udf: fix memory leak while allocating blocks during write
[deliverable/linux.git] / fs / udf / inode.c
1 /*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39 #include <linux/crc-itu-t.h>
40 #include <linux/mpage.h>
41
42 #include "udf_i.h"
43 #include "udf_sb.h"
44
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
48
49 #define EXTENT_MERGE_SIZE 5
50
51 static umode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static void udf_fill_inode(struct inode *, struct buffer_head *);
54 static int udf_sync_inode(struct inode *inode);
55 static int udf_alloc_i_data(struct inode *inode, size_t size);
56 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 struct kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69
70
71 void udf_evict_inode(struct inode *inode)
72 {
73 struct udf_inode_info *iinfo = UDF_I(inode);
74 int want_delete = 0;
75
76 if (!inode->i_nlink && !is_bad_inode(inode)) {
77 want_delete = 1;
78 udf_setsize(inode, 0);
79 udf_update_inode(inode, IS_SYNC(inode));
80 } else
81 truncate_inode_pages(&inode->i_data, 0);
82 invalidate_inode_buffers(inode);
83 clear_inode(inode);
84 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
85 inode->i_size != iinfo->i_lenExtents) {
86 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
87 inode->i_ino, inode->i_mode,
88 (unsigned long long)inode->i_size,
89 (unsigned long long)iinfo->i_lenExtents);
90 }
91 kfree(iinfo->i_ext.i_data);
92 iinfo->i_ext.i_data = NULL;
93 if (want_delete) {
94 udf_free_inode(inode);
95 }
96 }
97
98 static void udf_write_failed(struct address_space *mapping, loff_t to)
99 {
100 struct inode *inode = mapping->host;
101 struct udf_inode_info *iinfo = UDF_I(inode);
102 loff_t isize = inode->i_size;
103
104 if (to > isize) {
105 truncate_pagecache(inode, to, isize);
106 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
107 down_write(&iinfo->i_data_sem);
108 udf_truncate_extents(inode);
109 up_write(&iinfo->i_data_sem);
110 }
111 }
112 }
113
114 static int udf_writepage(struct page *page, struct writeback_control *wbc)
115 {
116 return block_write_full_page(page, udf_get_block, wbc);
117 }
118
119 static int udf_writepages(struct address_space *mapping,
120 struct writeback_control *wbc)
121 {
122 return mpage_writepages(mapping, wbc, udf_get_block);
123 }
124
125 static int udf_readpage(struct file *file, struct page *page)
126 {
127 return mpage_readpage(page, udf_get_block);
128 }
129
130 static int udf_readpages(struct file *file, struct address_space *mapping,
131 struct list_head *pages, unsigned nr_pages)
132 {
133 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
134 }
135
136 static int udf_write_begin(struct file *file, struct address_space *mapping,
137 loff_t pos, unsigned len, unsigned flags,
138 struct page **pagep, void **fsdata)
139 {
140 int ret;
141
142 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
143 if (unlikely(ret))
144 udf_write_failed(mapping, pos + len);
145 return ret;
146 }
147
148 static ssize_t udf_direct_IO(int rw, struct kiocb *iocb,
149 const struct iovec *iov,
150 loff_t offset, unsigned long nr_segs)
151 {
152 struct file *file = iocb->ki_filp;
153 struct address_space *mapping = file->f_mapping;
154 struct inode *inode = mapping->host;
155 ssize_t ret;
156
157 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
158 udf_get_block);
159 if (unlikely(ret < 0 && (rw & WRITE)))
160 udf_write_failed(mapping, offset + iov_length(iov, nr_segs));
161 return ret;
162 }
163
164 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
165 {
166 return generic_block_bmap(mapping, block, udf_get_block);
167 }
168
169 const struct address_space_operations udf_aops = {
170 .readpage = udf_readpage,
171 .readpages = udf_readpages,
172 .writepage = udf_writepage,
173 .writepages = udf_writepages,
174 .write_begin = udf_write_begin,
175 .write_end = generic_write_end,
176 .direct_IO = udf_direct_IO,
177 .bmap = udf_bmap,
178 };
179
180 /*
181 * Expand file stored in ICB to a normal one-block-file
182 *
183 * This function requires i_data_sem for writing and releases it.
184 * This function requires i_mutex held
185 */
186 int udf_expand_file_adinicb(struct inode *inode)
187 {
188 struct page *page;
189 char *kaddr;
190 struct udf_inode_info *iinfo = UDF_I(inode);
191 int err;
192 struct writeback_control udf_wbc = {
193 .sync_mode = WB_SYNC_NONE,
194 .nr_to_write = 1,
195 };
196
197 if (!iinfo->i_lenAlloc) {
198 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
199 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
200 else
201 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
202 /* from now on we have normal address_space methods */
203 inode->i_data.a_ops = &udf_aops;
204 up_write(&iinfo->i_data_sem);
205 mark_inode_dirty(inode);
206 return 0;
207 }
208 /*
209 * Release i_data_sem so that we can lock a page - page lock ranks
210 * above i_data_sem. i_mutex still protects us against file changes.
211 */
212 up_write(&iinfo->i_data_sem);
213
214 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
215 if (!page)
216 return -ENOMEM;
217
218 if (!PageUptodate(page)) {
219 kaddr = kmap(page);
220 memset(kaddr + iinfo->i_lenAlloc, 0x00,
221 PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
222 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
223 iinfo->i_lenAlloc);
224 flush_dcache_page(page);
225 SetPageUptodate(page);
226 kunmap(page);
227 }
228 down_write(&iinfo->i_data_sem);
229 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
230 iinfo->i_lenAlloc);
231 iinfo->i_lenAlloc = 0;
232 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
233 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
234 else
235 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
236 /* from now on we have normal address_space methods */
237 inode->i_data.a_ops = &udf_aops;
238 up_write(&iinfo->i_data_sem);
239 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
240 if (err) {
241 /* Restore everything back so that we don't lose data... */
242 lock_page(page);
243 kaddr = kmap(page);
244 down_write(&iinfo->i_data_sem);
245 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
246 inode->i_size);
247 kunmap(page);
248 unlock_page(page);
249 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
250 inode->i_data.a_ops = &udf_adinicb_aops;
251 up_write(&iinfo->i_data_sem);
252 }
253 page_cache_release(page);
254 mark_inode_dirty(inode);
255
256 return err;
257 }
258
259 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
260 int *err)
261 {
262 int newblock;
263 struct buffer_head *dbh = NULL;
264 struct kernel_lb_addr eloc;
265 uint8_t alloctype;
266 struct extent_position epos;
267
268 struct udf_fileident_bh sfibh, dfibh;
269 loff_t f_pos = udf_ext0_offset(inode);
270 int size = udf_ext0_offset(inode) + inode->i_size;
271 struct fileIdentDesc cfi, *sfi, *dfi;
272 struct udf_inode_info *iinfo = UDF_I(inode);
273
274 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
275 alloctype = ICBTAG_FLAG_AD_SHORT;
276 else
277 alloctype = ICBTAG_FLAG_AD_LONG;
278
279 if (!inode->i_size) {
280 iinfo->i_alloc_type = alloctype;
281 mark_inode_dirty(inode);
282 return NULL;
283 }
284
285 /* alloc block, and copy data to it */
286 *block = udf_new_block(inode->i_sb, inode,
287 iinfo->i_location.partitionReferenceNum,
288 iinfo->i_location.logicalBlockNum, err);
289 if (!(*block))
290 return NULL;
291 newblock = udf_get_pblock(inode->i_sb, *block,
292 iinfo->i_location.partitionReferenceNum,
293 0);
294 if (!newblock)
295 return NULL;
296 dbh = udf_tgetblk(inode->i_sb, newblock);
297 if (!dbh)
298 return NULL;
299 lock_buffer(dbh);
300 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
301 set_buffer_uptodate(dbh);
302 unlock_buffer(dbh);
303 mark_buffer_dirty_inode(dbh, inode);
304
305 sfibh.soffset = sfibh.eoffset =
306 f_pos & (inode->i_sb->s_blocksize - 1);
307 sfibh.sbh = sfibh.ebh = NULL;
308 dfibh.soffset = dfibh.eoffset = 0;
309 dfibh.sbh = dfibh.ebh = dbh;
310 while (f_pos < size) {
311 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
312 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
313 NULL, NULL, NULL);
314 if (!sfi) {
315 brelse(dbh);
316 return NULL;
317 }
318 iinfo->i_alloc_type = alloctype;
319 sfi->descTag.tagLocation = cpu_to_le32(*block);
320 dfibh.soffset = dfibh.eoffset;
321 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
322 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
323 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
324 sfi->fileIdent +
325 le16_to_cpu(sfi->lengthOfImpUse))) {
326 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
327 brelse(dbh);
328 return NULL;
329 }
330 }
331 mark_buffer_dirty_inode(dbh, inode);
332
333 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
334 iinfo->i_lenAlloc);
335 iinfo->i_lenAlloc = 0;
336 eloc.logicalBlockNum = *block;
337 eloc.partitionReferenceNum =
338 iinfo->i_location.partitionReferenceNum;
339 iinfo->i_lenExtents = inode->i_size;
340 epos.bh = NULL;
341 epos.block = iinfo->i_location;
342 epos.offset = udf_file_entry_alloc_offset(inode);
343 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
344 /* UniqueID stuff */
345
346 brelse(epos.bh);
347 mark_inode_dirty(inode);
348 return dbh;
349 }
350
351 static int udf_get_block(struct inode *inode, sector_t block,
352 struct buffer_head *bh_result, int create)
353 {
354 int err, new;
355 sector_t phys = 0;
356 struct udf_inode_info *iinfo;
357
358 if (!create) {
359 phys = udf_block_map(inode, block);
360 if (phys)
361 map_bh(bh_result, inode->i_sb, phys);
362 return 0;
363 }
364
365 err = -EIO;
366 new = 0;
367 iinfo = UDF_I(inode);
368
369 down_write(&iinfo->i_data_sem);
370 if (block == iinfo->i_next_alloc_block + 1) {
371 iinfo->i_next_alloc_block++;
372 iinfo->i_next_alloc_goal++;
373 }
374
375
376 phys = inode_getblk(inode, block, &err, &new);
377 if (!phys)
378 goto abort;
379
380 if (new)
381 set_buffer_new(bh_result);
382 map_bh(bh_result, inode->i_sb, phys);
383
384 abort:
385 up_write(&iinfo->i_data_sem);
386 return err;
387 }
388
389 static struct buffer_head *udf_getblk(struct inode *inode, long block,
390 int create, int *err)
391 {
392 struct buffer_head *bh;
393 struct buffer_head dummy;
394
395 dummy.b_state = 0;
396 dummy.b_blocknr = -1000;
397 *err = udf_get_block(inode, block, &dummy, create);
398 if (!*err && buffer_mapped(&dummy)) {
399 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
400 if (buffer_new(&dummy)) {
401 lock_buffer(bh);
402 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
403 set_buffer_uptodate(bh);
404 unlock_buffer(bh);
405 mark_buffer_dirty_inode(bh, inode);
406 }
407 return bh;
408 }
409
410 return NULL;
411 }
412
413 /* Extend the file by 'blocks' blocks, return the number of extents added */
414 static int udf_do_extend_file(struct inode *inode,
415 struct extent_position *last_pos,
416 struct kernel_long_ad *last_ext,
417 sector_t blocks)
418 {
419 sector_t add;
420 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
421 struct super_block *sb = inode->i_sb;
422 struct kernel_lb_addr prealloc_loc = {};
423 int prealloc_len = 0;
424 struct udf_inode_info *iinfo;
425 int err;
426
427 /* The previous extent is fake and we should not extend by anything
428 * - there's nothing to do... */
429 if (!blocks && fake)
430 return 0;
431
432 iinfo = UDF_I(inode);
433 /* Round the last extent up to a multiple of block size */
434 if (last_ext->extLength & (sb->s_blocksize - 1)) {
435 last_ext->extLength =
436 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
437 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
438 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
439 iinfo->i_lenExtents =
440 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
441 ~(sb->s_blocksize - 1);
442 }
443
444 /* Last extent are just preallocated blocks? */
445 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
446 EXT_NOT_RECORDED_ALLOCATED) {
447 /* Save the extent so that we can reattach it to the end */
448 prealloc_loc = last_ext->extLocation;
449 prealloc_len = last_ext->extLength;
450 /* Mark the extent as a hole */
451 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
452 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
453 last_ext->extLocation.logicalBlockNum = 0;
454 last_ext->extLocation.partitionReferenceNum = 0;
455 }
456
457 /* Can we merge with the previous extent? */
458 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
459 EXT_NOT_RECORDED_NOT_ALLOCATED) {
460 add = ((1 << 30) - sb->s_blocksize -
461 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
462 sb->s_blocksize_bits;
463 if (add > blocks)
464 add = blocks;
465 blocks -= add;
466 last_ext->extLength += add << sb->s_blocksize_bits;
467 }
468
469 if (fake) {
470 udf_add_aext(inode, last_pos, &last_ext->extLocation,
471 last_ext->extLength, 1);
472 count++;
473 } else
474 udf_write_aext(inode, last_pos, &last_ext->extLocation,
475 last_ext->extLength, 1);
476
477 /* Managed to do everything necessary? */
478 if (!blocks)
479 goto out;
480
481 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
482 last_ext->extLocation.logicalBlockNum = 0;
483 last_ext->extLocation.partitionReferenceNum = 0;
484 add = (1 << (30-sb->s_blocksize_bits)) - 1;
485 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
486 (add << sb->s_blocksize_bits);
487
488 /* Create enough extents to cover the whole hole */
489 while (blocks > add) {
490 blocks -= add;
491 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
492 last_ext->extLength, 1);
493 if (err)
494 return err;
495 count++;
496 }
497 if (blocks) {
498 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
499 (blocks << sb->s_blocksize_bits);
500 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
501 last_ext->extLength, 1);
502 if (err)
503 return err;
504 count++;
505 }
506
507 out:
508 /* Do we have some preallocated blocks saved? */
509 if (prealloc_len) {
510 err = udf_add_aext(inode, last_pos, &prealloc_loc,
511 prealloc_len, 1);
512 if (err)
513 return err;
514 last_ext->extLocation = prealloc_loc;
515 last_ext->extLength = prealloc_len;
516 count++;
517 }
518
519 /* last_pos should point to the last written extent... */
520 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
521 last_pos->offset -= sizeof(struct short_ad);
522 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
523 last_pos->offset -= sizeof(struct long_ad);
524 else
525 return -EIO;
526
527 return count;
528 }
529
530 static int udf_extend_file(struct inode *inode, loff_t newsize)
531 {
532
533 struct extent_position epos;
534 struct kernel_lb_addr eloc;
535 uint32_t elen;
536 int8_t etype;
537 struct super_block *sb = inode->i_sb;
538 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
539 int adsize;
540 struct udf_inode_info *iinfo = UDF_I(inode);
541 struct kernel_long_ad extent;
542 int err;
543
544 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
545 adsize = sizeof(struct short_ad);
546 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
547 adsize = sizeof(struct long_ad);
548 else
549 BUG();
550
551 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
552
553 /* File has extent covering the new size (could happen when extending
554 * inside a block)? */
555 if (etype != -1)
556 return 0;
557 if (newsize & (sb->s_blocksize - 1))
558 offset++;
559 /* Extended file just to the boundary of the last file block? */
560 if (offset == 0)
561 return 0;
562
563 /* Truncate is extending the file by 'offset' blocks */
564 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
565 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
566 /* File has no extents at all or has empty last
567 * indirect extent! Create a fake extent... */
568 extent.extLocation.logicalBlockNum = 0;
569 extent.extLocation.partitionReferenceNum = 0;
570 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
571 } else {
572 epos.offset -= adsize;
573 etype = udf_next_aext(inode, &epos, &extent.extLocation,
574 &extent.extLength, 0);
575 extent.extLength |= etype << 30;
576 }
577 err = udf_do_extend_file(inode, &epos, &extent, offset);
578 if (err < 0)
579 goto out;
580 err = 0;
581 iinfo->i_lenExtents = newsize;
582 out:
583 brelse(epos.bh);
584 return err;
585 }
586
587 static sector_t inode_getblk(struct inode *inode, sector_t block,
588 int *err, int *new)
589 {
590 static sector_t last_block;
591 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
592 struct extent_position prev_epos, cur_epos, next_epos;
593 int count = 0, startnum = 0, endnum = 0;
594 uint32_t elen = 0, tmpelen;
595 struct kernel_lb_addr eloc, tmpeloc;
596 int c = 1;
597 loff_t lbcount = 0, b_off = 0;
598 uint32_t newblocknum, newblock;
599 sector_t offset = 0;
600 int8_t etype;
601 struct udf_inode_info *iinfo = UDF_I(inode);
602 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
603 int lastblock = 0;
604
605 *err = 0;
606 *new = 0;
607 prev_epos.offset = udf_file_entry_alloc_offset(inode);
608 prev_epos.block = iinfo->i_location;
609 prev_epos.bh = NULL;
610 cur_epos = next_epos = prev_epos;
611 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
612
613 /* find the extent which contains the block we are looking for.
614 alternate between laarr[0] and laarr[1] for locations of the
615 current extent, and the previous extent */
616 do {
617 if (prev_epos.bh != cur_epos.bh) {
618 brelse(prev_epos.bh);
619 get_bh(cur_epos.bh);
620 prev_epos.bh = cur_epos.bh;
621 }
622 if (cur_epos.bh != next_epos.bh) {
623 brelse(cur_epos.bh);
624 get_bh(next_epos.bh);
625 cur_epos.bh = next_epos.bh;
626 }
627
628 lbcount += elen;
629
630 prev_epos.block = cur_epos.block;
631 cur_epos.block = next_epos.block;
632
633 prev_epos.offset = cur_epos.offset;
634 cur_epos.offset = next_epos.offset;
635
636 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
637 if (etype == -1)
638 break;
639
640 c = !c;
641
642 laarr[c].extLength = (etype << 30) | elen;
643 laarr[c].extLocation = eloc;
644
645 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
646 pgoal = eloc.logicalBlockNum +
647 ((elen + inode->i_sb->s_blocksize - 1) >>
648 inode->i_sb->s_blocksize_bits);
649
650 count++;
651 } while (lbcount + elen <= b_off);
652
653 b_off -= lbcount;
654 offset = b_off >> inode->i_sb->s_blocksize_bits;
655 /*
656 * Move prev_epos and cur_epos into indirect extent if we are at
657 * the pointer to it
658 */
659 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
660 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
661
662 /* if the extent is allocated and recorded, return the block
663 if the extent is not a multiple of the blocksize, round up */
664
665 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
666 if (elen & (inode->i_sb->s_blocksize - 1)) {
667 elen = EXT_RECORDED_ALLOCATED |
668 ((elen + inode->i_sb->s_blocksize - 1) &
669 ~(inode->i_sb->s_blocksize - 1));
670 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
671 }
672 brelse(prev_epos.bh);
673 brelse(cur_epos.bh);
674 brelse(next_epos.bh);
675 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
676 return newblock;
677 }
678
679 last_block = block;
680 /* Are we beyond EOF? */
681 if (etype == -1) {
682 int ret;
683
684 if (count) {
685 if (c)
686 laarr[0] = laarr[1];
687 startnum = 1;
688 } else {
689 /* Create a fake extent when there's not one */
690 memset(&laarr[0].extLocation, 0x00,
691 sizeof(struct kernel_lb_addr));
692 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
693 /* Will udf_do_extend_file() create real extent from
694 a fake one? */
695 startnum = (offset > 0);
696 }
697 /* Create extents for the hole between EOF and offset */
698 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
699 if (ret < 0) {
700 brelse(prev_epos.bh);
701 brelse(cur_epos.bh);
702 brelse(next_epos.bh);
703 *err = ret;
704 return 0;
705 }
706 c = 0;
707 offset = 0;
708 count += ret;
709 /* We are not covered by a preallocated extent? */
710 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
711 EXT_NOT_RECORDED_ALLOCATED) {
712 /* Is there any real extent? - otherwise we overwrite
713 * the fake one... */
714 if (count)
715 c = !c;
716 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
717 inode->i_sb->s_blocksize;
718 memset(&laarr[c].extLocation, 0x00,
719 sizeof(struct kernel_lb_addr));
720 count++;
721 endnum++;
722 }
723 endnum = c + 1;
724 lastblock = 1;
725 } else {
726 endnum = startnum = ((count > 2) ? 2 : count);
727
728 /* if the current extent is in position 0,
729 swap it with the previous */
730 if (!c && count != 1) {
731 laarr[2] = laarr[0];
732 laarr[0] = laarr[1];
733 laarr[1] = laarr[2];
734 c = 1;
735 }
736
737 /* if the current block is located in an extent,
738 read the next extent */
739 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
740 if (etype != -1) {
741 laarr[c + 1].extLength = (etype << 30) | elen;
742 laarr[c + 1].extLocation = eloc;
743 count++;
744 startnum++;
745 endnum++;
746 } else
747 lastblock = 1;
748 }
749
750 /* if the current extent is not recorded but allocated, get the
751 * block in the extent corresponding to the requested block */
752 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
753 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
754 else { /* otherwise, allocate a new block */
755 if (iinfo->i_next_alloc_block == block)
756 goal = iinfo->i_next_alloc_goal;
757
758 if (!goal) {
759 if (!(goal = pgoal)) /* XXX: what was intended here? */
760 goal = iinfo->i_location.logicalBlockNum + 1;
761 }
762
763 newblocknum = udf_new_block(inode->i_sb, inode,
764 iinfo->i_location.partitionReferenceNum,
765 goal, err);
766 if (!newblocknum) {
767 brelse(prev_epos.bh);
768 brelse(cur_epos.bh);
769 brelse(next_epos.bh);
770 *err = -ENOSPC;
771 return 0;
772 }
773 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
774 }
775
776 /* if the extent the requsted block is located in contains multiple
777 * blocks, split the extent into at most three extents. blocks prior
778 * to requested block, requested block, and blocks after requested
779 * block */
780 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
781
782 #ifdef UDF_PREALLOCATE
783 /* We preallocate blocks only for regular files. It also makes sense
784 * for directories but there's a problem when to drop the
785 * preallocation. We might use some delayed work for that but I feel
786 * it's overengineering for a filesystem like UDF. */
787 if (S_ISREG(inode->i_mode))
788 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
789 #endif
790
791 /* merge any continuous blocks in laarr */
792 udf_merge_extents(inode, laarr, &endnum);
793
794 /* write back the new extents, inserting new extents if the new number
795 * of extents is greater than the old number, and deleting extents if
796 * the new number of extents is less than the old number */
797 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
798
799 brelse(prev_epos.bh);
800 brelse(cur_epos.bh);
801 brelse(next_epos.bh);
802
803 newblock = udf_get_pblock(inode->i_sb, newblocknum,
804 iinfo->i_location.partitionReferenceNum, 0);
805 if (!newblock) {
806 *err = -EIO;
807 return 0;
808 }
809 *new = 1;
810 iinfo->i_next_alloc_block = block;
811 iinfo->i_next_alloc_goal = newblocknum;
812 inode->i_ctime = current_fs_time(inode->i_sb);
813
814 if (IS_SYNC(inode))
815 udf_sync_inode(inode);
816 else
817 mark_inode_dirty(inode);
818
819 return newblock;
820 }
821
822 static void udf_split_extents(struct inode *inode, int *c, int offset,
823 int newblocknum,
824 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
825 int *endnum)
826 {
827 unsigned long blocksize = inode->i_sb->s_blocksize;
828 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
829
830 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
831 (laarr[*c].extLength >> 30) ==
832 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
833 int curr = *c;
834 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
835 blocksize - 1) >> blocksize_bits;
836 int8_t etype = (laarr[curr].extLength >> 30);
837
838 if (blen == 1)
839 ;
840 else if (!offset || blen == offset + 1) {
841 laarr[curr + 2] = laarr[curr + 1];
842 laarr[curr + 1] = laarr[curr];
843 } else {
844 laarr[curr + 3] = laarr[curr + 1];
845 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
846 }
847
848 if (offset) {
849 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
850 udf_free_blocks(inode->i_sb, inode,
851 &laarr[curr].extLocation,
852 0, offset);
853 laarr[curr].extLength =
854 EXT_NOT_RECORDED_NOT_ALLOCATED |
855 (offset << blocksize_bits);
856 laarr[curr].extLocation.logicalBlockNum = 0;
857 laarr[curr].extLocation.
858 partitionReferenceNum = 0;
859 } else
860 laarr[curr].extLength = (etype << 30) |
861 (offset << blocksize_bits);
862 curr++;
863 (*c)++;
864 (*endnum)++;
865 }
866
867 laarr[curr].extLocation.logicalBlockNum = newblocknum;
868 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
869 laarr[curr].extLocation.partitionReferenceNum =
870 UDF_I(inode)->i_location.partitionReferenceNum;
871 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
872 blocksize;
873 curr++;
874
875 if (blen != offset + 1) {
876 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
877 laarr[curr].extLocation.logicalBlockNum +=
878 offset + 1;
879 laarr[curr].extLength = (etype << 30) |
880 ((blen - (offset + 1)) << blocksize_bits);
881 curr++;
882 (*endnum)++;
883 }
884 }
885 }
886
887 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
888 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
889 int *endnum)
890 {
891 int start, length = 0, currlength = 0, i;
892
893 if (*endnum >= (c + 1)) {
894 if (!lastblock)
895 return;
896 else
897 start = c;
898 } else {
899 if ((laarr[c + 1].extLength >> 30) ==
900 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
901 start = c + 1;
902 length = currlength =
903 (((laarr[c + 1].extLength &
904 UDF_EXTENT_LENGTH_MASK) +
905 inode->i_sb->s_blocksize - 1) >>
906 inode->i_sb->s_blocksize_bits);
907 } else
908 start = c;
909 }
910
911 for (i = start + 1; i <= *endnum; i++) {
912 if (i == *endnum) {
913 if (lastblock)
914 length += UDF_DEFAULT_PREALLOC_BLOCKS;
915 } else if ((laarr[i].extLength >> 30) ==
916 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
917 length += (((laarr[i].extLength &
918 UDF_EXTENT_LENGTH_MASK) +
919 inode->i_sb->s_blocksize - 1) >>
920 inode->i_sb->s_blocksize_bits);
921 } else
922 break;
923 }
924
925 if (length) {
926 int next = laarr[start].extLocation.logicalBlockNum +
927 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
928 inode->i_sb->s_blocksize - 1) >>
929 inode->i_sb->s_blocksize_bits);
930 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
931 laarr[start].extLocation.partitionReferenceNum,
932 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
933 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
934 currlength);
935 if (numalloc) {
936 if (start == (c + 1))
937 laarr[start].extLength +=
938 (numalloc <<
939 inode->i_sb->s_blocksize_bits);
940 else {
941 memmove(&laarr[c + 2], &laarr[c + 1],
942 sizeof(struct long_ad) * (*endnum - (c + 1)));
943 (*endnum)++;
944 laarr[c + 1].extLocation.logicalBlockNum = next;
945 laarr[c + 1].extLocation.partitionReferenceNum =
946 laarr[c].extLocation.
947 partitionReferenceNum;
948 laarr[c + 1].extLength =
949 EXT_NOT_RECORDED_ALLOCATED |
950 (numalloc <<
951 inode->i_sb->s_blocksize_bits);
952 start = c + 1;
953 }
954
955 for (i = start + 1; numalloc && i < *endnum; i++) {
956 int elen = ((laarr[i].extLength &
957 UDF_EXTENT_LENGTH_MASK) +
958 inode->i_sb->s_blocksize - 1) >>
959 inode->i_sb->s_blocksize_bits;
960
961 if (elen > numalloc) {
962 laarr[i].extLength -=
963 (numalloc <<
964 inode->i_sb->s_blocksize_bits);
965 numalloc = 0;
966 } else {
967 numalloc -= elen;
968 if (*endnum > (i + 1))
969 memmove(&laarr[i],
970 &laarr[i + 1],
971 sizeof(struct long_ad) *
972 (*endnum - (i + 1)));
973 i--;
974 (*endnum)--;
975 }
976 }
977 UDF_I(inode)->i_lenExtents +=
978 numalloc << inode->i_sb->s_blocksize_bits;
979 }
980 }
981 }
982
983 static void udf_merge_extents(struct inode *inode,
984 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
985 int *endnum)
986 {
987 int i;
988 unsigned long blocksize = inode->i_sb->s_blocksize;
989 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
990
991 for (i = 0; i < (*endnum - 1); i++) {
992 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
993 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
994
995 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
996 (((li->extLength >> 30) ==
997 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
998 ((lip1->extLocation.logicalBlockNum -
999 li->extLocation.logicalBlockNum) ==
1000 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1001 blocksize - 1) >> blocksize_bits)))) {
1002
1003 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1004 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1005 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1006 lip1->extLength = (lip1->extLength -
1007 (li->extLength &
1008 UDF_EXTENT_LENGTH_MASK) +
1009 UDF_EXTENT_LENGTH_MASK) &
1010 ~(blocksize - 1);
1011 li->extLength = (li->extLength &
1012 UDF_EXTENT_FLAG_MASK) +
1013 (UDF_EXTENT_LENGTH_MASK + 1) -
1014 blocksize;
1015 lip1->extLocation.logicalBlockNum =
1016 li->extLocation.logicalBlockNum +
1017 ((li->extLength &
1018 UDF_EXTENT_LENGTH_MASK) >>
1019 blocksize_bits);
1020 } else {
1021 li->extLength = lip1->extLength +
1022 (((li->extLength &
1023 UDF_EXTENT_LENGTH_MASK) +
1024 blocksize - 1) & ~(blocksize - 1));
1025 if (*endnum > (i + 2))
1026 memmove(&laarr[i + 1], &laarr[i + 2],
1027 sizeof(struct long_ad) *
1028 (*endnum - (i + 2)));
1029 i--;
1030 (*endnum)--;
1031 }
1032 } else if (((li->extLength >> 30) ==
1033 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1034 ((lip1->extLength >> 30) ==
1035 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1036 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1037 ((li->extLength &
1038 UDF_EXTENT_LENGTH_MASK) +
1039 blocksize - 1) >> blocksize_bits);
1040 li->extLocation.logicalBlockNum = 0;
1041 li->extLocation.partitionReferenceNum = 0;
1042
1043 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1044 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1045 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1046 lip1->extLength = (lip1->extLength -
1047 (li->extLength &
1048 UDF_EXTENT_LENGTH_MASK) +
1049 UDF_EXTENT_LENGTH_MASK) &
1050 ~(blocksize - 1);
1051 li->extLength = (li->extLength &
1052 UDF_EXTENT_FLAG_MASK) +
1053 (UDF_EXTENT_LENGTH_MASK + 1) -
1054 blocksize;
1055 } else {
1056 li->extLength = lip1->extLength +
1057 (((li->extLength &
1058 UDF_EXTENT_LENGTH_MASK) +
1059 blocksize - 1) & ~(blocksize - 1));
1060 if (*endnum > (i + 2))
1061 memmove(&laarr[i + 1], &laarr[i + 2],
1062 sizeof(struct long_ad) *
1063 (*endnum - (i + 2)));
1064 i--;
1065 (*endnum)--;
1066 }
1067 } else if ((li->extLength >> 30) ==
1068 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1069 udf_free_blocks(inode->i_sb, inode,
1070 &li->extLocation, 0,
1071 ((li->extLength &
1072 UDF_EXTENT_LENGTH_MASK) +
1073 blocksize - 1) >> blocksize_bits);
1074 li->extLocation.logicalBlockNum = 0;
1075 li->extLocation.partitionReferenceNum = 0;
1076 li->extLength = (li->extLength &
1077 UDF_EXTENT_LENGTH_MASK) |
1078 EXT_NOT_RECORDED_NOT_ALLOCATED;
1079 }
1080 }
1081 }
1082
1083 static void udf_update_extents(struct inode *inode,
1084 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1085 int startnum, int endnum,
1086 struct extent_position *epos)
1087 {
1088 int start = 0, i;
1089 struct kernel_lb_addr tmploc;
1090 uint32_t tmplen;
1091
1092 if (startnum > endnum) {
1093 for (i = 0; i < (startnum - endnum); i++)
1094 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1095 laarr[i].extLength);
1096 } else if (startnum < endnum) {
1097 for (i = 0; i < (endnum - startnum); i++) {
1098 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1099 laarr[i].extLength);
1100 udf_next_aext(inode, epos, &laarr[i].extLocation,
1101 &laarr[i].extLength, 1);
1102 start++;
1103 }
1104 }
1105
1106 for (i = start; i < endnum; i++) {
1107 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1108 udf_write_aext(inode, epos, &laarr[i].extLocation,
1109 laarr[i].extLength, 1);
1110 }
1111 }
1112
1113 struct buffer_head *udf_bread(struct inode *inode, int block,
1114 int create, int *err)
1115 {
1116 struct buffer_head *bh = NULL;
1117
1118 bh = udf_getblk(inode, block, create, err);
1119 if (!bh)
1120 return NULL;
1121
1122 if (buffer_uptodate(bh))
1123 return bh;
1124
1125 ll_rw_block(READ, 1, &bh);
1126
1127 wait_on_buffer(bh);
1128 if (buffer_uptodate(bh))
1129 return bh;
1130
1131 brelse(bh);
1132 *err = -EIO;
1133 return NULL;
1134 }
1135
1136 int udf_setsize(struct inode *inode, loff_t newsize)
1137 {
1138 int err;
1139 struct udf_inode_info *iinfo;
1140 int bsize = 1 << inode->i_blkbits;
1141
1142 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1143 S_ISLNK(inode->i_mode)))
1144 return -EINVAL;
1145 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1146 return -EPERM;
1147
1148 iinfo = UDF_I(inode);
1149 if (newsize > inode->i_size) {
1150 down_write(&iinfo->i_data_sem);
1151 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1152 if (bsize <
1153 (udf_file_entry_alloc_offset(inode) + newsize)) {
1154 err = udf_expand_file_adinicb(inode);
1155 if (err)
1156 return err;
1157 down_write(&iinfo->i_data_sem);
1158 } else {
1159 iinfo->i_lenAlloc = newsize;
1160 goto set_size;
1161 }
1162 }
1163 err = udf_extend_file(inode, newsize);
1164 if (err) {
1165 up_write(&iinfo->i_data_sem);
1166 return err;
1167 }
1168 set_size:
1169 truncate_setsize(inode, newsize);
1170 up_write(&iinfo->i_data_sem);
1171 } else {
1172 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1173 down_write(&iinfo->i_data_sem);
1174 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1175 0x00, bsize - newsize -
1176 udf_file_entry_alloc_offset(inode));
1177 iinfo->i_lenAlloc = newsize;
1178 truncate_setsize(inode, newsize);
1179 up_write(&iinfo->i_data_sem);
1180 goto update_time;
1181 }
1182 err = block_truncate_page(inode->i_mapping, newsize,
1183 udf_get_block);
1184 if (err)
1185 return err;
1186 down_write(&iinfo->i_data_sem);
1187 truncate_setsize(inode, newsize);
1188 udf_truncate_extents(inode);
1189 up_write(&iinfo->i_data_sem);
1190 }
1191 update_time:
1192 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1193 if (IS_SYNC(inode))
1194 udf_sync_inode(inode);
1195 else
1196 mark_inode_dirty(inode);
1197 return 0;
1198 }
1199
1200 static void __udf_read_inode(struct inode *inode)
1201 {
1202 struct buffer_head *bh = NULL;
1203 struct fileEntry *fe;
1204 uint16_t ident;
1205 struct udf_inode_info *iinfo = UDF_I(inode);
1206
1207 /*
1208 * Set defaults, but the inode is still incomplete!
1209 * Note: get_new_inode() sets the following on a new inode:
1210 * i_sb = sb
1211 * i_no = ino
1212 * i_flags = sb->s_flags
1213 * i_state = 0
1214 * clean_inode(): zero fills and sets
1215 * i_count = 1
1216 * i_nlink = 1
1217 * i_op = NULL;
1218 */
1219 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1220 if (!bh) {
1221 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1222 make_bad_inode(inode);
1223 return;
1224 }
1225
1226 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1227 ident != TAG_IDENT_USE) {
1228 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1229 inode->i_ino, ident);
1230 brelse(bh);
1231 make_bad_inode(inode);
1232 return;
1233 }
1234
1235 fe = (struct fileEntry *)bh->b_data;
1236
1237 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1238 struct buffer_head *ibh;
1239
1240 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1241 &ident);
1242 if (ident == TAG_IDENT_IE && ibh) {
1243 struct buffer_head *nbh = NULL;
1244 struct kernel_lb_addr loc;
1245 struct indirectEntry *ie;
1246
1247 ie = (struct indirectEntry *)ibh->b_data;
1248 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1249
1250 if (ie->indirectICB.extLength &&
1251 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1252 &ident))) {
1253 if (ident == TAG_IDENT_FE ||
1254 ident == TAG_IDENT_EFE) {
1255 memcpy(&iinfo->i_location,
1256 &loc,
1257 sizeof(struct kernel_lb_addr));
1258 brelse(bh);
1259 brelse(ibh);
1260 brelse(nbh);
1261 __udf_read_inode(inode);
1262 return;
1263 }
1264 brelse(nbh);
1265 }
1266 }
1267 brelse(ibh);
1268 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1269 udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1270 le16_to_cpu(fe->icbTag.strategyType));
1271 brelse(bh);
1272 make_bad_inode(inode);
1273 return;
1274 }
1275 udf_fill_inode(inode, bh);
1276
1277 brelse(bh);
1278 }
1279
1280 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1281 {
1282 struct fileEntry *fe;
1283 struct extendedFileEntry *efe;
1284 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1285 struct udf_inode_info *iinfo = UDF_I(inode);
1286 unsigned int link_count;
1287
1288 fe = (struct fileEntry *)bh->b_data;
1289 efe = (struct extendedFileEntry *)bh->b_data;
1290
1291 if (fe->icbTag.strategyType == cpu_to_le16(4))
1292 iinfo->i_strat4096 = 0;
1293 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1294 iinfo->i_strat4096 = 1;
1295
1296 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1297 ICBTAG_FLAG_AD_MASK;
1298 iinfo->i_unique = 0;
1299 iinfo->i_lenEAttr = 0;
1300 iinfo->i_lenExtents = 0;
1301 iinfo->i_lenAlloc = 0;
1302 iinfo->i_next_alloc_block = 0;
1303 iinfo->i_next_alloc_goal = 0;
1304 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1305 iinfo->i_efe = 1;
1306 iinfo->i_use = 0;
1307 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1308 sizeof(struct extendedFileEntry))) {
1309 make_bad_inode(inode);
1310 return;
1311 }
1312 memcpy(iinfo->i_ext.i_data,
1313 bh->b_data + sizeof(struct extendedFileEntry),
1314 inode->i_sb->s_blocksize -
1315 sizeof(struct extendedFileEntry));
1316 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1317 iinfo->i_efe = 0;
1318 iinfo->i_use = 0;
1319 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1320 sizeof(struct fileEntry))) {
1321 make_bad_inode(inode);
1322 return;
1323 }
1324 memcpy(iinfo->i_ext.i_data,
1325 bh->b_data + sizeof(struct fileEntry),
1326 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1327 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1328 iinfo->i_efe = 0;
1329 iinfo->i_use = 1;
1330 iinfo->i_lenAlloc = le32_to_cpu(
1331 ((struct unallocSpaceEntry *)bh->b_data)->
1332 lengthAllocDescs);
1333 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1334 sizeof(struct unallocSpaceEntry))) {
1335 make_bad_inode(inode);
1336 return;
1337 }
1338 memcpy(iinfo->i_ext.i_data,
1339 bh->b_data + sizeof(struct unallocSpaceEntry),
1340 inode->i_sb->s_blocksize -
1341 sizeof(struct unallocSpaceEntry));
1342 return;
1343 }
1344
1345 read_lock(&sbi->s_cred_lock);
1346 i_uid_write(inode, le32_to_cpu(fe->uid));
1347 if (!uid_valid(inode->i_uid) ||
1348 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1349 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1350 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1351
1352 i_gid_write(inode, le32_to_cpu(fe->gid));
1353 if (!gid_valid(inode->i_gid) ||
1354 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1355 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1356 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1357
1358 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1359 sbi->s_fmode != UDF_INVALID_MODE)
1360 inode->i_mode = sbi->s_fmode;
1361 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1362 sbi->s_dmode != UDF_INVALID_MODE)
1363 inode->i_mode = sbi->s_dmode;
1364 else
1365 inode->i_mode = udf_convert_permissions(fe);
1366 inode->i_mode &= ~sbi->s_umask;
1367 read_unlock(&sbi->s_cred_lock);
1368
1369 link_count = le16_to_cpu(fe->fileLinkCount);
1370 if (!link_count)
1371 link_count = 1;
1372 set_nlink(inode, link_count);
1373
1374 inode->i_size = le64_to_cpu(fe->informationLength);
1375 iinfo->i_lenExtents = inode->i_size;
1376
1377 if (iinfo->i_efe == 0) {
1378 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1379 (inode->i_sb->s_blocksize_bits - 9);
1380
1381 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1382 inode->i_atime = sbi->s_record_time;
1383
1384 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1385 fe->modificationTime))
1386 inode->i_mtime = sbi->s_record_time;
1387
1388 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1389 inode->i_ctime = sbi->s_record_time;
1390
1391 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1392 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1393 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1394 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1395 } else {
1396 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1397 (inode->i_sb->s_blocksize_bits - 9);
1398
1399 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1400 inode->i_atime = sbi->s_record_time;
1401
1402 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1403 efe->modificationTime))
1404 inode->i_mtime = sbi->s_record_time;
1405
1406 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1407 iinfo->i_crtime = sbi->s_record_time;
1408
1409 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1410 inode->i_ctime = sbi->s_record_time;
1411
1412 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1413 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1414 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1415 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1416 }
1417
1418 switch (fe->icbTag.fileType) {
1419 case ICBTAG_FILE_TYPE_DIRECTORY:
1420 inode->i_op = &udf_dir_inode_operations;
1421 inode->i_fop = &udf_dir_operations;
1422 inode->i_mode |= S_IFDIR;
1423 inc_nlink(inode);
1424 break;
1425 case ICBTAG_FILE_TYPE_REALTIME:
1426 case ICBTAG_FILE_TYPE_REGULAR:
1427 case ICBTAG_FILE_TYPE_UNDEF:
1428 case ICBTAG_FILE_TYPE_VAT20:
1429 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1430 inode->i_data.a_ops = &udf_adinicb_aops;
1431 else
1432 inode->i_data.a_ops = &udf_aops;
1433 inode->i_op = &udf_file_inode_operations;
1434 inode->i_fop = &udf_file_operations;
1435 inode->i_mode |= S_IFREG;
1436 break;
1437 case ICBTAG_FILE_TYPE_BLOCK:
1438 inode->i_mode |= S_IFBLK;
1439 break;
1440 case ICBTAG_FILE_TYPE_CHAR:
1441 inode->i_mode |= S_IFCHR;
1442 break;
1443 case ICBTAG_FILE_TYPE_FIFO:
1444 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1445 break;
1446 case ICBTAG_FILE_TYPE_SOCKET:
1447 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1448 break;
1449 case ICBTAG_FILE_TYPE_SYMLINK:
1450 inode->i_data.a_ops = &udf_symlink_aops;
1451 inode->i_op = &udf_symlink_inode_operations;
1452 inode->i_mode = S_IFLNK | S_IRWXUGO;
1453 break;
1454 case ICBTAG_FILE_TYPE_MAIN:
1455 udf_debug("METADATA FILE-----\n");
1456 break;
1457 case ICBTAG_FILE_TYPE_MIRROR:
1458 udf_debug("METADATA MIRROR FILE-----\n");
1459 break;
1460 case ICBTAG_FILE_TYPE_BITMAP:
1461 udf_debug("METADATA BITMAP FILE-----\n");
1462 break;
1463 default:
1464 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1465 inode->i_ino, fe->icbTag.fileType);
1466 make_bad_inode(inode);
1467 return;
1468 }
1469 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1470 struct deviceSpec *dsea =
1471 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1472 if (dsea) {
1473 init_special_inode(inode, inode->i_mode,
1474 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1475 le32_to_cpu(dsea->minorDeviceIdent)));
1476 /* Developer ID ??? */
1477 } else
1478 make_bad_inode(inode);
1479 }
1480 }
1481
1482 static int udf_alloc_i_data(struct inode *inode, size_t size)
1483 {
1484 struct udf_inode_info *iinfo = UDF_I(inode);
1485 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1486
1487 if (!iinfo->i_ext.i_data) {
1488 udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1489 inode->i_ino);
1490 return -ENOMEM;
1491 }
1492
1493 return 0;
1494 }
1495
1496 static umode_t udf_convert_permissions(struct fileEntry *fe)
1497 {
1498 umode_t mode;
1499 uint32_t permissions;
1500 uint32_t flags;
1501
1502 permissions = le32_to_cpu(fe->permissions);
1503 flags = le16_to_cpu(fe->icbTag.flags);
1504
1505 mode = ((permissions) & S_IRWXO) |
1506 ((permissions >> 2) & S_IRWXG) |
1507 ((permissions >> 4) & S_IRWXU) |
1508 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1509 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1510 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1511
1512 return mode;
1513 }
1514
1515 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1516 {
1517 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1518 }
1519
1520 static int udf_sync_inode(struct inode *inode)
1521 {
1522 return udf_update_inode(inode, 1);
1523 }
1524
1525 static int udf_update_inode(struct inode *inode, int do_sync)
1526 {
1527 struct buffer_head *bh = NULL;
1528 struct fileEntry *fe;
1529 struct extendedFileEntry *efe;
1530 uint64_t lb_recorded;
1531 uint32_t udfperms;
1532 uint16_t icbflags;
1533 uint16_t crclen;
1534 int err = 0;
1535 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1536 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1537 struct udf_inode_info *iinfo = UDF_I(inode);
1538
1539 bh = udf_tgetblk(inode->i_sb,
1540 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1541 if (!bh) {
1542 udf_debug("getblk failure\n");
1543 return -ENOMEM;
1544 }
1545
1546 lock_buffer(bh);
1547 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1548 fe = (struct fileEntry *)bh->b_data;
1549 efe = (struct extendedFileEntry *)bh->b_data;
1550
1551 if (iinfo->i_use) {
1552 struct unallocSpaceEntry *use =
1553 (struct unallocSpaceEntry *)bh->b_data;
1554
1555 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1556 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1557 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1558 sizeof(struct unallocSpaceEntry));
1559 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1560 use->descTag.tagLocation =
1561 cpu_to_le32(iinfo->i_location.logicalBlockNum);
1562 crclen = sizeof(struct unallocSpaceEntry) +
1563 iinfo->i_lenAlloc - sizeof(struct tag);
1564 use->descTag.descCRCLength = cpu_to_le16(crclen);
1565 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1566 sizeof(struct tag),
1567 crclen));
1568 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1569
1570 goto out;
1571 }
1572
1573 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1574 fe->uid = cpu_to_le32(-1);
1575 else
1576 fe->uid = cpu_to_le32(i_uid_read(inode));
1577
1578 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1579 fe->gid = cpu_to_le32(-1);
1580 else
1581 fe->gid = cpu_to_le32(i_gid_read(inode));
1582
1583 udfperms = ((inode->i_mode & S_IRWXO)) |
1584 ((inode->i_mode & S_IRWXG) << 2) |
1585 ((inode->i_mode & S_IRWXU) << 4);
1586
1587 udfperms |= (le32_to_cpu(fe->permissions) &
1588 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1589 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1590 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1591 fe->permissions = cpu_to_le32(udfperms);
1592
1593 if (S_ISDIR(inode->i_mode))
1594 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1595 else
1596 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1597
1598 fe->informationLength = cpu_to_le64(inode->i_size);
1599
1600 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1601 struct regid *eid;
1602 struct deviceSpec *dsea =
1603 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1604 if (!dsea) {
1605 dsea = (struct deviceSpec *)
1606 udf_add_extendedattr(inode,
1607 sizeof(struct deviceSpec) +
1608 sizeof(struct regid), 12, 0x3);
1609 dsea->attrType = cpu_to_le32(12);
1610 dsea->attrSubtype = 1;
1611 dsea->attrLength = cpu_to_le32(
1612 sizeof(struct deviceSpec) +
1613 sizeof(struct regid));
1614 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1615 }
1616 eid = (struct regid *)dsea->impUse;
1617 memset(eid, 0, sizeof(struct regid));
1618 strcpy(eid->ident, UDF_ID_DEVELOPER);
1619 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1620 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1621 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1622 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1623 }
1624
1625 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1626 lb_recorded = 0; /* No extents => no blocks! */
1627 else
1628 lb_recorded =
1629 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1630 (blocksize_bits - 9);
1631
1632 if (iinfo->i_efe == 0) {
1633 memcpy(bh->b_data + sizeof(struct fileEntry),
1634 iinfo->i_ext.i_data,
1635 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1636 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1637
1638 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1639 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1640 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1641 memset(&(fe->impIdent), 0, sizeof(struct regid));
1642 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1643 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1644 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1645 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1646 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1647 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1648 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1649 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1650 crclen = sizeof(struct fileEntry);
1651 } else {
1652 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1653 iinfo->i_ext.i_data,
1654 inode->i_sb->s_blocksize -
1655 sizeof(struct extendedFileEntry));
1656 efe->objectSize = cpu_to_le64(inode->i_size);
1657 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1658
1659 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1660 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1661 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1662 iinfo->i_crtime = inode->i_atime;
1663
1664 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1665 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1666 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1667 iinfo->i_crtime = inode->i_mtime;
1668
1669 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1670 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1671 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1672 iinfo->i_crtime = inode->i_ctime;
1673
1674 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1675 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1676 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1677 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1678
1679 memset(&(efe->impIdent), 0, sizeof(struct regid));
1680 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1681 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1682 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1683 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1684 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1685 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1686 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1687 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1688 crclen = sizeof(struct extendedFileEntry);
1689 }
1690 if (iinfo->i_strat4096) {
1691 fe->icbTag.strategyType = cpu_to_le16(4096);
1692 fe->icbTag.strategyParameter = cpu_to_le16(1);
1693 fe->icbTag.numEntries = cpu_to_le16(2);
1694 } else {
1695 fe->icbTag.strategyType = cpu_to_le16(4);
1696 fe->icbTag.numEntries = cpu_to_le16(1);
1697 }
1698
1699 if (S_ISDIR(inode->i_mode))
1700 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1701 else if (S_ISREG(inode->i_mode))
1702 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1703 else if (S_ISLNK(inode->i_mode))
1704 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1705 else if (S_ISBLK(inode->i_mode))
1706 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1707 else if (S_ISCHR(inode->i_mode))
1708 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1709 else if (S_ISFIFO(inode->i_mode))
1710 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1711 else if (S_ISSOCK(inode->i_mode))
1712 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1713
1714 icbflags = iinfo->i_alloc_type |
1715 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1716 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1717 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1718 (le16_to_cpu(fe->icbTag.flags) &
1719 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1720 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1721
1722 fe->icbTag.flags = cpu_to_le16(icbflags);
1723 if (sbi->s_udfrev >= 0x0200)
1724 fe->descTag.descVersion = cpu_to_le16(3);
1725 else
1726 fe->descTag.descVersion = cpu_to_le16(2);
1727 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1728 fe->descTag.tagLocation = cpu_to_le32(
1729 iinfo->i_location.logicalBlockNum);
1730 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1731 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1732 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1733 crclen));
1734 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1735
1736 out:
1737 set_buffer_uptodate(bh);
1738 unlock_buffer(bh);
1739
1740 /* write the data blocks */
1741 mark_buffer_dirty(bh);
1742 if (do_sync) {
1743 sync_dirty_buffer(bh);
1744 if (buffer_write_io_error(bh)) {
1745 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1746 inode->i_ino);
1747 err = -EIO;
1748 }
1749 }
1750 brelse(bh);
1751
1752 return err;
1753 }
1754
1755 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1756 {
1757 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1758 struct inode *inode = iget_locked(sb, block);
1759
1760 if (!inode)
1761 return NULL;
1762
1763 if (inode->i_state & I_NEW) {
1764 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1765 __udf_read_inode(inode);
1766 unlock_new_inode(inode);
1767 }
1768
1769 if (is_bad_inode(inode))
1770 goto out_iput;
1771
1772 if (ino->logicalBlockNum >= UDF_SB(sb)->
1773 s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1774 udf_debug("block=%d, partition=%d out of range\n",
1775 ino->logicalBlockNum, ino->partitionReferenceNum);
1776 make_bad_inode(inode);
1777 goto out_iput;
1778 }
1779
1780 return inode;
1781
1782 out_iput:
1783 iput(inode);
1784 return NULL;
1785 }
1786
1787 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1788 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1789 {
1790 int adsize;
1791 struct short_ad *sad = NULL;
1792 struct long_ad *lad = NULL;
1793 struct allocExtDesc *aed;
1794 uint8_t *ptr;
1795 struct udf_inode_info *iinfo = UDF_I(inode);
1796
1797 if (!epos->bh)
1798 ptr = iinfo->i_ext.i_data + epos->offset -
1799 udf_file_entry_alloc_offset(inode) +
1800 iinfo->i_lenEAttr;
1801 else
1802 ptr = epos->bh->b_data + epos->offset;
1803
1804 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1805 adsize = sizeof(struct short_ad);
1806 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1807 adsize = sizeof(struct long_ad);
1808 else
1809 return -EIO;
1810
1811 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1812 unsigned char *sptr, *dptr;
1813 struct buffer_head *nbh;
1814 int err, loffset;
1815 struct kernel_lb_addr obloc = epos->block;
1816
1817 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1818 obloc.partitionReferenceNum,
1819 obloc.logicalBlockNum, &err);
1820 if (!epos->block.logicalBlockNum)
1821 return -ENOSPC;
1822 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1823 &epos->block,
1824 0));
1825 if (!nbh)
1826 return -EIO;
1827 lock_buffer(nbh);
1828 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1829 set_buffer_uptodate(nbh);
1830 unlock_buffer(nbh);
1831 mark_buffer_dirty_inode(nbh, inode);
1832
1833 aed = (struct allocExtDesc *)(nbh->b_data);
1834 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1835 aed->previousAllocExtLocation =
1836 cpu_to_le32(obloc.logicalBlockNum);
1837 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1838 loffset = epos->offset;
1839 aed->lengthAllocDescs = cpu_to_le32(adsize);
1840 sptr = ptr - adsize;
1841 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1842 memcpy(dptr, sptr, adsize);
1843 epos->offset = sizeof(struct allocExtDesc) + adsize;
1844 } else {
1845 loffset = epos->offset + adsize;
1846 aed->lengthAllocDescs = cpu_to_le32(0);
1847 sptr = ptr;
1848 epos->offset = sizeof(struct allocExtDesc);
1849
1850 if (epos->bh) {
1851 aed = (struct allocExtDesc *)epos->bh->b_data;
1852 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1853 } else {
1854 iinfo->i_lenAlloc += adsize;
1855 mark_inode_dirty(inode);
1856 }
1857 }
1858 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1859 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1860 epos->block.logicalBlockNum, sizeof(struct tag));
1861 else
1862 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1863 epos->block.logicalBlockNum, sizeof(struct tag));
1864 switch (iinfo->i_alloc_type) {
1865 case ICBTAG_FLAG_AD_SHORT:
1866 sad = (struct short_ad *)sptr;
1867 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1868 inode->i_sb->s_blocksize);
1869 sad->extPosition =
1870 cpu_to_le32(epos->block.logicalBlockNum);
1871 break;
1872 case ICBTAG_FLAG_AD_LONG:
1873 lad = (struct long_ad *)sptr;
1874 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1875 inode->i_sb->s_blocksize);
1876 lad->extLocation = cpu_to_lelb(epos->block);
1877 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1878 break;
1879 }
1880 if (epos->bh) {
1881 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1882 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1883 udf_update_tag(epos->bh->b_data, loffset);
1884 else
1885 udf_update_tag(epos->bh->b_data,
1886 sizeof(struct allocExtDesc));
1887 mark_buffer_dirty_inode(epos->bh, inode);
1888 brelse(epos->bh);
1889 } else {
1890 mark_inode_dirty(inode);
1891 }
1892 epos->bh = nbh;
1893 }
1894
1895 udf_write_aext(inode, epos, eloc, elen, inc);
1896
1897 if (!epos->bh) {
1898 iinfo->i_lenAlloc += adsize;
1899 mark_inode_dirty(inode);
1900 } else {
1901 aed = (struct allocExtDesc *)epos->bh->b_data;
1902 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1903 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1904 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1905 udf_update_tag(epos->bh->b_data,
1906 epos->offset + (inc ? 0 : adsize));
1907 else
1908 udf_update_tag(epos->bh->b_data,
1909 sizeof(struct allocExtDesc));
1910 mark_buffer_dirty_inode(epos->bh, inode);
1911 }
1912
1913 return 0;
1914 }
1915
1916 void udf_write_aext(struct inode *inode, struct extent_position *epos,
1917 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1918 {
1919 int adsize;
1920 uint8_t *ptr;
1921 struct short_ad *sad;
1922 struct long_ad *lad;
1923 struct udf_inode_info *iinfo = UDF_I(inode);
1924
1925 if (!epos->bh)
1926 ptr = iinfo->i_ext.i_data + epos->offset -
1927 udf_file_entry_alloc_offset(inode) +
1928 iinfo->i_lenEAttr;
1929 else
1930 ptr = epos->bh->b_data + epos->offset;
1931
1932 switch (iinfo->i_alloc_type) {
1933 case ICBTAG_FLAG_AD_SHORT:
1934 sad = (struct short_ad *)ptr;
1935 sad->extLength = cpu_to_le32(elen);
1936 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1937 adsize = sizeof(struct short_ad);
1938 break;
1939 case ICBTAG_FLAG_AD_LONG:
1940 lad = (struct long_ad *)ptr;
1941 lad->extLength = cpu_to_le32(elen);
1942 lad->extLocation = cpu_to_lelb(*eloc);
1943 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1944 adsize = sizeof(struct long_ad);
1945 break;
1946 default:
1947 return;
1948 }
1949
1950 if (epos->bh) {
1951 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1952 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1953 struct allocExtDesc *aed =
1954 (struct allocExtDesc *)epos->bh->b_data;
1955 udf_update_tag(epos->bh->b_data,
1956 le32_to_cpu(aed->lengthAllocDescs) +
1957 sizeof(struct allocExtDesc));
1958 }
1959 mark_buffer_dirty_inode(epos->bh, inode);
1960 } else {
1961 mark_inode_dirty(inode);
1962 }
1963
1964 if (inc)
1965 epos->offset += adsize;
1966 }
1967
1968 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1969 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1970 {
1971 int8_t etype;
1972
1973 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1974 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1975 int block;
1976 epos->block = *eloc;
1977 epos->offset = sizeof(struct allocExtDesc);
1978 brelse(epos->bh);
1979 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1980 epos->bh = udf_tread(inode->i_sb, block);
1981 if (!epos->bh) {
1982 udf_debug("reading block %d failed!\n", block);
1983 return -1;
1984 }
1985 }
1986
1987 return etype;
1988 }
1989
1990 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1991 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1992 {
1993 int alen;
1994 int8_t etype;
1995 uint8_t *ptr;
1996 struct short_ad *sad;
1997 struct long_ad *lad;
1998 struct udf_inode_info *iinfo = UDF_I(inode);
1999
2000 if (!epos->bh) {
2001 if (!epos->offset)
2002 epos->offset = udf_file_entry_alloc_offset(inode);
2003 ptr = iinfo->i_ext.i_data + epos->offset -
2004 udf_file_entry_alloc_offset(inode) +
2005 iinfo->i_lenEAttr;
2006 alen = udf_file_entry_alloc_offset(inode) +
2007 iinfo->i_lenAlloc;
2008 } else {
2009 if (!epos->offset)
2010 epos->offset = sizeof(struct allocExtDesc);
2011 ptr = epos->bh->b_data + epos->offset;
2012 alen = sizeof(struct allocExtDesc) +
2013 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2014 lengthAllocDescs);
2015 }
2016
2017 switch (iinfo->i_alloc_type) {
2018 case ICBTAG_FLAG_AD_SHORT:
2019 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2020 if (!sad)
2021 return -1;
2022 etype = le32_to_cpu(sad->extLength) >> 30;
2023 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2024 eloc->partitionReferenceNum =
2025 iinfo->i_location.partitionReferenceNum;
2026 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2027 break;
2028 case ICBTAG_FLAG_AD_LONG:
2029 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2030 if (!lad)
2031 return -1;
2032 etype = le32_to_cpu(lad->extLength) >> 30;
2033 *eloc = lelb_to_cpu(lad->extLocation);
2034 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2035 break;
2036 default:
2037 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2038 return -1;
2039 }
2040
2041 return etype;
2042 }
2043
2044 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2045 struct kernel_lb_addr neloc, uint32_t nelen)
2046 {
2047 struct kernel_lb_addr oeloc;
2048 uint32_t oelen;
2049 int8_t etype;
2050
2051 if (epos.bh)
2052 get_bh(epos.bh);
2053
2054 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2055 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2056 neloc = oeloc;
2057 nelen = (etype << 30) | oelen;
2058 }
2059 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2060 brelse(epos.bh);
2061
2062 return (nelen >> 30);
2063 }
2064
2065 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2066 struct kernel_lb_addr eloc, uint32_t elen)
2067 {
2068 struct extent_position oepos;
2069 int adsize;
2070 int8_t etype;
2071 struct allocExtDesc *aed;
2072 struct udf_inode_info *iinfo;
2073
2074 if (epos.bh) {
2075 get_bh(epos.bh);
2076 get_bh(epos.bh);
2077 }
2078
2079 iinfo = UDF_I(inode);
2080 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2081 adsize = sizeof(struct short_ad);
2082 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2083 adsize = sizeof(struct long_ad);
2084 else
2085 adsize = 0;
2086
2087 oepos = epos;
2088 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2089 return -1;
2090
2091 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2092 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2093 if (oepos.bh != epos.bh) {
2094 oepos.block = epos.block;
2095 brelse(oepos.bh);
2096 get_bh(epos.bh);
2097 oepos.bh = epos.bh;
2098 oepos.offset = epos.offset - adsize;
2099 }
2100 }
2101 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2102 elen = 0;
2103
2104 if (epos.bh != oepos.bh) {
2105 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2106 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2107 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2108 if (!oepos.bh) {
2109 iinfo->i_lenAlloc -= (adsize * 2);
2110 mark_inode_dirty(inode);
2111 } else {
2112 aed = (struct allocExtDesc *)oepos.bh->b_data;
2113 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2114 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2115 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2116 udf_update_tag(oepos.bh->b_data,
2117 oepos.offset - (2 * adsize));
2118 else
2119 udf_update_tag(oepos.bh->b_data,
2120 sizeof(struct allocExtDesc));
2121 mark_buffer_dirty_inode(oepos.bh, inode);
2122 }
2123 } else {
2124 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2125 if (!oepos.bh) {
2126 iinfo->i_lenAlloc -= adsize;
2127 mark_inode_dirty(inode);
2128 } else {
2129 aed = (struct allocExtDesc *)oepos.bh->b_data;
2130 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2131 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2132 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2133 udf_update_tag(oepos.bh->b_data,
2134 epos.offset - adsize);
2135 else
2136 udf_update_tag(oepos.bh->b_data,
2137 sizeof(struct allocExtDesc));
2138 mark_buffer_dirty_inode(oepos.bh, inode);
2139 }
2140 }
2141
2142 brelse(epos.bh);
2143 brelse(oepos.bh);
2144
2145 return (elen >> 30);
2146 }
2147
2148 int8_t inode_bmap(struct inode *inode, sector_t block,
2149 struct extent_position *pos, struct kernel_lb_addr *eloc,
2150 uint32_t *elen, sector_t *offset)
2151 {
2152 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2153 loff_t lbcount = 0, bcount =
2154 (loff_t) block << blocksize_bits;
2155 int8_t etype;
2156 struct udf_inode_info *iinfo;
2157
2158 iinfo = UDF_I(inode);
2159 pos->offset = 0;
2160 pos->block = iinfo->i_location;
2161 pos->bh = NULL;
2162 *elen = 0;
2163
2164 do {
2165 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2166 if (etype == -1) {
2167 *offset = (bcount - lbcount) >> blocksize_bits;
2168 iinfo->i_lenExtents = lbcount;
2169 return -1;
2170 }
2171 lbcount += *elen;
2172 } while (lbcount <= bcount);
2173
2174 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2175
2176 return etype;
2177 }
2178
2179 long udf_block_map(struct inode *inode, sector_t block)
2180 {
2181 struct kernel_lb_addr eloc;
2182 uint32_t elen;
2183 sector_t offset;
2184 struct extent_position epos = {};
2185 int ret;
2186
2187 down_read(&UDF_I(inode)->i_data_sem);
2188
2189 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2190 (EXT_RECORDED_ALLOCATED >> 30))
2191 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2192 else
2193 ret = 0;
2194
2195 up_read(&UDF_I(inode)->i_data_sem);
2196 brelse(epos.bh);
2197
2198 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2199 return udf_fixed_to_variable(ret);
2200 else
2201 return ret;
2202 }
This page took 0.091581 seconds and 5 git commands to generate.