Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / udf / inode.c
1 /*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/module.h>
36 #include <linux/pagemap.h>
37 #include <linux/buffer_head.h>
38 #include <linux/writeback.h>
39 #include <linux/slab.h>
40 #include <linux/crc-itu-t.h>
41
42 #include "udf_i.h"
43 #include "udf_sb.h"
44
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
48
49 #define EXTENT_MERGE_SIZE 5
50
51 static mode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static void udf_fill_inode(struct inode *, struct buffer_head *);
54 static int udf_alloc_i_data(struct inode *inode, size_t size);
55 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
56 sector_t *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 struct kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69
70
71 void udf_delete_inode(struct inode *inode)
72 {
73 truncate_inode_pages(&inode->i_data, 0);
74
75 if (is_bad_inode(inode))
76 goto no_delete;
77
78 inode->i_size = 0;
79 udf_truncate(inode);
80 lock_kernel();
81
82 udf_update_inode(inode, IS_SYNC(inode));
83 udf_free_inode(inode);
84
85 unlock_kernel();
86 return;
87
88 no_delete:
89 clear_inode(inode);
90 }
91
92 /*
93 * If we are going to release inode from memory, we truncate last inode extent
94 * to proper length. We could use drop_inode() but it's called under inode_lock
95 * and thus we cannot mark inode dirty there. We use clear_inode() but we have
96 * to make sure to write inode as it's not written automatically.
97 */
98 void udf_clear_inode(struct inode *inode)
99 {
100 struct udf_inode_info *iinfo = UDF_I(inode);
101
102 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
103 inode->i_size != iinfo->i_lenExtents) {
104 printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has "
105 "inode size %llu different from extent length %llu. "
106 "Filesystem need not be standards compliant.\n",
107 inode->i_sb->s_id, inode->i_ino, inode->i_mode,
108 (unsigned long long)inode->i_size,
109 (unsigned long long)iinfo->i_lenExtents);
110 }
111
112 kfree(iinfo->i_ext.i_data);
113 iinfo->i_ext.i_data = NULL;
114 }
115
116 static int udf_writepage(struct page *page, struct writeback_control *wbc)
117 {
118 return block_write_full_page(page, udf_get_block, wbc);
119 }
120
121 static int udf_readpage(struct file *file, struct page *page)
122 {
123 return block_read_full_page(page, udf_get_block);
124 }
125
126 static int udf_write_begin(struct file *file, struct address_space *mapping,
127 loff_t pos, unsigned len, unsigned flags,
128 struct page **pagep, void **fsdata)
129 {
130 *pagep = NULL;
131 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
132 udf_get_block);
133 }
134
135 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
136 {
137 return generic_block_bmap(mapping, block, udf_get_block);
138 }
139
140 const struct address_space_operations udf_aops = {
141 .readpage = udf_readpage,
142 .writepage = udf_writepage,
143 .sync_page = block_sync_page,
144 .write_begin = udf_write_begin,
145 .write_end = generic_write_end,
146 .bmap = udf_bmap,
147 };
148
149 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
150 {
151 struct page *page;
152 char *kaddr;
153 struct udf_inode_info *iinfo = UDF_I(inode);
154 struct writeback_control udf_wbc = {
155 .sync_mode = WB_SYNC_NONE,
156 .nr_to_write = 1,
157 };
158
159 /* from now on we have normal address_space methods */
160 inode->i_data.a_ops = &udf_aops;
161
162 if (!iinfo->i_lenAlloc) {
163 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
164 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
165 else
166 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
167 mark_inode_dirty(inode);
168 return;
169 }
170
171 page = grab_cache_page(inode->i_mapping, 0);
172 BUG_ON(!PageLocked(page));
173
174 if (!PageUptodate(page)) {
175 kaddr = kmap(page);
176 memset(kaddr + iinfo->i_lenAlloc, 0x00,
177 PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
178 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
179 iinfo->i_lenAlloc);
180 flush_dcache_page(page);
181 SetPageUptodate(page);
182 kunmap(page);
183 }
184 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
185 iinfo->i_lenAlloc);
186 iinfo->i_lenAlloc = 0;
187 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
188 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
189 else
190 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
191
192 inode->i_data.a_ops->writepage(page, &udf_wbc);
193 page_cache_release(page);
194
195 mark_inode_dirty(inode);
196 }
197
198 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
199 int *err)
200 {
201 int newblock;
202 struct buffer_head *dbh = NULL;
203 struct kernel_lb_addr eloc;
204 uint8_t alloctype;
205 struct extent_position epos;
206
207 struct udf_fileident_bh sfibh, dfibh;
208 loff_t f_pos = udf_ext0_offset(inode);
209 int size = udf_ext0_offset(inode) + inode->i_size;
210 struct fileIdentDesc cfi, *sfi, *dfi;
211 struct udf_inode_info *iinfo = UDF_I(inode);
212
213 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
214 alloctype = ICBTAG_FLAG_AD_SHORT;
215 else
216 alloctype = ICBTAG_FLAG_AD_LONG;
217
218 if (!inode->i_size) {
219 iinfo->i_alloc_type = alloctype;
220 mark_inode_dirty(inode);
221 return NULL;
222 }
223
224 /* alloc block, and copy data to it */
225 *block = udf_new_block(inode->i_sb, inode,
226 iinfo->i_location.partitionReferenceNum,
227 iinfo->i_location.logicalBlockNum, err);
228 if (!(*block))
229 return NULL;
230 newblock = udf_get_pblock(inode->i_sb, *block,
231 iinfo->i_location.partitionReferenceNum,
232 0);
233 if (!newblock)
234 return NULL;
235 dbh = udf_tgetblk(inode->i_sb, newblock);
236 if (!dbh)
237 return NULL;
238 lock_buffer(dbh);
239 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
240 set_buffer_uptodate(dbh);
241 unlock_buffer(dbh);
242 mark_buffer_dirty_inode(dbh, inode);
243
244 sfibh.soffset = sfibh.eoffset =
245 f_pos & (inode->i_sb->s_blocksize - 1);
246 sfibh.sbh = sfibh.ebh = NULL;
247 dfibh.soffset = dfibh.eoffset = 0;
248 dfibh.sbh = dfibh.ebh = dbh;
249 while (f_pos < size) {
250 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
251 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
252 NULL, NULL, NULL);
253 if (!sfi) {
254 brelse(dbh);
255 return NULL;
256 }
257 iinfo->i_alloc_type = alloctype;
258 sfi->descTag.tagLocation = cpu_to_le32(*block);
259 dfibh.soffset = dfibh.eoffset;
260 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
261 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
262 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
263 sfi->fileIdent +
264 le16_to_cpu(sfi->lengthOfImpUse))) {
265 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
266 brelse(dbh);
267 return NULL;
268 }
269 }
270 mark_buffer_dirty_inode(dbh, inode);
271
272 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
273 iinfo->i_lenAlloc);
274 iinfo->i_lenAlloc = 0;
275 eloc.logicalBlockNum = *block;
276 eloc.partitionReferenceNum =
277 iinfo->i_location.partitionReferenceNum;
278 iinfo->i_lenExtents = inode->i_size;
279 epos.bh = NULL;
280 epos.block = iinfo->i_location;
281 epos.offset = udf_file_entry_alloc_offset(inode);
282 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
283 /* UniqueID stuff */
284
285 brelse(epos.bh);
286 mark_inode_dirty(inode);
287 return dbh;
288 }
289
290 static int udf_get_block(struct inode *inode, sector_t block,
291 struct buffer_head *bh_result, int create)
292 {
293 int err, new;
294 struct buffer_head *bh;
295 sector_t phys = 0;
296 struct udf_inode_info *iinfo;
297
298 if (!create) {
299 phys = udf_block_map(inode, block);
300 if (phys)
301 map_bh(bh_result, inode->i_sb, phys);
302 return 0;
303 }
304
305 err = -EIO;
306 new = 0;
307 bh = NULL;
308
309 lock_kernel();
310
311 iinfo = UDF_I(inode);
312 if (block == iinfo->i_next_alloc_block + 1) {
313 iinfo->i_next_alloc_block++;
314 iinfo->i_next_alloc_goal++;
315 }
316
317 err = 0;
318
319 bh = inode_getblk(inode, block, &err, &phys, &new);
320 BUG_ON(bh);
321 if (err)
322 goto abort;
323 BUG_ON(!phys);
324
325 if (new)
326 set_buffer_new(bh_result);
327 map_bh(bh_result, inode->i_sb, phys);
328
329 abort:
330 unlock_kernel();
331 return err;
332 }
333
334 static struct buffer_head *udf_getblk(struct inode *inode, long block,
335 int create, int *err)
336 {
337 struct buffer_head *bh;
338 struct buffer_head dummy;
339
340 dummy.b_state = 0;
341 dummy.b_blocknr = -1000;
342 *err = udf_get_block(inode, block, &dummy, create);
343 if (!*err && buffer_mapped(&dummy)) {
344 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
345 if (buffer_new(&dummy)) {
346 lock_buffer(bh);
347 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
348 set_buffer_uptodate(bh);
349 unlock_buffer(bh);
350 mark_buffer_dirty_inode(bh, inode);
351 }
352 return bh;
353 }
354
355 return NULL;
356 }
357
358 /* Extend the file by 'blocks' blocks, return the number of extents added */
359 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
360 struct kernel_long_ad *last_ext, sector_t blocks)
361 {
362 sector_t add;
363 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
364 struct super_block *sb = inode->i_sb;
365 struct kernel_lb_addr prealloc_loc = {};
366 int prealloc_len = 0;
367 struct udf_inode_info *iinfo;
368
369 /* The previous extent is fake and we should not extend by anything
370 * - there's nothing to do... */
371 if (!blocks && fake)
372 return 0;
373
374 iinfo = UDF_I(inode);
375 /* Round the last extent up to a multiple of block size */
376 if (last_ext->extLength & (sb->s_blocksize - 1)) {
377 last_ext->extLength =
378 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
379 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
380 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
381 iinfo->i_lenExtents =
382 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
383 ~(sb->s_blocksize - 1);
384 }
385
386 /* Last extent are just preallocated blocks? */
387 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
388 EXT_NOT_RECORDED_ALLOCATED) {
389 /* Save the extent so that we can reattach it to the end */
390 prealloc_loc = last_ext->extLocation;
391 prealloc_len = last_ext->extLength;
392 /* Mark the extent as a hole */
393 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
394 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
395 last_ext->extLocation.logicalBlockNum = 0;
396 last_ext->extLocation.partitionReferenceNum = 0;
397 }
398
399 /* Can we merge with the previous extent? */
400 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
401 EXT_NOT_RECORDED_NOT_ALLOCATED) {
402 add = ((1 << 30) - sb->s_blocksize -
403 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
404 sb->s_blocksize_bits;
405 if (add > blocks)
406 add = blocks;
407 blocks -= add;
408 last_ext->extLength += add << sb->s_blocksize_bits;
409 }
410
411 if (fake) {
412 udf_add_aext(inode, last_pos, &last_ext->extLocation,
413 last_ext->extLength, 1);
414 count++;
415 } else
416 udf_write_aext(inode, last_pos, &last_ext->extLocation,
417 last_ext->extLength, 1);
418
419 /* Managed to do everything necessary? */
420 if (!blocks)
421 goto out;
422
423 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
424 last_ext->extLocation.logicalBlockNum = 0;
425 last_ext->extLocation.partitionReferenceNum = 0;
426 add = (1 << (30-sb->s_blocksize_bits)) - 1;
427 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
428 (add << sb->s_blocksize_bits);
429
430 /* Create enough extents to cover the whole hole */
431 while (blocks > add) {
432 blocks -= add;
433 if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
434 last_ext->extLength, 1) == -1)
435 return -1;
436 count++;
437 }
438 if (blocks) {
439 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
440 (blocks << sb->s_blocksize_bits);
441 if (udf_add_aext(inode, last_pos, &last_ext->extLocation,
442 last_ext->extLength, 1) == -1)
443 return -1;
444 count++;
445 }
446
447 out:
448 /* Do we have some preallocated blocks saved? */
449 if (prealloc_len) {
450 if (udf_add_aext(inode, last_pos, &prealloc_loc,
451 prealloc_len, 1) == -1)
452 return -1;
453 last_ext->extLocation = prealloc_loc;
454 last_ext->extLength = prealloc_len;
455 count++;
456 }
457
458 /* last_pos should point to the last written extent... */
459 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
460 last_pos->offset -= sizeof(struct short_ad);
461 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
462 last_pos->offset -= sizeof(struct long_ad);
463 else
464 return -1;
465
466 return count;
467 }
468
469 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
470 int *err, sector_t *phys, int *new)
471 {
472 static sector_t last_block;
473 struct buffer_head *result = NULL;
474 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
475 struct extent_position prev_epos, cur_epos, next_epos;
476 int count = 0, startnum = 0, endnum = 0;
477 uint32_t elen = 0, tmpelen;
478 struct kernel_lb_addr eloc, tmpeloc;
479 int c = 1;
480 loff_t lbcount = 0, b_off = 0;
481 uint32_t newblocknum, newblock;
482 sector_t offset = 0;
483 int8_t etype;
484 struct udf_inode_info *iinfo = UDF_I(inode);
485 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
486 int lastblock = 0;
487
488 prev_epos.offset = udf_file_entry_alloc_offset(inode);
489 prev_epos.block = iinfo->i_location;
490 prev_epos.bh = NULL;
491 cur_epos = next_epos = prev_epos;
492 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
493
494 /* find the extent which contains the block we are looking for.
495 alternate between laarr[0] and laarr[1] for locations of the
496 current extent, and the previous extent */
497 do {
498 if (prev_epos.bh != cur_epos.bh) {
499 brelse(prev_epos.bh);
500 get_bh(cur_epos.bh);
501 prev_epos.bh = cur_epos.bh;
502 }
503 if (cur_epos.bh != next_epos.bh) {
504 brelse(cur_epos.bh);
505 get_bh(next_epos.bh);
506 cur_epos.bh = next_epos.bh;
507 }
508
509 lbcount += elen;
510
511 prev_epos.block = cur_epos.block;
512 cur_epos.block = next_epos.block;
513
514 prev_epos.offset = cur_epos.offset;
515 cur_epos.offset = next_epos.offset;
516
517 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
518 if (etype == -1)
519 break;
520
521 c = !c;
522
523 laarr[c].extLength = (etype << 30) | elen;
524 laarr[c].extLocation = eloc;
525
526 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
527 pgoal = eloc.logicalBlockNum +
528 ((elen + inode->i_sb->s_blocksize - 1) >>
529 inode->i_sb->s_blocksize_bits);
530
531 count++;
532 } while (lbcount + elen <= b_off);
533
534 b_off -= lbcount;
535 offset = b_off >> inode->i_sb->s_blocksize_bits;
536 /*
537 * Move prev_epos and cur_epos into indirect extent if we are at
538 * the pointer to it
539 */
540 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
541 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
542
543 /* if the extent is allocated and recorded, return the block
544 if the extent is not a multiple of the blocksize, round up */
545
546 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
547 if (elen & (inode->i_sb->s_blocksize - 1)) {
548 elen = EXT_RECORDED_ALLOCATED |
549 ((elen + inode->i_sb->s_blocksize - 1) &
550 ~(inode->i_sb->s_blocksize - 1));
551 etype = udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
552 }
553 brelse(prev_epos.bh);
554 brelse(cur_epos.bh);
555 brelse(next_epos.bh);
556 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
557 *phys = newblock;
558 return NULL;
559 }
560
561 last_block = block;
562 /* Are we beyond EOF? */
563 if (etype == -1) {
564 int ret;
565
566 if (count) {
567 if (c)
568 laarr[0] = laarr[1];
569 startnum = 1;
570 } else {
571 /* Create a fake extent when there's not one */
572 memset(&laarr[0].extLocation, 0x00,
573 sizeof(struct kernel_lb_addr));
574 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
575 /* Will udf_extend_file() create real extent from
576 a fake one? */
577 startnum = (offset > 0);
578 }
579 /* Create extents for the hole between EOF and offset */
580 ret = udf_extend_file(inode, &prev_epos, laarr, offset);
581 if (ret == -1) {
582 brelse(prev_epos.bh);
583 brelse(cur_epos.bh);
584 brelse(next_epos.bh);
585 /* We don't really know the error here so we just make
586 * something up */
587 *err = -ENOSPC;
588 return NULL;
589 }
590 c = 0;
591 offset = 0;
592 count += ret;
593 /* We are not covered by a preallocated extent? */
594 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
595 EXT_NOT_RECORDED_ALLOCATED) {
596 /* Is there any real extent? - otherwise we overwrite
597 * the fake one... */
598 if (count)
599 c = !c;
600 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
601 inode->i_sb->s_blocksize;
602 memset(&laarr[c].extLocation, 0x00,
603 sizeof(struct kernel_lb_addr));
604 count++;
605 endnum++;
606 }
607 endnum = c + 1;
608 lastblock = 1;
609 } else {
610 endnum = startnum = ((count > 2) ? 2 : count);
611
612 /* if the current extent is in position 0,
613 swap it with the previous */
614 if (!c && count != 1) {
615 laarr[2] = laarr[0];
616 laarr[0] = laarr[1];
617 laarr[1] = laarr[2];
618 c = 1;
619 }
620
621 /* if the current block is located in an extent,
622 read the next extent */
623 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
624 if (etype != -1) {
625 laarr[c + 1].extLength = (etype << 30) | elen;
626 laarr[c + 1].extLocation = eloc;
627 count++;
628 startnum++;
629 endnum++;
630 } else
631 lastblock = 1;
632 }
633
634 /* if the current extent is not recorded but allocated, get the
635 * block in the extent corresponding to the requested block */
636 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
637 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
638 else { /* otherwise, allocate a new block */
639 if (iinfo->i_next_alloc_block == block)
640 goal = iinfo->i_next_alloc_goal;
641
642 if (!goal) {
643 if (!(goal = pgoal)) /* XXX: what was intended here? */
644 goal = iinfo->i_location.logicalBlockNum + 1;
645 }
646
647 newblocknum = udf_new_block(inode->i_sb, inode,
648 iinfo->i_location.partitionReferenceNum,
649 goal, err);
650 if (!newblocknum) {
651 brelse(prev_epos.bh);
652 *err = -ENOSPC;
653 return NULL;
654 }
655 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
656 }
657
658 /* if the extent the requsted block is located in contains multiple
659 * blocks, split the extent into at most three extents. blocks prior
660 * to requested block, requested block, and blocks after requested
661 * block */
662 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
663
664 #ifdef UDF_PREALLOCATE
665 /* We preallocate blocks only for regular files. It also makes sense
666 * for directories but there's a problem when to drop the
667 * preallocation. We might use some delayed work for that but I feel
668 * it's overengineering for a filesystem like UDF. */
669 if (S_ISREG(inode->i_mode))
670 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
671 #endif
672
673 /* merge any continuous blocks in laarr */
674 udf_merge_extents(inode, laarr, &endnum);
675
676 /* write back the new extents, inserting new extents if the new number
677 * of extents is greater than the old number, and deleting extents if
678 * the new number of extents is less than the old number */
679 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
680
681 brelse(prev_epos.bh);
682
683 newblock = udf_get_pblock(inode->i_sb, newblocknum,
684 iinfo->i_location.partitionReferenceNum, 0);
685 if (!newblock)
686 return NULL;
687 *phys = newblock;
688 *err = 0;
689 *new = 1;
690 iinfo->i_next_alloc_block = block;
691 iinfo->i_next_alloc_goal = newblocknum;
692 inode->i_ctime = current_fs_time(inode->i_sb);
693
694 if (IS_SYNC(inode))
695 udf_sync_inode(inode);
696 else
697 mark_inode_dirty(inode);
698
699 return result;
700 }
701
702 static void udf_split_extents(struct inode *inode, int *c, int offset,
703 int newblocknum,
704 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
705 int *endnum)
706 {
707 unsigned long blocksize = inode->i_sb->s_blocksize;
708 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
709
710 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
711 (laarr[*c].extLength >> 30) ==
712 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
713 int curr = *c;
714 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
715 blocksize - 1) >> blocksize_bits;
716 int8_t etype = (laarr[curr].extLength >> 30);
717
718 if (blen == 1)
719 ;
720 else if (!offset || blen == offset + 1) {
721 laarr[curr + 2] = laarr[curr + 1];
722 laarr[curr + 1] = laarr[curr];
723 } else {
724 laarr[curr + 3] = laarr[curr + 1];
725 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
726 }
727
728 if (offset) {
729 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
730 udf_free_blocks(inode->i_sb, inode,
731 &laarr[curr].extLocation,
732 0, offset);
733 laarr[curr].extLength =
734 EXT_NOT_RECORDED_NOT_ALLOCATED |
735 (offset << blocksize_bits);
736 laarr[curr].extLocation.logicalBlockNum = 0;
737 laarr[curr].extLocation.
738 partitionReferenceNum = 0;
739 } else
740 laarr[curr].extLength = (etype << 30) |
741 (offset << blocksize_bits);
742 curr++;
743 (*c)++;
744 (*endnum)++;
745 }
746
747 laarr[curr].extLocation.logicalBlockNum = newblocknum;
748 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
749 laarr[curr].extLocation.partitionReferenceNum =
750 UDF_I(inode)->i_location.partitionReferenceNum;
751 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
752 blocksize;
753 curr++;
754
755 if (blen != offset + 1) {
756 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
757 laarr[curr].extLocation.logicalBlockNum +=
758 offset + 1;
759 laarr[curr].extLength = (etype << 30) |
760 ((blen - (offset + 1)) << blocksize_bits);
761 curr++;
762 (*endnum)++;
763 }
764 }
765 }
766
767 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
768 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
769 int *endnum)
770 {
771 int start, length = 0, currlength = 0, i;
772
773 if (*endnum >= (c + 1)) {
774 if (!lastblock)
775 return;
776 else
777 start = c;
778 } else {
779 if ((laarr[c + 1].extLength >> 30) ==
780 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
781 start = c + 1;
782 length = currlength =
783 (((laarr[c + 1].extLength &
784 UDF_EXTENT_LENGTH_MASK) +
785 inode->i_sb->s_blocksize - 1) >>
786 inode->i_sb->s_blocksize_bits);
787 } else
788 start = c;
789 }
790
791 for (i = start + 1; i <= *endnum; i++) {
792 if (i == *endnum) {
793 if (lastblock)
794 length += UDF_DEFAULT_PREALLOC_BLOCKS;
795 } else if ((laarr[i].extLength >> 30) ==
796 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
797 length += (((laarr[i].extLength &
798 UDF_EXTENT_LENGTH_MASK) +
799 inode->i_sb->s_blocksize - 1) >>
800 inode->i_sb->s_blocksize_bits);
801 } else
802 break;
803 }
804
805 if (length) {
806 int next = laarr[start].extLocation.logicalBlockNum +
807 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
808 inode->i_sb->s_blocksize - 1) >>
809 inode->i_sb->s_blocksize_bits);
810 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
811 laarr[start].extLocation.partitionReferenceNum,
812 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
813 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
814 currlength);
815 if (numalloc) {
816 if (start == (c + 1))
817 laarr[start].extLength +=
818 (numalloc <<
819 inode->i_sb->s_blocksize_bits);
820 else {
821 memmove(&laarr[c + 2], &laarr[c + 1],
822 sizeof(struct long_ad) * (*endnum - (c + 1)));
823 (*endnum)++;
824 laarr[c + 1].extLocation.logicalBlockNum = next;
825 laarr[c + 1].extLocation.partitionReferenceNum =
826 laarr[c].extLocation.
827 partitionReferenceNum;
828 laarr[c + 1].extLength =
829 EXT_NOT_RECORDED_ALLOCATED |
830 (numalloc <<
831 inode->i_sb->s_blocksize_bits);
832 start = c + 1;
833 }
834
835 for (i = start + 1; numalloc && i < *endnum; i++) {
836 int elen = ((laarr[i].extLength &
837 UDF_EXTENT_LENGTH_MASK) +
838 inode->i_sb->s_blocksize - 1) >>
839 inode->i_sb->s_blocksize_bits;
840
841 if (elen > numalloc) {
842 laarr[i].extLength -=
843 (numalloc <<
844 inode->i_sb->s_blocksize_bits);
845 numalloc = 0;
846 } else {
847 numalloc -= elen;
848 if (*endnum > (i + 1))
849 memmove(&laarr[i],
850 &laarr[i + 1],
851 sizeof(struct long_ad) *
852 (*endnum - (i + 1)));
853 i--;
854 (*endnum)--;
855 }
856 }
857 UDF_I(inode)->i_lenExtents +=
858 numalloc << inode->i_sb->s_blocksize_bits;
859 }
860 }
861 }
862
863 static void udf_merge_extents(struct inode *inode,
864 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
865 int *endnum)
866 {
867 int i;
868 unsigned long blocksize = inode->i_sb->s_blocksize;
869 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
870
871 for (i = 0; i < (*endnum - 1); i++) {
872 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
873 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
874
875 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
876 (((li->extLength >> 30) ==
877 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
878 ((lip1->extLocation.logicalBlockNum -
879 li->extLocation.logicalBlockNum) ==
880 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
881 blocksize - 1) >> blocksize_bits)))) {
882
883 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
884 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
885 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
886 lip1->extLength = (lip1->extLength -
887 (li->extLength &
888 UDF_EXTENT_LENGTH_MASK) +
889 UDF_EXTENT_LENGTH_MASK) &
890 ~(blocksize - 1);
891 li->extLength = (li->extLength &
892 UDF_EXTENT_FLAG_MASK) +
893 (UDF_EXTENT_LENGTH_MASK + 1) -
894 blocksize;
895 lip1->extLocation.logicalBlockNum =
896 li->extLocation.logicalBlockNum +
897 ((li->extLength &
898 UDF_EXTENT_LENGTH_MASK) >>
899 blocksize_bits);
900 } else {
901 li->extLength = lip1->extLength +
902 (((li->extLength &
903 UDF_EXTENT_LENGTH_MASK) +
904 blocksize - 1) & ~(blocksize - 1));
905 if (*endnum > (i + 2))
906 memmove(&laarr[i + 1], &laarr[i + 2],
907 sizeof(struct long_ad) *
908 (*endnum - (i + 2)));
909 i--;
910 (*endnum)--;
911 }
912 } else if (((li->extLength >> 30) ==
913 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
914 ((lip1->extLength >> 30) ==
915 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
916 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
917 ((li->extLength &
918 UDF_EXTENT_LENGTH_MASK) +
919 blocksize - 1) >> blocksize_bits);
920 li->extLocation.logicalBlockNum = 0;
921 li->extLocation.partitionReferenceNum = 0;
922
923 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
924 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
925 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
926 lip1->extLength = (lip1->extLength -
927 (li->extLength &
928 UDF_EXTENT_LENGTH_MASK) +
929 UDF_EXTENT_LENGTH_MASK) &
930 ~(blocksize - 1);
931 li->extLength = (li->extLength &
932 UDF_EXTENT_FLAG_MASK) +
933 (UDF_EXTENT_LENGTH_MASK + 1) -
934 blocksize;
935 } else {
936 li->extLength = lip1->extLength +
937 (((li->extLength &
938 UDF_EXTENT_LENGTH_MASK) +
939 blocksize - 1) & ~(blocksize - 1));
940 if (*endnum > (i + 2))
941 memmove(&laarr[i + 1], &laarr[i + 2],
942 sizeof(struct long_ad) *
943 (*endnum - (i + 2)));
944 i--;
945 (*endnum)--;
946 }
947 } else if ((li->extLength >> 30) ==
948 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
949 udf_free_blocks(inode->i_sb, inode,
950 &li->extLocation, 0,
951 ((li->extLength &
952 UDF_EXTENT_LENGTH_MASK) +
953 blocksize - 1) >> blocksize_bits);
954 li->extLocation.logicalBlockNum = 0;
955 li->extLocation.partitionReferenceNum = 0;
956 li->extLength = (li->extLength &
957 UDF_EXTENT_LENGTH_MASK) |
958 EXT_NOT_RECORDED_NOT_ALLOCATED;
959 }
960 }
961 }
962
963 static void udf_update_extents(struct inode *inode,
964 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
965 int startnum, int endnum,
966 struct extent_position *epos)
967 {
968 int start = 0, i;
969 struct kernel_lb_addr tmploc;
970 uint32_t tmplen;
971
972 if (startnum > endnum) {
973 for (i = 0; i < (startnum - endnum); i++)
974 udf_delete_aext(inode, *epos, laarr[i].extLocation,
975 laarr[i].extLength);
976 } else if (startnum < endnum) {
977 for (i = 0; i < (endnum - startnum); i++) {
978 udf_insert_aext(inode, *epos, laarr[i].extLocation,
979 laarr[i].extLength);
980 udf_next_aext(inode, epos, &laarr[i].extLocation,
981 &laarr[i].extLength, 1);
982 start++;
983 }
984 }
985
986 for (i = start; i < endnum; i++) {
987 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
988 udf_write_aext(inode, epos, &laarr[i].extLocation,
989 laarr[i].extLength, 1);
990 }
991 }
992
993 struct buffer_head *udf_bread(struct inode *inode, int block,
994 int create, int *err)
995 {
996 struct buffer_head *bh = NULL;
997
998 bh = udf_getblk(inode, block, create, err);
999 if (!bh)
1000 return NULL;
1001
1002 if (buffer_uptodate(bh))
1003 return bh;
1004
1005 ll_rw_block(READ, 1, &bh);
1006
1007 wait_on_buffer(bh);
1008 if (buffer_uptodate(bh))
1009 return bh;
1010
1011 brelse(bh);
1012 *err = -EIO;
1013 return NULL;
1014 }
1015
1016 void udf_truncate(struct inode *inode)
1017 {
1018 int offset;
1019 int err;
1020 struct udf_inode_info *iinfo;
1021
1022 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1023 S_ISLNK(inode->i_mode)))
1024 return;
1025 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1026 return;
1027
1028 lock_kernel();
1029 iinfo = UDF_I(inode);
1030 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1031 if (inode->i_sb->s_blocksize <
1032 (udf_file_entry_alloc_offset(inode) +
1033 inode->i_size)) {
1034 udf_expand_file_adinicb(inode, inode->i_size, &err);
1035 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1036 inode->i_size = iinfo->i_lenAlloc;
1037 unlock_kernel();
1038 return;
1039 } else
1040 udf_truncate_extents(inode);
1041 } else {
1042 offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
1043 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset,
1044 0x00, inode->i_sb->s_blocksize -
1045 offset - udf_file_entry_alloc_offset(inode));
1046 iinfo->i_lenAlloc = inode->i_size;
1047 }
1048 } else {
1049 block_truncate_page(inode->i_mapping, inode->i_size,
1050 udf_get_block);
1051 udf_truncate_extents(inode);
1052 }
1053
1054 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1055 if (IS_SYNC(inode))
1056 udf_sync_inode(inode);
1057 else
1058 mark_inode_dirty(inode);
1059 unlock_kernel();
1060 }
1061
1062 static void __udf_read_inode(struct inode *inode)
1063 {
1064 struct buffer_head *bh = NULL;
1065 struct fileEntry *fe;
1066 uint16_t ident;
1067 struct udf_inode_info *iinfo = UDF_I(inode);
1068
1069 /*
1070 * Set defaults, but the inode is still incomplete!
1071 * Note: get_new_inode() sets the following on a new inode:
1072 * i_sb = sb
1073 * i_no = ino
1074 * i_flags = sb->s_flags
1075 * i_state = 0
1076 * clean_inode(): zero fills and sets
1077 * i_count = 1
1078 * i_nlink = 1
1079 * i_op = NULL;
1080 */
1081 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1082 if (!bh) {
1083 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1084 inode->i_ino);
1085 make_bad_inode(inode);
1086 return;
1087 }
1088
1089 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1090 ident != TAG_IDENT_USE) {
1091 printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1092 "failed ident=%d\n", inode->i_ino, ident);
1093 brelse(bh);
1094 make_bad_inode(inode);
1095 return;
1096 }
1097
1098 fe = (struct fileEntry *)bh->b_data;
1099
1100 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1101 struct buffer_head *ibh;
1102
1103 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1104 &ident);
1105 if (ident == TAG_IDENT_IE && ibh) {
1106 struct buffer_head *nbh = NULL;
1107 struct kernel_lb_addr loc;
1108 struct indirectEntry *ie;
1109
1110 ie = (struct indirectEntry *)ibh->b_data;
1111 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1112
1113 if (ie->indirectICB.extLength &&
1114 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1115 &ident))) {
1116 if (ident == TAG_IDENT_FE ||
1117 ident == TAG_IDENT_EFE) {
1118 memcpy(&iinfo->i_location,
1119 &loc,
1120 sizeof(struct kernel_lb_addr));
1121 brelse(bh);
1122 brelse(ibh);
1123 brelse(nbh);
1124 __udf_read_inode(inode);
1125 return;
1126 }
1127 brelse(nbh);
1128 }
1129 }
1130 brelse(ibh);
1131 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1132 printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1133 le16_to_cpu(fe->icbTag.strategyType));
1134 brelse(bh);
1135 make_bad_inode(inode);
1136 return;
1137 }
1138 udf_fill_inode(inode, bh);
1139
1140 brelse(bh);
1141 }
1142
1143 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1144 {
1145 struct fileEntry *fe;
1146 struct extendedFileEntry *efe;
1147 int offset;
1148 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1149 struct udf_inode_info *iinfo = UDF_I(inode);
1150
1151 fe = (struct fileEntry *)bh->b_data;
1152 efe = (struct extendedFileEntry *)bh->b_data;
1153
1154 if (fe->icbTag.strategyType == cpu_to_le16(4))
1155 iinfo->i_strat4096 = 0;
1156 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1157 iinfo->i_strat4096 = 1;
1158
1159 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1160 ICBTAG_FLAG_AD_MASK;
1161 iinfo->i_unique = 0;
1162 iinfo->i_lenEAttr = 0;
1163 iinfo->i_lenExtents = 0;
1164 iinfo->i_lenAlloc = 0;
1165 iinfo->i_next_alloc_block = 0;
1166 iinfo->i_next_alloc_goal = 0;
1167 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1168 iinfo->i_efe = 1;
1169 iinfo->i_use = 0;
1170 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1171 sizeof(struct extendedFileEntry))) {
1172 make_bad_inode(inode);
1173 return;
1174 }
1175 memcpy(iinfo->i_ext.i_data,
1176 bh->b_data + sizeof(struct extendedFileEntry),
1177 inode->i_sb->s_blocksize -
1178 sizeof(struct extendedFileEntry));
1179 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1180 iinfo->i_efe = 0;
1181 iinfo->i_use = 0;
1182 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1183 sizeof(struct fileEntry))) {
1184 make_bad_inode(inode);
1185 return;
1186 }
1187 memcpy(iinfo->i_ext.i_data,
1188 bh->b_data + sizeof(struct fileEntry),
1189 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1190 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1191 iinfo->i_efe = 0;
1192 iinfo->i_use = 1;
1193 iinfo->i_lenAlloc = le32_to_cpu(
1194 ((struct unallocSpaceEntry *)bh->b_data)->
1195 lengthAllocDescs);
1196 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1197 sizeof(struct unallocSpaceEntry))) {
1198 make_bad_inode(inode);
1199 return;
1200 }
1201 memcpy(iinfo->i_ext.i_data,
1202 bh->b_data + sizeof(struct unallocSpaceEntry),
1203 inode->i_sb->s_blocksize -
1204 sizeof(struct unallocSpaceEntry));
1205 return;
1206 }
1207
1208 inode->i_uid = le32_to_cpu(fe->uid);
1209 if (inode->i_uid == -1 ||
1210 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1211 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1212 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1213
1214 inode->i_gid = le32_to_cpu(fe->gid);
1215 if (inode->i_gid == -1 ||
1216 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1217 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1218 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1219
1220 inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1221 if (!inode->i_nlink)
1222 inode->i_nlink = 1;
1223
1224 inode->i_size = le64_to_cpu(fe->informationLength);
1225 iinfo->i_lenExtents = inode->i_size;
1226
1227 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1228 sbi->s_fmode != UDF_INVALID_MODE)
1229 inode->i_mode = sbi->s_fmode;
1230 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1231 sbi->s_dmode != UDF_INVALID_MODE)
1232 inode->i_mode = sbi->s_dmode;
1233 else
1234 inode->i_mode = udf_convert_permissions(fe);
1235 inode->i_mode &= ~sbi->s_umask;
1236
1237 if (iinfo->i_efe == 0) {
1238 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1239 (inode->i_sb->s_blocksize_bits - 9);
1240
1241 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1242 inode->i_atime = sbi->s_record_time;
1243
1244 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1245 fe->modificationTime))
1246 inode->i_mtime = sbi->s_record_time;
1247
1248 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1249 inode->i_ctime = sbi->s_record_time;
1250
1251 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1252 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1253 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1254 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1255 } else {
1256 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1257 (inode->i_sb->s_blocksize_bits - 9);
1258
1259 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1260 inode->i_atime = sbi->s_record_time;
1261
1262 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1263 efe->modificationTime))
1264 inode->i_mtime = sbi->s_record_time;
1265
1266 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1267 iinfo->i_crtime = sbi->s_record_time;
1268
1269 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1270 inode->i_ctime = sbi->s_record_time;
1271
1272 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1273 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1274 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1275 offset = sizeof(struct extendedFileEntry) +
1276 iinfo->i_lenEAttr;
1277 }
1278
1279 switch (fe->icbTag.fileType) {
1280 case ICBTAG_FILE_TYPE_DIRECTORY:
1281 inode->i_op = &udf_dir_inode_operations;
1282 inode->i_fop = &udf_dir_operations;
1283 inode->i_mode |= S_IFDIR;
1284 inc_nlink(inode);
1285 break;
1286 case ICBTAG_FILE_TYPE_REALTIME:
1287 case ICBTAG_FILE_TYPE_REGULAR:
1288 case ICBTAG_FILE_TYPE_UNDEF:
1289 case ICBTAG_FILE_TYPE_VAT20:
1290 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1291 inode->i_data.a_ops = &udf_adinicb_aops;
1292 else
1293 inode->i_data.a_ops = &udf_aops;
1294 inode->i_op = &udf_file_inode_operations;
1295 inode->i_fop = &udf_file_operations;
1296 inode->i_mode |= S_IFREG;
1297 break;
1298 case ICBTAG_FILE_TYPE_BLOCK:
1299 inode->i_mode |= S_IFBLK;
1300 break;
1301 case ICBTAG_FILE_TYPE_CHAR:
1302 inode->i_mode |= S_IFCHR;
1303 break;
1304 case ICBTAG_FILE_TYPE_FIFO:
1305 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1306 break;
1307 case ICBTAG_FILE_TYPE_SOCKET:
1308 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1309 break;
1310 case ICBTAG_FILE_TYPE_SYMLINK:
1311 inode->i_data.a_ops = &udf_symlink_aops;
1312 inode->i_op = &udf_symlink_inode_operations;
1313 inode->i_mode = S_IFLNK | S_IRWXUGO;
1314 break;
1315 case ICBTAG_FILE_TYPE_MAIN:
1316 udf_debug("METADATA FILE-----\n");
1317 break;
1318 case ICBTAG_FILE_TYPE_MIRROR:
1319 udf_debug("METADATA MIRROR FILE-----\n");
1320 break;
1321 case ICBTAG_FILE_TYPE_BITMAP:
1322 udf_debug("METADATA BITMAP FILE-----\n");
1323 break;
1324 default:
1325 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1326 "file type=%d\n", inode->i_ino,
1327 fe->icbTag.fileType);
1328 make_bad_inode(inode);
1329 return;
1330 }
1331 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1332 struct deviceSpec *dsea =
1333 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1334 if (dsea) {
1335 init_special_inode(inode, inode->i_mode,
1336 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1337 le32_to_cpu(dsea->minorDeviceIdent)));
1338 /* Developer ID ??? */
1339 } else
1340 make_bad_inode(inode);
1341 }
1342 }
1343
1344 static int udf_alloc_i_data(struct inode *inode, size_t size)
1345 {
1346 struct udf_inode_info *iinfo = UDF_I(inode);
1347 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1348
1349 if (!iinfo->i_ext.i_data) {
1350 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1351 "no free memory\n", inode->i_ino);
1352 return -ENOMEM;
1353 }
1354
1355 return 0;
1356 }
1357
1358 static mode_t udf_convert_permissions(struct fileEntry *fe)
1359 {
1360 mode_t mode;
1361 uint32_t permissions;
1362 uint32_t flags;
1363
1364 permissions = le32_to_cpu(fe->permissions);
1365 flags = le16_to_cpu(fe->icbTag.flags);
1366
1367 mode = ((permissions) & S_IRWXO) |
1368 ((permissions >> 2) & S_IRWXG) |
1369 ((permissions >> 4) & S_IRWXU) |
1370 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1371 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1372 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1373
1374 return mode;
1375 }
1376
1377 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1378 {
1379 int ret;
1380
1381 lock_kernel();
1382 ret = udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1383 unlock_kernel();
1384
1385 return ret;
1386 }
1387
1388 int udf_sync_inode(struct inode *inode)
1389 {
1390 return udf_update_inode(inode, 1);
1391 }
1392
1393 static int udf_update_inode(struct inode *inode, int do_sync)
1394 {
1395 struct buffer_head *bh = NULL;
1396 struct fileEntry *fe;
1397 struct extendedFileEntry *efe;
1398 uint32_t udfperms;
1399 uint16_t icbflags;
1400 uint16_t crclen;
1401 int err = 0;
1402 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1403 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1404 struct udf_inode_info *iinfo = UDF_I(inode);
1405
1406 bh = udf_tgetblk(inode->i_sb,
1407 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1408 if (!bh) {
1409 udf_debug("getblk failure\n");
1410 return -ENOMEM;
1411 }
1412
1413 lock_buffer(bh);
1414 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1415 fe = (struct fileEntry *)bh->b_data;
1416 efe = (struct extendedFileEntry *)bh->b_data;
1417
1418 if (iinfo->i_use) {
1419 struct unallocSpaceEntry *use =
1420 (struct unallocSpaceEntry *)bh->b_data;
1421
1422 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1423 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1424 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1425 sizeof(struct unallocSpaceEntry));
1426 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1427 use->descTag.tagLocation =
1428 cpu_to_le32(iinfo->i_location.logicalBlockNum);
1429 crclen = sizeof(struct unallocSpaceEntry) +
1430 iinfo->i_lenAlloc - sizeof(struct tag);
1431 use->descTag.descCRCLength = cpu_to_le16(crclen);
1432 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1433 sizeof(struct tag),
1434 crclen));
1435 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1436
1437 goto out;
1438 }
1439
1440 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1441 fe->uid = cpu_to_le32(-1);
1442 else
1443 fe->uid = cpu_to_le32(inode->i_uid);
1444
1445 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1446 fe->gid = cpu_to_le32(-1);
1447 else
1448 fe->gid = cpu_to_le32(inode->i_gid);
1449
1450 udfperms = ((inode->i_mode & S_IRWXO)) |
1451 ((inode->i_mode & S_IRWXG) << 2) |
1452 ((inode->i_mode & S_IRWXU) << 4);
1453
1454 udfperms |= (le32_to_cpu(fe->permissions) &
1455 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1456 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1457 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1458 fe->permissions = cpu_to_le32(udfperms);
1459
1460 if (S_ISDIR(inode->i_mode))
1461 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1462 else
1463 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1464
1465 fe->informationLength = cpu_to_le64(inode->i_size);
1466
1467 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1468 struct regid *eid;
1469 struct deviceSpec *dsea =
1470 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1471 if (!dsea) {
1472 dsea = (struct deviceSpec *)
1473 udf_add_extendedattr(inode,
1474 sizeof(struct deviceSpec) +
1475 sizeof(struct regid), 12, 0x3);
1476 dsea->attrType = cpu_to_le32(12);
1477 dsea->attrSubtype = 1;
1478 dsea->attrLength = cpu_to_le32(
1479 sizeof(struct deviceSpec) +
1480 sizeof(struct regid));
1481 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1482 }
1483 eid = (struct regid *)dsea->impUse;
1484 memset(eid, 0, sizeof(struct regid));
1485 strcpy(eid->ident, UDF_ID_DEVELOPER);
1486 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1487 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1488 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1489 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1490 }
1491
1492 if (iinfo->i_efe == 0) {
1493 memcpy(bh->b_data + sizeof(struct fileEntry),
1494 iinfo->i_ext.i_data,
1495 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1496 fe->logicalBlocksRecorded = cpu_to_le64(
1497 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1498 (blocksize_bits - 9));
1499
1500 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1501 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1502 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1503 memset(&(fe->impIdent), 0, sizeof(struct regid));
1504 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1505 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1506 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1507 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1508 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1509 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1510 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1511 crclen = sizeof(struct fileEntry);
1512 } else {
1513 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1514 iinfo->i_ext.i_data,
1515 inode->i_sb->s_blocksize -
1516 sizeof(struct extendedFileEntry));
1517 efe->objectSize = cpu_to_le64(inode->i_size);
1518 efe->logicalBlocksRecorded = cpu_to_le64(
1519 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1520 (blocksize_bits - 9));
1521
1522 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1523 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1524 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1525 iinfo->i_crtime = inode->i_atime;
1526
1527 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1528 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1529 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1530 iinfo->i_crtime = inode->i_mtime;
1531
1532 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1533 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1534 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1535 iinfo->i_crtime = inode->i_ctime;
1536
1537 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1538 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1539 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1540 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1541
1542 memset(&(efe->impIdent), 0, sizeof(struct regid));
1543 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1544 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1545 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1546 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1547 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1548 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1549 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1550 crclen = sizeof(struct extendedFileEntry);
1551 }
1552 if (iinfo->i_strat4096) {
1553 fe->icbTag.strategyType = cpu_to_le16(4096);
1554 fe->icbTag.strategyParameter = cpu_to_le16(1);
1555 fe->icbTag.numEntries = cpu_to_le16(2);
1556 } else {
1557 fe->icbTag.strategyType = cpu_to_le16(4);
1558 fe->icbTag.numEntries = cpu_to_le16(1);
1559 }
1560
1561 if (S_ISDIR(inode->i_mode))
1562 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1563 else if (S_ISREG(inode->i_mode))
1564 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1565 else if (S_ISLNK(inode->i_mode))
1566 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1567 else if (S_ISBLK(inode->i_mode))
1568 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1569 else if (S_ISCHR(inode->i_mode))
1570 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1571 else if (S_ISFIFO(inode->i_mode))
1572 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1573 else if (S_ISSOCK(inode->i_mode))
1574 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1575
1576 icbflags = iinfo->i_alloc_type |
1577 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1578 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1579 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1580 (le16_to_cpu(fe->icbTag.flags) &
1581 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1582 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1583
1584 fe->icbTag.flags = cpu_to_le16(icbflags);
1585 if (sbi->s_udfrev >= 0x0200)
1586 fe->descTag.descVersion = cpu_to_le16(3);
1587 else
1588 fe->descTag.descVersion = cpu_to_le16(2);
1589 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1590 fe->descTag.tagLocation = cpu_to_le32(
1591 iinfo->i_location.logicalBlockNum);
1592 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1593 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1594 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1595 crclen));
1596 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1597
1598 out:
1599 set_buffer_uptodate(bh);
1600 unlock_buffer(bh);
1601
1602 /* write the data blocks */
1603 mark_buffer_dirty(bh);
1604 if (do_sync) {
1605 sync_dirty_buffer(bh);
1606 if (buffer_write_io_error(bh)) {
1607 printk(KERN_WARNING "IO error syncing udf inode "
1608 "[%s:%08lx]\n", inode->i_sb->s_id,
1609 inode->i_ino);
1610 err = -EIO;
1611 }
1612 }
1613 brelse(bh);
1614
1615 return err;
1616 }
1617
1618 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1619 {
1620 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1621 struct inode *inode = iget_locked(sb, block);
1622
1623 if (!inode)
1624 return NULL;
1625
1626 if (inode->i_state & I_NEW) {
1627 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1628 __udf_read_inode(inode);
1629 unlock_new_inode(inode);
1630 }
1631
1632 if (is_bad_inode(inode))
1633 goto out_iput;
1634
1635 if (ino->logicalBlockNum >= UDF_SB(sb)->
1636 s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1637 udf_debug("block=%d, partition=%d out of range\n",
1638 ino->logicalBlockNum, ino->partitionReferenceNum);
1639 make_bad_inode(inode);
1640 goto out_iput;
1641 }
1642
1643 return inode;
1644
1645 out_iput:
1646 iput(inode);
1647 return NULL;
1648 }
1649
1650 int8_t udf_add_aext(struct inode *inode, struct extent_position *epos,
1651 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1652 {
1653 int adsize;
1654 struct short_ad *sad = NULL;
1655 struct long_ad *lad = NULL;
1656 struct allocExtDesc *aed;
1657 int8_t etype;
1658 uint8_t *ptr;
1659 struct udf_inode_info *iinfo = UDF_I(inode);
1660
1661 if (!epos->bh)
1662 ptr = iinfo->i_ext.i_data + epos->offset -
1663 udf_file_entry_alloc_offset(inode) +
1664 iinfo->i_lenEAttr;
1665 else
1666 ptr = epos->bh->b_data + epos->offset;
1667
1668 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1669 adsize = sizeof(struct short_ad);
1670 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1671 adsize = sizeof(struct long_ad);
1672 else
1673 return -1;
1674
1675 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1676 unsigned char *sptr, *dptr;
1677 struct buffer_head *nbh;
1678 int err, loffset;
1679 struct kernel_lb_addr obloc = epos->block;
1680
1681 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1682 obloc.partitionReferenceNum,
1683 obloc.logicalBlockNum, &err);
1684 if (!epos->block.logicalBlockNum)
1685 return -1;
1686 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1687 &epos->block,
1688 0));
1689 if (!nbh)
1690 return -1;
1691 lock_buffer(nbh);
1692 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1693 set_buffer_uptodate(nbh);
1694 unlock_buffer(nbh);
1695 mark_buffer_dirty_inode(nbh, inode);
1696
1697 aed = (struct allocExtDesc *)(nbh->b_data);
1698 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1699 aed->previousAllocExtLocation =
1700 cpu_to_le32(obloc.logicalBlockNum);
1701 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1702 loffset = epos->offset;
1703 aed->lengthAllocDescs = cpu_to_le32(adsize);
1704 sptr = ptr - adsize;
1705 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1706 memcpy(dptr, sptr, adsize);
1707 epos->offset = sizeof(struct allocExtDesc) + adsize;
1708 } else {
1709 loffset = epos->offset + adsize;
1710 aed->lengthAllocDescs = cpu_to_le32(0);
1711 sptr = ptr;
1712 epos->offset = sizeof(struct allocExtDesc);
1713
1714 if (epos->bh) {
1715 aed = (struct allocExtDesc *)epos->bh->b_data;
1716 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1717 } else {
1718 iinfo->i_lenAlloc += adsize;
1719 mark_inode_dirty(inode);
1720 }
1721 }
1722 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1723 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1724 epos->block.logicalBlockNum, sizeof(struct tag));
1725 else
1726 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1727 epos->block.logicalBlockNum, sizeof(struct tag));
1728 switch (iinfo->i_alloc_type) {
1729 case ICBTAG_FLAG_AD_SHORT:
1730 sad = (struct short_ad *)sptr;
1731 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1732 inode->i_sb->s_blocksize);
1733 sad->extPosition =
1734 cpu_to_le32(epos->block.logicalBlockNum);
1735 break;
1736 case ICBTAG_FLAG_AD_LONG:
1737 lad = (struct long_ad *)sptr;
1738 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1739 inode->i_sb->s_blocksize);
1740 lad->extLocation = cpu_to_lelb(epos->block);
1741 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1742 break;
1743 }
1744 if (epos->bh) {
1745 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1746 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1747 udf_update_tag(epos->bh->b_data, loffset);
1748 else
1749 udf_update_tag(epos->bh->b_data,
1750 sizeof(struct allocExtDesc));
1751 mark_buffer_dirty_inode(epos->bh, inode);
1752 brelse(epos->bh);
1753 } else {
1754 mark_inode_dirty(inode);
1755 }
1756 epos->bh = nbh;
1757 }
1758
1759 etype = udf_write_aext(inode, epos, eloc, elen, inc);
1760
1761 if (!epos->bh) {
1762 iinfo->i_lenAlloc += adsize;
1763 mark_inode_dirty(inode);
1764 } else {
1765 aed = (struct allocExtDesc *)epos->bh->b_data;
1766 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1767 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1768 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1769 udf_update_tag(epos->bh->b_data,
1770 epos->offset + (inc ? 0 : adsize));
1771 else
1772 udf_update_tag(epos->bh->b_data,
1773 sizeof(struct allocExtDesc));
1774 mark_buffer_dirty_inode(epos->bh, inode);
1775 }
1776
1777 return etype;
1778 }
1779
1780 int8_t udf_write_aext(struct inode *inode, struct extent_position *epos,
1781 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1782 {
1783 int adsize;
1784 uint8_t *ptr;
1785 struct short_ad *sad;
1786 struct long_ad *lad;
1787 struct udf_inode_info *iinfo = UDF_I(inode);
1788
1789 if (!epos->bh)
1790 ptr = iinfo->i_ext.i_data + epos->offset -
1791 udf_file_entry_alloc_offset(inode) +
1792 iinfo->i_lenEAttr;
1793 else
1794 ptr = epos->bh->b_data + epos->offset;
1795
1796 switch (iinfo->i_alloc_type) {
1797 case ICBTAG_FLAG_AD_SHORT:
1798 sad = (struct short_ad *)ptr;
1799 sad->extLength = cpu_to_le32(elen);
1800 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1801 adsize = sizeof(struct short_ad);
1802 break;
1803 case ICBTAG_FLAG_AD_LONG:
1804 lad = (struct long_ad *)ptr;
1805 lad->extLength = cpu_to_le32(elen);
1806 lad->extLocation = cpu_to_lelb(*eloc);
1807 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1808 adsize = sizeof(struct long_ad);
1809 break;
1810 default:
1811 return -1;
1812 }
1813
1814 if (epos->bh) {
1815 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1816 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1817 struct allocExtDesc *aed =
1818 (struct allocExtDesc *)epos->bh->b_data;
1819 udf_update_tag(epos->bh->b_data,
1820 le32_to_cpu(aed->lengthAllocDescs) +
1821 sizeof(struct allocExtDesc));
1822 }
1823 mark_buffer_dirty_inode(epos->bh, inode);
1824 } else {
1825 mark_inode_dirty(inode);
1826 }
1827
1828 if (inc)
1829 epos->offset += adsize;
1830
1831 return (elen >> 30);
1832 }
1833
1834 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1835 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1836 {
1837 int8_t etype;
1838
1839 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1840 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1841 int block;
1842 epos->block = *eloc;
1843 epos->offset = sizeof(struct allocExtDesc);
1844 brelse(epos->bh);
1845 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1846 epos->bh = udf_tread(inode->i_sb, block);
1847 if (!epos->bh) {
1848 udf_debug("reading block %d failed!\n", block);
1849 return -1;
1850 }
1851 }
1852
1853 return etype;
1854 }
1855
1856 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1857 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1858 {
1859 int alen;
1860 int8_t etype;
1861 uint8_t *ptr;
1862 struct short_ad *sad;
1863 struct long_ad *lad;
1864 struct udf_inode_info *iinfo = UDF_I(inode);
1865
1866 if (!epos->bh) {
1867 if (!epos->offset)
1868 epos->offset = udf_file_entry_alloc_offset(inode);
1869 ptr = iinfo->i_ext.i_data + epos->offset -
1870 udf_file_entry_alloc_offset(inode) +
1871 iinfo->i_lenEAttr;
1872 alen = udf_file_entry_alloc_offset(inode) +
1873 iinfo->i_lenAlloc;
1874 } else {
1875 if (!epos->offset)
1876 epos->offset = sizeof(struct allocExtDesc);
1877 ptr = epos->bh->b_data + epos->offset;
1878 alen = sizeof(struct allocExtDesc) +
1879 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1880 lengthAllocDescs);
1881 }
1882
1883 switch (iinfo->i_alloc_type) {
1884 case ICBTAG_FLAG_AD_SHORT:
1885 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1886 if (!sad)
1887 return -1;
1888 etype = le32_to_cpu(sad->extLength) >> 30;
1889 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1890 eloc->partitionReferenceNum =
1891 iinfo->i_location.partitionReferenceNum;
1892 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1893 break;
1894 case ICBTAG_FLAG_AD_LONG:
1895 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1896 if (!lad)
1897 return -1;
1898 etype = le32_to_cpu(lad->extLength) >> 30;
1899 *eloc = lelb_to_cpu(lad->extLocation);
1900 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1901 break;
1902 default:
1903 udf_debug("alloc_type = %d unsupported\n",
1904 iinfo->i_alloc_type);
1905 return -1;
1906 }
1907
1908 return etype;
1909 }
1910
1911 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1912 struct kernel_lb_addr neloc, uint32_t nelen)
1913 {
1914 struct kernel_lb_addr oeloc;
1915 uint32_t oelen;
1916 int8_t etype;
1917
1918 if (epos.bh)
1919 get_bh(epos.bh);
1920
1921 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1922 udf_write_aext(inode, &epos, &neloc, nelen, 1);
1923 neloc = oeloc;
1924 nelen = (etype << 30) | oelen;
1925 }
1926 udf_add_aext(inode, &epos, &neloc, nelen, 1);
1927 brelse(epos.bh);
1928
1929 return (nelen >> 30);
1930 }
1931
1932 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
1933 struct kernel_lb_addr eloc, uint32_t elen)
1934 {
1935 struct extent_position oepos;
1936 int adsize;
1937 int8_t etype;
1938 struct allocExtDesc *aed;
1939 struct udf_inode_info *iinfo;
1940
1941 if (epos.bh) {
1942 get_bh(epos.bh);
1943 get_bh(epos.bh);
1944 }
1945
1946 iinfo = UDF_I(inode);
1947 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1948 adsize = sizeof(struct short_ad);
1949 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1950 adsize = sizeof(struct long_ad);
1951 else
1952 adsize = 0;
1953
1954 oepos = epos;
1955 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1956 return -1;
1957
1958 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1959 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
1960 if (oepos.bh != epos.bh) {
1961 oepos.block = epos.block;
1962 brelse(oepos.bh);
1963 get_bh(epos.bh);
1964 oepos.bh = epos.bh;
1965 oepos.offset = epos.offset - adsize;
1966 }
1967 }
1968 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
1969 elen = 0;
1970
1971 if (epos.bh != oepos.bh) {
1972 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
1973 udf_write_aext(inode, &oepos, &eloc, elen, 1);
1974 udf_write_aext(inode, &oepos, &eloc, elen, 1);
1975 if (!oepos.bh) {
1976 iinfo->i_lenAlloc -= (adsize * 2);
1977 mark_inode_dirty(inode);
1978 } else {
1979 aed = (struct allocExtDesc *)oepos.bh->b_data;
1980 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
1981 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1982 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1983 udf_update_tag(oepos.bh->b_data,
1984 oepos.offset - (2 * adsize));
1985 else
1986 udf_update_tag(oepos.bh->b_data,
1987 sizeof(struct allocExtDesc));
1988 mark_buffer_dirty_inode(oepos.bh, inode);
1989 }
1990 } else {
1991 udf_write_aext(inode, &oepos, &eloc, elen, 1);
1992 if (!oepos.bh) {
1993 iinfo->i_lenAlloc -= adsize;
1994 mark_inode_dirty(inode);
1995 } else {
1996 aed = (struct allocExtDesc *)oepos.bh->b_data;
1997 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
1998 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1999 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2000 udf_update_tag(oepos.bh->b_data,
2001 epos.offset - adsize);
2002 else
2003 udf_update_tag(oepos.bh->b_data,
2004 sizeof(struct allocExtDesc));
2005 mark_buffer_dirty_inode(oepos.bh, inode);
2006 }
2007 }
2008
2009 brelse(epos.bh);
2010 brelse(oepos.bh);
2011
2012 return (elen >> 30);
2013 }
2014
2015 int8_t inode_bmap(struct inode *inode, sector_t block,
2016 struct extent_position *pos, struct kernel_lb_addr *eloc,
2017 uint32_t *elen, sector_t *offset)
2018 {
2019 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2020 loff_t lbcount = 0, bcount =
2021 (loff_t) block << blocksize_bits;
2022 int8_t etype;
2023 struct udf_inode_info *iinfo;
2024
2025 iinfo = UDF_I(inode);
2026 pos->offset = 0;
2027 pos->block = iinfo->i_location;
2028 pos->bh = NULL;
2029 *elen = 0;
2030
2031 do {
2032 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2033 if (etype == -1) {
2034 *offset = (bcount - lbcount) >> blocksize_bits;
2035 iinfo->i_lenExtents = lbcount;
2036 return -1;
2037 }
2038 lbcount += *elen;
2039 } while (lbcount <= bcount);
2040
2041 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2042
2043 return etype;
2044 }
2045
2046 long udf_block_map(struct inode *inode, sector_t block)
2047 {
2048 struct kernel_lb_addr eloc;
2049 uint32_t elen;
2050 sector_t offset;
2051 struct extent_position epos = {};
2052 int ret;
2053
2054 lock_kernel();
2055
2056 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2057 (EXT_RECORDED_ALLOCATED >> 30))
2058 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2059 else
2060 ret = 0;
2061
2062 unlock_kernel();
2063 brelse(epos.bh);
2064
2065 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2066 return udf_fixed_to_variable(ret);
2067 else
2068 return ret;
2069 }
This page took 0.105213 seconds and 5 git commands to generate.