Btrfs: fix unclosed transaction handler when the async transaction commitment fails
[deliverable/linux.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67
68 #define VDS_POS_PRIMARY_VOL_DESC 0
69 #define VDS_POS_UNALLOC_SPACE_DESC 1
70 #define VDS_POS_LOGICAL_VOL_DESC 2
71 #define VDS_POS_PARTITION_DESC 3
72 #define VDS_POS_IMP_USE_VOL_DESC 4
73 #define VDS_POS_VOL_DESC_PTR 5
74 #define VDS_POS_TERMINATING_DESC 6
75 #define VDS_POS_LENGTH 7
76
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78
79 enum { UDF_MAX_LINKS = 0xffff };
80
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct dentry *);
96
97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
98 {
99 struct logicalVolIntegrityDesc *lvid =
100 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
102 __u32 offset = number_of_partitions * 2 *
103 sizeof(uint32_t)/sizeof(uint8_t);
104 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105 }
106
107 /* UDF filesystem type */
108 static struct dentry *udf_mount(struct file_system_type *fs_type,
109 int flags, const char *dev_name, void *data)
110 {
111 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112 }
113
114 static struct file_system_type udf_fstype = {
115 .owner = THIS_MODULE,
116 .name = "udf",
117 .mount = udf_mount,
118 .kill_sb = kill_block_super,
119 .fs_flags = FS_REQUIRES_DEV,
120 };
121
122 static struct kmem_cache *udf_inode_cachep;
123
124 static struct inode *udf_alloc_inode(struct super_block *sb)
125 {
126 struct udf_inode_info *ei;
127 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
128 if (!ei)
129 return NULL;
130
131 ei->i_unique = 0;
132 ei->i_lenExtents = 0;
133 ei->i_next_alloc_block = 0;
134 ei->i_next_alloc_goal = 0;
135 ei->i_strat4096 = 0;
136 init_rwsem(&ei->i_data_sem);
137
138 return &ei->vfs_inode;
139 }
140
141 static void udf_i_callback(struct rcu_head *head)
142 {
143 struct inode *inode = container_of(head, struct inode, i_rcu);
144 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
145 }
146
147 static void udf_destroy_inode(struct inode *inode)
148 {
149 call_rcu(&inode->i_rcu, udf_i_callback);
150 }
151
152 static void init_once(void *foo)
153 {
154 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
155
156 ei->i_ext.i_data = NULL;
157 inode_init_once(&ei->vfs_inode);
158 }
159
160 static int init_inodecache(void)
161 {
162 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
163 sizeof(struct udf_inode_info),
164 0, (SLAB_RECLAIM_ACCOUNT |
165 SLAB_MEM_SPREAD),
166 init_once);
167 if (!udf_inode_cachep)
168 return -ENOMEM;
169 return 0;
170 }
171
172 static void destroy_inodecache(void)
173 {
174 /*
175 * Make sure all delayed rcu free inodes are flushed before we
176 * destroy cache.
177 */
178 rcu_barrier();
179 kmem_cache_destroy(udf_inode_cachep);
180 }
181
182 /* Superblock operations */
183 static const struct super_operations udf_sb_ops = {
184 .alloc_inode = udf_alloc_inode,
185 .destroy_inode = udf_destroy_inode,
186 .write_inode = udf_write_inode,
187 .evict_inode = udf_evict_inode,
188 .put_super = udf_put_super,
189 .sync_fs = udf_sync_fs,
190 .statfs = udf_statfs,
191 .remount_fs = udf_remount_fs,
192 .show_options = udf_show_options,
193 };
194
195 struct udf_options {
196 unsigned char novrs;
197 unsigned int blocksize;
198 unsigned int session;
199 unsigned int lastblock;
200 unsigned int anchor;
201 unsigned int volume;
202 unsigned short partition;
203 unsigned int fileset;
204 unsigned int rootdir;
205 unsigned int flags;
206 umode_t umask;
207 kgid_t gid;
208 kuid_t uid;
209 umode_t fmode;
210 umode_t dmode;
211 struct nls_table *nls_map;
212 };
213
214 static int __init init_udf_fs(void)
215 {
216 int err;
217
218 err = init_inodecache();
219 if (err)
220 goto out1;
221 err = register_filesystem(&udf_fstype);
222 if (err)
223 goto out;
224
225 return 0;
226
227 out:
228 destroy_inodecache();
229
230 out1:
231 return err;
232 }
233
234 static void __exit exit_udf_fs(void)
235 {
236 unregister_filesystem(&udf_fstype);
237 destroy_inodecache();
238 }
239
240 module_init(init_udf_fs)
241 module_exit(exit_udf_fs)
242
243 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
244 {
245 struct udf_sb_info *sbi = UDF_SB(sb);
246
247 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
248 GFP_KERNEL);
249 if (!sbi->s_partmaps) {
250 udf_err(sb, "Unable to allocate space for %d partition maps\n",
251 count);
252 sbi->s_partitions = 0;
253 return -ENOMEM;
254 }
255
256 sbi->s_partitions = count;
257 return 0;
258 }
259
260 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
261 {
262 int i;
263 int nr_groups = bitmap->s_nr_groups;
264 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
265 nr_groups);
266
267 for (i = 0; i < nr_groups; i++)
268 if (bitmap->s_block_bitmap[i])
269 brelse(bitmap->s_block_bitmap[i]);
270
271 if (size <= PAGE_SIZE)
272 kfree(bitmap);
273 else
274 vfree(bitmap);
275 }
276
277 static void udf_free_partition(struct udf_part_map *map)
278 {
279 int i;
280 struct udf_meta_data *mdata;
281
282 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
283 iput(map->s_uspace.s_table);
284 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
285 iput(map->s_fspace.s_table);
286 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
287 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
288 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
289 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
290 if (map->s_partition_type == UDF_SPARABLE_MAP15)
291 for (i = 0; i < 4; i++)
292 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
293 else if (map->s_partition_type == UDF_METADATA_MAP25) {
294 mdata = &map->s_type_specific.s_metadata;
295 iput(mdata->s_metadata_fe);
296 mdata->s_metadata_fe = NULL;
297
298 iput(mdata->s_mirror_fe);
299 mdata->s_mirror_fe = NULL;
300
301 iput(mdata->s_bitmap_fe);
302 mdata->s_bitmap_fe = NULL;
303 }
304 }
305
306 static void udf_sb_free_partitions(struct super_block *sb)
307 {
308 struct udf_sb_info *sbi = UDF_SB(sb);
309 int i;
310 if (sbi->s_partmaps == NULL)
311 return;
312 for (i = 0; i < sbi->s_partitions; i++)
313 udf_free_partition(&sbi->s_partmaps[i]);
314 kfree(sbi->s_partmaps);
315 sbi->s_partmaps = NULL;
316 }
317
318 static int udf_show_options(struct seq_file *seq, struct dentry *root)
319 {
320 struct super_block *sb = root->d_sb;
321 struct udf_sb_info *sbi = UDF_SB(sb);
322
323 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
324 seq_puts(seq, ",nostrict");
325 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
326 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
327 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
328 seq_puts(seq, ",unhide");
329 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
330 seq_puts(seq, ",undelete");
331 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
332 seq_puts(seq, ",noadinicb");
333 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
334 seq_puts(seq, ",shortad");
335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
336 seq_puts(seq, ",uid=forget");
337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
338 seq_puts(seq, ",uid=ignore");
339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
340 seq_puts(seq, ",gid=forget");
341 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
342 seq_puts(seq, ",gid=ignore");
343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
344 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
346 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
347 if (sbi->s_umask != 0)
348 seq_printf(seq, ",umask=%ho", sbi->s_umask);
349 if (sbi->s_fmode != UDF_INVALID_MODE)
350 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
351 if (sbi->s_dmode != UDF_INVALID_MODE)
352 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
353 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
354 seq_printf(seq, ",session=%u", sbi->s_session);
355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
356 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
357 if (sbi->s_anchor != 0)
358 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
359 /*
360 * volume, partition, fileset and rootdir seem to be ignored
361 * currently
362 */
363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
364 seq_puts(seq, ",utf8");
365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
366 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
367
368 return 0;
369 }
370
371 /*
372 * udf_parse_options
373 *
374 * PURPOSE
375 * Parse mount options.
376 *
377 * DESCRIPTION
378 * The following mount options are supported:
379 *
380 * gid= Set the default group.
381 * umask= Set the default umask.
382 * mode= Set the default file permissions.
383 * dmode= Set the default directory permissions.
384 * uid= Set the default user.
385 * bs= Set the block size.
386 * unhide Show otherwise hidden files.
387 * undelete Show deleted files in lists.
388 * adinicb Embed data in the inode (default)
389 * noadinicb Don't embed data in the inode
390 * shortad Use short ad's
391 * longad Use long ad's (default)
392 * nostrict Unset strict conformance
393 * iocharset= Set the NLS character set
394 *
395 * The remaining are for debugging and disaster recovery:
396 *
397 * novrs Skip volume sequence recognition
398 *
399 * The following expect a offset from 0.
400 *
401 * session= Set the CDROM session (default= last session)
402 * anchor= Override standard anchor location. (default= 256)
403 * volume= Override the VolumeDesc location. (unused)
404 * partition= Override the PartitionDesc location. (unused)
405 * lastblock= Set the last block of the filesystem/
406 *
407 * The following expect a offset from the partition root.
408 *
409 * fileset= Override the fileset block location. (unused)
410 * rootdir= Override the root directory location. (unused)
411 * WARNING: overriding the rootdir to a non-directory may
412 * yield highly unpredictable results.
413 *
414 * PRE-CONDITIONS
415 * options Pointer to mount options string.
416 * uopts Pointer to mount options variable.
417 *
418 * POST-CONDITIONS
419 * <return> 1 Mount options parsed okay.
420 * <return> 0 Error parsing mount options.
421 *
422 * HISTORY
423 * July 1, 1997 - Andrew E. Mileski
424 * Written, tested, and released.
425 */
426
427 enum {
428 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
429 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
430 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
431 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
432 Opt_rootdir, Opt_utf8, Opt_iocharset,
433 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
434 Opt_fmode, Opt_dmode
435 };
436
437 static const match_table_t tokens = {
438 {Opt_novrs, "novrs"},
439 {Opt_nostrict, "nostrict"},
440 {Opt_bs, "bs=%u"},
441 {Opt_unhide, "unhide"},
442 {Opt_undelete, "undelete"},
443 {Opt_noadinicb, "noadinicb"},
444 {Opt_adinicb, "adinicb"},
445 {Opt_shortad, "shortad"},
446 {Opt_longad, "longad"},
447 {Opt_uforget, "uid=forget"},
448 {Opt_uignore, "uid=ignore"},
449 {Opt_gforget, "gid=forget"},
450 {Opt_gignore, "gid=ignore"},
451 {Opt_gid, "gid=%u"},
452 {Opt_uid, "uid=%u"},
453 {Opt_umask, "umask=%o"},
454 {Opt_session, "session=%u"},
455 {Opt_lastblock, "lastblock=%u"},
456 {Opt_anchor, "anchor=%u"},
457 {Opt_volume, "volume=%u"},
458 {Opt_partition, "partition=%u"},
459 {Opt_fileset, "fileset=%u"},
460 {Opt_rootdir, "rootdir=%u"},
461 {Opt_utf8, "utf8"},
462 {Opt_iocharset, "iocharset=%s"},
463 {Opt_fmode, "mode=%o"},
464 {Opt_dmode, "dmode=%o"},
465 {Opt_err, NULL}
466 };
467
468 static int udf_parse_options(char *options, struct udf_options *uopt,
469 bool remount)
470 {
471 char *p;
472 int option;
473
474 uopt->novrs = 0;
475 uopt->partition = 0xFFFF;
476 uopt->session = 0xFFFFFFFF;
477 uopt->lastblock = 0;
478 uopt->anchor = 0;
479 uopt->volume = 0xFFFFFFFF;
480 uopt->rootdir = 0xFFFFFFFF;
481 uopt->fileset = 0xFFFFFFFF;
482 uopt->nls_map = NULL;
483
484 if (!options)
485 return 1;
486
487 while ((p = strsep(&options, ",")) != NULL) {
488 substring_t args[MAX_OPT_ARGS];
489 int token;
490 if (!*p)
491 continue;
492
493 token = match_token(p, tokens, args);
494 switch (token) {
495 case Opt_novrs:
496 uopt->novrs = 1;
497 break;
498 case Opt_bs:
499 if (match_int(&args[0], &option))
500 return 0;
501 uopt->blocksize = option;
502 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
503 break;
504 case Opt_unhide:
505 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
506 break;
507 case Opt_undelete:
508 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
509 break;
510 case Opt_noadinicb:
511 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
512 break;
513 case Opt_adinicb:
514 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
515 break;
516 case Opt_shortad:
517 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
518 break;
519 case Opt_longad:
520 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
521 break;
522 case Opt_gid:
523 if (match_int(args, &option))
524 return 0;
525 uopt->gid = make_kgid(current_user_ns(), option);
526 if (!gid_valid(uopt->gid))
527 return 0;
528 uopt->flags |= (1 << UDF_FLAG_GID_SET);
529 break;
530 case Opt_uid:
531 if (match_int(args, &option))
532 return 0;
533 uopt->uid = make_kuid(current_user_ns(), option);
534 if (!uid_valid(uopt->uid))
535 return 0;
536 uopt->flags |= (1 << UDF_FLAG_UID_SET);
537 break;
538 case Opt_umask:
539 if (match_octal(args, &option))
540 return 0;
541 uopt->umask = option;
542 break;
543 case Opt_nostrict:
544 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
545 break;
546 case Opt_session:
547 if (match_int(args, &option))
548 return 0;
549 uopt->session = option;
550 if (!remount)
551 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
552 break;
553 case Opt_lastblock:
554 if (match_int(args, &option))
555 return 0;
556 uopt->lastblock = option;
557 if (!remount)
558 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
559 break;
560 case Opt_anchor:
561 if (match_int(args, &option))
562 return 0;
563 uopt->anchor = option;
564 break;
565 case Opt_volume:
566 if (match_int(args, &option))
567 return 0;
568 uopt->volume = option;
569 break;
570 case Opt_partition:
571 if (match_int(args, &option))
572 return 0;
573 uopt->partition = option;
574 break;
575 case Opt_fileset:
576 if (match_int(args, &option))
577 return 0;
578 uopt->fileset = option;
579 break;
580 case Opt_rootdir:
581 if (match_int(args, &option))
582 return 0;
583 uopt->rootdir = option;
584 break;
585 case Opt_utf8:
586 uopt->flags |= (1 << UDF_FLAG_UTF8);
587 break;
588 #ifdef CONFIG_UDF_NLS
589 case Opt_iocharset:
590 uopt->nls_map = load_nls(args[0].from);
591 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
592 break;
593 #endif
594 case Opt_uignore:
595 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
596 break;
597 case Opt_uforget:
598 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
599 break;
600 case Opt_gignore:
601 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
602 break;
603 case Opt_gforget:
604 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
605 break;
606 case Opt_fmode:
607 if (match_octal(args, &option))
608 return 0;
609 uopt->fmode = option & 0777;
610 break;
611 case Opt_dmode:
612 if (match_octal(args, &option))
613 return 0;
614 uopt->dmode = option & 0777;
615 break;
616 default:
617 pr_err("bad mount option \"%s\" or missing value\n", p);
618 return 0;
619 }
620 }
621 return 1;
622 }
623
624 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
625 {
626 struct udf_options uopt;
627 struct udf_sb_info *sbi = UDF_SB(sb);
628 int error = 0;
629
630 uopt.flags = sbi->s_flags;
631 uopt.uid = sbi->s_uid;
632 uopt.gid = sbi->s_gid;
633 uopt.umask = sbi->s_umask;
634 uopt.fmode = sbi->s_fmode;
635 uopt.dmode = sbi->s_dmode;
636
637 if (!udf_parse_options(options, &uopt, true))
638 return -EINVAL;
639
640 write_lock(&sbi->s_cred_lock);
641 sbi->s_flags = uopt.flags;
642 sbi->s_uid = uopt.uid;
643 sbi->s_gid = uopt.gid;
644 sbi->s_umask = uopt.umask;
645 sbi->s_fmode = uopt.fmode;
646 sbi->s_dmode = uopt.dmode;
647 write_unlock(&sbi->s_cred_lock);
648
649 if (sbi->s_lvid_bh) {
650 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
651 if (write_rev > UDF_MAX_WRITE_VERSION)
652 *flags |= MS_RDONLY;
653 }
654
655 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
656 goto out_unlock;
657
658 if (*flags & MS_RDONLY)
659 udf_close_lvid(sb);
660 else
661 udf_open_lvid(sb);
662
663 out_unlock:
664 return error;
665 }
666
667 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
668 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
669 static loff_t udf_check_vsd(struct super_block *sb)
670 {
671 struct volStructDesc *vsd = NULL;
672 loff_t sector = 32768;
673 int sectorsize;
674 struct buffer_head *bh = NULL;
675 int nsr02 = 0;
676 int nsr03 = 0;
677 struct udf_sb_info *sbi;
678
679 sbi = UDF_SB(sb);
680 if (sb->s_blocksize < sizeof(struct volStructDesc))
681 sectorsize = sizeof(struct volStructDesc);
682 else
683 sectorsize = sb->s_blocksize;
684
685 sector += (sbi->s_session << sb->s_blocksize_bits);
686
687 udf_debug("Starting at sector %u (%ld byte sectors)\n",
688 (unsigned int)(sector >> sb->s_blocksize_bits),
689 sb->s_blocksize);
690 /* Process the sequence (if applicable) */
691 for (; !nsr02 && !nsr03; sector += sectorsize) {
692 /* Read a block */
693 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
694 if (!bh)
695 break;
696
697 /* Look for ISO descriptors */
698 vsd = (struct volStructDesc *)(bh->b_data +
699 (sector & (sb->s_blocksize - 1)));
700
701 if (vsd->stdIdent[0] == 0) {
702 brelse(bh);
703 break;
704 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
705 VSD_STD_ID_LEN)) {
706 switch (vsd->structType) {
707 case 0:
708 udf_debug("ISO9660 Boot Record found\n");
709 break;
710 case 1:
711 udf_debug("ISO9660 Primary Volume Descriptor found\n");
712 break;
713 case 2:
714 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
715 break;
716 case 3:
717 udf_debug("ISO9660 Volume Partition Descriptor found\n");
718 break;
719 case 255:
720 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
721 break;
722 default:
723 udf_debug("ISO9660 VRS (%u) found\n",
724 vsd->structType);
725 break;
726 }
727 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
728 VSD_STD_ID_LEN))
729 ; /* nothing */
730 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
731 VSD_STD_ID_LEN)) {
732 brelse(bh);
733 break;
734 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
735 VSD_STD_ID_LEN))
736 nsr02 = sector;
737 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
738 VSD_STD_ID_LEN))
739 nsr03 = sector;
740 brelse(bh);
741 }
742
743 if (nsr03)
744 return nsr03;
745 else if (nsr02)
746 return nsr02;
747 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
748 return -1;
749 else
750 return 0;
751 }
752
753 static int udf_find_fileset(struct super_block *sb,
754 struct kernel_lb_addr *fileset,
755 struct kernel_lb_addr *root)
756 {
757 struct buffer_head *bh = NULL;
758 long lastblock;
759 uint16_t ident;
760 struct udf_sb_info *sbi;
761
762 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
763 fileset->partitionReferenceNum != 0xFFFF) {
764 bh = udf_read_ptagged(sb, fileset, 0, &ident);
765
766 if (!bh) {
767 return 1;
768 } else if (ident != TAG_IDENT_FSD) {
769 brelse(bh);
770 return 1;
771 }
772
773 }
774
775 sbi = UDF_SB(sb);
776 if (!bh) {
777 /* Search backwards through the partitions */
778 struct kernel_lb_addr newfileset;
779
780 /* --> cvg: FIXME - is it reasonable? */
781 return 1;
782
783 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
784 (newfileset.partitionReferenceNum != 0xFFFF &&
785 fileset->logicalBlockNum == 0xFFFFFFFF &&
786 fileset->partitionReferenceNum == 0xFFFF);
787 newfileset.partitionReferenceNum--) {
788 lastblock = sbi->s_partmaps
789 [newfileset.partitionReferenceNum]
790 .s_partition_len;
791 newfileset.logicalBlockNum = 0;
792
793 do {
794 bh = udf_read_ptagged(sb, &newfileset, 0,
795 &ident);
796 if (!bh) {
797 newfileset.logicalBlockNum++;
798 continue;
799 }
800
801 switch (ident) {
802 case TAG_IDENT_SBD:
803 {
804 struct spaceBitmapDesc *sp;
805 sp = (struct spaceBitmapDesc *)
806 bh->b_data;
807 newfileset.logicalBlockNum += 1 +
808 ((le32_to_cpu(sp->numOfBytes) +
809 sizeof(struct spaceBitmapDesc)
810 - 1) >> sb->s_blocksize_bits);
811 brelse(bh);
812 break;
813 }
814 case TAG_IDENT_FSD:
815 *fileset = newfileset;
816 break;
817 default:
818 newfileset.logicalBlockNum++;
819 brelse(bh);
820 bh = NULL;
821 break;
822 }
823 } while (newfileset.logicalBlockNum < lastblock &&
824 fileset->logicalBlockNum == 0xFFFFFFFF &&
825 fileset->partitionReferenceNum == 0xFFFF);
826 }
827 }
828
829 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
830 fileset->partitionReferenceNum != 0xFFFF) && bh) {
831 udf_debug("Fileset at block=%d, partition=%d\n",
832 fileset->logicalBlockNum,
833 fileset->partitionReferenceNum);
834
835 sbi->s_partition = fileset->partitionReferenceNum;
836 udf_load_fileset(sb, bh, root);
837 brelse(bh);
838 return 0;
839 }
840 return 1;
841 }
842
843 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
844 {
845 struct primaryVolDesc *pvoldesc;
846 struct ustr *instr, *outstr;
847 struct buffer_head *bh;
848 uint16_t ident;
849 int ret = 1;
850
851 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
852 if (!instr)
853 return 1;
854
855 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
856 if (!outstr)
857 goto out1;
858
859 bh = udf_read_tagged(sb, block, block, &ident);
860 if (!bh)
861 goto out2;
862
863 BUG_ON(ident != TAG_IDENT_PVD);
864
865 pvoldesc = (struct primaryVolDesc *)bh->b_data;
866
867 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
868 pvoldesc->recordingDateAndTime)) {
869 #ifdef UDFFS_DEBUG
870 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
871 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
872 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
873 ts->minute, le16_to_cpu(ts->typeAndTimezone));
874 #endif
875 }
876
877 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
878 if (udf_CS0toUTF8(outstr, instr)) {
879 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
880 outstr->u_len > 31 ? 31 : outstr->u_len);
881 udf_debug("volIdent[] = '%s'\n",
882 UDF_SB(sb)->s_volume_ident);
883 }
884
885 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
886 if (udf_CS0toUTF8(outstr, instr))
887 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
888
889 brelse(bh);
890 ret = 0;
891 out2:
892 kfree(outstr);
893 out1:
894 kfree(instr);
895 return ret;
896 }
897
898 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
899 u32 meta_file_loc, u32 partition_num)
900 {
901 struct kernel_lb_addr addr;
902 struct inode *metadata_fe;
903
904 addr.logicalBlockNum = meta_file_loc;
905 addr.partitionReferenceNum = partition_num;
906
907 metadata_fe = udf_iget(sb, &addr);
908
909 if (metadata_fe == NULL)
910 udf_warn(sb, "metadata inode efe not found\n");
911 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
912 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
913 iput(metadata_fe);
914 metadata_fe = NULL;
915 }
916
917 return metadata_fe;
918 }
919
920 static int udf_load_metadata_files(struct super_block *sb, int partition)
921 {
922 struct udf_sb_info *sbi = UDF_SB(sb);
923 struct udf_part_map *map;
924 struct udf_meta_data *mdata;
925 struct kernel_lb_addr addr;
926
927 map = &sbi->s_partmaps[partition];
928 mdata = &map->s_type_specific.s_metadata;
929
930 /* metadata address */
931 udf_debug("Metadata file location: block = %d part = %d\n",
932 mdata->s_meta_file_loc, map->s_partition_num);
933
934 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
935 mdata->s_meta_file_loc, map->s_partition_num);
936
937 if (mdata->s_metadata_fe == NULL) {
938 /* mirror file entry */
939 udf_debug("Mirror metadata file location: block = %d part = %d\n",
940 mdata->s_mirror_file_loc, map->s_partition_num);
941
942 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
943 mdata->s_mirror_file_loc, map->s_partition_num);
944
945 if (mdata->s_mirror_fe == NULL) {
946 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
947 goto error_exit;
948 }
949 }
950
951 /*
952 * bitmap file entry
953 * Note:
954 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
955 */
956 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
957 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
958 addr.partitionReferenceNum = map->s_partition_num;
959
960 udf_debug("Bitmap file location: block = %d part = %d\n",
961 addr.logicalBlockNum, addr.partitionReferenceNum);
962
963 mdata->s_bitmap_fe = udf_iget(sb, &addr);
964
965 if (mdata->s_bitmap_fe == NULL) {
966 if (sb->s_flags & MS_RDONLY)
967 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
968 else {
969 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
970 goto error_exit;
971 }
972 }
973 }
974
975 udf_debug("udf_load_metadata_files Ok\n");
976
977 return 0;
978
979 error_exit:
980 return 1;
981 }
982
983 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
984 struct kernel_lb_addr *root)
985 {
986 struct fileSetDesc *fset;
987
988 fset = (struct fileSetDesc *)bh->b_data;
989
990 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
991
992 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
993
994 udf_debug("Rootdir at block=%d, partition=%d\n",
995 root->logicalBlockNum, root->partitionReferenceNum);
996 }
997
998 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
999 {
1000 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1001 return DIV_ROUND_UP(map->s_partition_len +
1002 (sizeof(struct spaceBitmapDesc) << 3),
1003 sb->s_blocksize * 8);
1004 }
1005
1006 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1007 {
1008 struct udf_bitmap *bitmap;
1009 int nr_groups;
1010 int size;
1011
1012 nr_groups = udf_compute_nr_groups(sb, index);
1013 size = sizeof(struct udf_bitmap) +
1014 (sizeof(struct buffer_head *) * nr_groups);
1015
1016 if (size <= PAGE_SIZE)
1017 bitmap = kzalloc(size, GFP_KERNEL);
1018 else
1019 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1020
1021 if (bitmap == NULL)
1022 return NULL;
1023
1024 bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
1025 bitmap->s_nr_groups = nr_groups;
1026 return bitmap;
1027 }
1028
1029 static int udf_fill_partdesc_info(struct super_block *sb,
1030 struct partitionDesc *p, int p_index)
1031 {
1032 struct udf_part_map *map;
1033 struct udf_sb_info *sbi = UDF_SB(sb);
1034 struct partitionHeaderDesc *phd;
1035
1036 map = &sbi->s_partmaps[p_index];
1037
1038 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1039 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1040
1041 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1042 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1043 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1044 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1045 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1046 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1047 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1048 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1049
1050 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1051 p_index, map->s_partition_type,
1052 map->s_partition_root, map->s_partition_len);
1053
1054 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1055 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1056 return 0;
1057
1058 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1059 if (phd->unallocSpaceTable.extLength) {
1060 struct kernel_lb_addr loc = {
1061 .logicalBlockNum = le32_to_cpu(
1062 phd->unallocSpaceTable.extPosition),
1063 .partitionReferenceNum = p_index,
1064 };
1065
1066 map->s_uspace.s_table = udf_iget(sb, &loc);
1067 if (!map->s_uspace.s_table) {
1068 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1069 p_index);
1070 return 1;
1071 }
1072 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1073 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1074 p_index, map->s_uspace.s_table->i_ino);
1075 }
1076
1077 if (phd->unallocSpaceBitmap.extLength) {
1078 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1079 if (!bitmap)
1080 return 1;
1081 map->s_uspace.s_bitmap = bitmap;
1082 bitmap->s_extLength = le32_to_cpu(
1083 phd->unallocSpaceBitmap.extLength);
1084 bitmap->s_extPosition = le32_to_cpu(
1085 phd->unallocSpaceBitmap.extPosition);
1086 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1087 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1088 p_index, bitmap->s_extPosition);
1089 }
1090
1091 if (phd->partitionIntegrityTable.extLength)
1092 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1093
1094 if (phd->freedSpaceTable.extLength) {
1095 struct kernel_lb_addr loc = {
1096 .logicalBlockNum = le32_to_cpu(
1097 phd->freedSpaceTable.extPosition),
1098 .partitionReferenceNum = p_index,
1099 };
1100
1101 map->s_fspace.s_table = udf_iget(sb, &loc);
1102 if (!map->s_fspace.s_table) {
1103 udf_debug("cannot load freedSpaceTable (part %d)\n",
1104 p_index);
1105 return 1;
1106 }
1107
1108 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1109 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1110 p_index, map->s_fspace.s_table->i_ino);
1111 }
1112
1113 if (phd->freedSpaceBitmap.extLength) {
1114 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1115 if (!bitmap)
1116 return 1;
1117 map->s_fspace.s_bitmap = bitmap;
1118 bitmap->s_extLength = le32_to_cpu(
1119 phd->freedSpaceBitmap.extLength);
1120 bitmap->s_extPosition = le32_to_cpu(
1121 phd->freedSpaceBitmap.extPosition);
1122 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1123 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1124 p_index, bitmap->s_extPosition);
1125 }
1126 return 0;
1127 }
1128
1129 static void udf_find_vat_block(struct super_block *sb, int p_index,
1130 int type1_index, sector_t start_block)
1131 {
1132 struct udf_sb_info *sbi = UDF_SB(sb);
1133 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1134 sector_t vat_block;
1135 struct kernel_lb_addr ino;
1136
1137 /*
1138 * VAT file entry is in the last recorded block. Some broken disks have
1139 * it a few blocks before so try a bit harder...
1140 */
1141 ino.partitionReferenceNum = type1_index;
1142 for (vat_block = start_block;
1143 vat_block >= map->s_partition_root &&
1144 vat_block >= start_block - 3 &&
1145 !sbi->s_vat_inode; vat_block--) {
1146 ino.logicalBlockNum = vat_block - map->s_partition_root;
1147 sbi->s_vat_inode = udf_iget(sb, &ino);
1148 }
1149 }
1150
1151 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1152 {
1153 struct udf_sb_info *sbi = UDF_SB(sb);
1154 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1155 struct buffer_head *bh = NULL;
1156 struct udf_inode_info *vati;
1157 uint32_t pos;
1158 struct virtualAllocationTable20 *vat20;
1159 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1160
1161 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1162 if (!sbi->s_vat_inode &&
1163 sbi->s_last_block != blocks - 1) {
1164 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1165 (unsigned long)sbi->s_last_block,
1166 (unsigned long)blocks - 1);
1167 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1168 }
1169 if (!sbi->s_vat_inode)
1170 return 1;
1171
1172 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1173 map->s_type_specific.s_virtual.s_start_offset = 0;
1174 map->s_type_specific.s_virtual.s_num_entries =
1175 (sbi->s_vat_inode->i_size - 36) >> 2;
1176 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1177 vati = UDF_I(sbi->s_vat_inode);
1178 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1179 pos = udf_block_map(sbi->s_vat_inode, 0);
1180 bh = sb_bread(sb, pos);
1181 if (!bh)
1182 return 1;
1183 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1184 } else {
1185 vat20 = (struct virtualAllocationTable20 *)
1186 vati->i_ext.i_data;
1187 }
1188
1189 map->s_type_specific.s_virtual.s_start_offset =
1190 le16_to_cpu(vat20->lengthHeader);
1191 map->s_type_specific.s_virtual.s_num_entries =
1192 (sbi->s_vat_inode->i_size -
1193 map->s_type_specific.s_virtual.
1194 s_start_offset) >> 2;
1195 brelse(bh);
1196 }
1197 return 0;
1198 }
1199
1200 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1201 {
1202 struct buffer_head *bh;
1203 struct partitionDesc *p;
1204 struct udf_part_map *map;
1205 struct udf_sb_info *sbi = UDF_SB(sb);
1206 int i, type1_idx;
1207 uint16_t partitionNumber;
1208 uint16_t ident;
1209 int ret = 0;
1210
1211 bh = udf_read_tagged(sb, block, block, &ident);
1212 if (!bh)
1213 return 1;
1214 if (ident != TAG_IDENT_PD)
1215 goto out_bh;
1216
1217 p = (struct partitionDesc *)bh->b_data;
1218 partitionNumber = le16_to_cpu(p->partitionNumber);
1219
1220 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1221 for (i = 0; i < sbi->s_partitions; i++) {
1222 map = &sbi->s_partmaps[i];
1223 udf_debug("Searching map: (%d == %d)\n",
1224 map->s_partition_num, partitionNumber);
1225 if (map->s_partition_num == partitionNumber &&
1226 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1227 map->s_partition_type == UDF_SPARABLE_MAP15))
1228 break;
1229 }
1230
1231 if (i >= sbi->s_partitions) {
1232 udf_debug("Partition (%d) not found in partition map\n",
1233 partitionNumber);
1234 goto out_bh;
1235 }
1236
1237 ret = udf_fill_partdesc_info(sb, p, i);
1238
1239 /*
1240 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1241 * PHYSICAL partitions are already set up
1242 */
1243 type1_idx = i;
1244 for (i = 0; i < sbi->s_partitions; i++) {
1245 map = &sbi->s_partmaps[i];
1246
1247 if (map->s_partition_num == partitionNumber &&
1248 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1249 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1250 map->s_partition_type == UDF_METADATA_MAP25))
1251 break;
1252 }
1253
1254 if (i >= sbi->s_partitions)
1255 goto out_bh;
1256
1257 ret = udf_fill_partdesc_info(sb, p, i);
1258 if (ret)
1259 goto out_bh;
1260
1261 if (map->s_partition_type == UDF_METADATA_MAP25) {
1262 ret = udf_load_metadata_files(sb, i);
1263 if (ret) {
1264 udf_err(sb, "error loading MetaData partition map %d\n",
1265 i);
1266 goto out_bh;
1267 }
1268 } else {
1269 ret = udf_load_vat(sb, i, type1_idx);
1270 if (ret)
1271 goto out_bh;
1272 /*
1273 * Mark filesystem read-only if we have a partition with
1274 * virtual map since we don't handle writing to it (we
1275 * overwrite blocks instead of relocating them).
1276 */
1277 sb->s_flags |= MS_RDONLY;
1278 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1279 }
1280 out_bh:
1281 /* In case loading failed, we handle cleanup in udf_fill_super */
1282 brelse(bh);
1283 return ret;
1284 }
1285
1286 static int udf_load_sparable_map(struct super_block *sb,
1287 struct udf_part_map *map,
1288 struct sparablePartitionMap *spm)
1289 {
1290 uint32_t loc;
1291 uint16_t ident;
1292 struct sparingTable *st;
1293 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1294 int i;
1295 struct buffer_head *bh;
1296
1297 map->s_partition_type = UDF_SPARABLE_MAP15;
1298 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1299 if (!is_power_of_2(sdata->s_packet_len)) {
1300 udf_err(sb, "error loading logical volume descriptor: "
1301 "Invalid packet length %u\n",
1302 (unsigned)sdata->s_packet_len);
1303 return -EIO;
1304 }
1305 if (spm->numSparingTables > 4) {
1306 udf_err(sb, "error loading logical volume descriptor: "
1307 "Too many sparing tables (%d)\n",
1308 (int)spm->numSparingTables);
1309 return -EIO;
1310 }
1311
1312 for (i = 0; i < spm->numSparingTables; i++) {
1313 loc = le32_to_cpu(spm->locSparingTable[i]);
1314 bh = udf_read_tagged(sb, loc, loc, &ident);
1315 if (!bh)
1316 continue;
1317
1318 st = (struct sparingTable *)bh->b_data;
1319 if (ident != 0 ||
1320 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1321 strlen(UDF_ID_SPARING)) ||
1322 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1323 sb->s_blocksize) {
1324 brelse(bh);
1325 continue;
1326 }
1327
1328 sdata->s_spar_map[i] = bh;
1329 }
1330 map->s_partition_func = udf_get_pblock_spar15;
1331 return 0;
1332 }
1333
1334 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1335 struct kernel_lb_addr *fileset)
1336 {
1337 struct logicalVolDesc *lvd;
1338 int i, offset;
1339 uint8_t type;
1340 struct udf_sb_info *sbi = UDF_SB(sb);
1341 struct genericPartitionMap *gpm;
1342 uint16_t ident;
1343 struct buffer_head *bh;
1344 unsigned int table_len;
1345 int ret = 0;
1346
1347 bh = udf_read_tagged(sb, block, block, &ident);
1348 if (!bh)
1349 return 1;
1350 BUG_ON(ident != TAG_IDENT_LVD);
1351 lvd = (struct logicalVolDesc *)bh->b_data;
1352 table_len = le32_to_cpu(lvd->mapTableLength);
1353 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1354 udf_err(sb, "error loading logical volume descriptor: "
1355 "Partition table too long (%u > %lu)\n", table_len,
1356 sb->s_blocksize - sizeof(*lvd));
1357 ret = 1;
1358 goto out_bh;
1359 }
1360
1361 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1362 if (ret)
1363 goto out_bh;
1364
1365 for (i = 0, offset = 0;
1366 i < sbi->s_partitions && offset < table_len;
1367 i++, offset += gpm->partitionMapLength) {
1368 struct udf_part_map *map = &sbi->s_partmaps[i];
1369 gpm = (struct genericPartitionMap *)
1370 &(lvd->partitionMaps[offset]);
1371 type = gpm->partitionMapType;
1372 if (type == 1) {
1373 struct genericPartitionMap1 *gpm1 =
1374 (struct genericPartitionMap1 *)gpm;
1375 map->s_partition_type = UDF_TYPE1_MAP15;
1376 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1377 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1378 map->s_partition_func = NULL;
1379 } else if (type == 2) {
1380 struct udfPartitionMap2 *upm2 =
1381 (struct udfPartitionMap2 *)gpm;
1382 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1383 strlen(UDF_ID_VIRTUAL))) {
1384 u16 suf =
1385 le16_to_cpu(((__le16 *)upm2->partIdent.
1386 identSuffix)[0]);
1387 if (suf < 0x0200) {
1388 map->s_partition_type =
1389 UDF_VIRTUAL_MAP15;
1390 map->s_partition_func =
1391 udf_get_pblock_virt15;
1392 } else {
1393 map->s_partition_type =
1394 UDF_VIRTUAL_MAP20;
1395 map->s_partition_func =
1396 udf_get_pblock_virt20;
1397 }
1398 } else if (!strncmp(upm2->partIdent.ident,
1399 UDF_ID_SPARABLE,
1400 strlen(UDF_ID_SPARABLE))) {
1401 if (udf_load_sparable_map(sb, map,
1402 (struct sparablePartitionMap *)gpm) < 0) {
1403 ret = 1;
1404 goto out_bh;
1405 }
1406 } else if (!strncmp(upm2->partIdent.ident,
1407 UDF_ID_METADATA,
1408 strlen(UDF_ID_METADATA))) {
1409 struct udf_meta_data *mdata =
1410 &map->s_type_specific.s_metadata;
1411 struct metadataPartitionMap *mdm =
1412 (struct metadataPartitionMap *)
1413 &(lvd->partitionMaps[offset]);
1414 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1415 i, type, UDF_ID_METADATA);
1416
1417 map->s_partition_type = UDF_METADATA_MAP25;
1418 map->s_partition_func = udf_get_pblock_meta25;
1419
1420 mdata->s_meta_file_loc =
1421 le32_to_cpu(mdm->metadataFileLoc);
1422 mdata->s_mirror_file_loc =
1423 le32_to_cpu(mdm->metadataMirrorFileLoc);
1424 mdata->s_bitmap_file_loc =
1425 le32_to_cpu(mdm->metadataBitmapFileLoc);
1426 mdata->s_alloc_unit_size =
1427 le32_to_cpu(mdm->allocUnitSize);
1428 mdata->s_align_unit_size =
1429 le16_to_cpu(mdm->alignUnitSize);
1430 if (mdm->flags & 0x01)
1431 mdata->s_flags |= MF_DUPLICATE_MD;
1432
1433 udf_debug("Metadata Ident suffix=0x%x\n",
1434 le16_to_cpu(*(__le16 *)
1435 mdm->partIdent.identSuffix));
1436 udf_debug("Metadata part num=%d\n",
1437 le16_to_cpu(mdm->partitionNum));
1438 udf_debug("Metadata part alloc unit size=%d\n",
1439 le32_to_cpu(mdm->allocUnitSize));
1440 udf_debug("Metadata file loc=%d\n",
1441 le32_to_cpu(mdm->metadataFileLoc));
1442 udf_debug("Mirror file loc=%d\n",
1443 le32_to_cpu(mdm->metadataMirrorFileLoc));
1444 udf_debug("Bitmap file loc=%d\n",
1445 le32_to_cpu(mdm->metadataBitmapFileLoc));
1446 udf_debug("Flags: %d %d\n",
1447 mdata->s_flags, mdm->flags);
1448 } else {
1449 udf_debug("Unknown ident: %s\n",
1450 upm2->partIdent.ident);
1451 continue;
1452 }
1453 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1454 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1455 }
1456 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1457 i, map->s_partition_num, type, map->s_volumeseqnum);
1458 }
1459
1460 if (fileset) {
1461 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1462
1463 *fileset = lelb_to_cpu(la->extLocation);
1464 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1465 fileset->logicalBlockNum,
1466 fileset->partitionReferenceNum);
1467 }
1468 if (lvd->integritySeqExt.extLength)
1469 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1470
1471 out_bh:
1472 brelse(bh);
1473 return ret;
1474 }
1475
1476 /*
1477 * udf_load_logicalvolint
1478 *
1479 */
1480 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1481 {
1482 struct buffer_head *bh = NULL;
1483 uint16_t ident;
1484 struct udf_sb_info *sbi = UDF_SB(sb);
1485 struct logicalVolIntegrityDesc *lvid;
1486
1487 while (loc.extLength > 0 &&
1488 (bh = udf_read_tagged(sb, loc.extLocation,
1489 loc.extLocation, &ident)) &&
1490 ident == TAG_IDENT_LVID) {
1491 sbi->s_lvid_bh = bh;
1492 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1493
1494 if (lvid->nextIntegrityExt.extLength)
1495 udf_load_logicalvolint(sb,
1496 leea_to_cpu(lvid->nextIntegrityExt));
1497
1498 if (sbi->s_lvid_bh != bh)
1499 brelse(bh);
1500 loc.extLength -= sb->s_blocksize;
1501 loc.extLocation++;
1502 }
1503 if (sbi->s_lvid_bh != bh)
1504 brelse(bh);
1505 }
1506
1507 /*
1508 * udf_process_sequence
1509 *
1510 * PURPOSE
1511 * Process a main/reserve volume descriptor sequence.
1512 *
1513 * PRE-CONDITIONS
1514 * sb Pointer to _locked_ superblock.
1515 * block First block of first extent of the sequence.
1516 * lastblock Lastblock of first extent of the sequence.
1517 *
1518 * HISTORY
1519 * July 1, 1997 - Andrew E. Mileski
1520 * Written, tested, and released.
1521 */
1522 static noinline int udf_process_sequence(struct super_block *sb, long block,
1523 long lastblock, struct kernel_lb_addr *fileset)
1524 {
1525 struct buffer_head *bh = NULL;
1526 struct udf_vds_record vds[VDS_POS_LENGTH];
1527 struct udf_vds_record *curr;
1528 struct generic_desc *gd;
1529 struct volDescPtr *vdp;
1530 int done = 0;
1531 uint32_t vdsn;
1532 uint16_t ident;
1533 long next_s = 0, next_e = 0;
1534
1535 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1536
1537 /*
1538 * Read the main descriptor sequence and find which descriptors
1539 * are in it.
1540 */
1541 for (; (!done && block <= lastblock); block++) {
1542
1543 bh = udf_read_tagged(sb, block, block, &ident);
1544 if (!bh) {
1545 udf_err(sb,
1546 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1547 (unsigned long long)block);
1548 return 1;
1549 }
1550
1551 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1552 gd = (struct generic_desc *)bh->b_data;
1553 vdsn = le32_to_cpu(gd->volDescSeqNum);
1554 switch (ident) {
1555 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1556 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1557 if (vdsn >= curr->volDescSeqNum) {
1558 curr->volDescSeqNum = vdsn;
1559 curr->block = block;
1560 }
1561 break;
1562 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1563 curr = &vds[VDS_POS_VOL_DESC_PTR];
1564 if (vdsn >= curr->volDescSeqNum) {
1565 curr->volDescSeqNum = vdsn;
1566 curr->block = block;
1567
1568 vdp = (struct volDescPtr *)bh->b_data;
1569 next_s = le32_to_cpu(
1570 vdp->nextVolDescSeqExt.extLocation);
1571 next_e = le32_to_cpu(
1572 vdp->nextVolDescSeqExt.extLength);
1573 next_e = next_e >> sb->s_blocksize_bits;
1574 next_e += next_s;
1575 }
1576 break;
1577 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1578 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1579 if (vdsn >= curr->volDescSeqNum) {
1580 curr->volDescSeqNum = vdsn;
1581 curr->block = block;
1582 }
1583 break;
1584 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1585 curr = &vds[VDS_POS_PARTITION_DESC];
1586 if (!curr->block)
1587 curr->block = block;
1588 break;
1589 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1590 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1591 if (vdsn >= curr->volDescSeqNum) {
1592 curr->volDescSeqNum = vdsn;
1593 curr->block = block;
1594 }
1595 break;
1596 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1597 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1598 if (vdsn >= curr->volDescSeqNum) {
1599 curr->volDescSeqNum = vdsn;
1600 curr->block = block;
1601 }
1602 break;
1603 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1604 vds[VDS_POS_TERMINATING_DESC].block = block;
1605 if (next_e) {
1606 block = next_s;
1607 lastblock = next_e;
1608 next_s = next_e = 0;
1609 } else
1610 done = 1;
1611 break;
1612 }
1613 brelse(bh);
1614 }
1615 /*
1616 * Now read interesting descriptors again and process them
1617 * in a suitable order
1618 */
1619 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1620 udf_err(sb, "Primary Volume Descriptor not found!\n");
1621 return 1;
1622 }
1623 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1624 return 1;
1625
1626 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1627 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1628 return 1;
1629
1630 if (vds[VDS_POS_PARTITION_DESC].block) {
1631 /*
1632 * We rescan the whole descriptor sequence to find
1633 * partition descriptor blocks and process them.
1634 */
1635 for (block = vds[VDS_POS_PARTITION_DESC].block;
1636 block < vds[VDS_POS_TERMINATING_DESC].block;
1637 block++)
1638 if (udf_load_partdesc(sb, block))
1639 return 1;
1640 }
1641
1642 return 0;
1643 }
1644
1645 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1646 struct kernel_lb_addr *fileset)
1647 {
1648 struct anchorVolDescPtr *anchor;
1649 long main_s, main_e, reserve_s, reserve_e;
1650
1651 anchor = (struct anchorVolDescPtr *)bh->b_data;
1652
1653 /* Locate the main sequence */
1654 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1655 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1656 main_e = main_e >> sb->s_blocksize_bits;
1657 main_e += main_s;
1658
1659 /* Locate the reserve sequence */
1660 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1661 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1662 reserve_e = reserve_e >> sb->s_blocksize_bits;
1663 reserve_e += reserve_s;
1664
1665 /* Process the main & reserve sequences */
1666 /* responsible for finding the PartitionDesc(s) */
1667 if (!udf_process_sequence(sb, main_s, main_e, fileset))
1668 return 1;
1669 udf_sb_free_partitions(sb);
1670 if (!udf_process_sequence(sb, reserve_s, reserve_e, fileset))
1671 return 1;
1672 udf_sb_free_partitions(sb);
1673 return 0;
1674 }
1675
1676 /*
1677 * Check whether there is an anchor block in the given block and
1678 * load Volume Descriptor Sequence if so.
1679 */
1680 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1681 struct kernel_lb_addr *fileset)
1682 {
1683 struct buffer_head *bh;
1684 uint16_t ident;
1685 int ret;
1686
1687 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1688 udf_fixed_to_variable(block) >=
1689 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1690 return 0;
1691
1692 bh = udf_read_tagged(sb, block, block, &ident);
1693 if (!bh)
1694 return 0;
1695 if (ident != TAG_IDENT_AVDP) {
1696 brelse(bh);
1697 return 0;
1698 }
1699 ret = udf_load_sequence(sb, bh, fileset);
1700 brelse(bh);
1701 return ret;
1702 }
1703
1704 /* Search for an anchor volume descriptor pointer */
1705 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1706 struct kernel_lb_addr *fileset)
1707 {
1708 sector_t last[6];
1709 int i;
1710 struct udf_sb_info *sbi = UDF_SB(sb);
1711 int last_count = 0;
1712
1713 /* First try user provided anchor */
1714 if (sbi->s_anchor) {
1715 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1716 return lastblock;
1717 }
1718 /*
1719 * according to spec, anchor is in either:
1720 * block 256
1721 * lastblock-256
1722 * lastblock
1723 * however, if the disc isn't closed, it could be 512.
1724 */
1725 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1726 return lastblock;
1727 /*
1728 * The trouble is which block is the last one. Drives often misreport
1729 * this so we try various possibilities.
1730 */
1731 last[last_count++] = lastblock;
1732 if (lastblock >= 1)
1733 last[last_count++] = lastblock - 1;
1734 last[last_count++] = lastblock + 1;
1735 if (lastblock >= 2)
1736 last[last_count++] = lastblock - 2;
1737 if (lastblock >= 150)
1738 last[last_count++] = lastblock - 150;
1739 if (lastblock >= 152)
1740 last[last_count++] = lastblock - 152;
1741
1742 for (i = 0; i < last_count; i++) {
1743 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1744 sb->s_blocksize_bits)
1745 continue;
1746 if (udf_check_anchor_block(sb, last[i], fileset))
1747 return last[i];
1748 if (last[i] < 256)
1749 continue;
1750 if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1751 return last[i];
1752 }
1753
1754 /* Finally try block 512 in case media is open */
1755 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1756 return last[0];
1757 return 0;
1758 }
1759
1760 /*
1761 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1762 * area specified by it. The function expects sbi->s_lastblock to be the last
1763 * block on the media.
1764 *
1765 * Return 1 if ok, 0 if not found.
1766 *
1767 */
1768 static int udf_find_anchor(struct super_block *sb,
1769 struct kernel_lb_addr *fileset)
1770 {
1771 sector_t lastblock;
1772 struct udf_sb_info *sbi = UDF_SB(sb);
1773
1774 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1775 if (lastblock)
1776 goto out;
1777
1778 /* No anchor found? Try VARCONV conversion of block numbers */
1779 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1780 /* Firstly, we try to not convert number of the last block */
1781 lastblock = udf_scan_anchors(sb,
1782 udf_variable_to_fixed(sbi->s_last_block),
1783 fileset);
1784 if (lastblock)
1785 goto out;
1786
1787 /* Secondly, we try with converted number of the last block */
1788 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1789 if (!lastblock) {
1790 /* VARCONV didn't help. Clear it. */
1791 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1792 return 0;
1793 }
1794 out:
1795 sbi->s_last_block = lastblock;
1796 return 1;
1797 }
1798
1799 /*
1800 * Check Volume Structure Descriptor, find Anchor block and load Volume
1801 * Descriptor Sequence
1802 */
1803 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1804 int silent, struct kernel_lb_addr *fileset)
1805 {
1806 struct udf_sb_info *sbi = UDF_SB(sb);
1807 loff_t nsr_off;
1808
1809 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1810 if (!silent)
1811 udf_warn(sb, "Bad block size\n");
1812 return 0;
1813 }
1814 sbi->s_last_block = uopt->lastblock;
1815 if (!uopt->novrs) {
1816 /* Check that it is NSR02 compliant */
1817 nsr_off = udf_check_vsd(sb);
1818 if (!nsr_off) {
1819 if (!silent)
1820 udf_warn(sb, "No VRS found\n");
1821 return 0;
1822 }
1823 if (nsr_off == -1)
1824 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1825 if (!sbi->s_last_block)
1826 sbi->s_last_block = udf_get_last_block(sb);
1827 } else {
1828 udf_debug("Validity check skipped because of novrs option\n");
1829 }
1830
1831 /* Look for anchor block and load Volume Descriptor Sequence */
1832 sbi->s_anchor = uopt->anchor;
1833 if (!udf_find_anchor(sb, fileset)) {
1834 if (!silent)
1835 udf_warn(sb, "No anchor found\n");
1836 return 0;
1837 }
1838 return 1;
1839 }
1840
1841 static void udf_open_lvid(struct super_block *sb)
1842 {
1843 struct udf_sb_info *sbi = UDF_SB(sb);
1844 struct buffer_head *bh = sbi->s_lvid_bh;
1845 struct logicalVolIntegrityDesc *lvid;
1846 struct logicalVolIntegrityDescImpUse *lvidiu;
1847
1848 if (!bh)
1849 return;
1850
1851 mutex_lock(&sbi->s_alloc_mutex);
1852 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1853 lvidiu = udf_sb_lvidiu(sbi);
1854
1855 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1856 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1857 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1858 CURRENT_TIME);
1859 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1860
1861 lvid->descTag.descCRC = cpu_to_le16(
1862 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1863 le16_to_cpu(lvid->descTag.descCRCLength)));
1864
1865 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1866 mark_buffer_dirty(bh);
1867 sbi->s_lvid_dirty = 0;
1868 mutex_unlock(&sbi->s_alloc_mutex);
1869 }
1870
1871 static void udf_close_lvid(struct super_block *sb)
1872 {
1873 struct udf_sb_info *sbi = UDF_SB(sb);
1874 struct buffer_head *bh = sbi->s_lvid_bh;
1875 struct logicalVolIntegrityDesc *lvid;
1876 struct logicalVolIntegrityDescImpUse *lvidiu;
1877
1878 if (!bh)
1879 return;
1880
1881 mutex_lock(&sbi->s_alloc_mutex);
1882 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1883 lvidiu = udf_sb_lvidiu(sbi);
1884 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1885 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1886 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1887 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1888 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1889 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1890 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1891 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1892 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1893 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1894
1895 lvid->descTag.descCRC = cpu_to_le16(
1896 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1897 le16_to_cpu(lvid->descTag.descCRCLength)));
1898
1899 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1900 /*
1901 * We set buffer uptodate unconditionally here to avoid spurious
1902 * warnings from mark_buffer_dirty() when previous EIO has marked
1903 * the buffer as !uptodate
1904 */
1905 set_buffer_uptodate(bh);
1906 mark_buffer_dirty(bh);
1907 sbi->s_lvid_dirty = 0;
1908 mutex_unlock(&sbi->s_alloc_mutex);
1909 }
1910
1911 u64 lvid_get_unique_id(struct super_block *sb)
1912 {
1913 struct buffer_head *bh;
1914 struct udf_sb_info *sbi = UDF_SB(sb);
1915 struct logicalVolIntegrityDesc *lvid;
1916 struct logicalVolHeaderDesc *lvhd;
1917 u64 uniqueID;
1918 u64 ret;
1919
1920 bh = sbi->s_lvid_bh;
1921 if (!bh)
1922 return 0;
1923
1924 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1925 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1926
1927 mutex_lock(&sbi->s_alloc_mutex);
1928 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1929 if (!(++uniqueID & 0xFFFFFFFF))
1930 uniqueID += 16;
1931 lvhd->uniqueID = cpu_to_le64(uniqueID);
1932 mutex_unlock(&sbi->s_alloc_mutex);
1933 mark_buffer_dirty(bh);
1934
1935 return ret;
1936 }
1937
1938 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1939 {
1940 int ret;
1941 struct inode *inode = NULL;
1942 struct udf_options uopt;
1943 struct kernel_lb_addr rootdir, fileset;
1944 struct udf_sb_info *sbi;
1945
1946 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1947 uopt.uid = INVALID_UID;
1948 uopt.gid = INVALID_GID;
1949 uopt.umask = 0;
1950 uopt.fmode = UDF_INVALID_MODE;
1951 uopt.dmode = UDF_INVALID_MODE;
1952
1953 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1954 if (!sbi)
1955 return -ENOMEM;
1956
1957 sb->s_fs_info = sbi;
1958
1959 mutex_init(&sbi->s_alloc_mutex);
1960
1961 if (!udf_parse_options((char *)options, &uopt, false))
1962 goto error_out;
1963
1964 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1965 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1966 udf_err(sb, "utf8 cannot be combined with iocharset\n");
1967 goto error_out;
1968 }
1969 #ifdef CONFIG_UDF_NLS
1970 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1971 uopt.nls_map = load_nls_default();
1972 if (!uopt.nls_map)
1973 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1974 else
1975 udf_debug("Using default NLS map\n");
1976 }
1977 #endif
1978 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1979 uopt.flags |= (1 << UDF_FLAG_UTF8);
1980
1981 fileset.logicalBlockNum = 0xFFFFFFFF;
1982 fileset.partitionReferenceNum = 0xFFFF;
1983
1984 sbi->s_flags = uopt.flags;
1985 sbi->s_uid = uopt.uid;
1986 sbi->s_gid = uopt.gid;
1987 sbi->s_umask = uopt.umask;
1988 sbi->s_fmode = uopt.fmode;
1989 sbi->s_dmode = uopt.dmode;
1990 sbi->s_nls_map = uopt.nls_map;
1991 rwlock_init(&sbi->s_cred_lock);
1992
1993 if (uopt.session == 0xFFFFFFFF)
1994 sbi->s_session = udf_get_last_session(sb);
1995 else
1996 sbi->s_session = uopt.session;
1997
1998 udf_debug("Multi-session=%d\n", sbi->s_session);
1999
2000 /* Fill in the rest of the superblock */
2001 sb->s_op = &udf_sb_ops;
2002 sb->s_export_op = &udf_export_ops;
2003
2004 sb->s_magic = UDF_SUPER_MAGIC;
2005 sb->s_time_gran = 1000;
2006
2007 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2008 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2009 } else {
2010 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2011 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2012 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2013 if (!silent)
2014 pr_notice("Rescanning with blocksize %d\n",
2015 UDF_DEFAULT_BLOCKSIZE);
2016 brelse(sbi->s_lvid_bh);
2017 sbi->s_lvid_bh = NULL;
2018 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2019 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2020 }
2021 }
2022 if (!ret) {
2023 udf_warn(sb, "No partition found (1)\n");
2024 goto error_out;
2025 }
2026
2027 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2028
2029 if (sbi->s_lvid_bh) {
2030 struct logicalVolIntegrityDescImpUse *lvidiu =
2031 udf_sb_lvidiu(sbi);
2032 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2033 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2034 /* uint16_t maxUDFWriteRev =
2035 le16_to_cpu(lvidiu->maxUDFWriteRev); */
2036
2037 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2038 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2039 le16_to_cpu(lvidiu->minUDFReadRev),
2040 UDF_MAX_READ_VERSION);
2041 goto error_out;
2042 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2043 sb->s_flags |= MS_RDONLY;
2044
2045 sbi->s_udfrev = minUDFWriteRev;
2046
2047 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2048 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2049 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2050 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2051 }
2052
2053 if (!sbi->s_partitions) {
2054 udf_warn(sb, "No partition found (2)\n");
2055 goto error_out;
2056 }
2057
2058 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2059 UDF_PART_FLAG_READ_ONLY) {
2060 pr_notice("Partition marked readonly; forcing readonly mount\n");
2061 sb->s_flags |= MS_RDONLY;
2062 }
2063
2064 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2065 udf_warn(sb, "No fileset found\n");
2066 goto error_out;
2067 }
2068
2069 if (!silent) {
2070 struct timestamp ts;
2071 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2072 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2073 sbi->s_volume_ident,
2074 le16_to_cpu(ts.year), ts.month, ts.day,
2075 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2076 }
2077 if (!(sb->s_flags & MS_RDONLY))
2078 udf_open_lvid(sb);
2079
2080 /* Assign the root inode */
2081 /* assign inodes by physical block number */
2082 /* perhaps it's not extensible enough, but for now ... */
2083 inode = udf_iget(sb, &rootdir);
2084 if (!inode) {
2085 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2086 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2087 goto error_out;
2088 }
2089
2090 /* Allocate a dentry for the root inode */
2091 sb->s_root = d_make_root(inode);
2092 if (!sb->s_root) {
2093 udf_err(sb, "Couldn't allocate root dentry\n");
2094 goto error_out;
2095 }
2096 sb->s_maxbytes = MAX_LFS_FILESIZE;
2097 sb->s_max_links = UDF_MAX_LINKS;
2098 return 0;
2099
2100 error_out:
2101 if (sbi->s_vat_inode)
2102 iput(sbi->s_vat_inode);
2103 #ifdef CONFIG_UDF_NLS
2104 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2105 unload_nls(sbi->s_nls_map);
2106 #endif
2107 if (!(sb->s_flags & MS_RDONLY))
2108 udf_close_lvid(sb);
2109 brelse(sbi->s_lvid_bh);
2110 udf_sb_free_partitions(sb);
2111 kfree(sbi);
2112 sb->s_fs_info = NULL;
2113
2114 return -EINVAL;
2115 }
2116
2117 void _udf_err(struct super_block *sb, const char *function,
2118 const char *fmt, ...)
2119 {
2120 struct va_format vaf;
2121 va_list args;
2122
2123 va_start(args, fmt);
2124
2125 vaf.fmt = fmt;
2126 vaf.va = &args;
2127
2128 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2129
2130 va_end(args);
2131 }
2132
2133 void _udf_warn(struct super_block *sb, const char *function,
2134 const char *fmt, ...)
2135 {
2136 struct va_format vaf;
2137 va_list args;
2138
2139 va_start(args, fmt);
2140
2141 vaf.fmt = fmt;
2142 vaf.va = &args;
2143
2144 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2145
2146 va_end(args);
2147 }
2148
2149 static void udf_put_super(struct super_block *sb)
2150 {
2151 struct udf_sb_info *sbi;
2152
2153 sbi = UDF_SB(sb);
2154
2155 if (sbi->s_vat_inode)
2156 iput(sbi->s_vat_inode);
2157 #ifdef CONFIG_UDF_NLS
2158 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2159 unload_nls(sbi->s_nls_map);
2160 #endif
2161 if (!(sb->s_flags & MS_RDONLY))
2162 udf_close_lvid(sb);
2163 brelse(sbi->s_lvid_bh);
2164 udf_sb_free_partitions(sb);
2165 kfree(sb->s_fs_info);
2166 sb->s_fs_info = NULL;
2167 }
2168
2169 static int udf_sync_fs(struct super_block *sb, int wait)
2170 {
2171 struct udf_sb_info *sbi = UDF_SB(sb);
2172
2173 mutex_lock(&sbi->s_alloc_mutex);
2174 if (sbi->s_lvid_dirty) {
2175 /*
2176 * Blockdevice will be synced later so we don't have to submit
2177 * the buffer for IO
2178 */
2179 mark_buffer_dirty(sbi->s_lvid_bh);
2180 sbi->s_lvid_dirty = 0;
2181 }
2182 mutex_unlock(&sbi->s_alloc_mutex);
2183
2184 return 0;
2185 }
2186
2187 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2188 {
2189 struct super_block *sb = dentry->d_sb;
2190 struct udf_sb_info *sbi = UDF_SB(sb);
2191 struct logicalVolIntegrityDescImpUse *lvidiu;
2192 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2193
2194 if (sbi->s_lvid_bh != NULL)
2195 lvidiu = udf_sb_lvidiu(sbi);
2196 else
2197 lvidiu = NULL;
2198
2199 buf->f_type = UDF_SUPER_MAGIC;
2200 buf->f_bsize = sb->s_blocksize;
2201 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2202 buf->f_bfree = udf_count_free(sb);
2203 buf->f_bavail = buf->f_bfree;
2204 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2205 le32_to_cpu(lvidiu->numDirs)) : 0)
2206 + buf->f_bfree;
2207 buf->f_ffree = buf->f_bfree;
2208 buf->f_namelen = UDF_NAME_LEN - 2;
2209 buf->f_fsid.val[0] = (u32)id;
2210 buf->f_fsid.val[1] = (u32)(id >> 32);
2211
2212 return 0;
2213 }
2214
2215 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2216 struct udf_bitmap *bitmap)
2217 {
2218 struct buffer_head *bh = NULL;
2219 unsigned int accum = 0;
2220 int index;
2221 int block = 0, newblock;
2222 struct kernel_lb_addr loc;
2223 uint32_t bytes;
2224 uint8_t *ptr;
2225 uint16_t ident;
2226 struct spaceBitmapDesc *bm;
2227
2228 loc.logicalBlockNum = bitmap->s_extPosition;
2229 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2230 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2231
2232 if (!bh) {
2233 udf_err(sb, "udf_count_free failed\n");
2234 goto out;
2235 } else if (ident != TAG_IDENT_SBD) {
2236 brelse(bh);
2237 udf_err(sb, "udf_count_free failed\n");
2238 goto out;
2239 }
2240
2241 bm = (struct spaceBitmapDesc *)bh->b_data;
2242 bytes = le32_to_cpu(bm->numOfBytes);
2243 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2244 ptr = (uint8_t *)bh->b_data;
2245
2246 while (bytes > 0) {
2247 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2248 accum += bitmap_weight((const unsigned long *)(ptr + index),
2249 cur_bytes * 8);
2250 bytes -= cur_bytes;
2251 if (bytes) {
2252 brelse(bh);
2253 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2254 bh = udf_tread(sb, newblock);
2255 if (!bh) {
2256 udf_debug("read failed\n");
2257 goto out;
2258 }
2259 index = 0;
2260 ptr = (uint8_t *)bh->b_data;
2261 }
2262 }
2263 brelse(bh);
2264 out:
2265 return accum;
2266 }
2267
2268 static unsigned int udf_count_free_table(struct super_block *sb,
2269 struct inode *table)
2270 {
2271 unsigned int accum = 0;
2272 uint32_t elen;
2273 struct kernel_lb_addr eloc;
2274 int8_t etype;
2275 struct extent_position epos;
2276
2277 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2278 epos.block = UDF_I(table)->i_location;
2279 epos.offset = sizeof(struct unallocSpaceEntry);
2280 epos.bh = NULL;
2281
2282 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2283 accum += (elen >> table->i_sb->s_blocksize_bits);
2284
2285 brelse(epos.bh);
2286 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2287
2288 return accum;
2289 }
2290
2291 static unsigned int udf_count_free(struct super_block *sb)
2292 {
2293 unsigned int accum = 0;
2294 struct udf_sb_info *sbi;
2295 struct udf_part_map *map;
2296
2297 sbi = UDF_SB(sb);
2298 if (sbi->s_lvid_bh) {
2299 struct logicalVolIntegrityDesc *lvid =
2300 (struct logicalVolIntegrityDesc *)
2301 sbi->s_lvid_bh->b_data;
2302 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2303 accum = le32_to_cpu(
2304 lvid->freeSpaceTable[sbi->s_partition]);
2305 if (accum == 0xFFFFFFFF)
2306 accum = 0;
2307 }
2308 }
2309
2310 if (accum)
2311 return accum;
2312
2313 map = &sbi->s_partmaps[sbi->s_partition];
2314 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2315 accum += udf_count_free_bitmap(sb,
2316 map->s_uspace.s_bitmap);
2317 }
2318 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2319 accum += udf_count_free_bitmap(sb,
2320 map->s_fspace.s_bitmap);
2321 }
2322 if (accum)
2323 return accum;
2324
2325 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2326 accum += udf_count_free_table(sb,
2327 map->s_uspace.s_table);
2328 }
2329 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2330 accum += udf_count_free_table(sb,
2331 map->s_fspace.s_table);
2332 }
2333
2334 return accum;
2335 }
This page took 0.187986 seconds and 5 git commands to generate.