Merge tag 'platform-drivers-x86-v3.20-1' of git://git.infradead.org/users/dvhart...
[deliverable/linux.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
67
68 #define VDS_POS_PRIMARY_VOL_DESC 0
69 #define VDS_POS_UNALLOC_SPACE_DESC 1
70 #define VDS_POS_LOGICAL_VOL_DESC 2
71 #define VDS_POS_PARTITION_DESC 3
72 #define VDS_POS_IMP_USE_VOL_DESC 4
73 #define VDS_POS_VOL_DESC_PTR 5
74 #define VDS_POS_TERMINATING_DESC 6
75 #define VDS_POS_LENGTH 7
76
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78
79 #define VSD_FIRST_SECTOR_OFFSET 32768
80 #define VSD_MAX_SECTOR_OFFSET 0x800000
81
82 enum { UDF_MAX_LINKS = 0xffff };
83
84 /* These are the "meat" - everything else is stuffing */
85 static int udf_fill_super(struct super_block *, void *, int);
86 static void udf_put_super(struct super_block *);
87 static int udf_sync_fs(struct super_block *, int);
88 static int udf_remount_fs(struct super_block *, int *, char *);
89 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
90 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
91 struct kernel_lb_addr *);
92 static void udf_load_fileset(struct super_block *, struct buffer_head *,
93 struct kernel_lb_addr *);
94 static void udf_open_lvid(struct super_block *);
95 static void udf_close_lvid(struct super_block *);
96 static unsigned int udf_count_free(struct super_block *);
97 static int udf_statfs(struct dentry *, struct kstatfs *);
98 static int udf_show_options(struct seq_file *, struct dentry *);
99
100 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
101 {
102 struct logicalVolIntegrityDesc *lvid;
103 unsigned int partnum;
104 unsigned int offset;
105
106 if (!UDF_SB(sb)->s_lvid_bh)
107 return NULL;
108 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
109 partnum = le32_to_cpu(lvid->numOfPartitions);
110 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
111 offsetof(struct logicalVolIntegrityDesc, impUse)) /
112 (2 * sizeof(uint32_t)) < partnum) {
113 udf_err(sb, "Logical volume integrity descriptor corrupted "
114 "(numOfPartitions = %u)!\n", partnum);
115 return NULL;
116 }
117 /* The offset is to skip freeSpaceTable and sizeTable arrays */
118 offset = partnum * 2 * sizeof(uint32_t);
119 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
120 }
121
122 /* UDF filesystem type */
123 static struct dentry *udf_mount(struct file_system_type *fs_type,
124 int flags, const char *dev_name, void *data)
125 {
126 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
127 }
128
129 static struct file_system_type udf_fstype = {
130 .owner = THIS_MODULE,
131 .name = "udf",
132 .mount = udf_mount,
133 .kill_sb = kill_block_super,
134 .fs_flags = FS_REQUIRES_DEV,
135 };
136 MODULE_ALIAS_FS("udf");
137
138 static struct kmem_cache *udf_inode_cachep;
139
140 static struct inode *udf_alloc_inode(struct super_block *sb)
141 {
142 struct udf_inode_info *ei;
143 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
144 if (!ei)
145 return NULL;
146
147 ei->i_unique = 0;
148 ei->i_lenExtents = 0;
149 ei->i_next_alloc_block = 0;
150 ei->i_next_alloc_goal = 0;
151 ei->i_strat4096 = 0;
152 init_rwsem(&ei->i_data_sem);
153 ei->cached_extent.lstart = -1;
154 spin_lock_init(&ei->i_extent_cache_lock);
155
156 return &ei->vfs_inode;
157 }
158
159 static void udf_i_callback(struct rcu_head *head)
160 {
161 struct inode *inode = container_of(head, struct inode, i_rcu);
162 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
163 }
164
165 static void udf_destroy_inode(struct inode *inode)
166 {
167 call_rcu(&inode->i_rcu, udf_i_callback);
168 }
169
170 static void init_once(void *foo)
171 {
172 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
173
174 ei->i_ext.i_data = NULL;
175 inode_init_once(&ei->vfs_inode);
176 }
177
178 static int __init init_inodecache(void)
179 {
180 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
181 sizeof(struct udf_inode_info),
182 0, (SLAB_RECLAIM_ACCOUNT |
183 SLAB_MEM_SPREAD),
184 init_once);
185 if (!udf_inode_cachep)
186 return -ENOMEM;
187 return 0;
188 }
189
190 static void destroy_inodecache(void)
191 {
192 /*
193 * Make sure all delayed rcu free inodes are flushed before we
194 * destroy cache.
195 */
196 rcu_barrier();
197 kmem_cache_destroy(udf_inode_cachep);
198 }
199
200 /* Superblock operations */
201 static const struct super_operations udf_sb_ops = {
202 .alloc_inode = udf_alloc_inode,
203 .destroy_inode = udf_destroy_inode,
204 .write_inode = udf_write_inode,
205 .evict_inode = udf_evict_inode,
206 .put_super = udf_put_super,
207 .sync_fs = udf_sync_fs,
208 .statfs = udf_statfs,
209 .remount_fs = udf_remount_fs,
210 .show_options = udf_show_options,
211 };
212
213 struct udf_options {
214 unsigned char novrs;
215 unsigned int blocksize;
216 unsigned int session;
217 unsigned int lastblock;
218 unsigned int anchor;
219 unsigned int volume;
220 unsigned short partition;
221 unsigned int fileset;
222 unsigned int rootdir;
223 unsigned int flags;
224 umode_t umask;
225 kgid_t gid;
226 kuid_t uid;
227 umode_t fmode;
228 umode_t dmode;
229 struct nls_table *nls_map;
230 };
231
232 static int __init init_udf_fs(void)
233 {
234 int err;
235
236 err = init_inodecache();
237 if (err)
238 goto out1;
239 err = register_filesystem(&udf_fstype);
240 if (err)
241 goto out;
242
243 return 0;
244
245 out:
246 destroy_inodecache();
247
248 out1:
249 return err;
250 }
251
252 static void __exit exit_udf_fs(void)
253 {
254 unregister_filesystem(&udf_fstype);
255 destroy_inodecache();
256 }
257
258 module_init(init_udf_fs)
259 module_exit(exit_udf_fs)
260
261 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262 {
263 struct udf_sb_info *sbi = UDF_SB(sb);
264
265 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
266 GFP_KERNEL);
267 if (!sbi->s_partmaps) {
268 udf_err(sb, "Unable to allocate space for %d partition maps\n",
269 count);
270 sbi->s_partitions = 0;
271 return -ENOMEM;
272 }
273
274 sbi->s_partitions = count;
275 return 0;
276 }
277
278 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
279 {
280 int i;
281 int nr_groups = bitmap->s_nr_groups;
282 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
283 nr_groups);
284
285 for (i = 0; i < nr_groups; i++)
286 if (bitmap->s_block_bitmap[i])
287 brelse(bitmap->s_block_bitmap[i]);
288
289 if (size <= PAGE_SIZE)
290 kfree(bitmap);
291 else
292 vfree(bitmap);
293 }
294
295 static void udf_free_partition(struct udf_part_map *map)
296 {
297 int i;
298 struct udf_meta_data *mdata;
299
300 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
301 iput(map->s_uspace.s_table);
302 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
303 iput(map->s_fspace.s_table);
304 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
305 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
306 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
307 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
308 if (map->s_partition_type == UDF_SPARABLE_MAP15)
309 for (i = 0; i < 4; i++)
310 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
311 else if (map->s_partition_type == UDF_METADATA_MAP25) {
312 mdata = &map->s_type_specific.s_metadata;
313 iput(mdata->s_metadata_fe);
314 mdata->s_metadata_fe = NULL;
315
316 iput(mdata->s_mirror_fe);
317 mdata->s_mirror_fe = NULL;
318
319 iput(mdata->s_bitmap_fe);
320 mdata->s_bitmap_fe = NULL;
321 }
322 }
323
324 static void udf_sb_free_partitions(struct super_block *sb)
325 {
326 struct udf_sb_info *sbi = UDF_SB(sb);
327 int i;
328 if (sbi->s_partmaps == NULL)
329 return;
330 for (i = 0; i < sbi->s_partitions; i++)
331 udf_free_partition(&sbi->s_partmaps[i]);
332 kfree(sbi->s_partmaps);
333 sbi->s_partmaps = NULL;
334 }
335
336 static int udf_show_options(struct seq_file *seq, struct dentry *root)
337 {
338 struct super_block *sb = root->d_sb;
339 struct udf_sb_info *sbi = UDF_SB(sb);
340
341 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
342 seq_puts(seq, ",nostrict");
343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
344 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
346 seq_puts(seq, ",unhide");
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
348 seq_puts(seq, ",undelete");
349 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
350 seq_puts(seq, ",noadinicb");
351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
352 seq_puts(seq, ",shortad");
353 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
354 seq_puts(seq, ",uid=forget");
355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
356 seq_puts(seq, ",uid=ignore");
357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
358 seq_puts(seq, ",gid=forget");
359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
360 seq_puts(seq, ",gid=ignore");
361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
362 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
364 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
365 if (sbi->s_umask != 0)
366 seq_printf(seq, ",umask=%ho", sbi->s_umask);
367 if (sbi->s_fmode != UDF_INVALID_MODE)
368 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
369 if (sbi->s_dmode != UDF_INVALID_MODE)
370 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
371 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
372 seq_printf(seq, ",session=%u", sbi->s_session);
373 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
374 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
375 if (sbi->s_anchor != 0)
376 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
377 /*
378 * volume, partition, fileset and rootdir seem to be ignored
379 * currently
380 */
381 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
382 seq_puts(seq, ",utf8");
383 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
384 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
385
386 return 0;
387 }
388
389 /*
390 * udf_parse_options
391 *
392 * PURPOSE
393 * Parse mount options.
394 *
395 * DESCRIPTION
396 * The following mount options are supported:
397 *
398 * gid= Set the default group.
399 * umask= Set the default umask.
400 * mode= Set the default file permissions.
401 * dmode= Set the default directory permissions.
402 * uid= Set the default user.
403 * bs= Set the block size.
404 * unhide Show otherwise hidden files.
405 * undelete Show deleted files in lists.
406 * adinicb Embed data in the inode (default)
407 * noadinicb Don't embed data in the inode
408 * shortad Use short ad's
409 * longad Use long ad's (default)
410 * nostrict Unset strict conformance
411 * iocharset= Set the NLS character set
412 *
413 * The remaining are for debugging and disaster recovery:
414 *
415 * novrs Skip volume sequence recognition
416 *
417 * The following expect a offset from 0.
418 *
419 * session= Set the CDROM session (default= last session)
420 * anchor= Override standard anchor location. (default= 256)
421 * volume= Override the VolumeDesc location. (unused)
422 * partition= Override the PartitionDesc location. (unused)
423 * lastblock= Set the last block of the filesystem/
424 *
425 * The following expect a offset from the partition root.
426 *
427 * fileset= Override the fileset block location. (unused)
428 * rootdir= Override the root directory location. (unused)
429 * WARNING: overriding the rootdir to a non-directory may
430 * yield highly unpredictable results.
431 *
432 * PRE-CONDITIONS
433 * options Pointer to mount options string.
434 * uopts Pointer to mount options variable.
435 *
436 * POST-CONDITIONS
437 * <return> 1 Mount options parsed okay.
438 * <return> 0 Error parsing mount options.
439 *
440 * HISTORY
441 * July 1, 1997 - Andrew E. Mileski
442 * Written, tested, and released.
443 */
444
445 enum {
446 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
447 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
448 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
449 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
450 Opt_rootdir, Opt_utf8, Opt_iocharset,
451 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
452 Opt_fmode, Opt_dmode
453 };
454
455 static const match_table_t tokens = {
456 {Opt_novrs, "novrs"},
457 {Opt_nostrict, "nostrict"},
458 {Opt_bs, "bs=%u"},
459 {Opt_unhide, "unhide"},
460 {Opt_undelete, "undelete"},
461 {Opt_noadinicb, "noadinicb"},
462 {Opt_adinicb, "adinicb"},
463 {Opt_shortad, "shortad"},
464 {Opt_longad, "longad"},
465 {Opt_uforget, "uid=forget"},
466 {Opt_uignore, "uid=ignore"},
467 {Opt_gforget, "gid=forget"},
468 {Opt_gignore, "gid=ignore"},
469 {Opt_gid, "gid=%u"},
470 {Opt_uid, "uid=%u"},
471 {Opt_umask, "umask=%o"},
472 {Opt_session, "session=%u"},
473 {Opt_lastblock, "lastblock=%u"},
474 {Opt_anchor, "anchor=%u"},
475 {Opt_volume, "volume=%u"},
476 {Opt_partition, "partition=%u"},
477 {Opt_fileset, "fileset=%u"},
478 {Opt_rootdir, "rootdir=%u"},
479 {Opt_utf8, "utf8"},
480 {Opt_iocharset, "iocharset=%s"},
481 {Opt_fmode, "mode=%o"},
482 {Opt_dmode, "dmode=%o"},
483 {Opt_err, NULL}
484 };
485
486 static int udf_parse_options(char *options, struct udf_options *uopt,
487 bool remount)
488 {
489 char *p;
490 int option;
491
492 uopt->novrs = 0;
493 uopt->partition = 0xFFFF;
494 uopt->session = 0xFFFFFFFF;
495 uopt->lastblock = 0;
496 uopt->anchor = 0;
497 uopt->volume = 0xFFFFFFFF;
498 uopt->rootdir = 0xFFFFFFFF;
499 uopt->fileset = 0xFFFFFFFF;
500 uopt->nls_map = NULL;
501
502 if (!options)
503 return 1;
504
505 while ((p = strsep(&options, ",")) != NULL) {
506 substring_t args[MAX_OPT_ARGS];
507 int token;
508 unsigned n;
509 if (!*p)
510 continue;
511
512 token = match_token(p, tokens, args);
513 switch (token) {
514 case Opt_novrs:
515 uopt->novrs = 1;
516 break;
517 case Opt_bs:
518 if (match_int(&args[0], &option))
519 return 0;
520 n = option;
521 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
522 return 0;
523 uopt->blocksize = n;
524 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
525 break;
526 case Opt_unhide:
527 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
528 break;
529 case Opt_undelete:
530 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
531 break;
532 case Opt_noadinicb:
533 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
534 break;
535 case Opt_adinicb:
536 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
537 break;
538 case Opt_shortad:
539 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
540 break;
541 case Opt_longad:
542 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
543 break;
544 case Opt_gid:
545 if (match_int(args, &option))
546 return 0;
547 uopt->gid = make_kgid(current_user_ns(), option);
548 if (!gid_valid(uopt->gid))
549 return 0;
550 uopt->flags |= (1 << UDF_FLAG_GID_SET);
551 break;
552 case Opt_uid:
553 if (match_int(args, &option))
554 return 0;
555 uopt->uid = make_kuid(current_user_ns(), option);
556 if (!uid_valid(uopt->uid))
557 return 0;
558 uopt->flags |= (1 << UDF_FLAG_UID_SET);
559 break;
560 case Opt_umask:
561 if (match_octal(args, &option))
562 return 0;
563 uopt->umask = option;
564 break;
565 case Opt_nostrict:
566 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
567 break;
568 case Opt_session:
569 if (match_int(args, &option))
570 return 0;
571 uopt->session = option;
572 if (!remount)
573 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
574 break;
575 case Opt_lastblock:
576 if (match_int(args, &option))
577 return 0;
578 uopt->lastblock = option;
579 if (!remount)
580 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
581 break;
582 case Opt_anchor:
583 if (match_int(args, &option))
584 return 0;
585 uopt->anchor = option;
586 break;
587 case Opt_volume:
588 if (match_int(args, &option))
589 return 0;
590 uopt->volume = option;
591 break;
592 case Opt_partition:
593 if (match_int(args, &option))
594 return 0;
595 uopt->partition = option;
596 break;
597 case Opt_fileset:
598 if (match_int(args, &option))
599 return 0;
600 uopt->fileset = option;
601 break;
602 case Opt_rootdir:
603 if (match_int(args, &option))
604 return 0;
605 uopt->rootdir = option;
606 break;
607 case Opt_utf8:
608 uopt->flags |= (1 << UDF_FLAG_UTF8);
609 break;
610 #ifdef CONFIG_UDF_NLS
611 case Opt_iocharset:
612 uopt->nls_map = load_nls(args[0].from);
613 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
614 break;
615 #endif
616 case Opt_uignore:
617 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
618 break;
619 case Opt_uforget:
620 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
621 break;
622 case Opt_gignore:
623 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
624 break;
625 case Opt_gforget:
626 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
627 break;
628 case Opt_fmode:
629 if (match_octal(args, &option))
630 return 0;
631 uopt->fmode = option & 0777;
632 break;
633 case Opt_dmode:
634 if (match_octal(args, &option))
635 return 0;
636 uopt->dmode = option & 0777;
637 break;
638 default:
639 pr_err("bad mount option \"%s\" or missing value\n", p);
640 return 0;
641 }
642 }
643 return 1;
644 }
645
646 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
647 {
648 struct udf_options uopt;
649 struct udf_sb_info *sbi = UDF_SB(sb);
650 int error = 0;
651 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
652
653 sync_filesystem(sb);
654 if (lvidiu) {
655 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
656 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
657 return -EACCES;
658 }
659
660 uopt.flags = sbi->s_flags;
661 uopt.uid = sbi->s_uid;
662 uopt.gid = sbi->s_gid;
663 uopt.umask = sbi->s_umask;
664 uopt.fmode = sbi->s_fmode;
665 uopt.dmode = sbi->s_dmode;
666
667 if (!udf_parse_options(options, &uopt, true))
668 return -EINVAL;
669
670 write_lock(&sbi->s_cred_lock);
671 sbi->s_flags = uopt.flags;
672 sbi->s_uid = uopt.uid;
673 sbi->s_gid = uopt.gid;
674 sbi->s_umask = uopt.umask;
675 sbi->s_fmode = uopt.fmode;
676 sbi->s_dmode = uopt.dmode;
677 write_unlock(&sbi->s_cred_lock);
678
679 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
680 goto out_unlock;
681
682 if (*flags & MS_RDONLY)
683 udf_close_lvid(sb);
684 else
685 udf_open_lvid(sb);
686
687 out_unlock:
688 return error;
689 }
690
691 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
692 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
693 static loff_t udf_check_vsd(struct super_block *sb)
694 {
695 struct volStructDesc *vsd = NULL;
696 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
697 int sectorsize;
698 struct buffer_head *bh = NULL;
699 int nsr02 = 0;
700 int nsr03 = 0;
701 struct udf_sb_info *sbi;
702
703 sbi = UDF_SB(sb);
704 if (sb->s_blocksize < sizeof(struct volStructDesc))
705 sectorsize = sizeof(struct volStructDesc);
706 else
707 sectorsize = sb->s_blocksize;
708
709 sector += (sbi->s_session << sb->s_blocksize_bits);
710
711 udf_debug("Starting at sector %u (%ld byte sectors)\n",
712 (unsigned int)(sector >> sb->s_blocksize_bits),
713 sb->s_blocksize);
714 /* Process the sequence (if applicable). The hard limit on the sector
715 * offset is arbitrary, hopefully large enough so that all valid UDF
716 * filesystems will be recognised. There is no mention of an upper
717 * bound to the size of the volume recognition area in the standard.
718 * The limit will prevent the code to read all the sectors of a
719 * specially crafted image (like a bluray disc full of CD001 sectors),
720 * potentially causing minutes or even hours of uninterruptible I/O
721 * activity. This actually happened with uninitialised SSD partitions
722 * (all 0xFF) before the check for the limit and all valid IDs were
723 * added */
724 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
725 sector += sectorsize) {
726 /* Read a block */
727 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
728 if (!bh)
729 break;
730
731 /* Look for ISO descriptors */
732 vsd = (struct volStructDesc *)(bh->b_data +
733 (sector & (sb->s_blocksize - 1)));
734
735 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
736 VSD_STD_ID_LEN)) {
737 switch (vsd->structType) {
738 case 0:
739 udf_debug("ISO9660 Boot Record found\n");
740 break;
741 case 1:
742 udf_debug("ISO9660 Primary Volume Descriptor found\n");
743 break;
744 case 2:
745 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
746 break;
747 case 3:
748 udf_debug("ISO9660 Volume Partition Descriptor found\n");
749 break;
750 case 255:
751 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
752 break;
753 default:
754 udf_debug("ISO9660 VRS (%u) found\n",
755 vsd->structType);
756 break;
757 }
758 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
759 VSD_STD_ID_LEN))
760 ; /* nothing */
761 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
762 VSD_STD_ID_LEN)) {
763 brelse(bh);
764 break;
765 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
766 VSD_STD_ID_LEN))
767 nsr02 = sector;
768 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
769 VSD_STD_ID_LEN))
770 nsr03 = sector;
771 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
772 VSD_STD_ID_LEN))
773 ; /* nothing */
774 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
775 VSD_STD_ID_LEN))
776 ; /* nothing */
777 else {
778 /* invalid id : end of volume recognition area */
779 brelse(bh);
780 break;
781 }
782 brelse(bh);
783 }
784
785 if (nsr03)
786 return nsr03;
787 else if (nsr02)
788 return nsr02;
789 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
790 VSD_FIRST_SECTOR_OFFSET)
791 return -1;
792 else
793 return 0;
794 }
795
796 static int udf_find_fileset(struct super_block *sb,
797 struct kernel_lb_addr *fileset,
798 struct kernel_lb_addr *root)
799 {
800 struct buffer_head *bh = NULL;
801 long lastblock;
802 uint16_t ident;
803 struct udf_sb_info *sbi;
804
805 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
806 fileset->partitionReferenceNum != 0xFFFF) {
807 bh = udf_read_ptagged(sb, fileset, 0, &ident);
808
809 if (!bh) {
810 return 1;
811 } else if (ident != TAG_IDENT_FSD) {
812 brelse(bh);
813 return 1;
814 }
815
816 }
817
818 sbi = UDF_SB(sb);
819 if (!bh) {
820 /* Search backwards through the partitions */
821 struct kernel_lb_addr newfileset;
822
823 /* --> cvg: FIXME - is it reasonable? */
824 return 1;
825
826 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
827 (newfileset.partitionReferenceNum != 0xFFFF &&
828 fileset->logicalBlockNum == 0xFFFFFFFF &&
829 fileset->partitionReferenceNum == 0xFFFF);
830 newfileset.partitionReferenceNum--) {
831 lastblock = sbi->s_partmaps
832 [newfileset.partitionReferenceNum]
833 .s_partition_len;
834 newfileset.logicalBlockNum = 0;
835
836 do {
837 bh = udf_read_ptagged(sb, &newfileset, 0,
838 &ident);
839 if (!bh) {
840 newfileset.logicalBlockNum++;
841 continue;
842 }
843
844 switch (ident) {
845 case TAG_IDENT_SBD:
846 {
847 struct spaceBitmapDesc *sp;
848 sp = (struct spaceBitmapDesc *)
849 bh->b_data;
850 newfileset.logicalBlockNum += 1 +
851 ((le32_to_cpu(sp->numOfBytes) +
852 sizeof(struct spaceBitmapDesc)
853 - 1) >> sb->s_blocksize_bits);
854 brelse(bh);
855 break;
856 }
857 case TAG_IDENT_FSD:
858 *fileset = newfileset;
859 break;
860 default:
861 newfileset.logicalBlockNum++;
862 brelse(bh);
863 bh = NULL;
864 break;
865 }
866 } while (newfileset.logicalBlockNum < lastblock &&
867 fileset->logicalBlockNum == 0xFFFFFFFF &&
868 fileset->partitionReferenceNum == 0xFFFF);
869 }
870 }
871
872 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
873 fileset->partitionReferenceNum != 0xFFFF) && bh) {
874 udf_debug("Fileset at block=%d, partition=%d\n",
875 fileset->logicalBlockNum,
876 fileset->partitionReferenceNum);
877
878 sbi->s_partition = fileset->partitionReferenceNum;
879 udf_load_fileset(sb, bh, root);
880 brelse(bh);
881 return 0;
882 }
883 return 1;
884 }
885
886 /*
887 * Load primary Volume Descriptor Sequence
888 *
889 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
890 * should be tried.
891 */
892 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
893 {
894 struct primaryVolDesc *pvoldesc;
895 struct ustr *instr, *outstr;
896 struct buffer_head *bh;
897 uint16_t ident;
898 int ret = -ENOMEM;
899
900 instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
901 if (!instr)
902 return -ENOMEM;
903
904 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
905 if (!outstr)
906 goto out1;
907
908 bh = udf_read_tagged(sb, block, block, &ident);
909 if (!bh) {
910 ret = -EAGAIN;
911 goto out2;
912 }
913
914 if (ident != TAG_IDENT_PVD) {
915 ret = -EIO;
916 goto out_bh;
917 }
918
919 pvoldesc = (struct primaryVolDesc *)bh->b_data;
920
921 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922 pvoldesc->recordingDateAndTime)) {
923 #ifdef UDFFS_DEBUG
924 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927 ts->minute, le16_to_cpu(ts->typeAndTimezone));
928 #endif
929 }
930
931 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
932 if (udf_CS0toUTF8(outstr, instr)) {
933 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
934 outstr->u_len > 31 ? 31 : outstr->u_len);
935 udf_debug("volIdent[] = '%s'\n",
936 UDF_SB(sb)->s_volume_ident);
937 }
938
939 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
940 if (udf_CS0toUTF8(outstr, instr))
941 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
942
943 ret = 0;
944 out_bh:
945 brelse(bh);
946 out2:
947 kfree(outstr);
948 out1:
949 kfree(instr);
950 return ret;
951 }
952
953 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
954 u32 meta_file_loc, u32 partition_num)
955 {
956 struct kernel_lb_addr addr;
957 struct inode *metadata_fe;
958
959 addr.logicalBlockNum = meta_file_loc;
960 addr.partitionReferenceNum = partition_num;
961
962 metadata_fe = udf_iget_special(sb, &addr);
963
964 if (IS_ERR(metadata_fe)) {
965 udf_warn(sb, "metadata inode efe not found\n");
966 return metadata_fe;
967 }
968 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
969 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
970 iput(metadata_fe);
971 return ERR_PTR(-EIO);
972 }
973
974 return metadata_fe;
975 }
976
977 static int udf_load_metadata_files(struct super_block *sb, int partition)
978 {
979 struct udf_sb_info *sbi = UDF_SB(sb);
980 struct udf_part_map *map;
981 struct udf_meta_data *mdata;
982 struct kernel_lb_addr addr;
983 struct inode *fe;
984
985 map = &sbi->s_partmaps[partition];
986 mdata = &map->s_type_specific.s_metadata;
987
988 /* metadata address */
989 udf_debug("Metadata file location: block = %d part = %d\n",
990 mdata->s_meta_file_loc, map->s_partition_num);
991
992 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
993 map->s_partition_num);
994 if (IS_ERR(fe)) {
995 /* mirror file entry */
996 udf_debug("Mirror metadata file location: block = %d part = %d\n",
997 mdata->s_mirror_file_loc, map->s_partition_num);
998
999 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1000 map->s_partition_num);
1001
1002 if (IS_ERR(fe)) {
1003 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1004 return PTR_ERR(fe);
1005 }
1006 mdata->s_mirror_fe = fe;
1007 } else
1008 mdata->s_metadata_fe = fe;
1009
1010
1011 /*
1012 * bitmap file entry
1013 * Note:
1014 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1015 */
1016 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1017 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1018 addr.partitionReferenceNum = map->s_partition_num;
1019
1020 udf_debug("Bitmap file location: block = %d part = %d\n",
1021 addr.logicalBlockNum, addr.partitionReferenceNum);
1022
1023 fe = udf_iget_special(sb, &addr);
1024 if (IS_ERR(fe)) {
1025 if (sb->s_flags & MS_RDONLY)
1026 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1027 else {
1028 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1029 return PTR_ERR(fe);
1030 }
1031 } else
1032 mdata->s_bitmap_fe = fe;
1033 }
1034
1035 udf_debug("udf_load_metadata_files Ok\n");
1036 return 0;
1037 }
1038
1039 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1040 struct kernel_lb_addr *root)
1041 {
1042 struct fileSetDesc *fset;
1043
1044 fset = (struct fileSetDesc *)bh->b_data;
1045
1046 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1047
1048 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1049
1050 udf_debug("Rootdir at block=%d, partition=%d\n",
1051 root->logicalBlockNum, root->partitionReferenceNum);
1052 }
1053
1054 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1055 {
1056 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1057 return DIV_ROUND_UP(map->s_partition_len +
1058 (sizeof(struct spaceBitmapDesc) << 3),
1059 sb->s_blocksize * 8);
1060 }
1061
1062 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1063 {
1064 struct udf_bitmap *bitmap;
1065 int nr_groups;
1066 int size;
1067
1068 nr_groups = udf_compute_nr_groups(sb, index);
1069 size = sizeof(struct udf_bitmap) +
1070 (sizeof(struct buffer_head *) * nr_groups);
1071
1072 if (size <= PAGE_SIZE)
1073 bitmap = kzalloc(size, GFP_KERNEL);
1074 else
1075 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1076
1077 if (bitmap == NULL)
1078 return NULL;
1079
1080 bitmap->s_nr_groups = nr_groups;
1081 return bitmap;
1082 }
1083
1084 static int udf_fill_partdesc_info(struct super_block *sb,
1085 struct partitionDesc *p, int p_index)
1086 {
1087 struct udf_part_map *map;
1088 struct udf_sb_info *sbi = UDF_SB(sb);
1089 struct partitionHeaderDesc *phd;
1090
1091 map = &sbi->s_partmaps[p_index];
1092
1093 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1094 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1095
1096 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1097 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1098 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1099 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1100 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1101 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1102 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1103 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1104
1105 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1106 p_index, map->s_partition_type,
1107 map->s_partition_root, map->s_partition_len);
1108
1109 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1110 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1111 return 0;
1112
1113 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1114 if (phd->unallocSpaceTable.extLength) {
1115 struct kernel_lb_addr loc = {
1116 .logicalBlockNum = le32_to_cpu(
1117 phd->unallocSpaceTable.extPosition),
1118 .partitionReferenceNum = p_index,
1119 };
1120 struct inode *inode;
1121
1122 inode = udf_iget_special(sb, &loc);
1123 if (IS_ERR(inode)) {
1124 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1125 p_index);
1126 return PTR_ERR(inode);
1127 }
1128 map->s_uspace.s_table = inode;
1129 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1130 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1131 p_index, map->s_uspace.s_table->i_ino);
1132 }
1133
1134 if (phd->unallocSpaceBitmap.extLength) {
1135 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1136 if (!bitmap)
1137 return -ENOMEM;
1138 map->s_uspace.s_bitmap = bitmap;
1139 bitmap->s_extPosition = le32_to_cpu(
1140 phd->unallocSpaceBitmap.extPosition);
1141 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1142 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1143 p_index, bitmap->s_extPosition);
1144 }
1145
1146 if (phd->partitionIntegrityTable.extLength)
1147 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1148
1149 if (phd->freedSpaceTable.extLength) {
1150 struct kernel_lb_addr loc = {
1151 .logicalBlockNum = le32_to_cpu(
1152 phd->freedSpaceTable.extPosition),
1153 .partitionReferenceNum = p_index,
1154 };
1155 struct inode *inode;
1156
1157 inode = udf_iget_special(sb, &loc);
1158 if (IS_ERR(inode)) {
1159 udf_debug("cannot load freedSpaceTable (part %d)\n",
1160 p_index);
1161 return PTR_ERR(inode);
1162 }
1163 map->s_fspace.s_table = inode;
1164 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1165 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1166 p_index, map->s_fspace.s_table->i_ino);
1167 }
1168
1169 if (phd->freedSpaceBitmap.extLength) {
1170 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1171 if (!bitmap)
1172 return -ENOMEM;
1173 map->s_fspace.s_bitmap = bitmap;
1174 bitmap->s_extPosition = le32_to_cpu(
1175 phd->freedSpaceBitmap.extPosition);
1176 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1177 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1178 p_index, bitmap->s_extPosition);
1179 }
1180 return 0;
1181 }
1182
1183 static void udf_find_vat_block(struct super_block *sb, int p_index,
1184 int type1_index, sector_t start_block)
1185 {
1186 struct udf_sb_info *sbi = UDF_SB(sb);
1187 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1188 sector_t vat_block;
1189 struct kernel_lb_addr ino;
1190 struct inode *inode;
1191
1192 /*
1193 * VAT file entry is in the last recorded block. Some broken disks have
1194 * it a few blocks before so try a bit harder...
1195 */
1196 ino.partitionReferenceNum = type1_index;
1197 for (vat_block = start_block;
1198 vat_block >= map->s_partition_root &&
1199 vat_block >= start_block - 3; vat_block--) {
1200 ino.logicalBlockNum = vat_block - map->s_partition_root;
1201 inode = udf_iget_special(sb, &ino);
1202 if (!IS_ERR(inode)) {
1203 sbi->s_vat_inode = inode;
1204 break;
1205 }
1206 }
1207 }
1208
1209 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1210 {
1211 struct udf_sb_info *sbi = UDF_SB(sb);
1212 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1213 struct buffer_head *bh = NULL;
1214 struct udf_inode_info *vati;
1215 uint32_t pos;
1216 struct virtualAllocationTable20 *vat20;
1217 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1218
1219 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1220 if (!sbi->s_vat_inode &&
1221 sbi->s_last_block != blocks - 1) {
1222 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1223 (unsigned long)sbi->s_last_block,
1224 (unsigned long)blocks - 1);
1225 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1226 }
1227 if (!sbi->s_vat_inode)
1228 return -EIO;
1229
1230 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1231 map->s_type_specific.s_virtual.s_start_offset = 0;
1232 map->s_type_specific.s_virtual.s_num_entries =
1233 (sbi->s_vat_inode->i_size - 36) >> 2;
1234 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1235 vati = UDF_I(sbi->s_vat_inode);
1236 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1237 pos = udf_block_map(sbi->s_vat_inode, 0);
1238 bh = sb_bread(sb, pos);
1239 if (!bh)
1240 return -EIO;
1241 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1242 } else {
1243 vat20 = (struct virtualAllocationTable20 *)
1244 vati->i_ext.i_data;
1245 }
1246
1247 map->s_type_specific.s_virtual.s_start_offset =
1248 le16_to_cpu(vat20->lengthHeader);
1249 map->s_type_specific.s_virtual.s_num_entries =
1250 (sbi->s_vat_inode->i_size -
1251 map->s_type_specific.s_virtual.
1252 s_start_offset) >> 2;
1253 brelse(bh);
1254 }
1255 return 0;
1256 }
1257
1258 /*
1259 * Load partition descriptor block
1260 *
1261 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1262 * sequence.
1263 */
1264 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1265 {
1266 struct buffer_head *bh;
1267 struct partitionDesc *p;
1268 struct udf_part_map *map;
1269 struct udf_sb_info *sbi = UDF_SB(sb);
1270 int i, type1_idx;
1271 uint16_t partitionNumber;
1272 uint16_t ident;
1273 int ret;
1274
1275 bh = udf_read_tagged(sb, block, block, &ident);
1276 if (!bh)
1277 return -EAGAIN;
1278 if (ident != TAG_IDENT_PD) {
1279 ret = 0;
1280 goto out_bh;
1281 }
1282
1283 p = (struct partitionDesc *)bh->b_data;
1284 partitionNumber = le16_to_cpu(p->partitionNumber);
1285
1286 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1287 for (i = 0; i < sbi->s_partitions; i++) {
1288 map = &sbi->s_partmaps[i];
1289 udf_debug("Searching map: (%d == %d)\n",
1290 map->s_partition_num, partitionNumber);
1291 if (map->s_partition_num == partitionNumber &&
1292 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1293 map->s_partition_type == UDF_SPARABLE_MAP15))
1294 break;
1295 }
1296
1297 if (i >= sbi->s_partitions) {
1298 udf_debug("Partition (%d) not found in partition map\n",
1299 partitionNumber);
1300 ret = 0;
1301 goto out_bh;
1302 }
1303
1304 ret = udf_fill_partdesc_info(sb, p, i);
1305 if (ret < 0)
1306 goto out_bh;
1307
1308 /*
1309 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1310 * PHYSICAL partitions are already set up
1311 */
1312 type1_idx = i;
1313 #ifdef UDFFS_DEBUG
1314 map = NULL; /* supress 'maybe used uninitialized' warning */
1315 #endif
1316 for (i = 0; i < sbi->s_partitions; i++) {
1317 map = &sbi->s_partmaps[i];
1318
1319 if (map->s_partition_num == partitionNumber &&
1320 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1321 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1322 map->s_partition_type == UDF_METADATA_MAP25))
1323 break;
1324 }
1325
1326 if (i >= sbi->s_partitions) {
1327 ret = 0;
1328 goto out_bh;
1329 }
1330
1331 ret = udf_fill_partdesc_info(sb, p, i);
1332 if (ret < 0)
1333 goto out_bh;
1334
1335 if (map->s_partition_type == UDF_METADATA_MAP25) {
1336 ret = udf_load_metadata_files(sb, i);
1337 if (ret < 0) {
1338 udf_err(sb, "error loading MetaData partition map %d\n",
1339 i);
1340 goto out_bh;
1341 }
1342 } else {
1343 /*
1344 * If we have a partition with virtual map, we don't handle
1345 * writing to it (we overwrite blocks instead of relocating
1346 * them).
1347 */
1348 if (!(sb->s_flags & MS_RDONLY)) {
1349 ret = -EACCES;
1350 goto out_bh;
1351 }
1352 ret = udf_load_vat(sb, i, type1_idx);
1353 if (ret < 0)
1354 goto out_bh;
1355 }
1356 ret = 0;
1357 out_bh:
1358 /* In case loading failed, we handle cleanup in udf_fill_super */
1359 brelse(bh);
1360 return ret;
1361 }
1362
1363 static int udf_load_sparable_map(struct super_block *sb,
1364 struct udf_part_map *map,
1365 struct sparablePartitionMap *spm)
1366 {
1367 uint32_t loc;
1368 uint16_t ident;
1369 struct sparingTable *st;
1370 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1371 int i;
1372 struct buffer_head *bh;
1373
1374 map->s_partition_type = UDF_SPARABLE_MAP15;
1375 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1376 if (!is_power_of_2(sdata->s_packet_len)) {
1377 udf_err(sb, "error loading logical volume descriptor: "
1378 "Invalid packet length %u\n",
1379 (unsigned)sdata->s_packet_len);
1380 return -EIO;
1381 }
1382 if (spm->numSparingTables > 4) {
1383 udf_err(sb, "error loading logical volume descriptor: "
1384 "Too many sparing tables (%d)\n",
1385 (int)spm->numSparingTables);
1386 return -EIO;
1387 }
1388
1389 for (i = 0; i < spm->numSparingTables; i++) {
1390 loc = le32_to_cpu(spm->locSparingTable[i]);
1391 bh = udf_read_tagged(sb, loc, loc, &ident);
1392 if (!bh)
1393 continue;
1394
1395 st = (struct sparingTable *)bh->b_data;
1396 if (ident != 0 ||
1397 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1398 strlen(UDF_ID_SPARING)) ||
1399 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1400 sb->s_blocksize) {
1401 brelse(bh);
1402 continue;
1403 }
1404
1405 sdata->s_spar_map[i] = bh;
1406 }
1407 map->s_partition_func = udf_get_pblock_spar15;
1408 return 0;
1409 }
1410
1411 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1412 struct kernel_lb_addr *fileset)
1413 {
1414 struct logicalVolDesc *lvd;
1415 int i, offset;
1416 uint8_t type;
1417 struct udf_sb_info *sbi = UDF_SB(sb);
1418 struct genericPartitionMap *gpm;
1419 uint16_t ident;
1420 struct buffer_head *bh;
1421 unsigned int table_len;
1422 int ret;
1423
1424 bh = udf_read_tagged(sb, block, block, &ident);
1425 if (!bh)
1426 return -EAGAIN;
1427 BUG_ON(ident != TAG_IDENT_LVD);
1428 lvd = (struct logicalVolDesc *)bh->b_data;
1429 table_len = le32_to_cpu(lvd->mapTableLength);
1430 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1431 udf_err(sb, "error loading logical volume descriptor: "
1432 "Partition table too long (%u > %lu)\n", table_len,
1433 sb->s_blocksize - sizeof(*lvd));
1434 ret = -EIO;
1435 goto out_bh;
1436 }
1437
1438 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1439 if (ret)
1440 goto out_bh;
1441
1442 for (i = 0, offset = 0;
1443 i < sbi->s_partitions && offset < table_len;
1444 i++, offset += gpm->partitionMapLength) {
1445 struct udf_part_map *map = &sbi->s_partmaps[i];
1446 gpm = (struct genericPartitionMap *)
1447 &(lvd->partitionMaps[offset]);
1448 type = gpm->partitionMapType;
1449 if (type == 1) {
1450 struct genericPartitionMap1 *gpm1 =
1451 (struct genericPartitionMap1 *)gpm;
1452 map->s_partition_type = UDF_TYPE1_MAP15;
1453 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1454 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1455 map->s_partition_func = NULL;
1456 } else if (type == 2) {
1457 struct udfPartitionMap2 *upm2 =
1458 (struct udfPartitionMap2 *)gpm;
1459 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1460 strlen(UDF_ID_VIRTUAL))) {
1461 u16 suf =
1462 le16_to_cpu(((__le16 *)upm2->partIdent.
1463 identSuffix)[0]);
1464 if (suf < 0x0200) {
1465 map->s_partition_type =
1466 UDF_VIRTUAL_MAP15;
1467 map->s_partition_func =
1468 udf_get_pblock_virt15;
1469 } else {
1470 map->s_partition_type =
1471 UDF_VIRTUAL_MAP20;
1472 map->s_partition_func =
1473 udf_get_pblock_virt20;
1474 }
1475 } else if (!strncmp(upm2->partIdent.ident,
1476 UDF_ID_SPARABLE,
1477 strlen(UDF_ID_SPARABLE))) {
1478 ret = udf_load_sparable_map(sb, map,
1479 (struct sparablePartitionMap *)gpm);
1480 if (ret < 0)
1481 goto out_bh;
1482 } else if (!strncmp(upm2->partIdent.ident,
1483 UDF_ID_METADATA,
1484 strlen(UDF_ID_METADATA))) {
1485 struct udf_meta_data *mdata =
1486 &map->s_type_specific.s_metadata;
1487 struct metadataPartitionMap *mdm =
1488 (struct metadataPartitionMap *)
1489 &(lvd->partitionMaps[offset]);
1490 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1491 i, type, UDF_ID_METADATA);
1492
1493 map->s_partition_type = UDF_METADATA_MAP25;
1494 map->s_partition_func = udf_get_pblock_meta25;
1495
1496 mdata->s_meta_file_loc =
1497 le32_to_cpu(mdm->metadataFileLoc);
1498 mdata->s_mirror_file_loc =
1499 le32_to_cpu(mdm->metadataMirrorFileLoc);
1500 mdata->s_bitmap_file_loc =
1501 le32_to_cpu(mdm->metadataBitmapFileLoc);
1502 mdata->s_alloc_unit_size =
1503 le32_to_cpu(mdm->allocUnitSize);
1504 mdata->s_align_unit_size =
1505 le16_to_cpu(mdm->alignUnitSize);
1506 if (mdm->flags & 0x01)
1507 mdata->s_flags |= MF_DUPLICATE_MD;
1508
1509 udf_debug("Metadata Ident suffix=0x%x\n",
1510 le16_to_cpu(*(__le16 *)
1511 mdm->partIdent.identSuffix));
1512 udf_debug("Metadata part num=%d\n",
1513 le16_to_cpu(mdm->partitionNum));
1514 udf_debug("Metadata part alloc unit size=%d\n",
1515 le32_to_cpu(mdm->allocUnitSize));
1516 udf_debug("Metadata file loc=%d\n",
1517 le32_to_cpu(mdm->metadataFileLoc));
1518 udf_debug("Mirror file loc=%d\n",
1519 le32_to_cpu(mdm->metadataMirrorFileLoc));
1520 udf_debug("Bitmap file loc=%d\n",
1521 le32_to_cpu(mdm->metadataBitmapFileLoc));
1522 udf_debug("Flags: %d %d\n",
1523 mdata->s_flags, mdm->flags);
1524 } else {
1525 udf_debug("Unknown ident: %s\n",
1526 upm2->partIdent.ident);
1527 continue;
1528 }
1529 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1530 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1531 }
1532 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1533 i, map->s_partition_num, type, map->s_volumeseqnum);
1534 }
1535
1536 if (fileset) {
1537 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1538
1539 *fileset = lelb_to_cpu(la->extLocation);
1540 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1541 fileset->logicalBlockNum,
1542 fileset->partitionReferenceNum);
1543 }
1544 if (lvd->integritySeqExt.extLength)
1545 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1546 ret = 0;
1547 out_bh:
1548 brelse(bh);
1549 return ret;
1550 }
1551
1552 /*
1553 * udf_load_logicalvolint
1554 *
1555 */
1556 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1557 {
1558 struct buffer_head *bh = NULL;
1559 uint16_t ident;
1560 struct udf_sb_info *sbi = UDF_SB(sb);
1561 struct logicalVolIntegrityDesc *lvid;
1562
1563 while (loc.extLength > 0 &&
1564 (bh = udf_read_tagged(sb, loc.extLocation,
1565 loc.extLocation, &ident)) &&
1566 ident == TAG_IDENT_LVID) {
1567 sbi->s_lvid_bh = bh;
1568 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1569
1570 if (lvid->nextIntegrityExt.extLength)
1571 udf_load_logicalvolint(sb,
1572 leea_to_cpu(lvid->nextIntegrityExt));
1573
1574 if (sbi->s_lvid_bh != bh)
1575 brelse(bh);
1576 loc.extLength -= sb->s_blocksize;
1577 loc.extLocation++;
1578 }
1579 if (sbi->s_lvid_bh != bh)
1580 brelse(bh);
1581 }
1582
1583 /*
1584 * Process a main/reserve volume descriptor sequence.
1585 * @block First block of first extent of the sequence.
1586 * @lastblock Lastblock of first extent of the sequence.
1587 * @fileset There we store extent containing root fileset
1588 *
1589 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1590 * sequence
1591 */
1592 static noinline int udf_process_sequence(
1593 struct super_block *sb,
1594 sector_t block, sector_t lastblock,
1595 struct kernel_lb_addr *fileset)
1596 {
1597 struct buffer_head *bh = NULL;
1598 struct udf_vds_record vds[VDS_POS_LENGTH];
1599 struct udf_vds_record *curr;
1600 struct generic_desc *gd;
1601 struct volDescPtr *vdp;
1602 bool done = false;
1603 uint32_t vdsn;
1604 uint16_t ident;
1605 long next_s = 0, next_e = 0;
1606 int ret;
1607
1608 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1609
1610 /*
1611 * Read the main descriptor sequence and find which descriptors
1612 * are in it.
1613 */
1614 for (; (!done && block <= lastblock); block++) {
1615
1616 bh = udf_read_tagged(sb, block, block, &ident);
1617 if (!bh) {
1618 udf_err(sb,
1619 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1620 (unsigned long long)block);
1621 return -EAGAIN;
1622 }
1623
1624 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1625 gd = (struct generic_desc *)bh->b_data;
1626 vdsn = le32_to_cpu(gd->volDescSeqNum);
1627 switch (ident) {
1628 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1629 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1630 if (vdsn >= curr->volDescSeqNum) {
1631 curr->volDescSeqNum = vdsn;
1632 curr->block = block;
1633 }
1634 break;
1635 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1636 curr = &vds[VDS_POS_VOL_DESC_PTR];
1637 if (vdsn >= curr->volDescSeqNum) {
1638 curr->volDescSeqNum = vdsn;
1639 curr->block = block;
1640
1641 vdp = (struct volDescPtr *)bh->b_data;
1642 next_s = le32_to_cpu(
1643 vdp->nextVolDescSeqExt.extLocation);
1644 next_e = le32_to_cpu(
1645 vdp->nextVolDescSeqExt.extLength);
1646 next_e = next_e >> sb->s_blocksize_bits;
1647 next_e += next_s;
1648 }
1649 break;
1650 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1651 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1652 if (vdsn >= curr->volDescSeqNum) {
1653 curr->volDescSeqNum = vdsn;
1654 curr->block = block;
1655 }
1656 break;
1657 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1658 curr = &vds[VDS_POS_PARTITION_DESC];
1659 if (!curr->block)
1660 curr->block = block;
1661 break;
1662 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1663 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1664 if (vdsn >= curr->volDescSeqNum) {
1665 curr->volDescSeqNum = vdsn;
1666 curr->block = block;
1667 }
1668 break;
1669 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1670 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1671 if (vdsn >= curr->volDescSeqNum) {
1672 curr->volDescSeqNum = vdsn;
1673 curr->block = block;
1674 }
1675 break;
1676 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1677 vds[VDS_POS_TERMINATING_DESC].block = block;
1678 if (next_e) {
1679 block = next_s;
1680 lastblock = next_e;
1681 next_s = next_e = 0;
1682 } else
1683 done = true;
1684 break;
1685 }
1686 brelse(bh);
1687 }
1688 /*
1689 * Now read interesting descriptors again and process them
1690 * in a suitable order
1691 */
1692 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1693 udf_err(sb, "Primary Volume Descriptor not found!\n");
1694 return -EAGAIN;
1695 }
1696 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1697 if (ret < 0)
1698 return ret;
1699
1700 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1701 ret = udf_load_logicalvol(sb,
1702 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1703 fileset);
1704 if (ret < 0)
1705 return ret;
1706 }
1707
1708 if (vds[VDS_POS_PARTITION_DESC].block) {
1709 /*
1710 * We rescan the whole descriptor sequence to find
1711 * partition descriptor blocks and process them.
1712 */
1713 for (block = vds[VDS_POS_PARTITION_DESC].block;
1714 block < vds[VDS_POS_TERMINATING_DESC].block;
1715 block++) {
1716 ret = udf_load_partdesc(sb, block);
1717 if (ret < 0)
1718 return ret;
1719 }
1720 }
1721
1722 return 0;
1723 }
1724
1725 /*
1726 * Load Volume Descriptor Sequence described by anchor in bh
1727 *
1728 * Returns <0 on error, 0 on success
1729 */
1730 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1731 struct kernel_lb_addr *fileset)
1732 {
1733 struct anchorVolDescPtr *anchor;
1734 sector_t main_s, main_e, reserve_s, reserve_e;
1735 int ret;
1736
1737 anchor = (struct anchorVolDescPtr *)bh->b_data;
1738
1739 /* Locate the main sequence */
1740 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1741 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1742 main_e = main_e >> sb->s_blocksize_bits;
1743 main_e += main_s;
1744
1745 /* Locate the reserve sequence */
1746 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1747 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1748 reserve_e = reserve_e >> sb->s_blocksize_bits;
1749 reserve_e += reserve_s;
1750
1751 /* Process the main & reserve sequences */
1752 /* responsible for finding the PartitionDesc(s) */
1753 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1754 if (ret != -EAGAIN)
1755 return ret;
1756 udf_sb_free_partitions(sb);
1757 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1758 if (ret < 0) {
1759 udf_sb_free_partitions(sb);
1760 /* No sequence was OK, return -EIO */
1761 if (ret == -EAGAIN)
1762 ret = -EIO;
1763 }
1764 return ret;
1765 }
1766
1767 /*
1768 * Check whether there is an anchor block in the given block and
1769 * load Volume Descriptor Sequence if so.
1770 *
1771 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1772 * block
1773 */
1774 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1775 struct kernel_lb_addr *fileset)
1776 {
1777 struct buffer_head *bh;
1778 uint16_t ident;
1779 int ret;
1780
1781 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1782 udf_fixed_to_variable(block) >=
1783 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1784 return -EAGAIN;
1785
1786 bh = udf_read_tagged(sb, block, block, &ident);
1787 if (!bh)
1788 return -EAGAIN;
1789 if (ident != TAG_IDENT_AVDP) {
1790 brelse(bh);
1791 return -EAGAIN;
1792 }
1793 ret = udf_load_sequence(sb, bh, fileset);
1794 brelse(bh);
1795 return ret;
1796 }
1797
1798 /*
1799 * Search for an anchor volume descriptor pointer.
1800 *
1801 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1802 * of anchors.
1803 */
1804 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1805 struct kernel_lb_addr *fileset)
1806 {
1807 sector_t last[6];
1808 int i;
1809 struct udf_sb_info *sbi = UDF_SB(sb);
1810 int last_count = 0;
1811 int ret;
1812
1813 /* First try user provided anchor */
1814 if (sbi->s_anchor) {
1815 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1816 if (ret != -EAGAIN)
1817 return ret;
1818 }
1819 /*
1820 * according to spec, anchor is in either:
1821 * block 256
1822 * lastblock-256
1823 * lastblock
1824 * however, if the disc isn't closed, it could be 512.
1825 */
1826 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1827 if (ret != -EAGAIN)
1828 return ret;
1829 /*
1830 * The trouble is which block is the last one. Drives often misreport
1831 * this so we try various possibilities.
1832 */
1833 last[last_count++] = *lastblock;
1834 if (*lastblock >= 1)
1835 last[last_count++] = *lastblock - 1;
1836 last[last_count++] = *lastblock + 1;
1837 if (*lastblock >= 2)
1838 last[last_count++] = *lastblock - 2;
1839 if (*lastblock >= 150)
1840 last[last_count++] = *lastblock - 150;
1841 if (*lastblock >= 152)
1842 last[last_count++] = *lastblock - 152;
1843
1844 for (i = 0; i < last_count; i++) {
1845 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1846 sb->s_blocksize_bits)
1847 continue;
1848 ret = udf_check_anchor_block(sb, last[i], fileset);
1849 if (ret != -EAGAIN) {
1850 if (!ret)
1851 *lastblock = last[i];
1852 return ret;
1853 }
1854 if (last[i] < 256)
1855 continue;
1856 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1857 if (ret != -EAGAIN) {
1858 if (!ret)
1859 *lastblock = last[i];
1860 return ret;
1861 }
1862 }
1863
1864 /* Finally try block 512 in case media is open */
1865 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1866 }
1867
1868 /*
1869 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1870 * area specified by it. The function expects sbi->s_lastblock to be the last
1871 * block on the media.
1872 *
1873 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1874 * was not found.
1875 */
1876 static int udf_find_anchor(struct super_block *sb,
1877 struct kernel_lb_addr *fileset)
1878 {
1879 struct udf_sb_info *sbi = UDF_SB(sb);
1880 sector_t lastblock = sbi->s_last_block;
1881 int ret;
1882
1883 ret = udf_scan_anchors(sb, &lastblock, fileset);
1884 if (ret != -EAGAIN)
1885 goto out;
1886
1887 /* No anchor found? Try VARCONV conversion of block numbers */
1888 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1889 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1890 /* Firstly, we try to not convert number of the last block */
1891 ret = udf_scan_anchors(sb, &lastblock, fileset);
1892 if (ret != -EAGAIN)
1893 goto out;
1894
1895 lastblock = sbi->s_last_block;
1896 /* Secondly, we try with converted number of the last block */
1897 ret = udf_scan_anchors(sb, &lastblock, fileset);
1898 if (ret < 0) {
1899 /* VARCONV didn't help. Clear it. */
1900 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1901 }
1902 out:
1903 if (ret == 0)
1904 sbi->s_last_block = lastblock;
1905 return ret;
1906 }
1907
1908 /*
1909 * Check Volume Structure Descriptor, find Anchor block and load Volume
1910 * Descriptor Sequence.
1911 *
1912 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1913 * block was not found.
1914 */
1915 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1916 int silent, struct kernel_lb_addr *fileset)
1917 {
1918 struct udf_sb_info *sbi = UDF_SB(sb);
1919 loff_t nsr_off;
1920 int ret;
1921
1922 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1923 if (!silent)
1924 udf_warn(sb, "Bad block size\n");
1925 return -EINVAL;
1926 }
1927 sbi->s_last_block = uopt->lastblock;
1928 if (!uopt->novrs) {
1929 /* Check that it is NSR02 compliant */
1930 nsr_off = udf_check_vsd(sb);
1931 if (!nsr_off) {
1932 if (!silent)
1933 udf_warn(sb, "No VRS found\n");
1934 return 0;
1935 }
1936 if (nsr_off == -1)
1937 udf_debug("Failed to read sector at offset %d. "
1938 "Assuming open disc. Skipping validity "
1939 "check\n", VSD_FIRST_SECTOR_OFFSET);
1940 if (!sbi->s_last_block)
1941 sbi->s_last_block = udf_get_last_block(sb);
1942 } else {
1943 udf_debug("Validity check skipped because of novrs option\n");
1944 }
1945
1946 /* Look for anchor block and load Volume Descriptor Sequence */
1947 sbi->s_anchor = uopt->anchor;
1948 ret = udf_find_anchor(sb, fileset);
1949 if (ret < 0) {
1950 if (!silent && ret == -EAGAIN)
1951 udf_warn(sb, "No anchor found\n");
1952 return ret;
1953 }
1954 return 0;
1955 }
1956
1957 static void udf_open_lvid(struct super_block *sb)
1958 {
1959 struct udf_sb_info *sbi = UDF_SB(sb);
1960 struct buffer_head *bh = sbi->s_lvid_bh;
1961 struct logicalVolIntegrityDesc *lvid;
1962 struct logicalVolIntegrityDescImpUse *lvidiu;
1963
1964 if (!bh)
1965 return;
1966 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1967 lvidiu = udf_sb_lvidiu(sb);
1968 if (!lvidiu)
1969 return;
1970
1971 mutex_lock(&sbi->s_alloc_mutex);
1972 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1973 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1974 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1975 CURRENT_TIME);
1976 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1977
1978 lvid->descTag.descCRC = cpu_to_le16(
1979 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1980 le16_to_cpu(lvid->descTag.descCRCLength)));
1981
1982 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1983 mark_buffer_dirty(bh);
1984 sbi->s_lvid_dirty = 0;
1985 mutex_unlock(&sbi->s_alloc_mutex);
1986 /* Make opening of filesystem visible on the media immediately */
1987 sync_dirty_buffer(bh);
1988 }
1989
1990 static void udf_close_lvid(struct super_block *sb)
1991 {
1992 struct udf_sb_info *sbi = UDF_SB(sb);
1993 struct buffer_head *bh = sbi->s_lvid_bh;
1994 struct logicalVolIntegrityDesc *lvid;
1995 struct logicalVolIntegrityDescImpUse *lvidiu;
1996
1997 if (!bh)
1998 return;
1999 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2000 lvidiu = udf_sb_lvidiu(sb);
2001 if (!lvidiu)
2002 return;
2003
2004 mutex_lock(&sbi->s_alloc_mutex);
2005 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2006 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2007 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2008 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2009 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2010 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2011 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2012 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2013 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2014 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2015
2016 lvid->descTag.descCRC = cpu_to_le16(
2017 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2018 le16_to_cpu(lvid->descTag.descCRCLength)));
2019
2020 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2021 /*
2022 * We set buffer uptodate unconditionally here to avoid spurious
2023 * warnings from mark_buffer_dirty() when previous EIO has marked
2024 * the buffer as !uptodate
2025 */
2026 set_buffer_uptodate(bh);
2027 mark_buffer_dirty(bh);
2028 sbi->s_lvid_dirty = 0;
2029 mutex_unlock(&sbi->s_alloc_mutex);
2030 /* Make closing of filesystem visible on the media immediately */
2031 sync_dirty_buffer(bh);
2032 }
2033
2034 u64 lvid_get_unique_id(struct super_block *sb)
2035 {
2036 struct buffer_head *bh;
2037 struct udf_sb_info *sbi = UDF_SB(sb);
2038 struct logicalVolIntegrityDesc *lvid;
2039 struct logicalVolHeaderDesc *lvhd;
2040 u64 uniqueID;
2041 u64 ret;
2042
2043 bh = sbi->s_lvid_bh;
2044 if (!bh)
2045 return 0;
2046
2047 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2048 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2049
2050 mutex_lock(&sbi->s_alloc_mutex);
2051 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2052 if (!(++uniqueID & 0xFFFFFFFF))
2053 uniqueID += 16;
2054 lvhd->uniqueID = cpu_to_le64(uniqueID);
2055 mutex_unlock(&sbi->s_alloc_mutex);
2056 mark_buffer_dirty(bh);
2057
2058 return ret;
2059 }
2060
2061 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2062 {
2063 int ret = -EINVAL;
2064 struct inode *inode = NULL;
2065 struct udf_options uopt;
2066 struct kernel_lb_addr rootdir, fileset;
2067 struct udf_sb_info *sbi;
2068
2069 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2070 uopt.uid = INVALID_UID;
2071 uopt.gid = INVALID_GID;
2072 uopt.umask = 0;
2073 uopt.fmode = UDF_INVALID_MODE;
2074 uopt.dmode = UDF_INVALID_MODE;
2075
2076 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2077 if (!sbi)
2078 return -ENOMEM;
2079
2080 sb->s_fs_info = sbi;
2081
2082 mutex_init(&sbi->s_alloc_mutex);
2083
2084 if (!udf_parse_options((char *)options, &uopt, false))
2085 goto parse_options_failure;
2086
2087 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2088 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2089 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2090 goto parse_options_failure;
2091 }
2092 #ifdef CONFIG_UDF_NLS
2093 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2094 uopt.nls_map = load_nls_default();
2095 if (!uopt.nls_map)
2096 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2097 else
2098 udf_debug("Using default NLS map\n");
2099 }
2100 #endif
2101 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2102 uopt.flags |= (1 << UDF_FLAG_UTF8);
2103
2104 fileset.logicalBlockNum = 0xFFFFFFFF;
2105 fileset.partitionReferenceNum = 0xFFFF;
2106
2107 sbi->s_flags = uopt.flags;
2108 sbi->s_uid = uopt.uid;
2109 sbi->s_gid = uopt.gid;
2110 sbi->s_umask = uopt.umask;
2111 sbi->s_fmode = uopt.fmode;
2112 sbi->s_dmode = uopt.dmode;
2113 sbi->s_nls_map = uopt.nls_map;
2114 rwlock_init(&sbi->s_cred_lock);
2115
2116 if (uopt.session == 0xFFFFFFFF)
2117 sbi->s_session = udf_get_last_session(sb);
2118 else
2119 sbi->s_session = uopt.session;
2120
2121 udf_debug("Multi-session=%d\n", sbi->s_session);
2122
2123 /* Fill in the rest of the superblock */
2124 sb->s_op = &udf_sb_ops;
2125 sb->s_export_op = &udf_export_ops;
2126
2127 sb->s_magic = UDF_SUPER_MAGIC;
2128 sb->s_time_gran = 1000;
2129
2130 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2131 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2132 } else {
2133 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2134 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2135 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2136 if (!silent)
2137 pr_notice("Rescanning with blocksize %d\n",
2138 UDF_DEFAULT_BLOCKSIZE);
2139 brelse(sbi->s_lvid_bh);
2140 sbi->s_lvid_bh = NULL;
2141 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2142 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2143 }
2144 }
2145 if (ret < 0) {
2146 if (ret == -EAGAIN) {
2147 udf_warn(sb, "No partition found (1)\n");
2148 ret = -EINVAL;
2149 }
2150 goto error_out;
2151 }
2152
2153 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2154
2155 if (sbi->s_lvid_bh) {
2156 struct logicalVolIntegrityDescImpUse *lvidiu =
2157 udf_sb_lvidiu(sb);
2158 uint16_t minUDFReadRev;
2159 uint16_t minUDFWriteRev;
2160
2161 if (!lvidiu) {
2162 ret = -EINVAL;
2163 goto error_out;
2164 }
2165 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2166 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2167 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2168 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2169 minUDFReadRev,
2170 UDF_MAX_READ_VERSION);
2171 ret = -EINVAL;
2172 goto error_out;
2173 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2174 !(sb->s_flags & MS_RDONLY)) {
2175 ret = -EACCES;
2176 goto error_out;
2177 }
2178
2179 sbi->s_udfrev = minUDFWriteRev;
2180
2181 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2182 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2183 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2184 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2185 }
2186
2187 if (!sbi->s_partitions) {
2188 udf_warn(sb, "No partition found (2)\n");
2189 ret = -EINVAL;
2190 goto error_out;
2191 }
2192
2193 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2194 UDF_PART_FLAG_READ_ONLY &&
2195 !(sb->s_flags & MS_RDONLY)) {
2196 ret = -EACCES;
2197 goto error_out;
2198 }
2199
2200 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2201 udf_warn(sb, "No fileset found\n");
2202 ret = -EINVAL;
2203 goto error_out;
2204 }
2205
2206 if (!silent) {
2207 struct timestamp ts;
2208 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2209 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2210 sbi->s_volume_ident,
2211 le16_to_cpu(ts.year), ts.month, ts.day,
2212 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2213 }
2214 if (!(sb->s_flags & MS_RDONLY))
2215 udf_open_lvid(sb);
2216
2217 /* Assign the root inode */
2218 /* assign inodes by physical block number */
2219 /* perhaps it's not extensible enough, but for now ... */
2220 inode = udf_iget(sb, &rootdir);
2221 if (IS_ERR(inode)) {
2222 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2223 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2224 ret = PTR_ERR(inode);
2225 goto error_out;
2226 }
2227
2228 /* Allocate a dentry for the root inode */
2229 sb->s_root = d_make_root(inode);
2230 if (!sb->s_root) {
2231 udf_err(sb, "Couldn't allocate root dentry\n");
2232 ret = -ENOMEM;
2233 goto error_out;
2234 }
2235 sb->s_maxbytes = MAX_LFS_FILESIZE;
2236 sb->s_max_links = UDF_MAX_LINKS;
2237 return 0;
2238
2239 error_out:
2240 iput(sbi->s_vat_inode);
2241 parse_options_failure:
2242 #ifdef CONFIG_UDF_NLS
2243 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2244 unload_nls(sbi->s_nls_map);
2245 #endif
2246 if (!(sb->s_flags & MS_RDONLY))
2247 udf_close_lvid(sb);
2248 brelse(sbi->s_lvid_bh);
2249 udf_sb_free_partitions(sb);
2250 kfree(sbi);
2251 sb->s_fs_info = NULL;
2252
2253 return ret;
2254 }
2255
2256 void _udf_err(struct super_block *sb, const char *function,
2257 const char *fmt, ...)
2258 {
2259 struct va_format vaf;
2260 va_list args;
2261
2262 va_start(args, fmt);
2263
2264 vaf.fmt = fmt;
2265 vaf.va = &args;
2266
2267 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2268
2269 va_end(args);
2270 }
2271
2272 void _udf_warn(struct super_block *sb, const char *function,
2273 const char *fmt, ...)
2274 {
2275 struct va_format vaf;
2276 va_list args;
2277
2278 va_start(args, fmt);
2279
2280 vaf.fmt = fmt;
2281 vaf.va = &args;
2282
2283 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2284
2285 va_end(args);
2286 }
2287
2288 static void udf_put_super(struct super_block *sb)
2289 {
2290 struct udf_sb_info *sbi;
2291
2292 sbi = UDF_SB(sb);
2293
2294 iput(sbi->s_vat_inode);
2295 #ifdef CONFIG_UDF_NLS
2296 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2297 unload_nls(sbi->s_nls_map);
2298 #endif
2299 if (!(sb->s_flags & MS_RDONLY))
2300 udf_close_lvid(sb);
2301 brelse(sbi->s_lvid_bh);
2302 udf_sb_free_partitions(sb);
2303 mutex_destroy(&sbi->s_alloc_mutex);
2304 kfree(sb->s_fs_info);
2305 sb->s_fs_info = NULL;
2306 }
2307
2308 static int udf_sync_fs(struct super_block *sb, int wait)
2309 {
2310 struct udf_sb_info *sbi = UDF_SB(sb);
2311
2312 mutex_lock(&sbi->s_alloc_mutex);
2313 if (sbi->s_lvid_dirty) {
2314 /*
2315 * Blockdevice will be synced later so we don't have to submit
2316 * the buffer for IO
2317 */
2318 mark_buffer_dirty(sbi->s_lvid_bh);
2319 sbi->s_lvid_dirty = 0;
2320 }
2321 mutex_unlock(&sbi->s_alloc_mutex);
2322
2323 return 0;
2324 }
2325
2326 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2327 {
2328 struct super_block *sb = dentry->d_sb;
2329 struct udf_sb_info *sbi = UDF_SB(sb);
2330 struct logicalVolIntegrityDescImpUse *lvidiu;
2331 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2332
2333 lvidiu = udf_sb_lvidiu(sb);
2334 buf->f_type = UDF_SUPER_MAGIC;
2335 buf->f_bsize = sb->s_blocksize;
2336 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2337 buf->f_bfree = udf_count_free(sb);
2338 buf->f_bavail = buf->f_bfree;
2339 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2340 le32_to_cpu(lvidiu->numDirs)) : 0)
2341 + buf->f_bfree;
2342 buf->f_ffree = buf->f_bfree;
2343 buf->f_namelen = UDF_NAME_LEN - 2;
2344 buf->f_fsid.val[0] = (u32)id;
2345 buf->f_fsid.val[1] = (u32)(id >> 32);
2346
2347 return 0;
2348 }
2349
2350 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2351 struct udf_bitmap *bitmap)
2352 {
2353 struct buffer_head *bh = NULL;
2354 unsigned int accum = 0;
2355 int index;
2356 int block = 0, newblock;
2357 struct kernel_lb_addr loc;
2358 uint32_t bytes;
2359 uint8_t *ptr;
2360 uint16_t ident;
2361 struct spaceBitmapDesc *bm;
2362
2363 loc.logicalBlockNum = bitmap->s_extPosition;
2364 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2365 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2366
2367 if (!bh) {
2368 udf_err(sb, "udf_count_free failed\n");
2369 goto out;
2370 } else if (ident != TAG_IDENT_SBD) {
2371 brelse(bh);
2372 udf_err(sb, "udf_count_free failed\n");
2373 goto out;
2374 }
2375
2376 bm = (struct spaceBitmapDesc *)bh->b_data;
2377 bytes = le32_to_cpu(bm->numOfBytes);
2378 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2379 ptr = (uint8_t *)bh->b_data;
2380
2381 while (bytes > 0) {
2382 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2383 accum += bitmap_weight((const unsigned long *)(ptr + index),
2384 cur_bytes * 8);
2385 bytes -= cur_bytes;
2386 if (bytes) {
2387 brelse(bh);
2388 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2389 bh = udf_tread(sb, newblock);
2390 if (!bh) {
2391 udf_debug("read failed\n");
2392 goto out;
2393 }
2394 index = 0;
2395 ptr = (uint8_t *)bh->b_data;
2396 }
2397 }
2398 brelse(bh);
2399 out:
2400 return accum;
2401 }
2402
2403 static unsigned int udf_count_free_table(struct super_block *sb,
2404 struct inode *table)
2405 {
2406 unsigned int accum = 0;
2407 uint32_t elen;
2408 struct kernel_lb_addr eloc;
2409 int8_t etype;
2410 struct extent_position epos;
2411
2412 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2413 epos.block = UDF_I(table)->i_location;
2414 epos.offset = sizeof(struct unallocSpaceEntry);
2415 epos.bh = NULL;
2416
2417 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2418 accum += (elen >> table->i_sb->s_blocksize_bits);
2419
2420 brelse(epos.bh);
2421 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2422
2423 return accum;
2424 }
2425
2426 static unsigned int udf_count_free(struct super_block *sb)
2427 {
2428 unsigned int accum = 0;
2429 struct udf_sb_info *sbi;
2430 struct udf_part_map *map;
2431
2432 sbi = UDF_SB(sb);
2433 if (sbi->s_lvid_bh) {
2434 struct logicalVolIntegrityDesc *lvid =
2435 (struct logicalVolIntegrityDesc *)
2436 sbi->s_lvid_bh->b_data;
2437 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2438 accum = le32_to_cpu(
2439 lvid->freeSpaceTable[sbi->s_partition]);
2440 if (accum == 0xFFFFFFFF)
2441 accum = 0;
2442 }
2443 }
2444
2445 if (accum)
2446 return accum;
2447
2448 map = &sbi->s_partmaps[sbi->s_partition];
2449 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2450 accum += udf_count_free_bitmap(sb,
2451 map->s_uspace.s_bitmap);
2452 }
2453 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2454 accum += udf_count_free_bitmap(sb,
2455 map->s_fspace.s_bitmap);
2456 }
2457 if (accum)
2458 return accum;
2459
2460 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2461 accum += udf_count_free_table(sb,
2462 map->s_uspace.s_table);
2463 }
2464 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2465 accum += udf_count_free_table(sb,
2466 map->s_fspace.s_table);
2467 }
2468
2469 return accum;
2470 }
This page took 0.084032 seconds and 5 git commands to generate.