 if (ret == -ENOSPC)
636 dbg_gc("no more dirty LEBs");
637 break;
638 }
639
640 dbg_gc("found LEB %d: free %d, dirty %d, sum %d "
641 "(min. space %d)", lp.lnum, lp.free, lp.dirty,
642 lp.free + lp.dirty, min_space);
643
644 if (lp.free + lp.dirty == c->leb_size) {
645 /* An empty LEB was returned */
646 dbg_gc("LEB %d is free, return it", lp.lnum);
647 /*
648 * ubifs_find_dirty_leb() doesn't return freeable index
649 * LEBs.
650 */
651 ubifs_assert(!(lp.flags & LPROPS_INDEX));
652 if (lp.free != c->leb_size) {
653 /*
654 * Write buffers must be sync'd before
655 * unmapping freeable LEBs, because one of them
656 * may contain data which obsoletes something
657 * in 'lp.pnum'.
658 */
659 ret = gc_sync_wbufs(c);
660 if (ret)
661 goto out;
662 ret = ubifs_change_one_lp(c, lp.lnum,
663 c->leb_size, 0, 0, 0,
664 0);
665 if (ret)
666 goto out;
667 }
668 ret = ubifs_leb_unmap(c, lp.lnum);
669 if (ret)
670 goto out;
671 ret = lp.lnum;
672 break;
673 }
674
675 space_before = c->leb_size - wbuf->offs - wbuf->used;
676 if (wbuf->lnum == -1)
677 space_before = 0;
678
679 ret = ubifs_garbage_collect_leb(c, &lp);
680 if (ret < 0) {
681 if (ret == -EAGAIN) {
682 /*
683 * This is not error, so we have to return the
684 * LEB to lprops. But if 'ubifs_return_leb()'
685 * fails, its failure code is propagated to the
686 * caller instead of the original '-EAGAIN'.
687 */
688 err = ubifs_return_leb(c, lp.lnum);
689 if (err)
690 ret = err;
691 break;
692 }
693 goto out;
694 }
695
696 if (ret == LEB_FREED) {
697 /* An LEB has been freed and is ready for use */
698 dbg_gc("LEB %d freed, return", lp.lnum);
699 ret = lp.lnum;
700 break;
701 }
702
703 if (ret == LEB_FREED_IDX) {
704 /*
705 * This was an indexing LEB and it cannot be
706 * immediately used. And instead of requesting the
707 * commit straight away, we try to garbage collect some
708 * more.
709 */
710 dbg_gc("indexing LEB %d freed, continue", lp.lnum);
711 continue;
712 }
713
714 ubifs_assert(ret == LEB_RETAINED);
715 space_after = c->leb_size - wbuf->offs - wbuf->used;
716 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
717 space_after - space_before);
718
719 if (space_after > space_before) {
720 /* GC makes progress, keep working */
721 min_space >>= 1;
722 if (min_space < c->dead_wm)
723 min_space = c->dead_wm;
724 continue;
725 }
726
727 dbg_gc("did not make progress");
728
729 /*
730 * GC moved an LEB bud have not done any progress. This means
731 * that the previous GC head LEB contained too few free space
732 * and the LEB which was GC'ed contained only large nodes which
733 * did not fit that space.
734 *
735 * We can do 2 things:
736 * 1. pick another LEB in a hope it'll contain a small node
737 * which will fit the space we have at the end of current GC
738 * head LEB, but there is no guarantee, so we try this out
739 * unless we have already been working for too long;
740 * 2. request an LEB with more dirty space, which will force
741 * 'ubifs_find_dirty_leb()' to start scanning the lprops
742 * table, instead of just picking one from the heap
743 * (previously it already picked the dirtiest LEB).
744 */
745 if (i < SOFT_LEBS_LIMIT) {
746 dbg_gc("try again");
747 continue;
748 }
749
750 min_space <<= 1;
751 if (min_space > c->dark_wm)
752 min_space = c->dark_wm;
753 dbg_gc("set min. space to %d", min_space);
754 }
755
756 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
757 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
758 ubifs_commit_required(c);
759 ret = -EAGAIN;
760 }
761
762 err = ubifs_wbuf_sync_nolock(wbuf);
763 if (!err)
764 err = ubifs_leb_unmap(c, c->gc_lnum);
765 if (err) {
766 ret = err;
767 goto out;
768 }
769 out_unlock:
770 mutex_unlock(&wbuf->io_mutex);
771 return ret;
772
773 out:
774 ubifs_assert(ret < 0);
775 ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
776 ubifs_wbuf_sync_nolock(wbuf);
777 ubifs_ro_mode(c, ret);
778 mutex_unlock(&wbuf->io_mutex);
779 ubifs_return_leb(c, lp.lnum);
780 return ret;
781 }
782
783 /**
784 * ubifs_gc_start_commit - garbage collection at start of commit.
785 * @c: UBIFS file-system description object
786 *
787 * If a LEB has only dirty and free space, then we may safely unmap it and make
788 * it free. Note, we cannot do this with indexing LEBs because dirty space may
789 * correspond index nodes that are required for recovery. In that case, the
790 * LEB cannot be unmapped until after the next commit.
791 *
792 * This function returns %0 upon success and a negative error code upon failure.
793 */
794 int ubifs_gc_start_commit(struct ubifs_info *c)
795 {
796 struct ubifs_gced_idx_leb *idx_gc;
797 const struct ubifs_lprops *lp;
798 int err = 0, flags;
799
800 ubifs_get_lprops(c);
801
802 /*
803 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
804 * wbufs are sync'd before this, which is done in 'do_commit()'.
805 */
806 while (1) {
807 lp = ubifs_fast_find_freeable(c);
808 if (IS_ERR(lp)) {
809 err = PTR_ERR(lp);
810 goto out;
811 }
812 if (!lp)
813 break;
814 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
815 ubifs_assert(!(lp->flags & LPROPS_INDEX));
816 err = ubifs_leb_unmap(c, lp->lnum);
817 if (err)
818 goto out;
819 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
820 if (IS_ERR(lp)) {
821 err = PTR_ERR(lp);
822 goto out;
823 }
824 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
825 ubifs_assert(!(lp->flags & LPROPS_INDEX));
826 }
827
828 /* Mark GC'd index LEBs OK to unmap after this commit finishes */
829 list_for_each_entry(idx_gc, &c->idx_gc, list)
830 idx_gc->unmap = 1;
831
832 /* Record index freeable LEBs for unmapping after commit */
833 while (1) {
834 lp = ubifs_fast_find_frdi_idx(c);
835 if (IS_ERR(lp)) {
836 err = PTR_ERR(lp);
837 goto out;
838 }
839 if (!lp)
840 break;
841 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
842 if (!idx_gc) {
843 err = -ENOMEM;
844 goto out;
845 }
846 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
847 ubifs_assert(lp->flags & LPROPS_INDEX);
848 /* Don't release the LEB until after the next commit */
849 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
850 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
851 if (IS_ERR(lp)) {
852 err = PTR_ERR(lp);
853 kfree(idx_gc);
854 goto out;
855 }
856 ubifs_assert(lp->flags & LPROPS_TAKEN);
857 ubifs_assert(!(lp->flags & LPROPS_INDEX));
858 idx_gc->lnum = lp->lnum;
859 idx_gc->unmap = 1;
860 list_add(&idx_gc->list, &c->idx_gc);
861 }
862 out:
863 ubifs_release_lprops(c);
864 return err;
865 }
866
867 /**
868 * ubifs_gc_end_commit - garbage collection at end of commit.
869 * @c: UBIFS file-system description object
870 *
871 * This function completes out-of-place garbage collection of index LEBs.
872 */
873 int ubifs_gc_end_commit(struct ubifs_info *c)
874 {
875 struct ubifs_gced_idx_leb *idx_gc, *tmp;
876 struct ubifs_wbuf *wbuf;
877 int err = 0;
878
879 wbuf = &c->jheads[GCHD].wbuf;
880 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
881 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
882 if (idx_gc->unmap) {
883 dbg_gc("LEB %d", idx_gc->lnum);
884 err = ubifs_leb_unmap(c, idx_gc->lnum);
885 if (err)
886 goto out;
887 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
888 LPROPS_NC, 0, LPROPS_TAKEN, -1);
889 if (err)
890 goto out;
891 list_del(&idx_gc->list);
892 kfree(idx_gc);
893 }
894 out:
895 mutex_unlock(&wbuf->io_mutex);
896 return err;
897 }
898
899 /**
900 * ubifs_destroy_idx_gc - destroy idx_gc list.
901 * @c: UBIFS file-system description object
902 *
903 * This function destroys the @c->idx_gc list. It is called when unmounting
904 * so locks are not needed. Returns zero in case of success and a negative
905 * error code in case of failure.
906 */
907 void ubifs_destroy_idx_gc(struct ubifs_info *c)
908 {
909 while (!list_empty(&c->idx_gc)) {
910 struct ubifs_gced_idx_leb *idx_gc;
911
912 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
913 list);
914 c->idx_gc_cnt -= 1;
915 list_del(&idx_gc->list);
916 kfree(idx_gc);
917 }
918 }
919
920 /**
921 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
922 * @c: UBIFS file-system description object
923 *
924 * Called during start commit so locks are not needed.
925 */
926 int ubifs_get_idx_gc_leb(struct ubifs_info *c)
927 {
928 struct ubifs_gced_idx_leb *idx_gc;
929 int lnum;
930
931 if (list_empty(&c->idx_gc))
932 return -ENOSPC;
933 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
934 lnum = idx_gc->lnum;
935 /* c->idx_gc_cnt is updated by the caller when lprops are updated */
936 list_del(&idx_gc->list);
937 kfree(idx_gc);
938 return lnum;
939 }
This page took 0.072069 seconds and 6 git commands to generate.