4457da0e0bc9dcfc5046a0de94caf6766c97f9ad
[deliverable/linux.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/smp_lock.h>
52 #include <linux/buffer_head.h>
53 #include <linux/vfs.h>
54 #include <linux/vmalloc.h>
55 #include <linux/errno.h>
56 #include <linux/mount.h>
57 #include <linux/seq_file.h>
58 #include <linux/bitmap.h>
59 #include <linux/crc-itu-t.h>
60 #include <asm/byteorder.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67
68 #define VDS_POS_PRIMARY_VOL_DESC 0
69 #define VDS_POS_UNALLOC_SPACE_DESC 1
70 #define VDS_POS_LOGICAL_VOL_DESC 2
71 #define VDS_POS_PARTITION_DESC 3
72 #define VDS_POS_IMP_USE_VOL_DESC 4
73 #define VDS_POS_VOL_DESC_PTR 5
74 #define VDS_POS_TERMINATING_DESC 6
75 #define VDS_POS_LENGTH 7
76
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78
79 static char error_buf[1024];
80
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static void udf_write_super(struct super_block *);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static int udf_check_valid(struct super_block *, int, int);
87 static int udf_vrs(struct super_block *sb, int silent);
88 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
89 static void udf_find_anchor(struct super_block *);
90 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
91 struct kernel_lb_addr *);
92 static void udf_load_fileset(struct super_block *, struct buffer_head *,
93 struct kernel_lb_addr *);
94 static void udf_open_lvid(struct super_block *);
95 static void udf_close_lvid(struct super_block *);
96 static unsigned int udf_count_free(struct super_block *);
97 static int udf_statfs(struct dentry *, struct kstatfs *);
98 static int udf_show_options(struct seq_file *, struct vfsmount *);
99 static void udf_error(struct super_block *sb, const char *function,
100 const char *fmt, ...);
101
102 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
103 {
104 struct logicalVolIntegrityDesc *lvid =
105 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
106 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
107 __u32 offset = number_of_partitions * 2 *
108 sizeof(uint32_t)/sizeof(uint8_t);
109 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
110 }
111
112 /* UDF filesystem type */
113 static int udf_get_sb(struct file_system_type *fs_type,
114 int flags, const char *dev_name, void *data,
115 struct vfsmount *mnt)
116 {
117 return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt);
118 }
119
120 static struct file_system_type udf_fstype = {
121 .owner = THIS_MODULE,
122 .name = "udf",
123 .get_sb = udf_get_sb,
124 .kill_sb = kill_block_super,
125 .fs_flags = FS_REQUIRES_DEV,
126 };
127
128 static struct kmem_cache *udf_inode_cachep;
129
130 static struct inode *udf_alloc_inode(struct super_block *sb)
131 {
132 struct udf_inode_info *ei;
133 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
134 if (!ei)
135 return NULL;
136
137 ei->i_unique = 0;
138 ei->i_lenExtents = 0;
139 ei->i_next_alloc_block = 0;
140 ei->i_next_alloc_goal = 0;
141 ei->i_strat4096 = 0;
142
143 return &ei->vfs_inode;
144 }
145
146 static void udf_destroy_inode(struct inode *inode)
147 {
148 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
149 }
150
151 static void init_once(void *foo)
152 {
153 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
154
155 ei->i_ext.i_data = NULL;
156 inode_init_once(&ei->vfs_inode);
157 }
158
159 static int init_inodecache(void)
160 {
161 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
162 sizeof(struct udf_inode_info),
163 0, (SLAB_RECLAIM_ACCOUNT |
164 SLAB_MEM_SPREAD),
165 init_once);
166 if (!udf_inode_cachep)
167 return -ENOMEM;
168 return 0;
169 }
170
171 static void destroy_inodecache(void)
172 {
173 kmem_cache_destroy(udf_inode_cachep);
174 }
175
176 /* Superblock operations */
177 static const struct super_operations udf_sb_ops = {
178 .alloc_inode = udf_alloc_inode,
179 .destroy_inode = udf_destroy_inode,
180 .write_inode = udf_write_inode,
181 .delete_inode = udf_delete_inode,
182 .clear_inode = udf_clear_inode,
183 .put_super = udf_put_super,
184 .write_super = udf_write_super,
185 .statfs = udf_statfs,
186 .remount_fs = udf_remount_fs,
187 .show_options = udf_show_options,
188 };
189
190 struct udf_options {
191 unsigned char novrs;
192 unsigned int blocksize;
193 unsigned int session;
194 unsigned int lastblock;
195 unsigned int anchor;
196 unsigned int volume;
197 unsigned short partition;
198 unsigned int fileset;
199 unsigned int rootdir;
200 unsigned int flags;
201 mode_t umask;
202 gid_t gid;
203 uid_t uid;
204 mode_t fmode;
205 mode_t dmode;
206 struct nls_table *nls_map;
207 };
208
209 static int __init init_udf_fs(void)
210 {
211 int err;
212
213 err = init_inodecache();
214 if (err)
215 goto out1;
216 err = register_filesystem(&udf_fstype);
217 if (err)
218 goto out;
219
220 return 0;
221
222 out:
223 destroy_inodecache();
224
225 out1:
226 return err;
227 }
228
229 static void __exit exit_udf_fs(void)
230 {
231 unregister_filesystem(&udf_fstype);
232 destroy_inodecache();
233 }
234
235 module_init(init_udf_fs)
236 module_exit(exit_udf_fs)
237
238 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
239 {
240 struct udf_sb_info *sbi = UDF_SB(sb);
241
242 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
243 GFP_KERNEL);
244 if (!sbi->s_partmaps) {
245 udf_error(sb, __func__,
246 "Unable to allocate space for %d partition maps",
247 count);
248 sbi->s_partitions = 0;
249 return -ENOMEM;
250 }
251
252 sbi->s_partitions = count;
253 return 0;
254 }
255
256 static int udf_show_options(struct seq_file *seq, struct vfsmount *mnt)
257 {
258 struct super_block *sb = mnt->mnt_sb;
259 struct udf_sb_info *sbi = UDF_SB(sb);
260
261 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
262 seq_puts(seq, ",nostrict");
263 if (sb->s_blocksize != UDF_DEFAULT_BLOCKSIZE)
264 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
265 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
266 seq_puts(seq, ",unhide");
267 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
268 seq_puts(seq, ",undelete");
269 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
270 seq_puts(seq, ",noadinicb");
271 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
272 seq_puts(seq, ",shortad");
273 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
274 seq_puts(seq, ",uid=forget");
275 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
276 seq_puts(seq, ",uid=ignore");
277 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
278 seq_puts(seq, ",gid=forget");
279 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
280 seq_puts(seq, ",gid=ignore");
281 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
282 seq_printf(seq, ",uid=%u", sbi->s_uid);
283 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
284 seq_printf(seq, ",gid=%u", sbi->s_gid);
285 if (sbi->s_umask != 0)
286 seq_printf(seq, ",umask=%o", sbi->s_umask);
287 if (sbi->s_fmode != UDF_INVALID_MODE)
288 seq_printf(seq, ",mode=%o", sbi->s_fmode);
289 if (sbi->s_dmode != UDF_INVALID_MODE)
290 seq_printf(seq, ",dmode=%o", sbi->s_dmode);
291 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
292 seq_printf(seq, ",session=%u", sbi->s_session);
293 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
294 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
295 /*
296 * s_anchor[2] could be zeroed out in case there is no anchor
297 * in the specified block, but then the "anchor=N" option
298 * originally given by the user wasn't effective, so it's OK
299 * if we don't show it.
300 */
301 if (sbi->s_anchor[2] != 0)
302 seq_printf(seq, ",anchor=%u", sbi->s_anchor[2]);
303 /*
304 * volume, partition, fileset and rootdir seem to be ignored
305 * currently
306 */
307 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
308 seq_puts(seq, ",utf8");
309 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
310 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
311
312 return 0;
313 }
314
315 /*
316 * udf_parse_options
317 *
318 * PURPOSE
319 * Parse mount options.
320 *
321 * DESCRIPTION
322 * The following mount options are supported:
323 *
324 * gid= Set the default group.
325 * umask= Set the default umask.
326 * mode= Set the default file permissions.
327 * dmode= Set the default directory permissions.
328 * uid= Set the default user.
329 * bs= Set the block size.
330 * unhide Show otherwise hidden files.
331 * undelete Show deleted files in lists.
332 * adinicb Embed data in the inode (default)
333 * noadinicb Don't embed data in the inode
334 * shortad Use short ad's
335 * longad Use long ad's (default)
336 * nostrict Unset strict conformance
337 * iocharset= Set the NLS character set
338 *
339 * The remaining are for debugging and disaster recovery:
340 *
341 * novrs Skip volume sequence recognition
342 *
343 * The following expect a offset from 0.
344 *
345 * session= Set the CDROM session (default= last session)
346 * anchor= Override standard anchor location. (default= 256)
347 * volume= Override the VolumeDesc location. (unused)
348 * partition= Override the PartitionDesc location. (unused)
349 * lastblock= Set the last block of the filesystem/
350 *
351 * The following expect a offset from the partition root.
352 *
353 * fileset= Override the fileset block location. (unused)
354 * rootdir= Override the root directory location. (unused)
355 * WARNING: overriding the rootdir to a non-directory may
356 * yield highly unpredictable results.
357 *
358 * PRE-CONDITIONS
359 * options Pointer to mount options string.
360 * uopts Pointer to mount options variable.
361 *
362 * POST-CONDITIONS
363 * <return> 1 Mount options parsed okay.
364 * <return> 0 Error parsing mount options.
365 *
366 * HISTORY
367 * July 1, 1997 - Andrew E. Mileski
368 * Written, tested, and released.
369 */
370
371 enum {
372 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
373 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
374 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
375 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
376 Opt_rootdir, Opt_utf8, Opt_iocharset,
377 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
378 Opt_fmode, Opt_dmode
379 };
380
381 static const match_table_t tokens = {
382 {Opt_novrs, "novrs"},
383 {Opt_nostrict, "nostrict"},
384 {Opt_bs, "bs=%u"},
385 {Opt_unhide, "unhide"},
386 {Opt_undelete, "undelete"},
387 {Opt_noadinicb, "noadinicb"},
388 {Opt_adinicb, "adinicb"},
389 {Opt_shortad, "shortad"},
390 {Opt_longad, "longad"},
391 {Opt_uforget, "uid=forget"},
392 {Opt_uignore, "uid=ignore"},
393 {Opt_gforget, "gid=forget"},
394 {Opt_gignore, "gid=ignore"},
395 {Opt_gid, "gid=%u"},
396 {Opt_uid, "uid=%u"},
397 {Opt_umask, "umask=%o"},
398 {Opt_session, "session=%u"},
399 {Opt_lastblock, "lastblock=%u"},
400 {Opt_anchor, "anchor=%u"},
401 {Opt_volume, "volume=%u"},
402 {Opt_partition, "partition=%u"},
403 {Opt_fileset, "fileset=%u"},
404 {Opt_rootdir, "rootdir=%u"},
405 {Opt_utf8, "utf8"},
406 {Opt_iocharset, "iocharset=%s"},
407 {Opt_fmode, "mode=%o"},
408 {Opt_dmode, "dmode=%o"},
409 {Opt_err, NULL}
410 };
411
412 static int udf_parse_options(char *options, struct udf_options *uopt,
413 bool remount)
414 {
415 char *p;
416 int option;
417
418 uopt->novrs = 0;
419 uopt->blocksize = UDF_DEFAULT_BLOCKSIZE;
420 uopt->partition = 0xFFFF;
421 uopt->session = 0xFFFFFFFF;
422 uopt->lastblock = 0;
423 uopt->anchor = 0;
424 uopt->volume = 0xFFFFFFFF;
425 uopt->rootdir = 0xFFFFFFFF;
426 uopt->fileset = 0xFFFFFFFF;
427 uopt->nls_map = NULL;
428
429 if (!options)
430 return 1;
431
432 while ((p = strsep(&options, ",")) != NULL) {
433 substring_t args[MAX_OPT_ARGS];
434 int token;
435 if (!*p)
436 continue;
437
438 token = match_token(p, tokens, args);
439 switch (token) {
440 case Opt_novrs:
441 uopt->novrs = 1;
442 case Opt_bs:
443 if (match_int(&args[0], &option))
444 return 0;
445 uopt->blocksize = option;
446 break;
447 case Opt_unhide:
448 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
449 break;
450 case Opt_undelete:
451 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
452 break;
453 case Opt_noadinicb:
454 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
455 break;
456 case Opt_adinicb:
457 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
458 break;
459 case Opt_shortad:
460 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
461 break;
462 case Opt_longad:
463 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
464 break;
465 case Opt_gid:
466 if (match_int(args, &option))
467 return 0;
468 uopt->gid = option;
469 uopt->flags |= (1 << UDF_FLAG_GID_SET);
470 break;
471 case Opt_uid:
472 if (match_int(args, &option))
473 return 0;
474 uopt->uid = option;
475 uopt->flags |= (1 << UDF_FLAG_UID_SET);
476 break;
477 case Opt_umask:
478 if (match_octal(args, &option))
479 return 0;
480 uopt->umask = option;
481 break;
482 case Opt_nostrict:
483 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
484 break;
485 case Opt_session:
486 if (match_int(args, &option))
487 return 0;
488 uopt->session = option;
489 if (!remount)
490 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
491 break;
492 case Opt_lastblock:
493 if (match_int(args, &option))
494 return 0;
495 uopt->lastblock = option;
496 if (!remount)
497 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
498 break;
499 case Opt_anchor:
500 if (match_int(args, &option))
501 return 0;
502 uopt->anchor = option;
503 break;
504 case Opt_volume:
505 if (match_int(args, &option))
506 return 0;
507 uopt->volume = option;
508 break;
509 case Opt_partition:
510 if (match_int(args, &option))
511 return 0;
512 uopt->partition = option;
513 break;
514 case Opt_fileset:
515 if (match_int(args, &option))
516 return 0;
517 uopt->fileset = option;
518 break;
519 case Opt_rootdir:
520 if (match_int(args, &option))
521 return 0;
522 uopt->rootdir = option;
523 break;
524 case Opt_utf8:
525 uopt->flags |= (1 << UDF_FLAG_UTF8);
526 break;
527 #ifdef CONFIG_UDF_NLS
528 case Opt_iocharset:
529 uopt->nls_map = load_nls(args[0].from);
530 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
531 break;
532 #endif
533 case Opt_uignore:
534 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
535 break;
536 case Opt_uforget:
537 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
538 break;
539 case Opt_gignore:
540 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
541 break;
542 case Opt_gforget:
543 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
544 break;
545 case Opt_fmode:
546 if (match_octal(args, &option))
547 return 0;
548 uopt->fmode = option & 0777;
549 break;
550 case Opt_dmode:
551 if (match_octal(args, &option))
552 return 0;
553 uopt->dmode = option & 0777;
554 break;
555 default:
556 printk(KERN_ERR "udf: bad mount option \"%s\" "
557 "or missing value\n", p);
558 return 0;
559 }
560 }
561 return 1;
562 }
563
564 static void udf_write_super(struct super_block *sb)
565 {
566 lock_kernel();
567
568 if (!(sb->s_flags & MS_RDONLY))
569 udf_open_lvid(sb);
570 sb->s_dirt = 0;
571
572 unlock_kernel();
573 }
574
575 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
576 {
577 struct udf_options uopt;
578 struct udf_sb_info *sbi = UDF_SB(sb);
579
580 uopt.flags = sbi->s_flags;
581 uopt.uid = sbi->s_uid;
582 uopt.gid = sbi->s_gid;
583 uopt.umask = sbi->s_umask;
584 uopt.fmode = sbi->s_fmode;
585 uopt.dmode = sbi->s_dmode;
586
587 if (!udf_parse_options(options, &uopt, true))
588 return -EINVAL;
589
590 sbi->s_flags = uopt.flags;
591 sbi->s_uid = uopt.uid;
592 sbi->s_gid = uopt.gid;
593 sbi->s_umask = uopt.umask;
594 sbi->s_fmode = uopt.fmode;
595 sbi->s_dmode = uopt.dmode;
596
597 if (sbi->s_lvid_bh) {
598 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
599 if (write_rev > UDF_MAX_WRITE_VERSION)
600 *flags |= MS_RDONLY;
601 }
602
603 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
604 return 0;
605 if (*flags & MS_RDONLY)
606 udf_close_lvid(sb);
607 else
608 udf_open_lvid(sb);
609
610 return 0;
611 }
612
613 static int udf_vrs(struct super_block *sb, int silent)
614 {
615 struct volStructDesc *vsd = NULL;
616 loff_t sector = 32768;
617 int sectorsize;
618 struct buffer_head *bh = NULL;
619 int iso9660 = 0;
620 int nsr02 = 0;
621 int nsr03 = 0;
622 struct udf_sb_info *sbi;
623
624 /* Block size must be a multiple of 512 */
625 if (sb->s_blocksize & 511)
626 return 0;
627 sbi = UDF_SB(sb);
628
629 if (sb->s_blocksize < sizeof(struct volStructDesc))
630 sectorsize = sizeof(struct volStructDesc);
631 else
632 sectorsize = sb->s_blocksize;
633
634 sector += (sbi->s_session << sb->s_blocksize_bits);
635
636 udf_debug("Starting at sector %u (%ld byte sectors)\n",
637 (unsigned int)(sector >> sb->s_blocksize_bits),
638 sb->s_blocksize);
639 /* Process the sequence (if applicable) */
640 for (; !nsr02 && !nsr03; sector += sectorsize) {
641 /* Read a block */
642 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
643 if (!bh)
644 break;
645
646 /* Look for ISO descriptors */
647 vsd = (struct volStructDesc *)(bh->b_data +
648 (sector & (sb->s_blocksize - 1)));
649
650 if (vsd->stdIdent[0] == 0) {
651 brelse(bh);
652 break;
653 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
654 VSD_STD_ID_LEN)) {
655 iso9660 = sector;
656 switch (vsd->structType) {
657 case 0:
658 udf_debug("ISO9660 Boot Record found\n");
659 break;
660 case 1:
661 udf_debug("ISO9660 Primary Volume Descriptor "
662 "found\n");
663 break;
664 case 2:
665 udf_debug("ISO9660 Supplementary Volume "
666 "Descriptor found\n");
667 break;
668 case 3:
669 udf_debug("ISO9660 Volume Partition Descriptor "
670 "found\n");
671 break;
672 case 255:
673 udf_debug("ISO9660 Volume Descriptor Set "
674 "Terminator found\n");
675 break;
676 default:
677 udf_debug("ISO9660 VRS (%u) found\n",
678 vsd->structType);
679 break;
680 }
681 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
682 VSD_STD_ID_LEN))
683 ; /* nothing */
684 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
685 VSD_STD_ID_LEN)) {
686 brelse(bh);
687 break;
688 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
689 VSD_STD_ID_LEN))
690 nsr02 = sector;
691 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
692 VSD_STD_ID_LEN))
693 nsr03 = sector;
694 brelse(bh);
695 }
696
697 if (nsr03)
698 return nsr03;
699 else if (nsr02)
700 return nsr02;
701 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
702 return -1;
703 else
704 return 0;
705 }
706
707 /*
708 * Check whether there is an anchor block in the given block
709 */
710 static int udf_check_anchor_block(struct super_block *sb, sector_t block)
711 {
712 struct buffer_head *bh;
713 uint16_t ident;
714
715 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
716 udf_fixed_to_variable(block) >=
717 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
718 return 0;
719
720 bh = udf_read_tagged(sb, block, block, &ident);
721 if (!bh)
722 return 0;
723 brelse(bh);
724
725 return ident == TAG_IDENT_AVDP;
726 }
727
728 /* Search for an anchor volume descriptor pointer */
729 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock)
730 {
731 sector_t last[6];
732 int i;
733 struct udf_sb_info *sbi = UDF_SB(sb);
734 int last_count = 0;
735
736 last[last_count++] = lastblock;
737 if (lastblock >= 1)
738 last[last_count++] = lastblock - 1;
739 last[last_count++] = lastblock + 1;
740 if (lastblock >= 2)
741 last[last_count++] = lastblock - 2;
742 if (lastblock >= 150)
743 last[last_count++] = lastblock - 150;
744 if (lastblock >= 152)
745 last[last_count++] = lastblock - 152;
746
747 /* according to spec, anchor is in either:
748 * block 256
749 * lastblock-256
750 * lastblock
751 * however, if the disc isn't closed, it could be 512 */
752
753 for (i = 0; i < last_count; i++) {
754 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
755 sb->s_blocksize_bits)
756 continue;
757
758 if (udf_check_anchor_block(sb, last[i])) {
759 sbi->s_anchor[0] = last[i];
760 sbi->s_anchor[1] = last[i] - 256;
761 return last[i];
762 }
763
764 if (last[i] < 256)
765 continue;
766
767 if (udf_check_anchor_block(sb, last[i] - 256)) {
768 sbi->s_anchor[1] = last[i] - 256;
769 return last[i];
770 }
771 }
772
773 if (udf_check_anchor_block(sb, sbi->s_session + 256)) {
774 sbi->s_anchor[0] = sbi->s_session + 256;
775 return last[0];
776 }
777 if (udf_check_anchor_block(sb, sbi->s_session + 512)) {
778 sbi->s_anchor[0] = sbi->s_session + 512;
779 return last[0];
780 }
781 return 0;
782 }
783
784 /*
785 * Find an anchor volume descriptor. The function expects sbi->s_lastblock to
786 * be the last block on the media.
787 *
788 * Return 1 if not found, 0 if ok
789 *
790 */
791 static void udf_find_anchor(struct super_block *sb)
792 {
793 sector_t lastblock;
794 struct buffer_head *bh = NULL;
795 uint16_t ident;
796 int i;
797 struct udf_sb_info *sbi = UDF_SB(sb);
798
799 lastblock = udf_scan_anchors(sb, sbi->s_last_block);
800 if (lastblock)
801 goto check_anchor;
802
803 /* No anchor found? Try VARCONV conversion of block numbers */
804 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
805 /* Firstly, we try to not convert number of the last block */
806 lastblock = udf_scan_anchors(sb,
807 udf_variable_to_fixed(sbi->s_last_block));
808 if (lastblock)
809 goto check_anchor;
810
811 /* Secondly, we try with converted number of the last block */
812 lastblock = udf_scan_anchors(sb, sbi->s_last_block);
813 if (!lastblock) {
814 /* VARCONV didn't help. Clear it. */
815 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
816 }
817
818 check_anchor:
819 /*
820 * Check located anchors and the anchor block supplied via
821 * mount options
822 */
823 for (i = 0; i < ARRAY_SIZE(sbi->s_anchor); i++) {
824 if (!sbi->s_anchor[i])
825 continue;
826 bh = udf_read_tagged(sb, sbi->s_anchor[i],
827 sbi->s_anchor[i], &ident);
828 if (!bh)
829 sbi->s_anchor[i] = 0;
830 else {
831 brelse(bh);
832 if (ident != TAG_IDENT_AVDP)
833 sbi->s_anchor[i] = 0;
834 }
835 }
836
837 sbi->s_last_block = lastblock;
838 }
839
840 static int udf_find_fileset(struct super_block *sb,
841 struct kernel_lb_addr *fileset,
842 struct kernel_lb_addr *root)
843 {
844 struct buffer_head *bh = NULL;
845 long lastblock;
846 uint16_t ident;
847 struct udf_sb_info *sbi;
848
849 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
850 fileset->partitionReferenceNum != 0xFFFF) {
851 bh = udf_read_ptagged(sb, fileset, 0, &ident);
852
853 if (!bh) {
854 return 1;
855 } else if (ident != TAG_IDENT_FSD) {
856 brelse(bh);
857 return 1;
858 }
859
860 }
861
862 sbi = UDF_SB(sb);
863 if (!bh) {
864 /* Search backwards through the partitions */
865 struct kernel_lb_addr newfileset;
866
867 /* --> cvg: FIXME - is it reasonable? */
868 return 1;
869
870 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
871 (newfileset.partitionReferenceNum != 0xFFFF &&
872 fileset->logicalBlockNum == 0xFFFFFFFF &&
873 fileset->partitionReferenceNum == 0xFFFF);
874 newfileset.partitionReferenceNum--) {
875 lastblock = sbi->s_partmaps
876 [newfileset.partitionReferenceNum]
877 .s_partition_len;
878 newfileset.logicalBlockNum = 0;
879
880 do {
881 bh = udf_read_ptagged(sb, &newfileset, 0,
882 &ident);
883 if (!bh) {
884 newfileset.logicalBlockNum++;
885 continue;
886 }
887
888 switch (ident) {
889 case TAG_IDENT_SBD:
890 {
891 struct spaceBitmapDesc *sp;
892 sp = (struct spaceBitmapDesc *)
893 bh->b_data;
894 newfileset.logicalBlockNum += 1 +
895 ((le32_to_cpu(sp->numOfBytes) +
896 sizeof(struct spaceBitmapDesc)
897 - 1) >> sb->s_blocksize_bits);
898 brelse(bh);
899 break;
900 }
901 case TAG_IDENT_FSD:
902 *fileset = newfileset;
903 break;
904 default:
905 newfileset.logicalBlockNum++;
906 brelse(bh);
907 bh = NULL;
908 break;
909 }
910 } while (newfileset.logicalBlockNum < lastblock &&
911 fileset->logicalBlockNum == 0xFFFFFFFF &&
912 fileset->partitionReferenceNum == 0xFFFF);
913 }
914 }
915
916 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
917 fileset->partitionReferenceNum != 0xFFFF) && bh) {
918 udf_debug("Fileset at block=%d, partition=%d\n",
919 fileset->logicalBlockNum,
920 fileset->partitionReferenceNum);
921
922 sbi->s_partition = fileset->partitionReferenceNum;
923 udf_load_fileset(sb, bh, root);
924 brelse(bh);
925 return 0;
926 }
927 return 1;
928 }
929
930 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
931 {
932 struct primaryVolDesc *pvoldesc;
933 struct ustr *instr, *outstr;
934 struct buffer_head *bh;
935 uint16_t ident;
936 int ret = 1;
937
938 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
939 if (!instr)
940 return 1;
941
942 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
943 if (!outstr)
944 goto out1;
945
946 bh = udf_read_tagged(sb, block, block, &ident);
947 if (!bh)
948 goto out2;
949
950 BUG_ON(ident != TAG_IDENT_PVD);
951
952 pvoldesc = (struct primaryVolDesc *)bh->b_data;
953
954 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
955 pvoldesc->recordingDateAndTime)) {
956 #ifdef UDFFS_DEBUG
957 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
958 udf_debug("recording time %04u/%02u/%02u"
959 " %02u:%02u (%x)\n",
960 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
961 ts->minute, le16_to_cpu(ts->typeAndTimezone));
962 #endif
963 }
964
965 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
966 if (udf_CS0toUTF8(outstr, instr)) {
967 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
968 outstr->u_len > 31 ? 31 : outstr->u_len);
969 udf_debug("volIdent[] = '%s'\n",
970 UDF_SB(sb)->s_volume_ident);
971 }
972
973 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
974 if (udf_CS0toUTF8(outstr, instr))
975 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
976
977 brelse(bh);
978 ret = 0;
979 out2:
980 kfree(outstr);
981 out1:
982 kfree(instr);
983 return ret;
984 }
985
986 static int udf_load_metadata_files(struct super_block *sb, int partition)
987 {
988 struct udf_sb_info *sbi = UDF_SB(sb);
989 struct udf_part_map *map;
990 struct udf_meta_data *mdata;
991 struct kernel_lb_addr addr;
992 int fe_error = 0;
993
994 map = &sbi->s_partmaps[partition];
995 mdata = &map->s_type_specific.s_metadata;
996
997 /* metadata address */
998 addr.logicalBlockNum = mdata->s_meta_file_loc;
999 addr.partitionReferenceNum = map->s_partition_num;
1000
1001 udf_debug("Metadata file location: block = %d part = %d\n",
1002 addr.logicalBlockNum, addr.partitionReferenceNum);
1003
1004 mdata->s_metadata_fe = udf_iget(sb, &addr);
1005
1006 if (mdata->s_metadata_fe == NULL) {
1007 udf_warning(sb, __func__, "metadata inode efe not found, "
1008 "will try mirror inode.");
1009 fe_error = 1;
1010 } else if (UDF_I(mdata->s_metadata_fe)->i_alloc_type !=
1011 ICBTAG_FLAG_AD_SHORT) {
1012 udf_warning(sb, __func__, "metadata inode efe does not have "
1013 "short allocation descriptors!");
1014 fe_error = 1;
1015 iput(mdata->s_metadata_fe);
1016 mdata->s_metadata_fe = NULL;
1017 }
1018
1019 /* mirror file entry */
1020 addr.logicalBlockNum = mdata->s_mirror_file_loc;
1021 addr.partitionReferenceNum = map->s_partition_num;
1022
1023 udf_debug("Mirror metadata file location: block = %d part = %d\n",
1024 addr.logicalBlockNum, addr.partitionReferenceNum);
1025
1026 mdata->s_mirror_fe = udf_iget(sb, &addr);
1027
1028 if (mdata->s_mirror_fe == NULL) {
1029 if (fe_error) {
1030 udf_error(sb, __func__, "mirror inode efe not found "
1031 "and metadata inode is missing too, exiting...");
1032 goto error_exit;
1033 } else
1034 udf_warning(sb, __func__, "mirror inode efe not found,"
1035 " but metadata inode is OK");
1036 } else if (UDF_I(mdata->s_mirror_fe)->i_alloc_type !=
1037 ICBTAG_FLAG_AD_SHORT) {
1038 udf_warning(sb, __func__, "mirror inode efe does not have "
1039 "short allocation descriptors!");
1040 iput(mdata->s_mirror_fe);
1041 mdata->s_mirror_fe = NULL;
1042 if (fe_error)
1043 goto error_exit;
1044 }
1045
1046 /*
1047 * bitmap file entry
1048 * Note:
1049 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1050 */
1051 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1052 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1053 addr.partitionReferenceNum = map->s_partition_num;
1054
1055 udf_debug("Bitmap file location: block = %d part = %d\n",
1056 addr.logicalBlockNum, addr.partitionReferenceNum);
1057
1058 mdata->s_bitmap_fe = udf_iget(sb, &addr);
1059
1060 if (mdata->s_bitmap_fe == NULL) {
1061 if (sb->s_flags & MS_RDONLY)
1062 udf_warning(sb, __func__, "bitmap inode efe "
1063 "not found but it's ok since the disc"
1064 " is mounted read-only");
1065 else {
1066 udf_error(sb, __func__, "bitmap inode efe not "
1067 "found and attempted read-write mount");
1068 goto error_exit;
1069 }
1070 }
1071 }
1072
1073 udf_debug("udf_load_metadata_files Ok\n");
1074
1075 return 0;
1076
1077 error_exit:
1078 return 1;
1079 }
1080
1081 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1082 struct kernel_lb_addr *root)
1083 {
1084 struct fileSetDesc *fset;
1085
1086 fset = (struct fileSetDesc *)bh->b_data;
1087
1088 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1089
1090 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1091
1092 udf_debug("Rootdir at block=%d, partition=%d\n",
1093 root->logicalBlockNum, root->partitionReferenceNum);
1094 }
1095
1096 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1097 {
1098 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1099 return DIV_ROUND_UP(map->s_partition_len +
1100 (sizeof(struct spaceBitmapDesc) << 3),
1101 sb->s_blocksize * 8);
1102 }
1103
1104 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1105 {
1106 struct udf_bitmap *bitmap;
1107 int nr_groups;
1108 int size;
1109
1110 nr_groups = udf_compute_nr_groups(sb, index);
1111 size = sizeof(struct udf_bitmap) +
1112 (sizeof(struct buffer_head *) * nr_groups);
1113
1114 if (size <= PAGE_SIZE)
1115 bitmap = kmalloc(size, GFP_KERNEL);
1116 else
1117 bitmap = vmalloc(size); /* TODO: get rid of vmalloc */
1118
1119 if (bitmap == NULL) {
1120 udf_error(sb, __func__,
1121 "Unable to allocate space for bitmap "
1122 "and %d buffer_head pointers", nr_groups);
1123 return NULL;
1124 }
1125
1126 memset(bitmap, 0x00, size);
1127 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
1128 bitmap->s_nr_groups = nr_groups;
1129 return bitmap;
1130 }
1131
1132 static int udf_fill_partdesc_info(struct super_block *sb,
1133 struct partitionDesc *p, int p_index)
1134 {
1135 struct udf_part_map *map;
1136 struct udf_sb_info *sbi = UDF_SB(sb);
1137 struct partitionHeaderDesc *phd;
1138
1139 map = &sbi->s_partmaps[p_index];
1140
1141 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1142 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1143
1144 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1145 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1146 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1147 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1148 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1149 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1150 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1151 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1152
1153 udf_debug("Partition (%d type %x) starts at physical %d, "
1154 "block length %d\n", p_index,
1155 map->s_partition_type, map->s_partition_root,
1156 map->s_partition_len);
1157
1158 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1159 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1160 return 0;
1161
1162 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1163 if (phd->unallocSpaceTable.extLength) {
1164 struct kernel_lb_addr loc = {
1165 .logicalBlockNum = le32_to_cpu(
1166 phd->unallocSpaceTable.extPosition),
1167 .partitionReferenceNum = p_index,
1168 };
1169
1170 map->s_uspace.s_table = udf_iget(sb, &loc);
1171 if (!map->s_uspace.s_table) {
1172 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1173 p_index);
1174 return 1;
1175 }
1176 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1177 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1178 p_index, map->s_uspace.s_table->i_ino);
1179 }
1180
1181 if (phd->unallocSpaceBitmap.extLength) {
1182 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1183 if (!bitmap)
1184 return 1;
1185 map->s_uspace.s_bitmap = bitmap;
1186 bitmap->s_extLength = le32_to_cpu(
1187 phd->unallocSpaceBitmap.extLength);
1188 bitmap->s_extPosition = le32_to_cpu(
1189 phd->unallocSpaceBitmap.extPosition);
1190 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1191 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", p_index,
1192 bitmap->s_extPosition);
1193 }
1194
1195 if (phd->partitionIntegrityTable.extLength)
1196 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1197
1198 if (phd->freedSpaceTable.extLength) {
1199 struct kernel_lb_addr loc = {
1200 .logicalBlockNum = le32_to_cpu(
1201 phd->freedSpaceTable.extPosition),
1202 .partitionReferenceNum = p_index,
1203 };
1204
1205 map->s_fspace.s_table = udf_iget(sb, &loc);
1206 if (!map->s_fspace.s_table) {
1207 udf_debug("cannot load freedSpaceTable (part %d)\n",
1208 p_index);
1209 return 1;
1210 }
1211
1212 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1213 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1214 p_index, map->s_fspace.s_table->i_ino);
1215 }
1216
1217 if (phd->freedSpaceBitmap.extLength) {
1218 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1219 if (!bitmap)
1220 return 1;
1221 map->s_fspace.s_bitmap = bitmap;
1222 bitmap->s_extLength = le32_to_cpu(
1223 phd->freedSpaceBitmap.extLength);
1224 bitmap->s_extPosition = le32_to_cpu(
1225 phd->freedSpaceBitmap.extPosition);
1226 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1227 udf_debug("freedSpaceBitmap (part %d) @ %d\n", p_index,
1228 bitmap->s_extPosition);
1229 }
1230 return 0;
1231 }
1232
1233 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1234 {
1235 struct udf_sb_info *sbi = UDF_SB(sb);
1236 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1237 struct kernel_lb_addr ino;
1238 struct buffer_head *bh = NULL;
1239 struct udf_inode_info *vati;
1240 uint32_t pos;
1241 struct virtualAllocationTable20 *vat20;
1242
1243 /* VAT file entry is in the last recorded block */
1244 ino.partitionReferenceNum = type1_index;
1245 ino.logicalBlockNum = sbi->s_last_block - map->s_partition_root;
1246 sbi->s_vat_inode = udf_iget(sb, &ino);
1247 if (!sbi->s_vat_inode)
1248 return 1;
1249
1250 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1251 map->s_type_specific.s_virtual.s_start_offset = 0;
1252 map->s_type_specific.s_virtual.s_num_entries =
1253 (sbi->s_vat_inode->i_size - 36) >> 2;
1254 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1255 vati = UDF_I(sbi->s_vat_inode);
1256 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1257 pos = udf_block_map(sbi->s_vat_inode, 0);
1258 bh = sb_bread(sb, pos);
1259 if (!bh)
1260 return 1;
1261 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1262 } else {
1263 vat20 = (struct virtualAllocationTable20 *)
1264 vati->i_ext.i_data;
1265 }
1266
1267 map->s_type_specific.s_virtual.s_start_offset =
1268 le16_to_cpu(vat20->lengthHeader);
1269 map->s_type_specific.s_virtual.s_num_entries =
1270 (sbi->s_vat_inode->i_size -
1271 map->s_type_specific.s_virtual.
1272 s_start_offset) >> 2;
1273 brelse(bh);
1274 }
1275 return 0;
1276 }
1277
1278 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1279 {
1280 struct buffer_head *bh;
1281 struct partitionDesc *p;
1282 struct udf_part_map *map;
1283 struct udf_sb_info *sbi = UDF_SB(sb);
1284 int i, type1_idx;
1285 uint16_t partitionNumber;
1286 uint16_t ident;
1287 int ret = 0;
1288
1289 bh = udf_read_tagged(sb, block, block, &ident);
1290 if (!bh)
1291 return 1;
1292 if (ident != TAG_IDENT_PD)
1293 goto out_bh;
1294
1295 p = (struct partitionDesc *)bh->b_data;
1296 partitionNumber = le16_to_cpu(p->partitionNumber);
1297
1298 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1299 for (i = 0; i < sbi->s_partitions; i++) {
1300 map = &sbi->s_partmaps[i];
1301 udf_debug("Searching map: (%d == %d)\n",
1302 map->s_partition_num, partitionNumber);
1303 if (map->s_partition_num == partitionNumber &&
1304 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1305 map->s_partition_type == UDF_SPARABLE_MAP15))
1306 break;
1307 }
1308
1309 if (i >= sbi->s_partitions) {
1310 udf_debug("Partition (%d) not found in partition map\n",
1311 partitionNumber);
1312 goto out_bh;
1313 }
1314
1315 ret = udf_fill_partdesc_info(sb, p, i);
1316
1317 /*
1318 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1319 * PHYSICAL partitions are already set up
1320 */
1321 type1_idx = i;
1322 for (i = 0; i < sbi->s_partitions; i++) {
1323 map = &sbi->s_partmaps[i];
1324
1325 if (map->s_partition_num == partitionNumber &&
1326 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1327 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1328 map->s_partition_type == UDF_METADATA_MAP25))
1329 break;
1330 }
1331
1332 if (i >= sbi->s_partitions)
1333 goto out_bh;
1334
1335 ret = udf_fill_partdesc_info(sb, p, i);
1336 if (ret)
1337 goto out_bh;
1338
1339 if (map->s_partition_type == UDF_METADATA_MAP25) {
1340 ret = udf_load_metadata_files(sb, i);
1341 if (ret) {
1342 printk(KERN_ERR "UDF-fs: error loading MetaData "
1343 "partition map %d\n", i);
1344 goto out_bh;
1345 }
1346 } else {
1347 ret = udf_load_vat(sb, i, type1_idx);
1348 if (ret)
1349 goto out_bh;
1350 /*
1351 * Mark filesystem read-only if we have a partition with
1352 * virtual map since we don't handle writing to it (we
1353 * overwrite blocks instead of relocating them).
1354 */
1355 sb->s_flags |= MS_RDONLY;
1356 printk(KERN_NOTICE "UDF-fs: Filesystem marked read-only "
1357 "because writing to pseudooverwrite partition is "
1358 "not implemented.\n");
1359 }
1360 out_bh:
1361 /* In case loading failed, we handle cleanup in udf_fill_super */
1362 brelse(bh);
1363 return ret;
1364 }
1365
1366 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1367 struct kernel_lb_addr *fileset)
1368 {
1369 struct logicalVolDesc *lvd;
1370 int i, j, offset;
1371 uint8_t type;
1372 struct udf_sb_info *sbi = UDF_SB(sb);
1373 struct genericPartitionMap *gpm;
1374 uint16_t ident;
1375 struct buffer_head *bh;
1376 int ret = 0;
1377
1378 bh = udf_read_tagged(sb, block, block, &ident);
1379 if (!bh)
1380 return 1;
1381 BUG_ON(ident != TAG_IDENT_LVD);
1382 lvd = (struct logicalVolDesc *)bh->b_data;
1383
1384 i = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1385 if (i != 0) {
1386 ret = i;
1387 goto out_bh;
1388 }
1389
1390 for (i = 0, offset = 0;
1391 i < sbi->s_partitions && offset < le32_to_cpu(lvd->mapTableLength);
1392 i++, offset += gpm->partitionMapLength) {
1393 struct udf_part_map *map = &sbi->s_partmaps[i];
1394 gpm = (struct genericPartitionMap *)
1395 &(lvd->partitionMaps[offset]);
1396 type = gpm->partitionMapType;
1397 if (type == 1) {
1398 struct genericPartitionMap1 *gpm1 =
1399 (struct genericPartitionMap1 *)gpm;
1400 map->s_partition_type = UDF_TYPE1_MAP15;
1401 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1402 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1403 map->s_partition_func = NULL;
1404 } else if (type == 2) {
1405 struct udfPartitionMap2 *upm2 =
1406 (struct udfPartitionMap2 *)gpm;
1407 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1408 strlen(UDF_ID_VIRTUAL))) {
1409 u16 suf =
1410 le16_to_cpu(((__le16 *)upm2->partIdent.
1411 identSuffix)[0]);
1412 if (suf < 0x0200) {
1413 map->s_partition_type =
1414 UDF_VIRTUAL_MAP15;
1415 map->s_partition_func =
1416 udf_get_pblock_virt15;
1417 } else {
1418 map->s_partition_type =
1419 UDF_VIRTUAL_MAP20;
1420 map->s_partition_func =
1421 udf_get_pblock_virt20;
1422 }
1423 } else if (!strncmp(upm2->partIdent.ident,
1424 UDF_ID_SPARABLE,
1425 strlen(UDF_ID_SPARABLE))) {
1426 uint32_t loc;
1427 struct sparingTable *st;
1428 struct sparablePartitionMap *spm =
1429 (struct sparablePartitionMap *)gpm;
1430
1431 map->s_partition_type = UDF_SPARABLE_MAP15;
1432 map->s_type_specific.s_sparing.s_packet_len =
1433 le16_to_cpu(spm->packetLength);
1434 for (j = 0; j < spm->numSparingTables; j++) {
1435 struct buffer_head *bh2;
1436
1437 loc = le32_to_cpu(
1438 spm->locSparingTable[j]);
1439 bh2 = udf_read_tagged(sb, loc, loc,
1440 &ident);
1441 map->s_type_specific.s_sparing.
1442 s_spar_map[j] = bh2;
1443
1444 if (bh2 == NULL)
1445 continue;
1446
1447 st = (struct sparingTable *)bh2->b_data;
1448 if (ident != 0 || strncmp(
1449 st->sparingIdent.ident,
1450 UDF_ID_SPARING,
1451 strlen(UDF_ID_SPARING))) {
1452 brelse(bh2);
1453 map->s_type_specific.s_sparing.
1454 s_spar_map[j] = NULL;
1455 }
1456 }
1457 map->s_partition_func = udf_get_pblock_spar15;
1458 } else if (!strncmp(upm2->partIdent.ident,
1459 UDF_ID_METADATA,
1460 strlen(UDF_ID_METADATA))) {
1461 struct udf_meta_data *mdata =
1462 &map->s_type_specific.s_metadata;
1463 struct metadataPartitionMap *mdm =
1464 (struct metadataPartitionMap *)
1465 &(lvd->partitionMaps[offset]);
1466 udf_debug("Parsing Logical vol part %d "
1467 "type %d id=%s\n", i, type,
1468 UDF_ID_METADATA);
1469
1470 map->s_partition_type = UDF_METADATA_MAP25;
1471 map->s_partition_func = udf_get_pblock_meta25;
1472
1473 mdata->s_meta_file_loc =
1474 le32_to_cpu(mdm->metadataFileLoc);
1475 mdata->s_mirror_file_loc =
1476 le32_to_cpu(mdm->metadataMirrorFileLoc);
1477 mdata->s_bitmap_file_loc =
1478 le32_to_cpu(mdm->metadataBitmapFileLoc);
1479 mdata->s_alloc_unit_size =
1480 le32_to_cpu(mdm->allocUnitSize);
1481 mdata->s_align_unit_size =
1482 le16_to_cpu(mdm->alignUnitSize);
1483 mdata->s_dup_md_flag =
1484 mdm->flags & 0x01;
1485
1486 udf_debug("Metadata Ident suffix=0x%x\n",
1487 (le16_to_cpu(
1488 ((__le16 *)
1489 mdm->partIdent.identSuffix)[0])));
1490 udf_debug("Metadata part num=%d\n",
1491 le16_to_cpu(mdm->partitionNum));
1492 udf_debug("Metadata part alloc unit size=%d\n",
1493 le32_to_cpu(mdm->allocUnitSize));
1494 udf_debug("Metadata file loc=%d\n",
1495 le32_to_cpu(mdm->metadataFileLoc));
1496 udf_debug("Mirror file loc=%d\n",
1497 le32_to_cpu(mdm->metadataMirrorFileLoc));
1498 udf_debug("Bitmap file loc=%d\n",
1499 le32_to_cpu(mdm->metadataBitmapFileLoc));
1500 udf_debug("Duplicate Flag: %d %d\n",
1501 mdata->s_dup_md_flag, mdm->flags);
1502 } else {
1503 udf_debug("Unknown ident: %s\n",
1504 upm2->partIdent.ident);
1505 continue;
1506 }
1507 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1508 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1509 }
1510 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1511 i, map->s_partition_num, type,
1512 map->s_volumeseqnum);
1513 }
1514
1515 if (fileset) {
1516 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1517
1518 *fileset = lelb_to_cpu(la->extLocation);
1519 udf_debug("FileSet found in LogicalVolDesc at block=%d, "
1520 "partition=%d\n", fileset->logicalBlockNum,
1521 fileset->partitionReferenceNum);
1522 }
1523 if (lvd->integritySeqExt.extLength)
1524 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1525
1526 out_bh:
1527 brelse(bh);
1528 return ret;
1529 }
1530
1531 /*
1532 * udf_load_logicalvolint
1533 *
1534 */
1535 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1536 {
1537 struct buffer_head *bh = NULL;
1538 uint16_t ident;
1539 struct udf_sb_info *sbi = UDF_SB(sb);
1540 struct logicalVolIntegrityDesc *lvid;
1541
1542 while (loc.extLength > 0 &&
1543 (bh = udf_read_tagged(sb, loc.extLocation,
1544 loc.extLocation, &ident)) &&
1545 ident == TAG_IDENT_LVID) {
1546 sbi->s_lvid_bh = bh;
1547 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1548
1549 if (lvid->nextIntegrityExt.extLength)
1550 udf_load_logicalvolint(sb,
1551 leea_to_cpu(lvid->nextIntegrityExt));
1552
1553 if (sbi->s_lvid_bh != bh)
1554 brelse(bh);
1555 loc.extLength -= sb->s_blocksize;
1556 loc.extLocation++;
1557 }
1558 if (sbi->s_lvid_bh != bh)
1559 brelse(bh);
1560 }
1561
1562 /*
1563 * udf_process_sequence
1564 *
1565 * PURPOSE
1566 * Process a main/reserve volume descriptor sequence.
1567 *
1568 * PRE-CONDITIONS
1569 * sb Pointer to _locked_ superblock.
1570 * block First block of first extent of the sequence.
1571 * lastblock Lastblock of first extent of the sequence.
1572 *
1573 * HISTORY
1574 * July 1, 1997 - Andrew E. Mileski
1575 * Written, tested, and released.
1576 */
1577 static noinline int udf_process_sequence(struct super_block *sb, long block,
1578 long lastblock, struct kernel_lb_addr *fileset)
1579 {
1580 struct buffer_head *bh = NULL;
1581 struct udf_vds_record vds[VDS_POS_LENGTH];
1582 struct udf_vds_record *curr;
1583 struct generic_desc *gd;
1584 struct volDescPtr *vdp;
1585 int done = 0;
1586 uint32_t vdsn;
1587 uint16_t ident;
1588 long next_s = 0, next_e = 0;
1589
1590 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1591
1592 /*
1593 * Read the main descriptor sequence and find which descriptors
1594 * are in it.
1595 */
1596 for (; (!done && block <= lastblock); block++) {
1597
1598 bh = udf_read_tagged(sb, block, block, &ident);
1599 if (!bh) {
1600 printk(KERN_ERR "udf: Block %Lu of volume descriptor "
1601 "sequence is corrupted or we could not read "
1602 "it.\n", (unsigned long long)block);
1603 return 1;
1604 }
1605
1606 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1607 gd = (struct generic_desc *)bh->b_data;
1608 vdsn = le32_to_cpu(gd->volDescSeqNum);
1609 switch (ident) {
1610 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1611 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1612 if (vdsn >= curr->volDescSeqNum) {
1613 curr->volDescSeqNum = vdsn;
1614 curr->block = block;
1615 }
1616 break;
1617 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1618 curr = &vds[VDS_POS_VOL_DESC_PTR];
1619 if (vdsn >= curr->volDescSeqNum) {
1620 curr->volDescSeqNum = vdsn;
1621 curr->block = block;
1622
1623 vdp = (struct volDescPtr *)bh->b_data;
1624 next_s = le32_to_cpu(
1625 vdp->nextVolDescSeqExt.extLocation);
1626 next_e = le32_to_cpu(
1627 vdp->nextVolDescSeqExt.extLength);
1628 next_e = next_e >> sb->s_blocksize_bits;
1629 next_e += next_s;
1630 }
1631 break;
1632 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1633 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1634 if (vdsn >= curr->volDescSeqNum) {
1635 curr->volDescSeqNum = vdsn;
1636 curr->block = block;
1637 }
1638 break;
1639 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1640 curr = &vds[VDS_POS_PARTITION_DESC];
1641 if (!curr->block)
1642 curr->block = block;
1643 break;
1644 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1645 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1646 if (vdsn >= curr->volDescSeqNum) {
1647 curr->volDescSeqNum = vdsn;
1648 curr->block = block;
1649 }
1650 break;
1651 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1652 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1653 if (vdsn >= curr->volDescSeqNum) {
1654 curr->volDescSeqNum = vdsn;
1655 curr->block = block;
1656 }
1657 break;
1658 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1659 vds[VDS_POS_TERMINATING_DESC].block = block;
1660 if (next_e) {
1661 block = next_s;
1662 lastblock = next_e;
1663 next_s = next_e = 0;
1664 } else
1665 done = 1;
1666 break;
1667 }
1668 brelse(bh);
1669 }
1670 /*
1671 * Now read interesting descriptors again and process them
1672 * in a suitable order
1673 */
1674 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1675 printk(KERN_ERR "udf: Primary Volume Descriptor not found!\n");
1676 return 1;
1677 }
1678 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1679 return 1;
1680
1681 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1682 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1683 return 1;
1684
1685 if (vds[VDS_POS_PARTITION_DESC].block) {
1686 /*
1687 * We rescan the whole descriptor sequence to find
1688 * partition descriptor blocks and process them.
1689 */
1690 for (block = vds[VDS_POS_PARTITION_DESC].block;
1691 block < vds[VDS_POS_TERMINATING_DESC].block;
1692 block++)
1693 if (udf_load_partdesc(sb, block))
1694 return 1;
1695 }
1696
1697 return 0;
1698 }
1699
1700 /*
1701 * udf_check_valid()
1702 */
1703 static int udf_check_valid(struct super_block *sb, int novrs, int silent)
1704 {
1705 long block;
1706 struct udf_sb_info *sbi = UDF_SB(sb);
1707
1708 if (novrs) {
1709 udf_debug("Validity check skipped because of novrs option\n");
1710 return 0;
1711 }
1712 /* Check that it is NSR02 compliant */
1713 /* Process any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
1714 block = udf_vrs(sb, silent);
1715 if (block == -1)
1716 udf_debug("Failed to read byte 32768. Assuming open "
1717 "disc. Skipping validity check\n");
1718 if (block && !sbi->s_last_block)
1719 sbi->s_last_block = udf_get_last_block(sb);
1720 return !block;
1721 }
1722
1723 static int udf_load_sequence(struct super_block *sb, struct kernel_lb_addr *fileset)
1724 {
1725 struct anchorVolDescPtr *anchor;
1726 uint16_t ident;
1727 struct buffer_head *bh;
1728 long main_s, main_e, reserve_s, reserve_e;
1729 int i;
1730 struct udf_sb_info *sbi;
1731
1732 if (!sb)
1733 return 1;
1734 sbi = UDF_SB(sb);
1735
1736 for (i = 0; i < ARRAY_SIZE(sbi->s_anchor); i++) {
1737 if (!sbi->s_anchor[i])
1738 continue;
1739
1740 bh = udf_read_tagged(sb, sbi->s_anchor[i], sbi->s_anchor[i],
1741 &ident);
1742 if (!bh)
1743 continue;
1744
1745 anchor = (struct anchorVolDescPtr *)bh->b_data;
1746
1747 /* Locate the main sequence */
1748 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1749 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1750 main_e = main_e >> sb->s_blocksize_bits;
1751 main_e += main_s;
1752
1753 /* Locate the reserve sequence */
1754 reserve_s = le32_to_cpu(
1755 anchor->reserveVolDescSeqExt.extLocation);
1756 reserve_e = le32_to_cpu(
1757 anchor->reserveVolDescSeqExt.extLength);
1758 reserve_e = reserve_e >> sb->s_blocksize_bits;
1759 reserve_e += reserve_s;
1760
1761 brelse(bh);
1762
1763 /* Process the main & reserve sequences */
1764 /* responsible for finding the PartitionDesc(s) */
1765 if (!(udf_process_sequence(sb, main_s, main_e,
1766 fileset) &&
1767 udf_process_sequence(sb, reserve_s, reserve_e,
1768 fileset)))
1769 break;
1770 }
1771
1772 if (i == ARRAY_SIZE(sbi->s_anchor)) {
1773 udf_debug("No Anchor block found\n");
1774 return 1;
1775 }
1776 udf_debug("Using anchor in block %d\n", sbi->s_anchor[i]);
1777
1778 return 0;
1779 }
1780
1781 static void udf_open_lvid(struct super_block *sb)
1782 {
1783 struct udf_sb_info *sbi = UDF_SB(sb);
1784 struct buffer_head *bh = sbi->s_lvid_bh;
1785 struct logicalVolIntegrityDesc *lvid;
1786 struct logicalVolIntegrityDescImpUse *lvidiu;
1787 if (!bh)
1788 return;
1789
1790 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1791 lvidiu = udf_sb_lvidiu(sbi);
1792
1793 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1794 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1795 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1796 CURRENT_TIME);
1797 lvid->integrityType = LVID_INTEGRITY_TYPE_OPEN;
1798
1799 lvid->descTag.descCRC = cpu_to_le16(
1800 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1801 le16_to_cpu(lvid->descTag.descCRCLength)));
1802
1803 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1804 mark_buffer_dirty(bh);
1805 }
1806
1807 static void udf_close_lvid(struct super_block *sb)
1808 {
1809 struct udf_sb_info *sbi = UDF_SB(sb);
1810 struct buffer_head *bh = sbi->s_lvid_bh;
1811 struct logicalVolIntegrityDesc *lvid;
1812 struct logicalVolIntegrityDescImpUse *lvidiu;
1813
1814 if (!bh)
1815 return;
1816
1817 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1818
1819 if (lvid->integrityType != LVID_INTEGRITY_TYPE_OPEN)
1820 return;
1821
1822 lvidiu = udf_sb_lvidiu(sbi);
1823 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1824 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1825 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1826 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1827 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1828 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1829 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1830 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1831 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1832 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1833
1834 lvid->descTag.descCRC = cpu_to_le16(
1835 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1836 le16_to_cpu(lvid->descTag.descCRCLength)));
1837
1838 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1839 mark_buffer_dirty(bh);
1840 }
1841
1842 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1843 {
1844 int i;
1845 int nr_groups = bitmap->s_nr_groups;
1846 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1847 nr_groups);
1848
1849 for (i = 0; i < nr_groups; i++)
1850 if (bitmap->s_block_bitmap[i])
1851 brelse(bitmap->s_block_bitmap[i]);
1852
1853 if (size <= PAGE_SIZE)
1854 kfree(bitmap);
1855 else
1856 vfree(bitmap);
1857 }
1858
1859 static void udf_free_partition(struct udf_part_map *map)
1860 {
1861 int i;
1862 struct udf_meta_data *mdata;
1863
1864 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1865 iput(map->s_uspace.s_table);
1866 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1867 iput(map->s_fspace.s_table);
1868 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1869 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1870 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1871 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1872 if (map->s_partition_type == UDF_SPARABLE_MAP15)
1873 for (i = 0; i < 4; i++)
1874 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1875 else if (map->s_partition_type == UDF_METADATA_MAP25) {
1876 mdata = &map->s_type_specific.s_metadata;
1877 iput(mdata->s_metadata_fe);
1878 mdata->s_metadata_fe = NULL;
1879
1880 iput(mdata->s_mirror_fe);
1881 mdata->s_mirror_fe = NULL;
1882
1883 iput(mdata->s_bitmap_fe);
1884 mdata->s_bitmap_fe = NULL;
1885 }
1886 }
1887
1888 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1889 {
1890 int i;
1891 struct inode *inode = NULL;
1892 struct udf_options uopt;
1893 struct kernel_lb_addr rootdir, fileset;
1894 struct udf_sb_info *sbi;
1895
1896 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1897 uopt.uid = -1;
1898 uopt.gid = -1;
1899 uopt.umask = 0;
1900 uopt.fmode = UDF_INVALID_MODE;
1901 uopt.dmode = UDF_INVALID_MODE;
1902
1903 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1904 if (!sbi)
1905 return -ENOMEM;
1906
1907 sb->s_fs_info = sbi;
1908
1909 mutex_init(&sbi->s_alloc_mutex);
1910
1911 if (!udf_parse_options((char *)options, &uopt, false))
1912 goto error_out;
1913
1914 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1915 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1916 udf_error(sb, "udf_read_super",
1917 "utf8 cannot be combined with iocharset\n");
1918 goto error_out;
1919 }
1920 #ifdef CONFIG_UDF_NLS
1921 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1922 uopt.nls_map = load_nls_default();
1923 if (!uopt.nls_map)
1924 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1925 else
1926 udf_debug("Using default NLS map\n");
1927 }
1928 #endif
1929 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1930 uopt.flags |= (1 << UDF_FLAG_UTF8);
1931
1932 fileset.logicalBlockNum = 0xFFFFFFFF;
1933 fileset.partitionReferenceNum = 0xFFFF;
1934
1935 sbi->s_flags = uopt.flags;
1936 sbi->s_uid = uopt.uid;
1937 sbi->s_gid = uopt.gid;
1938 sbi->s_umask = uopt.umask;
1939 sbi->s_fmode = uopt.fmode;
1940 sbi->s_dmode = uopt.dmode;
1941 sbi->s_nls_map = uopt.nls_map;
1942
1943 /* Set the block size for all transfers */
1944 if (!sb_min_blocksize(sb, uopt.blocksize)) {
1945 udf_debug("Bad block size (%d)\n", uopt.blocksize);
1946 printk(KERN_ERR "udf: bad block size (%d)\n", uopt.blocksize);
1947 goto error_out;
1948 }
1949
1950 if (uopt.session == 0xFFFFFFFF)
1951 sbi->s_session = udf_get_last_session(sb);
1952 else
1953 sbi->s_session = uopt.session;
1954
1955 udf_debug("Multi-session=%d\n", sbi->s_session);
1956
1957 sbi->s_last_block = uopt.lastblock;
1958 sbi->s_anchor[0] = sbi->s_anchor[1] = 0;
1959 sbi->s_anchor[2] = uopt.anchor;
1960
1961 if (udf_check_valid(sb, uopt.novrs, silent)) {
1962 /* read volume recognition sequences */
1963 printk(KERN_WARNING "UDF-fs: No VRS found\n");
1964 goto error_out;
1965 }
1966
1967 udf_find_anchor(sb);
1968
1969 /* Fill in the rest of the superblock */
1970 sb->s_op = &udf_sb_ops;
1971 sb->s_export_op = &udf_export_ops;
1972 sb->dq_op = NULL;
1973 sb->s_dirt = 0;
1974 sb->s_magic = UDF_SUPER_MAGIC;
1975 sb->s_time_gran = 1000;
1976
1977 if (udf_load_sequence(sb, &fileset)) {
1978 printk(KERN_WARNING "UDF-fs: No partition found (1)\n");
1979 goto error_out;
1980 }
1981
1982 udf_debug("Lastblock=%d\n", sbi->s_last_block);
1983
1984 if (sbi->s_lvid_bh) {
1985 struct logicalVolIntegrityDescImpUse *lvidiu =
1986 udf_sb_lvidiu(sbi);
1987 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
1988 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
1989 /* uint16_t maxUDFWriteRev =
1990 le16_to_cpu(lvidiu->maxUDFWriteRev); */
1991
1992 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
1993 printk(KERN_ERR "UDF-fs: minUDFReadRev=%x "
1994 "(max is %x)\n",
1995 le16_to_cpu(lvidiu->minUDFReadRev),
1996 UDF_MAX_READ_VERSION);
1997 goto error_out;
1998 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
1999 sb->s_flags |= MS_RDONLY;
2000
2001 sbi->s_udfrev = minUDFWriteRev;
2002
2003 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2004 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2005 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2006 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2007 }
2008
2009 if (!sbi->s_partitions) {
2010 printk(KERN_WARNING "UDF-fs: No partition found (2)\n");
2011 goto error_out;
2012 }
2013
2014 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2015 UDF_PART_FLAG_READ_ONLY) {
2016 printk(KERN_NOTICE "UDF-fs: Partition marked readonly; "
2017 "forcing readonly mount\n");
2018 sb->s_flags |= MS_RDONLY;
2019 }
2020
2021 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2022 printk(KERN_WARNING "UDF-fs: No fileset found\n");
2023 goto error_out;
2024 }
2025
2026 if (!silent) {
2027 struct timestamp ts;
2028 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2029 udf_info("UDF: Mounting volume '%s', "
2030 "timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2031 sbi->s_volume_ident, le16_to_cpu(ts.year), ts.month, ts.day,
2032 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2033 }
2034 if (!(sb->s_flags & MS_RDONLY))
2035 udf_open_lvid(sb);
2036
2037 /* Assign the root inode */
2038 /* assign inodes by physical block number */
2039 /* perhaps it's not extensible enough, but for now ... */
2040 inode = udf_iget(sb, &rootdir);
2041 if (!inode) {
2042 printk(KERN_ERR "UDF-fs: Error in udf_iget, block=%d, "
2043 "partition=%d\n",
2044 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2045 goto error_out;
2046 }
2047
2048 /* Allocate a dentry for the root inode */
2049 sb->s_root = d_alloc_root(inode);
2050 if (!sb->s_root) {
2051 printk(KERN_ERR "UDF-fs: Couldn't allocate root dentry\n");
2052 iput(inode);
2053 goto error_out;
2054 }
2055 sb->s_maxbytes = MAX_LFS_FILESIZE;
2056 return 0;
2057
2058 error_out:
2059 if (sbi->s_vat_inode)
2060 iput(sbi->s_vat_inode);
2061 if (sbi->s_partitions)
2062 for (i = 0; i < sbi->s_partitions; i++)
2063 udf_free_partition(&sbi->s_partmaps[i]);
2064 #ifdef CONFIG_UDF_NLS
2065 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2066 unload_nls(sbi->s_nls_map);
2067 #endif
2068 if (!(sb->s_flags & MS_RDONLY))
2069 udf_close_lvid(sb);
2070 brelse(sbi->s_lvid_bh);
2071
2072 kfree(sbi->s_partmaps);
2073 kfree(sbi);
2074 sb->s_fs_info = NULL;
2075
2076 return -EINVAL;
2077 }
2078
2079 static void udf_error(struct super_block *sb, const char *function,
2080 const char *fmt, ...)
2081 {
2082 va_list args;
2083
2084 if (!(sb->s_flags & MS_RDONLY)) {
2085 /* mark sb error */
2086 sb->s_dirt = 1;
2087 }
2088 va_start(args, fmt);
2089 vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2090 va_end(args);
2091 printk(KERN_CRIT "UDF-fs error (device %s): %s: %s\n",
2092 sb->s_id, function, error_buf);
2093 }
2094
2095 void udf_warning(struct super_block *sb, const char *function,
2096 const char *fmt, ...)
2097 {
2098 va_list args;
2099
2100 va_start(args, fmt);
2101 vsnprintf(error_buf, sizeof(error_buf), fmt, args);
2102 va_end(args);
2103 printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n",
2104 sb->s_id, function, error_buf);
2105 }
2106
2107 static void udf_put_super(struct super_block *sb)
2108 {
2109 int i;
2110 struct udf_sb_info *sbi;
2111
2112 sbi = UDF_SB(sb);
2113 if (sbi->s_vat_inode)
2114 iput(sbi->s_vat_inode);
2115 if (sbi->s_partitions)
2116 for (i = 0; i < sbi->s_partitions; i++)
2117 udf_free_partition(&sbi->s_partmaps[i]);
2118 #ifdef CONFIG_UDF_NLS
2119 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2120 unload_nls(sbi->s_nls_map);
2121 #endif
2122 if (!(sb->s_flags & MS_RDONLY))
2123 udf_close_lvid(sb);
2124 brelse(sbi->s_lvid_bh);
2125 kfree(sbi->s_partmaps);
2126 kfree(sb->s_fs_info);
2127 sb->s_fs_info = NULL;
2128 }
2129
2130 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2131 {
2132 struct super_block *sb = dentry->d_sb;
2133 struct udf_sb_info *sbi = UDF_SB(sb);
2134 struct logicalVolIntegrityDescImpUse *lvidiu;
2135 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2136
2137 if (sbi->s_lvid_bh != NULL)
2138 lvidiu = udf_sb_lvidiu(sbi);
2139 else
2140 lvidiu = NULL;
2141
2142 buf->f_type = UDF_SUPER_MAGIC;
2143 buf->f_bsize = sb->s_blocksize;
2144 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2145 buf->f_bfree = udf_count_free(sb);
2146 buf->f_bavail = buf->f_bfree;
2147 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2148 le32_to_cpu(lvidiu->numDirs)) : 0)
2149 + buf->f_bfree;
2150 buf->f_ffree = buf->f_bfree;
2151 buf->f_namelen = UDF_NAME_LEN - 2;
2152 buf->f_fsid.val[0] = (u32)id;
2153 buf->f_fsid.val[1] = (u32)(id >> 32);
2154
2155 return 0;
2156 }
2157
2158 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2159 struct udf_bitmap *bitmap)
2160 {
2161 struct buffer_head *bh = NULL;
2162 unsigned int accum = 0;
2163 int index;
2164 int block = 0, newblock;
2165 struct kernel_lb_addr loc;
2166 uint32_t bytes;
2167 uint8_t *ptr;
2168 uint16_t ident;
2169 struct spaceBitmapDesc *bm;
2170
2171 lock_kernel();
2172
2173 loc.logicalBlockNum = bitmap->s_extPosition;
2174 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2175 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2176
2177 if (!bh) {
2178 printk(KERN_ERR "udf: udf_count_free failed\n");
2179 goto out;
2180 } else if (ident != TAG_IDENT_SBD) {
2181 brelse(bh);
2182 printk(KERN_ERR "udf: udf_count_free failed\n");
2183 goto out;
2184 }
2185
2186 bm = (struct spaceBitmapDesc *)bh->b_data;
2187 bytes = le32_to_cpu(bm->numOfBytes);
2188 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2189 ptr = (uint8_t *)bh->b_data;
2190
2191 while (bytes > 0) {
2192 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2193 accum += bitmap_weight((const unsigned long *)(ptr + index),
2194 cur_bytes * 8);
2195 bytes -= cur_bytes;
2196 if (bytes) {
2197 brelse(bh);
2198 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2199 bh = udf_tread(sb, newblock);
2200 if (!bh) {
2201 udf_debug("read failed\n");
2202 goto out;
2203 }
2204 index = 0;
2205 ptr = (uint8_t *)bh->b_data;
2206 }
2207 }
2208 brelse(bh);
2209
2210 out:
2211 unlock_kernel();
2212
2213 return accum;
2214 }
2215
2216 static unsigned int udf_count_free_table(struct super_block *sb,
2217 struct inode *table)
2218 {
2219 unsigned int accum = 0;
2220 uint32_t elen;
2221 struct kernel_lb_addr eloc;
2222 int8_t etype;
2223 struct extent_position epos;
2224
2225 lock_kernel();
2226
2227 epos.block = UDF_I(table)->i_location;
2228 epos.offset = sizeof(struct unallocSpaceEntry);
2229 epos.bh = NULL;
2230
2231 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2232 accum += (elen >> table->i_sb->s_blocksize_bits);
2233
2234 brelse(epos.bh);
2235
2236 unlock_kernel();
2237
2238 return accum;
2239 }
2240
2241 static unsigned int udf_count_free(struct super_block *sb)
2242 {
2243 unsigned int accum = 0;
2244 struct udf_sb_info *sbi;
2245 struct udf_part_map *map;
2246
2247 sbi = UDF_SB(sb);
2248 if (sbi->s_lvid_bh) {
2249 struct logicalVolIntegrityDesc *lvid =
2250 (struct logicalVolIntegrityDesc *)
2251 sbi->s_lvid_bh->b_data;
2252 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2253 accum = le32_to_cpu(
2254 lvid->freeSpaceTable[sbi->s_partition]);
2255 if (accum == 0xFFFFFFFF)
2256 accum = 0;
2257 }
2258 }
2259
2260 if (accum)
2261 return accum;
2262
2263 map = &sbi->s_partmaps[sbi->s_partition];
2264 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2265 accum += udf_count_free_bitmap(sb,
2266 map->s_uspace.s_bitmap);
2267 }
2268 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2269 accum += udf_count_free_bitmap(sb,
2270 map->s_fspace.s_bitmap);
2271 }
2272 if (accum)
2273 return accum;
2274
2275 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2276 accum += udf_count_free_table(sb,
2277 map->s_uspace.s_table);
2278 }
2279 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2280 accum += udf_count_free_table(sb,
2281 map->s_fspace.s_table);
2282 }
2283
2284 return accum;
2285 }
This page took 0.103289 seconds and 4 git commands to generate.