ACPI / LPSS: make code less confusing for reader
[deliverable/linux.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67
68 #define VDS_POS_PRIMARY_VOL_DESC 0
69 #define VDS_POS_UNALLOC_SPACE_DESC 1
70 #define VDS_POS_LOGICAL_VOL_DESC 2
71 #define VDS_POS_PARTITION_DESC 3
72 #define VDS_POS_IMP_USE_VOL_DESC 4
73 #define VDS_POS_VOL_DESC_PTR 5
74 #define VDS_POS_TERMINATING_DESC 6
75 #define VDS_POS_LENGTH 7
76
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78
79 enum { UDF_MAX_LINKS = 0xffff };
80
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct dentry *);
96
97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
98 {
99 struct logicalVolIntegrityDesc *lvid =
100 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
102 __u32 offset = number_of_partitions * 2 *
103 sizeof(uint32_t)/sizeof(uint8_t);
104 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105 }
106
107 /* UDF filesystem type */
108 static struct dentry *udf_mount(struct file_system_type *fs_type,
109 int flags, const char *dev_name, void *data)
110 {
111 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112 }
113
114 static struct file_system_type udf_fstype = {
115 .owner = THIS_MODULE,
116 .name = "udf",
117 .mount = udf_mount,
118 .kill_sb = kill_block_super,
119 .fs_flags = FS_REQUIRES_DEV,
120 };
121
122 static struct kmem_cache *udf_inode_cachep;
123
124 static struct inode *udf_alloc_inode(struct super_block *sb)
125 {
126 struct udf_inode_info *ei;
127 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
128 if (!ei)
129 return NULL;
130
131 ei->i_unique = 0;
132 ei->i_lenExtents = 0;
133 ei->i_next_alloc_block = 0;
134 ei->i_next_alloc_goal = 0;
135 ei->i_strat4096 = 0;
136 init_rwsem(&ei->i_data_sem);
137 ei->cached_extent.lstart = -1;
138 spin_lock_init(&ei->i_extent_cache_lock);
139
140 return &ei->vfs_inode;
141 }
142
143 static void udf_i_callback(struct rcu_head *head)
144 {
145 struct inode *inode = container_of(head, struct inode, i_rcu);
146 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
147 }
148
149 static void udf_destroy_inode(struct inode *inode)
150 {
151 call_rcu(&inode->i_rcu, udf_i_callback);
152 }
153
154 static void init_once(void *foo)
155 {
156 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
157
158 ei->i_ext.i_data = NULL;
159 inode_init_once(&ei->vfs_inode);
160 }
161
162 static int init_inodecache(void)
163 {
164 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
165 sizeof(struct udf_inode_info),
166 0, (SLAB_RECLAIM_ACCOUNT |
167 SLAB_MEM_SPREAD),
168 init_once);
169 if (!udf_inode_cachep)
170 return -ENOMEM;
171 return 0;
172 }
173
174 static void destroy_inodecache(void)
175 {
176 /*
177 * Make sure all delayed rcu free inodes are flushed before we
178 * destroy cache.
179 */
180 rcu_barrier();
181 kmem_cache_destroy(udf_inode_cachep);
182 }
183
184 /* Superblock operations */
185 static const struct super_operations udf_sb_ops = {
186 .alloc_inode = udf_alloc_inode,
187 .destroy_inode = udf_destroy_inode,
188 .write_inode = udf_write_inode,
189 .evict_inode = udf_evict_inode,
190 .put_super = udf_put_super,
191 .sync_fs = udf_sync_fs,
192 .statfs = udf_statfs,
193 .remount_fs = udf_remount_fs,
194 .show_options = udf_show_options,
195 };
196
197 struct udf_options {
198 unsigned char novrs;
199 unsigned int blocksize;
200 unsigned int session;
201 unsigned int lastblock;
202 unsigned int anchor;
203 unsigned int volume;
204 unsigned short partition;
205 unsigned int fileset;
206 unsigned int rootdir;
207 unsigned int flags;
208 umode_t umask;
209 kgid_t gid;
210 kuid_t uid;
211 umode_t fmode;
212 umode_t dmode;
213 struct nls_table *nls_map;
214 };
215
216 static int __init init_udf_fs(void)
217 {
218 int err;
219
220 err = init_inodecache();
221 if (err)
222 goto out1;
223 err = register_filesystem(&udf_fstype);
224 if (err)
225 goto out;
226
227 return 0;
228
229 out:
230 destroy_inodecache();
231
232 out1:
233 return err;
234 }
235
236 static void __exit exit_udf_fs(void)
237 {
238 unregister_filesystem(&udf_fstype);
239 destroy_inodecache();
240 }
241
242 module_init(init_udf_fs)
243 module_exit(exit_udf_fs)
244
245 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
246 {
247 struct udf_sb_info *sbi = UDF_SB(sb);
248
249 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
250 GFP_KERNEL);
251 if (!sbi->s_partmaps) {
252 udf_err(sb, "Unable to allocate space for %d partition maps\n",
253 count);
254 sbi->s_partitions = 0;
255 return -ENOMEM;
256 }
257
258 sbi->s_partitions = count;
259 return 0;
260 }
261
262 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
263 {
264 int i;
265 int nr_groups = bitmap->s_nr_groups;
266 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
267 nr_groups);
268
269 for (i = 0; i < nr_groups; i++)
270 if (bitmap->s_block_bitmap[i])
271 brelse(bitmap->s_block_bitmap[i]);
272
273 if (size <= PAGE_SIZE)
274 kfree(bitmap);
275 else
276 vfree(bitmap);
277 }
278
279 static void udf_free_partition(struct udf_part_map *map)
280 {
281 int i;
282 struct udf_meta_data *mdata;
283
284 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
285 iput(map->s_uspace.s_table);
286 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
287 iput(map->s_fspace.s_table);
288 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
289 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
290 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
291 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
292 if (map->s_partition_type == UDF_SPARABLE_MAP15)
293 for (i = 0; i < 4; i++)
294 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
295 else if (map->s_partition_type == UDF_METADATA_MAP25) {
296 mdata = &map->s_type_specific.s_metadata;
297 iput(mdata->s_metadata_fe);
298 mdata->s_metadata_fe = NULL;
299
300 iput(mdata->s_mirror_fe);
301 mdata->s_mirror_fe = NULL;
302
303 iput(mdata->s_bitmap_fe);
304 mdata->s_bitmap_fe = NULL;
305 }
306 }
307
308 static void udf_sb_free_partitions(struct super_block *sb)
309 {
310 struct udf_sb_info *sbi = UDF_SB(sb);
311 int i;
312 if (sbi->s_partmaps == NULL)
313 return;
314 for (i = 0; i < sbi->s_partitions; i++)
315 udf_free_partition(&sbi->s_partmaps[i]);
316 kfree(sbi->s_partmaps);
317 sbi->s_partmaps = NULL;
318 }
319
320 static int udf_show_options(struct seq_file *seq, struct dentry *root)
321 {
322 struct super_block *sb = root->d_sb;
323 struct udf_sb_info *sbi = UDF_SB(sb);
324
325 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
326 seq_puts(seq, ",nostrict");
327 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
328 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
329 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
330 seq_puts(seq, ",unhide");
331 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
332 seq_puts(seq, ",undelete");
333 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
334 seq_puts(seq, ",noadinicb");
335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
336 seq_puts(seq, ",shortad");
337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
338 seq_puts(seq, ",uid=forget");
339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
340 seq_puts(seq, ",uid=ignore");
341 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
342 seq_puts(seq, ",gid=forget");
343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
344 seq_puts(seq, ",gid=ignore");
345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
346 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
348 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
349 if (sbi->s_umask != 0)
350 seq_printf(seq, ",umask=%ho", sbi->s_umask);
351 if (sbi->s_fmode != UDF_INVALID_MODE)
352 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
353 if (sbi->s_dmode != UDF_INVALID_MODE)
354 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
356 seq_printf(seq, ",session=%u", sbi->s_session);
357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
358 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
359 if (sbi->s_anchor != 0)
360 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
361 /*
362 * volume, partition, fileset and rootdir seem to be ignored
363 * currently
364 */
365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
366 seq_puts(seq, ",utf8");
367 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
368 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
369
370 return 0;
371 }
372
373 /*
374 * udf_parse_options
375 *
376 * PURPOSE
377 * Parse mount options.
378 *
379 * DESCRIPTION
380 * The following mount options are supported:
381 *
382 * gid= Set the default group.
383 * umask= Set the default umask.
384 * mode= Set the default file permissions.
385 * dmode= Set the default directory permissions.
386 * uid= Set the default user.
387 * bs= Set the block size.
388 * unhide Show otherwise hidden files.
389 * undelete Show deleted files in lists.
390 * adinicb Embed data in the inode (default)
391 * noadinicb Don't embed data in the inode
392 * shortad Use short ad's
393 * longad Use long ad's (default)
394 * nostrict Unset strict conformance
395 * iocharset= Set the NLS character set
396 *
397 * The remaining are for debugging and disaster recovery:
398 *
399 * novrs Skip volume sequence recognition
400 *
401 * The following expect a offset from 0.
402 *
403 * session= Set the CDROM session (default= last session)
404 * anchor= Override standard anchor location. (default= 256)
405 * volume= Override the VolumeDesc location. (unused)
406 * partition= Override the PartitionDesc location. (unused)
407 * lastblock= Set the last block of the filesystem/
408 *
409 * The following expect a offset from the partition root.
410 *
411 * fileset= Override the fileset block location. (unused)
412 * rootdir= Override the root directory location. (unused)
413 * WARNING: overriding the rootdir to a non-directory may
414 * yield highly unpredictable results.
415 *
416 * PRE-CONDITIONS
417 * options Pointer to mount options string.
418 * uopts Pointer to mount options variable.
419 *
420 * POST-CONDITIONS
421 * <return> 1 Mount options parsed okay.
422 * <return> 0 Error parsing mount options.
423 *
424 * HISTORY
425 * July 1, 1997 - Andrew E. Mileski
426 * Written, tested, and released.
427 */
428
429 enum {
430 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
431 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
432 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
433 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
434 Opt_rootdir, Opt_utf8, Opt_iocharset,
435 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
436 Opt_fmode, Opt_dmode
437 };
438
439 static const match_table_t tokens = {
440 {Opt_novrs, "novrs"},
441 {Opt_nostrict, "nostrict"},
442 {Opt_bs, "bs=%u"},
443 {Opt_unhide, "unhide"},
444 {Opt_undelete, "undelete"},
445 {Opt_noadinicb, "noadinicb"},
446 {Opt_adinicb, "adinicb"},
447 {Opt_shortad, "shortad"},
448 {Opt_longad, "longad"},
449 {Opt_uforget, "uid=forget"},
450 {Opt_uignore, "uid=ignore"},
451 {Opt_gforget, "gid=forget"},
452 {Opt_gignore, "gid=ignore"},
453 {Opt_gid, "gid=%u"},
454 {Opt_uid, "uid=%u"},
455 {Opt_umask, "umask=%o"},
456 {Opt_session, "session=%u"},
457 {Opt_lastblock, "lastblock=%u"},
458 {Opt_anchor, "anchor=%u"},
459 {Opt_volume, "volume=%u"},
460 {Opt_partition, "partition=%u"},
461 {Opt_fileset, "fileset=%u"},
462 {Opt_rootdir, "rootdir=%u"},
463 {Opt_utf8, "utf8"},
464 {Opt_iocharset, "iocharset=%s"},
465 {Opt_fmode, "mode=%o"},
466 {Opt_dmode, "dmode=%o"},
467 {Opt_err, NULL}
468 };
469
470 static int udf_parse_options(char *options, struct udf_options *uopt,
471 bool remount)
472 {
473 char *p;
474 int option;
475
476 uopt->novrs = 0;
477 uopt->partition = 0xFFFF;
478 uopt->session = 0xFFFFFFFF;
479 uopt->lastblock = 0;
480 uopt->anchor = 0;
481 uopt->volume = 0xFFFFFFFF;
482 uopt->rootdir = 0xFFFFFFFF;
483 uopt->fileset = 0xFFFFFFFF;
484 uopt->nls_map = NULL;
485
486 if (!options)
487 return 1;
488
489 while ((p = strsep(&options, ",")) != NULL) {
490 substring_t args[MAX_OPT_ARGS];
491 int token;
492 if (!*p)
493 continue;
494
495 token = match_token(p, tokens, args);
496 switch (token) {
497 case Opt_novrs:
498 uopt->novrs = 1;
499 break;
500 case Opt_bs:
501 if (match_int(&args[0], &option))
502 return 0;
503 uopt->blocksize = option;
504 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
505 break;
506 case Opt_unhide:
507 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
508 break;
509 case Opt_undelete:
510 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
511 break;
512 case Opt_noadinicb:
513 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
514 break;
515 case Opt_adinicb:
516 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
517 break;
518 case Opt_shortad:
519 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
520 break;
521 case Opt_longad:
522 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
523 break;
524 case Opt_gid:
525 if (match_int(args, &option))
526 return 0;
527 uopt->gid = make_kgid(current_user_ns(), option);
528 if (!gid_valid(uopt->gid))
529 return 0;
530 uopt->flags |= (1 << UDF_FLAG_GID_SET);
531 break;
532 case Opt_uid:
533 if (match_int(args, &option))
534 return 0;
535 uopt->uid = make_kuid(current_user_ns(), option);
536 if (!uid_valid(uopt->uid))
537 return 0;
538 uopt->flags |= (1 << UDF_FLAG_UID_SET);
539 break;
540 case Opt_umask:
541 if (match_octal(args, &option))
542 return 0;
543 uopt->umask = option;
544 break;
545 case Opt_nostrict:
546 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
547 break;
548 case Opt_session:
549 if (match_int(args, &option))
550 return 0;
551 uopt->session = option;
552 if (!remount)
553 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
554 break;
555 case Opt_lastblock:
556 if (match_int(args, &option))
557 return 0;
558 uopt->lastblock = option;
559 if (!remount)
560 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
561 break;
562 case Opt_anchor:
563 if (match_int(args, &option))
564 return 0;
565 uopt->anchor = option;
566 break;
567 case Opt_volume:
568 if (match_int(args, &option))
569 return 0;
570 uopt->volume = option;
571 break;
572 case Opt_partition:
573 if (match_int(args, &option))
574 return 0;
575 uopt->partition = option;
576 break;
577 case Opt_fileset:
578 if (match_int(args, &option))
579 return 0;
580 uopt->fileset = option;
581 break;
582 case Opt_rootdir:
583 if (match_int(args, &option))
584 return 0;
585 uopt->rootdir = option;
586 break;
587 case Opt_utf8:
588 uopt->flags |= (1 << UDF_FLAG_UTF8);
589 break;
590 #ifdef CONFIG_UDF_NLS
591 case Opt_iocharset:
592 uopt->nls_map = load_nls(args[0].from);
593 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
594 break;
595 #endif
596 case Opt_uignore:
597 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
598 break;
599 case Opt_uforget:
600 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
601 break;
602 case Opt_gignore:
603 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
604 break;
605 case Opt_gforget:
606 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
607 break;
608 case Opt_fmode:
609 if (match_octal(args, &option))
610 return 0;
611 uopt->fmode = option & 0777;
612 break;
613 case Opt_dmode:
614 if (match_octal(args, &option))
615 return 0;
616 uopt->dmode = option & 0777;
617 break;
618 default:
619 pr_err("bad mount option \"%s\" or missing value\n", p);
620 return 0;
621 }
622 }
623 return 1;
624 }
625
626 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
627 {
628 struct udf_options uopt;
629 struct udf_sb_info *sbi = UDF_SB(sb);
630 int error = 0;
631
632 uopt.flags = sbi->s_flags;
633 uopt.uid = sbi->s_uid;
634 uopt.gid = sbi->s_gid;
635 uopt.umask = sbi->s_umask;
636 uopt.fmode = sbi->s_fmode;
637 uopt.dmode = sbi->s_dmode;
638
639 if (!udf_parse_options(options, &uopt, true))
640 return -EINVAL;
641
642 write_lock(&sbi->s_cred_lock);
643 sbi->s_flags = uopt.flags;
644 sbi->s_uid = uopt.uid;
645 sbi->s_gid = uopt.gid;
646 sbi->s_umask = uopt.umask;
647 sbi->s_fmode = uopt.fmode;
648 sbi->s_dmode = uopt.dmode;
649 write_unlock(&sbi->s_cred_lock);
650
651 if (sbi->s_lvid_bh) {
652 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
653 if (write_rev > UDF_MAX_WRITE_VERSION)
654 *flags |= MS_RDONLY;
655 }
656
657 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
658 goto out_unlock;
659
660 if (*flags & MS_RDONLY)
661 udf_close_lvid(sb);
662 else
663 udf_open_lvid(sb);
664
665 out_unlock:
666 return error;
667 }
668
669 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
670 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
671 static loff_t udf_check_vsd(struct super_block *sb)
672 {
673 struct volStructDesc *vsd = NULL;
674 loff_t sector = 32768;
675 int sectorsize;
676 struct buffer_head *bh = NULL;
677 int nsr02 = 0;
678 int nsr03 = 0;
679 struct udf_sb_info *sbi;
680
681 sbi = UDF_SB(sb);
682 if (sb->s_blocksize < sizeof(struct volStructDesc))
683 sectorsize = sizeof(struct volStructDesc);
684 else
685 sectorsize = sb->s_blocksize;
686
687 sector += (sbi->s_session << sb->s_blocksize_bits);
688
689 udf_debug("Starting at sector %u (%ld byte sectors)\n",
690 (unsigned int)(sector >> sb->s_blocksize_bits),
691 sb->s_blocksize);
692 /* Process the sequence (if applicable) */
693 for (; !nsr02 && !nsr03; sector += sectorsize) {
694 /* Read a block */
695 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
696 if (!bh)
697 break;
698
699 /* Look for ISO descriptors */
700 vsd = (struct volStructDesc *)(bh->b_data +
701 (sector & (sb->s_blocksize - 1)));
702
703 if (vsd->stdIdent[0] == 0) {
704 brelse(bh);
705 break;
706 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
707 VSD_STD_ID_LEN)) {
708 switch (vsd->structType) {
709 case 0:
710 udf_debug("ISO9660 Boot Record found\n");
711 break;
712 case 1:
713 udf_debug("ISO9660 Primary Volume Descriptor found\n");
714 break;
715 case 2:
716 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
717 break;
718 case 3:
719 udf_debug("ISO9660 Volume Partition Descriptor found\n");
720 break;
721 case 255:
722 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
723 break;
724 default:
725 udf_debug("ISO9660 VRS (%u) found\n",
726 vsd->structType);
727 break;
728 }
729 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
730 VSD_STD_ID_LEN))
731 ; /* nothing */
732 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
733 VSD_STD_ID_LEN)) {
734 brelse(bh);
735 break;
736 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
737 VSD_STD_ID_LEN))
738 nsr02 = sector;
739 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
740 VSD_STD_ID_LEN))
741 nsr03 = sector;
742 brelse(bh);
743 }
744
745 if (nsr03)
746 return nsr03;
747 else if (nsr02)
748 return nsr02;
749 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
750 return -1;
751 else
752 return 0;
753 }
754
755 static int udf_find_fileset(struct super_block *sb,
756 struct kernel_lb_addr *fileset,
757 struct kernel_lb_addr *root)
758 {
759 struct buffer_head *bh = NULL;
760 long lastblock;
761 uint16_t ident;
762 struct udf_sb_info *sbi;
763
764 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
765 fileset->partitionReferenceNum != 0xFFFF) {
766 bh = udf_read_ptagged(sb, fileset, 0, &ident);
767
768 if (!bh) {
769 return 1;
770 } else if (ident != TAG_IDENT_FSD) {
771 brelse(bh);
772 return 1;
773 }
774
775 }
776
777 sbi = UDF_SB(sb);
778 if (!bh) {
779 /* Search backwards through the partitions */
780 struct kernel_lb_addr newfileset;
781
782 /* --> cvg: FIXME - is it reasonable? */
783 return 1;
784
785 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
786 (newfileset.partitionReferenceNum != 0xFFFF &&
787 fileset->logicalBlockNum == 0xFFFFFFFF &&
788 fileset->partitionReferenceNum == 0xFFFF);
789 newfileset.partitionReferenceNum--) {
790 lastblock = sbi->s_partmaps
791 [newfileset.partitionReferenceNum]
792 .s_partition_len;
793 newfileset.logicalBlockNum = 0;
794
795 do {
796 bh = udf_read_ptagged(sb, &newfileset, 0,
797 &ident);
798 if (!bh) {
799 newfileset.logicalBlockNum++;
800 continue;
801 }
802
803 switch (ident) {
804 case TAG_IDENT_SBD:
805 {
806 struct spaceBitmapDesc *sp;
807 sp = (struct spaceBitmapDesc *)
808 bh->b_data;
809 newfileset.logicalBlockNum += 1 +
810 ((le32_to_cpu(sp->numOfBytes) +
811 sizeof(struct spaceBitmapDesc)
812 - 1) >> sb->s_blocksize_bits);
813 brelse(bh);
814 break;
815 }
816 case TAG_IDENT_FSD:
817 *fileset = newfileset;
818 break;
819 default:
820 newfileset.logicalBlockNum++;
821 brelse(bh);
822 bh = NULL;
823 break;
824 }
825 } while (newfileset.logicalBlockNum < lastblock &&
826 fileset->logicalBlockNum == 0xFFFFFFFF &&
827 fileset->partitionReferenceNum == 0xFFFF);
828 }
829 }
830
831 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
832 fileset->partitionReferenceNum != 0xFFFF) && bh) {
833 udf_debug("Fileset at block=%d, partition=%d\n",
834 fileset->logicalBlockNum,
835 fileset->partitionReferenceNum);
836
837 sbi->s_partition = fileset->partitionReferenceNum;
838 udf_load_fileset(sb, bh, root);
839 brelse(bh);
840 return 0;
841 }
842 return 1;
843 }
844
845 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
846 {
847 struct primaryVolDesc *pvoldesc;
848 struct ustr *instr, *outstr;
849 struct buffer_head *bh;
850 uint16_t ident;
851 int ret = 1;
852
853 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
854 if (!instr)
855 return 1;
856
857 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
858 if (!outstr)
859 goto out1;
860
861 bh = udf_read_tagged(sb, block, block, &ident);
862 if (!bh)
863 goto out2;
864
865 BUG_ON(ident != TAG_IDENT_PVD);
866
867 pvoldesc = (struct primaryVolDesc *)bh->b_data;
868
869 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
870 pvoldesc->recordingDateAndTime)) {
871 #ifdef UDFFS_DEBUG
872 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
873 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
874 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
875 ts->minute, le16_to_cpu(ts->typeAndTimezone));
876 #endif
877 }
878
879 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
880 if (udf_CS0toUTF8(outstr, instr)) {
881 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
882 outstr->u_len > 31 ? 31 : outstr->u_len);
883 udf_debug("volIdent[] = '%s'\n",
884 UDF_SB(sb)->s_volume_ident);
885 }
886
887 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
888 if (udf_CS0toUTF8(outstr, instr))
889 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
890
891 brelse(bh);
892 ret = 0;
893 out2:
894 kfree(outstr);
895 out1:
896 kfree(instr);
897 return ret;
898 }
899
900 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
901 u32 meta_file_loc, u32 partition_num)
902 {
903 struct kernel_lb_addr addr;
904 struct inode *metadata_fe;
905
906 addr.logicalBlockNum = meta_file_loc;
907 addr.partitionReferenceNum = partition_num;
908
909 metadata_fe = udf_iget(sb, &addr);
910
911 if (metadata_fe == NULL)
912 udf_warn(sb, "metadata inode efe not found\n");
913 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
914 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
915 iput(metadata_fe);
916 metadata_fe = NULL;
917 }
918
919 return metadata_fe;
920 }
921
922 static int udf_load_metadata_files(struct super_block *sb, int partition)
923 {
924 struct udf_sb_info *sbi = UDF_SB(sb);
925 struct udf_part_map *map;
926 struct udf_meta_data *mdata;
927 struct kernel_lb_addr addr;
928
929 map = &sbi->s_partmaps[partition];
930 mdata = &map->s_type_specific.s_metadata;
931
932 /* metadata address */
933 udf_debug("Metadata file location: block = %d part = %d\n",
934 mdata->s_meta_file_loc, map->s_partition_num);
935
936 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
937 mdata->s_meta_file_loc, map->s_partition_num);
938
939 if (mdata->s_metadata_fe == NULL) {
940 /* mirror file entry */
941 udf_debug("Mirror metadata file location: block = %d part = %d\n",
942 mdata->s_mirror_file_loc, map->s_partition_num);
943
944 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
945 mdata->s_mirror_file_loc, map->s_partition_num);
946
947 if (mdata->s_mirror_fe == NULL) {
948 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
949 goto error_exit;
950 }
951 }
952
953 /*
954 * bitmap file entry
955 * Note:
956 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
957 */
958 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
959 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
960 addr.partitionReferenceNum = map->s_partition_num;
961
962 udf_debug("Bitmap file location: block = %d part = %d\n",
963 addr.logicalBlockNum, addr.partitionReferenceNum);
964
965 mdata->s_bitmap_fe = udf_iget(sb, &addr);
966
967 if (mdata->s_bitmap_fe == NULL) {
968 if (sb->s_flags & MS_RDONLY)
969 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
970 else {
971 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
972 goto error_exit;
973 }
974 }
975 }
976
977 udf_debug("udf_load_metadata_files Ok\n");
978
979 return 0;
980
981 error_exit:
982 return 1;
983 }
984
985 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
986 struct kernel_lb_addr *root)
987 {
988 struct fileSetDesc *fset;
989
990 fset = (struct fileSetDesc *)bh->b_data;
991
992 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
993
994 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
995
996 udf_debug("Rootdir at block=%d, partition=%d\n",
997 root->logicalBlockNum, root->partitionReferenceNum);
998 }
999
1000 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1001 {
1002 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1003 return DIV_ROUND_UP(map->s_partition_len +
1004 (sizeof(struct spaceBitmapDesc) << 3),
1005 sb->s_blocksize * 8);
1006 }
1007
1008 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1009 {
1010 struct udf_bitmap *bitmap;
1011 int nr_groups;
1012 int size;
1013
1014 nr_groups = udf_compute_nr_groups(sb, index);
1015 size = sizeof(struct udf_bitmap) +
1016 (sizeof(struct buffer_head *) * nr_groups);
1017
1018 if (size <= PAGE_SIZE)
1019 bitmap = kzalloc(size, GFP_KERNEL);
1020 else
1021 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1022
1023 if (bitmap == NULL)
1024 return NULL;
1025
1026 bitmap->s_nr_groups = nr_groups;
1027 return bitmap;
1028 }
1029
1030 static int udf_fill_partdesc_info(struct super_block *sb,
1031 struct partitionDesc *p, int p_index)
1032 {
1033 struct udf_part_map *map;
1034 struct udf_sb_info *sbi = UDF_SB(sb);
1035 struct partitionHeaderDesc *phd;
1036
1037 map = &sbi->s_partmaps[p_index];
1038
1039 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1040 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1041
1042 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1043 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1044 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1045 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1046 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1047 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1048 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1049 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1050
1051 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1052 p_index, map->s_partition_type,
1053 map->s_partition_root, map->s_partition_len);
1054
1055 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1056 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1057 return 0;
1058
1059 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1060 if (phd->unallocSpaceTable.extLength) {
1061 struct kernel_lb_addr loc = {
1062 .logicalBlockNum = le32_to_cpu(
1063 phd->unallocSpaceTable.extPosition),
1064 .partitionReferenceNum = p_index,
1065 };
1066
1067 map->s_uspace.s_table = udf_iget(sb, &loc);
1068 if (!map->s_uspace.s_table) {
1069 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1070 p_index);
1071 return 1;
1072 }
1073 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1074 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1075 p_index, map->s_uspace.s_table->i_ino);
1076 }
1077
1078 if (phd->unallocSpaceBitmap.extLength) {
1079 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1080 if (!bitmap)
1081 return 1;
1082 map->s_uspace.s_bitmap = bitmap;
1083 bitmap->s_extPosition = le32_to_cpu(
1084 phd->unallocSpaceBitmap.extPosition);
1085 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1086 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1087 p_index, bitmap->s_extPosition);
1088 }
1089
1090 if (phd->partitionIntegrityTable.extLength)
1091 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1092
1093 if (phd->freedSpaceTable.extLength) {
1094 struct kernel_lb_addr loc = {
1095 .logicalBlockNum = le32_to_cpu(
1096 phd->freedSpaceTable.extPosition),
1097 .partitionReferenceNum = p_index,
1098 };
1099
1100 map->s_fspace.s_table = udf_iget(sb, &loc);
1101 if (!map->s_fspace.s_table) {
1102 udf_debug("cannot load freedSpaceTable (part %d)\n",
1103 p_index);
1104 return 1;
1105 }
1106
1107 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1108 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1109 p_index, map->s_fspace.s_table->i_ino);
1110 }
1111
1112 if (phd->freedSpaceBitmap.extLength) {
1113 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1114 if (!bitmap)
1115 return 1;
1116 map->s_fspace.s_bitmap = bitmap;
1117 bitmap->s_extPosition = le32_to_cpu(
1118 phd->freedSpaceBitmap.extPosition);
1119 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1120 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1121 p_index, bitmap->s_extPosition);
1122 }
1123 return 0;
1124 }
1125
1126 static void udf_find_vat_block(struct super_block *sb, int p_index,
1127 int type1_index, sector_t start_block)
1128 {
1129 struct udf_sb_info *sbi = UDF_SB(sb);
1130 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1131 sector_t vat_block;
1132 struct kernel_lb_addr ino;
1133
1134 /*
1135 * VAT file entry is in the last recorded block. Some broken disks have
1136 * it a few blocks before so try a bit harder...
1137 */
1138 ino.partitionReferenceNum = type1_index;
1139 for (vat_block = start_block;
1140 vat_block >= map->s_partition_root &&
1141 vat_block >= start_block - 3 &&
1142 !sbi->s_vat_inode; vat_block--) {
1143 ino.logicalBlockNum = vat_block - map->s_partition_root;
1144 sbi->s_vat_inode = udf_iget(sb, &ino);
1145 }
1146 }
1147
1148 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1149 {
1150 struct udf_sb_info *sbi = UDF_SB(sb);
1151 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1152 struct buffer_head *bh = NULL;
1153 struct udf_inode_info *vati;
1154 uint32_t pos;
1155 struct virtualAllocationTable20 *vat20;
1156 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1157
1158 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1159 if (!sbi->s_vat_inode &&
1160 sbi->s_last_block != blocks - 1) {
1161 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1162 (unsigned long)sbi->s_last_block,
1163 (unsigned long)blocks - 1);
1164 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1165 }
1166 if (!sbi->s_vat_inode)
1167 return 1;
1168
1169 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1170 map->s_type_specific.s_virtual.s_start_offset = 0;
1171 map->s_type_specific.s_virtual.s_num_entries =
1172 (sbi->s_vat_inode->i_size - 36) >> 2;
1173 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1174 vati = UDF_I(sbi->s_vat_inode);
1175 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1176 pos = udf_block_map(sbi->s_vat_inode, 0);
1177 bh = sb_bread(sb, pos);
1178 if (!bh)
1179 return 1;
1180 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1181 } else {
1182 vat20 = (struct virtualAllocationTable20 *)
1183 vati->i_ext.i_data;
1184 }
1185
1186 map->s_type_specific.s_virtual.s_start_offset =
1187 le16_to_cpu(vat20->lengthHeader);
1188 map->s_type_specific.s_virtual.s_num_entries =
1189 (sbi->s_vat_inode->i_size -
1190 map->s_type_specific.s_virtual.
1191 s_start_offset) >> 2;
1192 brelse(bh);
1193 }
1194 return 0;
1195 }
1196
1197 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1198 {
1199 struct buffer_head *bh;
1200 struct partitionDesc *p;
1201 struct udf_part_map *map;
1202 struct udf_sb_info *sbi = UDF_SB(sb);
1203 int i, type1_idx;
1204 uint16_t partitionNumber;
1205 uint16_t ident;
1206 int ret = 0;
1207
1208 bh = udf_read_tagged(sb, block, block, &ident);
1209 if (!bh)
1210 return 1;
1211 if (ident != TAG_IDENT_PD)
1212 goto out_bh;
1213
1214 p = (struct partitionDesc *)bh->b_data;
1215 partitionNumber = le16_to_cpu(p->partitionNumber);
1216
1217 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1218 for (i = 0; i < sbi->s_partitions; i++) {
1219 map = &sbi->s_partmaps[i];
1220 udf_debug("Searching map: (%d == %d)\n",
1221 map->s_partition_num, partitionNumber);
1222 if (map->s_partition_num == partitionNumber &&
1223 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1224 map->s_partition_type == UDF_SPARABLE_MAP15))
1225 break;
1226 }
1227
1228 if (i >= sbi->s_partitions) {
1229 udf_debug("Partition (%d) not found in partition map\n",
1230 partitionNumber);
1231 goto out_bh;
1232 }
1233
1234 ret = udf_fill_partdesc_info(sb, p, i);
1235
1236 /*
1237 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1238 * PHYSICAL partitions are already set up
1239 */
1240 type1_idx = i;
1241 for (i = 0; i < sbi->s_partitions; i++) {
1242 map = &sbi->s_partmaps[i];
1243
1244 if (map->s_partition_num == partitionNumber &&
1245 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1246 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1247 map->s_partition_type == UDF_METADATA_MAP25))
1248 break;
1249 }
1250
1251 if (i >= sbi->s_partitions)
1252 goto out_bh;
1253
1254 ret = udf_fill_partdesc_info(sb, p, i);
1255 if (ret)
1256 goto out_bh;
1257
1258 if (map->s_partition_type == UDF_METADATA_MAP25) {
1259 ret = udf_load_metadata_files(sb, i);
1260 if (ret) {
1261 udf_err(sb, "error loading MetaData partition map %d\n",
1262 i);
1263 goto out_bh;
1264 }
1265 } else {
1266 ret = udf_load_vat(sb, i, type1_idx);
1267 if (ret)
1268 goto out_bh;
1269 /*
1270 * Mark filesystem read-only if we have a partition with
1271 * virtual map since we don't handle writing to it (we
1272 * overwrite blocks instead of relocating them).
1273 */
1274 sb->s_flags |= MS_RDONLY;
1275 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1276 }
1277 out_bh:
1278 /* In case loading failed, we handle cleanup in udf_fill_super */
1279 brelse(bh);
1280 return ret;
1281 }
1282
1283 static int udf_load_sparable_map(struct super_block *sb,
1284 struct udf_part_map *map,
1285 struct sparablePartitionMap *spm)
1286 {
1287 uint32_t loc;
1288 uint16_t ident;
1289 struct sparingTable *st;
1290 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1291 int i;
1292 struct buffer_head *bh;
1293
1294 map->s_partition_type = UDF_SPARABLE_MAP15;
1295 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1296 if (!is_power_of_2(sdata->s_packet_len)) {
1297 udf_err(sb, "error loading logical volume descriptor: "
1298 "Invalid packet length %u\n",
1299 (unsigned)sdata->s_packet_len);
1300 return -EIO;
1301 }
1302 if (spm->numSparingTables > 4) {
1303 udf_err(sb, "error loading logical volume descriptor: "
1304 "Too many sparing tables (%d)\n",
1305 (int)spm->numSparingTables);
1306 return -EIO;
1307 }
1308
1309 for (i = 0; i < spm->numSparingTables; i++) {
1310 loc = le32_to_cpu(spm->locSparingTable[i]);
1311 bh = udf_read_tagged(sb, loc, loc, &ident);
1312 if (!bh)
1313 continue;
1314
1315 st = (struct sparingTable *)bh->b_data;
1316 if (ident != 0 ||
1317 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1318 strlen(UDF_ID_SPARING)) ||
1319 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1320 sb->s_blocksize) {
1321 brelse(bh);
1322 continue;
1323 }
1324
1325 sdata->s_spar_map[i] = bh;
1326 }
1327 map->s_partition_func = udf_get_pblock_spar15;
1328 return 0;
1329 }
1330
1331 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1332 struct kernel_lb_addr *fileset)
1333 {
1334 struct logicalVolDesc *lvd;
1335 int i, offset;
1336 uint8_t type;
1337 struct udf_sb_info *sbi = UDF_SB(sb);
1338 struct genericPartitionMap *gpm;
1339 uint16_t ident;
1340 struct buffer_head *bh;
1341 unsigned int table_len;
1342 int ret = 0;
1343
1344 bh = udf_read_tagged(sb, block, block, &ident);
1345 if (!bh)
1346 return 1;
1347 BUG_ON(ident != TAG_IDENT_LVD);
1348 lvd = (struct logicalVolDesc *)bh->b_data;
1349 table_len = le32_to_cpu(lvd->mapTableLength);
1350 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1351 udf_err(sb, "error loading logical volume descriptor: "
1352 "Partition table too long (%u > %lu)\n", table_len,
1353 sb->s_blocksize - sizeof(*lvd));
1354 ret = 1;
1355 goto out_bh;
1356 }
1357
1358 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1359 if (ret)
1360 goto out_bh;
1361
1362 for (i = 0, offset = 0;
1363 i < sbi->s_partitions && offset < table_len;
1364 i++, offset += gpm->partitionMapLength) {
1365 struct udf_part_map *map = &sbi->s_partmaps[i];
1366 gpm = (struct genericPartitionMap *)
1367 &(lvd->partitionMaps[offset]);
1368 type = gpm->partitionMapType;
1369 if (type == 1) {
1370 struct genericPartitionMap1 *gpm1 =
1371 (struct genericPartitionMap1 *)gpm;
1372 map->s_partition_type = UDF_TYPE1_MAP15;
1373 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1374 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1375 map->s_partition_func = NULL;
1376 } else if (type == 2) {
1377 struct udfPartitionMap2 *upm2 =
1378 (struct udfPartitionMap2 *)gpm;
1379 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1380 strlen(UDF_ID_VIRTUAL))) {
1381 u16 suf =
1382 le16_to_cpu(((__le16 *)upm2->partIdent.
1383 identSuffix)[0]);
1384 if (suf < 0x0200) {
1385 map->s_partition_type =
1386 UDF_VIRTUAL_MAP15;
1387 map->s_partition_func =
1388 udf_get_pblock_virt15;
1389 } else {
1390 map->s_partition_type =
1391 UDF_VIRTUAL_MAP20;
1392 map->s_partition_func =
1393 udf_get_pblock_virt20;
1394 }
1395 } else if (!strncmp(upm2->partIdent.ident,
1396 UDF_ID_SPARABLE,
1397 strlen(UDF_ID_SPARABLE))) {
1398 if (udf_load_sparable_map(sb, map,
1399 (struct sparablePartitionMap *)gpm) < 0) {
1400 ret = 1;
1401 goto out_bh;
1402 }
1403 } else if (!strncmp(upm2->partIdent.ident,
1404 UDF_ID_METADATA,
1405 strlen(UDF_ID_METADATA))) {
1406 struct udf_meta_data *mdata =
1407 &map->s_type_specific.s_metadata;
1408 struct metadataPartitionMap *mdm =
1409 (struct metadataPartitionMap *)
1410 &(lvd->partitionMaps[offset]);
1411 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1412 i, type, UDF_ID_METADATA);
1413
1414 map->s_partition_type = UDF_METADATA_MAP25;
1415 map->s_partition_func = udf_get_pblock_meta25;
1416
1417 mdata->s_meta_file_loc =
1418 le32_to_cpu(mdm->metadataFileLoc);
1419 mdata->s_mirror_file_loc =
1420 le32_to_cpu(mdm->metadataMirrorFileLoc);
1421 mdata->s_bitmap_file_loc =
1422 le32_to_cpu(mdm->metadataBitmapFileLoc);
1423 mdata->s_alloc_unit_size =
1424 le32_to_cpu(mdm->allocUnitSize);
1425 mdata->s_align_unit_size =
1426 le16_to_cpu(mdm->alignUnitSize);
1427 if (mdm->flags & 0x01)
1428 mdata->s_flags |= MF_DUPLICATE_MD;
1429
1430 udf_debug("Metadata Ident suffix=0x%x\n",
1431 le16_to_cpu(*(__le16 *)
1432 mdm->partIdent.identSuffix));
1433 udf_debug("Metadata part num=%d\n",
1434 le16_to_cpu(mdm->partitionNum));
1435 udf_debug("Metadata part alloc unit size=%d\n",
1436 le32_to_cpu(mdm->allocUnitSize));
1437 udf_debug("Metadata file loc=%d\n",
1438 le32_to_cpu(mdm->metadataFileLoc));
1439 udf_debug("Mirror file loc=%d\n",
1440 le32_to_cpu(mdm->metadataMirrorFileLoc));
1441 udf_debug("Bitmap file loc=%d\n",
1442 le32_to_cpu(mdm->metadataBitmapFileLoc));
1443 udf_debug("Flags: %d %d\n",
1444 mdata->s_flags, mdm->flags);
1445 } else {
1446 udf_debug("Unknown ident: %s\n",
1447 upm2->partIdent.ident);
1448 continue;
1449 }
1450 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1451 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1452 }
1453 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1454 i, map->s_partition_num, type, map->s_volumeseqnum);
1455 }
1456
1457 if (fileset) {
1458 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1459
1460 *fileset = lelb_to_cpu(la->extLocation);
1461 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1462 fileset->logicalBlockNum,
1463 fileset->partitionReferenceNum);
1464 }
1465 if (lvd->integritySeqExt.extLength)
1466 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1467
1468 out_bh:
1469 brelse(bh);
1470 return ret;
1471 }
1472
1473 /*
1474 * udf_load_logicalvolint
1475 *
1476 */
1477 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1478 {
1479 struct buffer_head *bh = NULL;
1480 uint16_t ident;
1481 struct udf_sb_info *sbi = UDF_SB(sb);
1482 struct logicalVolIntegrityDesc *lvid;
1483
1484 while (loc.extLength > 0 &&
1485 (bh = udf_read_tagged(sb, loc.extLocation,
1486 loc.extLocation, &ident)) &&
1487 ident == TAG_IDENT_LVID) {
1488 sbi->s_lvid_bh = bh;
1489 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1490
1491 if (lvid->nextIntegrityExt.extLength)
1492 udf_load_logicalvolint(sb,
1493 leea_to_cpu(lvid->nextIntegrityExt));
1494
1495 if (sbi->s_lvid_bh != bh)
1496 brelse(bh);
1497 loc.extLength -= sb->s_blocksize;
1498 loc.extLocation++;
1499 }
1500 if (sbi->s_lvid_bh != bh)
1501 brelse(bh);
1502 }
1503
1504 /*
1505 * udf_process_sequence
1506 *
1507 * PURPOSE
1508 * Process a main/reserve volume descriptor sequence.
1509 *
1510 * PRE-CONDITIONS
1511 * sb Pointer to _locked_ superblock.
1512 * block First block of first extent of the sequence.
1513 * lastblock Lastblock of first extent of the sequence.
1514 *
1515 * HISTORY
1516 * July 1, 1997 - Andrew E. Mileski
1517 * Written, tested, and released.
1518 */
1519 static noinline int udf_process_sequence(struct super_block *sb, long block,
1520 long lastblock, struct kernel_lb_addr *fileset)
1521 {
1522 struct buffer_head *bh = NULL;
1523 struct udf_vds_record vds[VDS_POS_LENGTH];
1524 struct udf_vds_record *curr;
1525 struct generic_desc *gd;
1526 struct volDescPtr *vdp;
1527 int done = 0;
1528 uint32_t vdsn;
1529 uint16_t ident;
1530 long next_s = 0, next_e = 0;
1531
1532 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1533
1534 /*
1535 * Read the main descriptor sequence and find which descriptors
1536 * are in it.
1537 */
1538 for (; (!done && block <= lastblock); block++) {
1539
1540 bh = udf_read_tagged(sb, block, block, &ident);
1541 if (!bh) {
1542 udf_err(sb,
1543 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1544 (unsigned long long)block);
1545 return 1;
1546 }
1547
1548 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1549 gd = (struct generic_desc *)bh->b_data;
1550 vdsn = le32_to_cpu(gd->volDescSeqNum);
1551 switch (ident) {
1552 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1553 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1554 if (vdsn >= curr->volDescSeqNum) {
1555 curr->volDescSeqNum = vdsn;
1556 curr->block = block;
1557 }
1558 break;
1559 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1560 curr = &vds[VDS_POS_VOL_DESC_PTR];
1561 if (vdsn >= curr->volDescSeqNum) {
1562 curr->volDescSeqNum = vdsn;
1563 curr->block = block;
1564
1565 vdp = (struct volDescPtr *)bh->b_data;
1566 next_s = le32_to_cpu(
1567 vdp->nextVolDescSeqExt.extLocation);
1568 next_e = le32_to_cpu(
1569 vdp->nextVolDescSeqExt.extLength);
1570 next_e = next_e >> sb->s_blocksize_bits;
1571 next_e += next_s;
1572 }
1573 break;
1574 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1575 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1576 if (vdsn >= curr->volDescSeqNum) {
1577 curr->volDescSeqNum = vdsn;
1578 curr->block = block;
1579 }
1580 break;
1581 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1582 curr = &vds[VDS_POS_PARTITION_DESC];
1583 if (!curr->block)
1584 curr->block = block;
1585 break;
1586 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1587 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1588 if (vdsn >= curr->volDescSeqNum) {
1589 curr->volDescSeqNum = vdsn;
1590 curr->block = block;
1591 }
1592 break;
1593 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1594 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1595 if (vdsn >= curr->volDescSeqNum) {
1596 curr->volDescSeqNum = vdsn;
1597 curr->block = block;
1598 }
1599 break;
1600 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1601 vds[VDS_POS_TERMINATING_DESC].block = block;
1602 if (next_e) {
1603 block = next_s;
1604 lastblock = next_e;
1605 next_s = next_e = 0;
1606 } else
1607 done = 1;
1608 break;
1609 }
1610 brelse(bh);
1611 }
1612 /*
1613 * Now read interesting descriptors again and process them
1614 * in a suitable order
1615 */
1616 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1617 udf_err(sb, "Primary Volume Descriptor not found!\n");
1618 return 1;
1619 }
1620 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1621 return 1;
1622
1623 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1624 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1625 return 1;
1626
1627 if (vds[VDS_POS_PARTITION_DESC].block) {
1628 /*
1629 * We rescan the whole descriptor sequence to find
1630 * partition descriptor blocks and process them.
1631 */
1632 for (block = vds[VDS_POS_PARTITION_DESC].block;
1633 block < vds[VDS_POS_TERMINATING_DESC].block;
1634 block++)
1635 if (udf_load_partdesc(sb, block))
1636 return 1;
1637 }
1638
1639 return 0;
1640 }
1641
1642 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1643 struct kernel_lb_addr *fileset)
1644 {
1645 struct anchorVolDescPtr *anchor;
1646 long main_s, main_e, reserve_s, reserve_e;
1647
1648 anchor = (struct anchorVolDescPtr *)bh->b_data;
1649
1650 /* Locate the main sequence */
1651 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1652 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1653 main_e = main_e >> sb->s_blocksize_bits;
1654 main_e += main_s;
1655
1656 /* Locate the reserve sequence */
1657 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1658 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1659 reserve_e = reserve_e >> sb->s_blocksize_bits;
1660 reserve_e += reserve_s;
1661
1662 /* Process the main & reserve sequences */
1663 /* responsible for finding the PartitionDesc(s) */
1664 if (!udf_process_sequence(sb, main_s, main_e, fileset))
1665 return 1;
1666 udf_sb_free_partitions(sb);
1667 if (!udf_process_sequence(sb, reserve_s, reserve_e, fileset))
1668 return 1;
1669 udf_sb_free_partitions(sb);
1670 return 0;
1671 }
1672
1673 /*
1674 * Check whether there is an anchor block in the given block and
1675 * load Volume Descriptor Sequence if so.
1676 */
1677 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1678 struct kernel_lb_addr *fileset)
1679 {
1680 struct buffer_head *bh;
1681 uint16_t ident;
1682 int ret;
1683
1684 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1685 udf_fixed_to_variable(block) >=
1686 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1687 return 0;
1688
1689 bh = udf_read_tagged(sb, block, block, &ident);
1690 if (!bh)
1691 return 0;
1692 if (ident != TAG_IDENT_AVDP) {
1693 brelse(bh);
1694 return 0;
1695 }
1696 ret = udf_load_sequence(sb, bh, fileset);
1697 brelse(bh);
1698 return ret;
1699 }
1700
1701 /* Search for an anchor volume descriptor pointer */
1702 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1703 struct kernel_lb_addr *fileset)
1704 {
1705 sector_t last[6];
1706 int i;
1707 struct udf_sb_info *sbi = UDF_SB(sb);
1708 int last_count = 0;
1709
1710 /* First try user provided anchor */
1711 if (sbi->s_anchor) {
1712 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1713 return lastblock;
1714 }
1715 /*
1716 * according to spec, anchor is in either:
1717 * block 256
1718 * lastblock-256
1719 * lastblock
1720 * however, if the disc isn't closed, it could be 512.
1721 */
1722 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1723 return lastblock;
1724 /*
1725 * The trouble is which block is the last one. Drives often misreport
1726 * this so we try various possibilities.
1727 */
1728 last[last_count++] = lastblock;
1729 if (lastblock >= 1)
1730 last[last_count++] = lastblock - 1;
1731 last[last_count++] = lastblock + 1;
1732 if (lastblock >= 2)
1733 last[last_count++] = lastblock - 2;
1734 if (lastblock >= 150)
1735 last[last_count++] = lastblock - 150;
1736 if (lastblock >= 152)
1737 last[last_count++] = lastblock - 152;
1738
1739 for (i = 0; i < last_count; i++) {
1740 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1741 sb->s_blocksize_bits)
1742 continue;
1743 if (udf_check_anchor_block(sb, last[i], fileset))
1744 return last[i];
1745 if (last[i] < 256)
1746 continue;
1747 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1748 return last[i];
1749 }
1750
1751 /* Finally try block 512 in case media is open */
1752 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1753 return last[0];
1754 return 0;
1755 }
1756
1757 /*
1758 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1759 * area specified by it. The function expects sbi->s_lastblock to be the last
1760 * block on the media.
1761 *
1762 * Return 1 if ok, 0 if not found.
1763 *
1764 */
1765 static int udf_find_anchor(struct super_block *sb,
1766 struct kernel_lb_addr *fileset)
1767 {
1768 sector_t lastblock;
1769 struct udf_sb_info *sbi = UDF_SB(sb);
1770
1771 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1772 if (lastblock)
1773 goto out;
1774
1775 /* No anchor found? Try VARCONV conversion of block numbers */
1776 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1777 /* Firstly, we try to not convert number of the last block */
1778 lastblock = udf_scan_anchors(sb,
1779 udf_variable_to_fixed(sbi->s_last_block),
1780 fileset);
1781 if (lastblock)
1782 goto out;
1783
1784 /* Secondly, we try with converted number of the last block */
1785 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1786 if (!lastblock) {
1787 /* VARCONV didn't help. Clear it. */
1788 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1789 return 0;
1790 }
1791 out:
1792 sbi->s_last_block = lastblock;
1793 return 1;
1794 }
1795
1796 /*
1797 * Check Volume Structure Descriptor, find Anchor block and load Volume
1798 * Descriptor Sequence
1799 */
1800 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1801 int silent, struct kernel_lb_addr *fileset)
1802 {
1803 struct udf_sb_info *sbi = UDF_SB(sb);
1804 loff_t nsr_off;
1805
1806 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1807 if (!silent)
1808 udf_warn(sb, "Bad block size\n");
1809 return 0;
1810 }
1811 sbi->s_last_block = uopt->lastblock;
1812 if (!uopt->novrs) {
1813 /* Check that it is NSR02 compliant */
1814 nsr_off = udf_check_vsd(sb);
1815 if (!nsr_off) {
1816 if (!silent)
1817 udf_warn(sb, "No VRS found\n");
1818 return 0;
1819 }
1820 if (nsr_off == -1)
1821 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1822 if (!sbi->s_last_block)
1823 sbi->s_last_block = udf_get_last_block(sb);
1824 } else {
1825 udf_debug("Validity check skipped because of novrs option\n");
1826 }
1827
1828 /* Look for anchor block and load Volume Descriptor Sequence */
1829 sbi->s_anchor = uopt->anchor;
1830 if (!udf_find_anchor(sb, fileset)) {
1831 if (!silent)
1832 udf_warn(sb, "No anchor found\n");
1833 return 0;
1834 }
1835 return 1;
1836 }
1837
1838 static void udf_open_lvid(struct super_block *sb)
1839 {
1840 struct udf_sb_info *sbi = UDF_SB(sb);
1841 struct buffer_head *bh = sbi->s_lvid_bh;
1842 struct logicalVolIntegrityDesc *lvid;
1843 struct logicalVolIntegrityDescImpUse *lvidiu;
1844
1845 if (!bh)
1846 return;
1847
1848 mutex_lock(&sbi->s_alloc_mutex);
1849 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1850 lvidiu = udf_sb_lvidiu(sbi);
1851
1852 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1853 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1854 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1855 CURRENT_TIME);
1856 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1857
1858 lvid->descTag.descCRC = cpu_to_le16(
1859 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1860 le16_to_cpu(lvid->descTag.descCRCLength)));
1861
1862 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1863 mark_buffer_dirty(bh);
1864 sbi->s_lvid_dirty = 0;
1865 mutex_unlock(&sbi->s_alloc_mutex);
1866 /* Make opening of filesystem visible on the media immediately */
1867 sync_dirty_buffer(bh);
1868 }
1869
1870 static void udf_close_lvid(struct super_block *sb)
1871 {
1872 struct udf_sb_info *sbi = UDF_SB(sb);
1873 struct buffer_head *bh = sbi->s_lvid_bh;
1874 struct logicalVolIntegrityDesc *lvid;
1875 struct logicalVolIntegrityDescImpUse *lvidiu;
1876
1877 if (!bh)
1878 return;
1879
1880 mutex_lock(&sbi->s_alloc_mutex);
1881 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1882 lvidiu = udf_sb_lvidiu(sbi);
1883 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1884 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1885 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1886 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1887 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1888 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1889 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1890 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1891 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1892 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1893
1894 lvid->descTag.descCRC = cpu_to_le16(
1895 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1896 le16_to_cpu(lvid->descTag.descCRCLength)));
1897
1898 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1899 /*
1900 * We set buffer uptodate unconditionally here to avoid spurious
1901 * warnings from mark_buffer_dirty() when previous EIO has marked
1902 * the buffer as !uptodate
1903 */
1904 set_buffer_uptodate(bh);
1905 mark_buffer_dirty(bh);
1906 sbi->s_lvid_dirty = 0;
1907 mutex_unlock(&sbi->s_alloc_mutex);
1908 /* Make closing of filesystem visible on the media immediately */
1909 sync_dirty_buffer(bh);
1910 }
1911
1912 u64 lvid_get_unique_id(struct super_block *sb)
1913 {
1914 struct buffer_head *bh;
1915 struct udf_sb_info *sbi = UDF_SB(sb);
1916 struct logicalVolIntegrityDesc *lvid;
1917 struct logicalVolHeaderDesc *lvhd;
1918 u64 uniqueID;
1919 u64 ret;
1920
1921 bh = sbi->s_lvid_bh;
1922 if (!bh)
1923 return 0;
1924
1925 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1926 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1927
1928 mutex_lock(&sbi->s_alloc_mutex);
1929 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1930 if (!(++uniqueID & 0xFFFFFFFF))
1931 uniqueID += 16;
1932 lvhd->uniqueID = cpu_to_le64(uniqueID);
1933 mutex_unlock(&sbi->s_alloc_mutex);
1934 mark_buffer_dirty(bh);
1935
1936 return ret;
1937 }
1938
1939 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1940 {
1941 int ret;
1942 struct inode *inode = NULL;
1943 struct udf_options uopt;
1944 struct kernel_lb_addr rootdir, fileset;
1945 struct udf_sb_info *sbi;
1946
1947 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1948 uopt.uid = INVALID_UID;
1949 uopt.gid = INVALID_GID;
1950 uopt.umask = 0;
1951 uopt.fmode = UDF_INVALID_MODE;
1952 uopt.dmode = UDF_INVALID_MODE;
1953
1954 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1955 if (!sbi)
1956 return -ENOMEM;
1957
1958 sb->s_fs_info = sbi;
1959
1960 mutex_init(&sbi->s_alloc_mutex);
1961
1962 if (!udf_parse_options((char *)options, &uopt, false))
1963 goto error_out;
1964
1965 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1966 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1967 udf_err(sb, "utf8 cannot be combined with iocharset\n");
1968 goto error_out;
1969 }
1970 #ifdef CONFIG_UDF_NLS
1971 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1972 uopt.nls_map = load_nls_default();
1973 if (!uopt.nls_map)
1974 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1975 else
1976 udf_debug("Using default NLS map\n");
1977 }
1978 #endif
1979 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1980 uopt.flags |= (1 << UDF_FLAG_UTF8);
1981
1982 fileset.logicalBlockNum = 0xFFFFFFFF;
1983 fileset.partitionReferenceNum = 0xFFFF;
1984
1985 sbi->s_flags = uopt.flags;
1986 sbi->s_uid = uopt.uid;
1987 sbi->s_gid = uopt.gid;
1988 sbi->s_umask = uopt.umask;
1989 sbi->s_fmode = uopt.fmode;
1990 sbi->s_dmode = uopt.dmode;
1991 sbi->s_nls_map = uopt.nls_map;
1992 rwlock_init(&sbi->s_cred_lock);
1993
1994 if (uopt.session == 0xFFFFFFFF)
1995 sbi->s_session = udf_get_last_session(sb);
1996 else
1997 sbi->s_session = uopt.session;
1998
1999 udf_debug("Multi-session=%d\n", sbi->s_session);
2000
2001 /* Fill in the rest of the superblock */
2002 sb->s_op = &udf_sb_ops;
2003 sb->s_export_op = &udf_export_ops;
2004
2005 sb->s_magic = UDF_SUPER_MAGIC;
2006 sb->s_time_gran = 1000;
2007
2008 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2009 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2010 } else {
2011 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2012 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2013 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2014 if (!silent)
2015 pr_notice("Rescanning with blocksize %d\n",
2016 UDF_DEFAULT_BLOCKSIZE);
2017 brelse(sbi->s_lvid_bh);
2018 sbi->s_lvid_bh = NULL;
2019 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2020 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2021 }
2022 }
2023 if (!ret) {
2024 udf_warn(sb, "No partition found (1)\n");
2025 goto error_out;
2026 }
2027
2028 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2029
2030 if (sbi->s_lvid_bh) {
2031 struct logicalVolIntegrityDescImpUse *lvidiu =
2032 udf_sb_lvidiu(sbi);
2033 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2034 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2035 /* uint16_t maxUDFWriteRev =
2036 le16_to_cpu(lvidiu->maxUDFWriteRev); */
2037
2038 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2039 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2040 le16_to_cpu(lvidiu->minUDFReadRev),
2041 UDF_MAX_READ_VERSION);
2042 goto error_out;
2043 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2044 sb->s_flags |= MS_RDONLY;
2045
2046 sbi->s_udfrev = minUDFWriteRev;
2047
2048 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2049 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2050 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2051 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2052 }
2053
2054 if (!sbi->s_partitions) {
2055 udf_warn(sb, "No partition found (2)\n");
2056 goto error_out;
2057 }
2058
2059 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2060 UDF_PART_FLAG_READ_ONLY) {
2061 pr_notice("Partition marked readonly; forcing readonly mount\n");
2062 sb->s_flags |= MS_RDONLY;
2063 }
2064
2065 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2066 udf_warn(sb, "No fileset found\n");
2067 goto error_out;
2068 }
2069
2070 if (!silent) {
2071 struct timestamp ts;
2072 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2073 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2074 sbi->s_volume_ident,
2075 le16_to_cpu(ts.year), ts.month, ts.day,
2076 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2077 }
2078 if (!(sb->s_flags & MS_RDONLY))
2079 udf_open_lvid(sb);
2080
2081 /* Assign the root inode */
2082 /* assign inodes by physical block number */
2083 /* perhaps it's not extensible enough, but for now ... */
2084 inode = udf_iget(sb, &rootdir);
2085 if (!inode) {
2086 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2087 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2088 goto error_out;
2089 }
2090
2091 /* Allocate a dentry for the root inode */
2092 sb->s_root = d_make_root(inode);
2093 if (!sb->s_root) {
2094 udf_err(sb, "Couldn't allocate root dentry\n");
2095 goto error_out;
2096 }
2097 sb->s_maxbytes = MAX_LFS_FILESIZE;
2098 sb->s_max_links = UDF_MAX_LINKS;
2099 return 0;
2100
2101 error_out:
2102 if (sbi->s_vat_inode)
2103 iput(sbi->s_vat_inode);
2104 #ifdef CONFIG_UDF_NLS
2105 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2106 unload_nls(sbi->s_nls_map);
2107 #endif
2108 if (!(sb->s_flags & MS_RDONLY))
2109 udf_close_lvid(sb);
2110 brelse(sbi->s_lvid_bh);
2111 udf_sb_free_partitions(sb);
2112 kfree(sbi);
2113 sb->s_fs_info = NULL;
2114
2115 return -EINVAL;
2116 }
2117
2118 void _udf_err(struct super_block *sb, const char *function,
2119 const char *fmt, ...)
2120 {
2121 struct va_format vaf;
2122 va_list args;
2123
2124 va_start(args, fmt);
2125
2126 vaf.fmt = fmt;
2127 vaf.va = &args;
2128
2129 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2130
2131 va_end(args);
2132 }
2133
2134 void _udf_warn(struct super_block *sb, const char *function,
2135 const char *fmt, ...)
2136 {
2137 struct va_format vaf;
2138 va_list args;
2139
2140 va_start(args, fmt);
2141
2142 vaf.fmt = fmt;
2143 vaf.va = &args;
2144
2145 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2146
2147 va_end(args);
2148 }
2149
2150 static void udf_put_super(struct super_block *sb)
2151 {
2152 struct udf_sb_info *sbi;
2153
2154 sbi = UDF_SB(sb);
2155
2156 if (sbi->s_vat_inode)
2157 iput(sbi->s_vat_inode);
2158 #ifdef CONFIG_UDF_NLS
2159 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2160 unload_nls(sbi->s_nls_map);
2161 #endif
2162 if (!(sb->s_flags & MS_RDONLY))
2163 udf_close_lvid(sb);
2164 brelse(sbi->s_lvid_bh);
2165 udf_sb_free_partitions(sb);
2166 kfree(sb->s_fs_info);
2167 sb->s_fs_info = NULL;
2168 }
2169
2170 static int udf_sync_fs(struct super_block *sb, int wait)
2171 {
2172 struct udf_sb_info *sbi = UDF_SB(sb);
2173
2174 mutex_lock(&sbi->s_alloc_mutex);
2175 if (sbi->s_lvid_dirty) {
2176 /*
2177 * Blockdevice will be synced later so we don't have to submit
2178 * the buffer for IO
2179 */
2180 mark_buffer_dirty(sbi->s_lvid_bh);
2181 sbi->s_lvid_dirty = 0;
2182 }
2183 mutex_unlock(&sbi->s_alloc_mutex);
2184
2185 return 0;
2186 }
2187
2188 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2189 {
2190 struct super_block *sb = dentry->d_sb;
2191 struct udf_sb_info *sbi = UDF_SB(sb);
2192 struct logicalVolIntegrityDescImpUse *lvidiu;
2193 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2194
2195 if (sbi->s_lvid_bh != NULL)
2196 lvidiu = udf_sb_lvidiu(sbi);
2197 else
2198 lvidiu = NULL;
2199
2200 buf->f_type = UDF_SUPER_MAGIC;
2201 buf->f_bsize = sb->s_blocksize;
2202 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2203 buf->f_bfree = udf_count_free(sb);
2204 buf->f_bavail = buf->f_bfree;
2205 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2206 le32_to_cpu(lvidiu->numDirs)) : 0)
2207 + buf->f_bfree;
2208 buf->f_ffree = buf->f_bfree;
2209 buf->f_namelen = UDF_NAME_LEN - 2;
2210 buf->f_fsid.val[0] = (u32)id;
2211 buf->f_fsid.val[1] = (u32)(id >> 32);
2212
2213 return 0;
2214 }
2215
2216 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2217 struct udf_bitmap *bitmap)
2218 {
2219 struct buffer_head *bh = NULL;
2220 unsigned int accum = 0;
2221 int index;
2222 int block = 0, newblock;
2223 struct kernel_lb_addr loc;
2224 uint32_t bytes;
2225 uint8_t *ptr;
2226 uint16_t ident;
2227 struct spaceBitmapDesc *bm;
2228
2229 loc.logicalBlockNum = bitmap->s_extPosition;
2230 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2231 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2232
2233 if (!bh) {
2234 udf_err(sb, "udf_count_free failed\n");
2235 goto out;
2236 } else if (ident != TAG_IDENT_SBD) {
2237 brelse(bh);
2238 udf_err(sb, "udf_count_free failed\n");
2239 goto out;
2240 }
2241
2242 bm = (struct spaceBitmapDesc *)bh->b_data;
2243 bytes = le32_to_cpu(bm->numOfBytes);
2244 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2245 ptr = (uint8_t *)bh->b_data;
2246
2247 while (bytes > 0) {
2248 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2249 accum += bitmap_weight((const unsigned long *)(ptr + index),
2250 cur_bytes * 8);
2251 bytes -= cur_bytes;
2252 if (bytes) {
2253 brelse(bh);
2254 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2255 bh = udf_tread(sb, newblock);
2256 if (!bh) {
2257 udf_debug("read failed\n");
2258 goto out;
2259 }
2260 index = 0;
2261 ptr = (uint8_t *)bh->b_data;
2262 }
2263 }
2264 brelse(bh);
2265 out:
2266 return accum;
2267 }
2268
2269 static unsigned int udf_count_free_table(struct super_block *sb,
2270 struct inode *table)
2271 {
2272 unsigned int accum = 0;
2273 uint32_t elen;
2274 struct kernel_lb_addr eloc;
2275 int8_t etype;
2276 struct extent_position epos;
2277
2278 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2279 epos.block = UDF_I(table)->i_location;
2280 epos.offset = sizeof(struct unallocSpaceEntry);
2281 epos.bh = NULL;
2282
2283 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2284 accum += (elen >> table->i_sb->s_blocksize_bits);
2285
2286 brelse(epos.bh);
2287 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2288
2289 return accum;
2290 }
2291
2292 static unsigned int udf_count_free(struct super_block *sb)
2293 {
2294 unsigned int accum = 0;
2295 struct udf_sb_info *sbi;
2296 struct udf_part_map *map;
2297
2298 sbi = UDF_SB(sb);
2299 if (sbi->s_lvid_bh) {
2300 struct logicalVolIntegrityDesc *lvid =
2301 (struct logicalVolIntegrityDesc *)
2302 sbi->s_lvid_bh->b_data;
2303 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2304 accum = le32_to_cpu(
2305 lvid->freeSpaceTable[sbi->s_partition]);
2306 if (accum == 0xFFFFFFFF)
2307 accum = 0;
2308 }
2309 }
2310
2311 if (accum)
2312 return accum;
2313
2314 map = &sbi->s_partmaps[sbi->s_partition];
2315 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2316 accum += udf_count_free_bitmap(sb,
2317 map->s_uspace.s_bitmap);
2318 }
2319 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2320 accum += udf_count_free_bitmap(sb,
2321 map->s_fspace.s_bitmap);
2322 }
2323 if (accum)
2324 return accum;
2325
2326 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2327 accum += udf_count_free_table(sb,
2328 map->s_uspace.s_table);
2329 }
2330 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2331 accum += udf_count_free_table(sb,
2332 map->s_fspace.s_table);
2333 }
2334
2335 return accum;
2336 }
This page took 0.102928 seconds and 5 git commands to generate.