Merge branch 'xfs-generic-sb-counters' into for-next
[deliverable/linux.git] / fs / xfs / libxfs / xfs_ialloc.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_inode.h"
28 #include "xfs_btree.h"
29 #include "xfs_ialloc.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_alloc.h"
32 #include "xfs_rtalloc.h"
33 #include "xfs_error.h"
34 #include "xfs_bmap.h"
35 #include "xfs_cksum.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_icreate_item.h"
39 #include "xfs_icache.h"
40 #include "xfs_trace.h"
41
42
43 /*
44 * Allocation group level functions.
45 */
46 static inline int
47 xfs_ialloc_cluster_alignment(
48 struct xfs_mount *mp)
49 {
50 if (xfs_sb_version_hasalign(&mp->m_sb) &&
51 mp->m_sb.sb_inoalignmt >=
52 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
53 return mp->m_sb.sb_inoalignmt;
54 return 1;
55 }
56
57 /*
58 * Lookup a record by ino in the btree given by cur.
59 */
60 int /* error */
61 xfs_inobt_lookup(
62 struct xfs_btree_cur *cur, /* btree cursor */
63 xfs_agino_t ino, /* starting inode of chunk */
64 xfs_lookup_t dir, /* <=, >=, == */
65 int *stat) /* success/failure */
66 {
67 cur->bc_rec.i.ir_startino = ino;
68 cur->bc_rec.i.ir_freecount = 0;
69 cur->bc_rec.i.ir_free = 0;
70 return xfs_btree_lookup(cur, dir, stat);
71 }
72
73 /*
74 * Update the record referred to by cur to the value given.
75 * This either works (return 0) or gets an EFSCORRUPTED error.
76 */
77 STATIC int /* error */
78 xfs_inobt_update(
79 struct xfs_btree_cur *cur, /* btree cursor */
80 xfs_inobt_rec_incore_t *irec) /* btree record */
81 {
82 union xfs_btree_rec rec;
83
84 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
85 rec.inobt.ir_freecount = cpu_to_be32(irec->ir_freecount);
86 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
87 return xfs_btree_update(cur, &rec);
88 }
89
90 /*
91 * Get the data from the pointed-to record.
92 */
93 int /* error */
94 xfs_inobt_get_rec(
95 struct xfs_btree_cur *cur, /* btree cursor */
96 xfs_inobt_rec_incore_t *irec, /* btree record */
97 int *stat) /* output: success/failure */
98 {
99 union xfs_btree_rec *rec;
100 int error;
101
102 error = xfs_btree_get_rec(cur, &rec, stat);
103 if (!error && *stat == 1) {
104 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
105 irec->ir_freecount = be32_to_cpu(rec->inobt.ir_freecount);
106 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
107 }
108 return error;
109 }
110
111 /*
112 * Insert a single inobt record. Cursor must already point to desired location.
113 */
114 STATIC int
115 xfs_inobt_insert_rec(
116 struct xfs_btree_cur *cur,
117 __int32_t freecount,
118 xfs_inofree_t free,
119 int *stat)
120 {
121 cur->bc_rec.i.ir_freecount = freecount;
122 cur->bc_rec.i.ir_free = free;
123 return xfs_btree_insert(cur, stat);
124 }
125
126 /*
127 * Insert records describing a newly allocated inode chunk into the inobt.
128 */
129 STATIC int
130 xfs_inobt_insert(
131 struct xfs_mount *mp,
132 struct xfs_trans *tp,
133 struct xfs_buf *agbp,
134 xfs_agino_t newino,
135 xfs_agino_t newlen,
136 xfs_btnum_t btnum)
137 {
138 struct xfs_btree_cur *cur;
139 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
140 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
141 xfs_agino_t thisino;
142 int i;
143 int error;
144
145 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
146
147 for (thisino = newino;
148 thisino < newino + newlen;
149 thisino += XFS_INODES_PER_CHUNK) {
150 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
151 if (error) {
152 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
153 return error;
154 }
155 ASSERT(i == 0);
156
157 error = xfs_inobt_insert_rec(cur, XFS_INODES_PER_CHUNK,
158 XFS_INOBT_ALL_FREE, &i);
159 if (error) {
160 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
161 return error;
162 }
163 ASSERT(i == 1);
164 }
165
166 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
167
168 return 0;
169 }
170
171 /*
172 * Verify that the number of free inodes in the AGI is correct.
173 */
174 #ifdef DEBUG
175 STATIC int
176 xfs_check_agi_freecount(
177 struct xfs_btree_cur *cur,
178 struct xfs_agi *agi)
179 {
180 if (cur->bc_nlevels == 1) {
181 xfs_inobt_rec_incore_t rec;
182 int freecount = 0;
183 int error;
184 int i;
185
186 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
187 if (error)
188 return error;
189
190 do {
191 error = xfs_inobt_get_rec(cur, &rec, &i);
192 if (error)
193 return error;
194
195 if (i) {
196 freecount += rec.ir_freecount;
197 error = xfs_btree_increment(cur, 0, &i);
198 if (error)
199 return error;
200 }
201 } while (i == 1);
202
203 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
204 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
205 }
206 return 0;
207 }
208 #else
209 #define xfs_check_agi_freecount(cur, agi) 0
210 #endif
211
212 /*
213 * Initialise a new set of inodes. When called without a transaction context
214 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
215 * than logging them (which in a transaction context puts them into the AIL
216 * for writeback rather than the xfsbufd queue).
217 */
218 int
219 xfs_ialloc_inode_init(
220 struct xfs_mount *mp,
221 struct xfs_trans *tp,
222 struct list_head *buffer_list,
223 xfs_agnumber_t agno,
224 xfs_agblock_t agbno,
225 xfs_agblock_t length,
226 unsigned int gen)
227 {
228 struct xfs_buf *fbuf;
229 struct xfs_dinode *free;
230 int nbufs, blks_per_cluster, inodes_per_cluster;
231 int version;
232 int i, j;
233 xfs_daddr_t d;
234 xfs_ino_t ino = 0;
235
236 /*
237 * Loop over the new block(s), filling in the inodes. For small block
238 * sizes, manipulate the inodes in buffers which are multiples of the
239 * blocks size.
240 */
241 blks_per_cluster = xfs_icluster_size_fsb(mp);
242 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
243 nbufs = length / blks_per_cluster;
244
245 /*
246 * Figure out what version number to use in the inodes we create. If
247 * the superblock version has caught up to the one that supports the new
248 * inode format, then use the new inode version. Otherwise use the old
249 * version so that old kernels will continue to be able to use the file
250 * system.
251 *
252 * For v3 inodes, we also need to write the inode number into the inode,
253 * so calculate the first inode number of the chunk here as
254 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
255 * across multiple filesystem blocks (such as a cluster) and so cannot
256 * be used in the cluster buffer loop below.
257 *
258 * Further, because we are writing the inode directly into the buffer
259 * and calculating a CRC on the entire inode, we have ot log the entire
260 * inode so that the entire range the CRC covers is present in the log.
261 * That means for v3 inode we log the entire buffer rather than just the
262 * inode cores.
263 */
264 if (xfs_sb_version_hascrc(&mp->m_sb)) {
265 version = 3;
266 ino = XFS_AGINO_TO_INO(mp, agno,
267 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
268
269 /*
270 * log the initialisation that is about to take place as an
271 * logical operation. This means the transaction does not
272 * need to log the physical changes to the inode buffers as log
273 * recovery will know what initialisation is actually needed.
274 * Hence we only need to log the buffers as "ordered" buffers so
275 * they track in the AIL as if they were physically logged.
276 */
277 if (tp)
278 xfs_icreate_log(tp, agno, agbno, mp->m_ialloc_inos,
279 mp->m_sb.sb_inodesize, length, gen);
280 } else
281 version = 2;
282
283 for (j = 0; j < nbufs; j++) {
284 /*
285 * Get the block.
286 */
287 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
288 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
289 mp->m_bsize * blks_per_cluster,
290 XBF_UNMAPPED);
291 if (!fbuf)
292 return -ENOMEM;
293
294 /* Initialize the inode buffers and log them appropriately. */
295 fbuf->b_ops = &xfs_inode_buf_ops;
296 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
297 for (i = 0; i < inodes_per_cluster; i++) {
298 int ioffset = i << mp->m_sb.sb_inodelog;
299 uint isize = xfs_dinode_size(version);
300
301 free = xfs_make_iptr(mp, fbuf, i);
302 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
303 free->di_version = version;
304 free->di_gen = cpu_to_be32(gen);
305 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
306
307 if (version == 3) {
308 free->di_ino = cpu_to_be64(ino);
309 ino++;
310 uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid);
311 xfs_dinode_calc_crc(mp, free);
312 } else if (tp) {
313 /* just log the inode core */
314 xfs_trans_log_buf(tp, fbuf, ioffset,
315 ioffset + isize - 1);
316 }
317 }
318
319 if (tp) {
320 /*
321 * Mark the buffer as an inode allocation buffer so it
322 * sticks in AIL at the point of this allocation
323 * transaction. This ensures the they are on disk before
324 * the tail of the log can be moved past this
325 * transaction (i.e. by preventing relogging from moving
326 * it forward in the log).
327 */
328 xfs_trans_inode_alloc_buf(tp, fbuf);
329 if (version == 3) {
330 /*
331 * Mark the buffer as ordered so that they are
332 * not physically logged in the transaction but
333 * still tracked in the AIL as part of the
334 * transaction and pin the log appropriately.
335 */
336 xfs_trans_ordered_buf(tp, fbuf);
337 xfs_trans_log_buf(tp, fbuf, 0,
338 BBTOB(fbuf->b_length) - 1);
339 }
340 } else {
341 fbuf->b_flags |= XBF_DONE;
342 xfs_buf_delwri_queue(fbuf, buffer_list);
343 xfs_buf_relse(fbuf);
344 }
345 }
346 return 0;
347 }
348
349 /*
350 * Allocate new inodes in the allocation group specified by agbp.
351 * Return 0 for success, else error code.
352 */
353 STATIC int /* error code or 0 */
354 xfs_ialloc_ag_alloc(
355 xfs_trans_t *tp, /* transaction pointer */
356 xfs_buf_t *agbp, /* alloc group buffer */
357 int *alloc)
358 {
359 xfs_agi_t *agi; /* allocation group header */
360 xfs_alloc_arg_t args; /* allocation argument structure */
361 xfs_agnumber_t agno;
362 int error;
363 xfs_agino_t newino; /* new first inode's number */
364 xfs_agino_t newlen; /* new number of inodes */
365 int isaligned = 0; /* inode allocation at stripe unit */
366 /* boundary */
367 struct xfs_perag *pag;
368
369 memset(&args, 0, sizeof(args));
370 args.tp = tp;
371 args.mp = tp->t_mountp;
372
373 /*
374 * Locking will ensure that we don't have two callers in here
375 * at one time.
376 */
377 newlen = args.mp->m_ialloc_inos;
378 if (args.mp->m_maxicount &&
379 percpu_counter_read(&args.mp->m_icount) + newlen >
380 args.mp->m_maxicount)
381 return -ENOSPC;
382 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
383 /*
384 * First try to allocate inodes contiguous with the last-allocated
385 * chunk of inodes. If the filesystem is striped, this will fill
386 * an entire stripe unit with inodes.
387 */
388 agi = XFS_BUF_TO_AGI(agbp);
389 newino = be32_to_cpu(agi->agi_newino);
390 agno = be32_to_cpu(agi->agi_seqno);
391 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
392 args.mp->m_ialloc_blks;
393 if (likely(newino != NULLAGINO &&
394 (args.agbno < be32_to_cpu(agi->agi_length)))) {
395 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
396 args.type = XFS_ALLOCTYPE_THIS_BNO;
397 args.prod = 1;
398
399 /*
400 * We need to take into account alignment here to ensure that
401 * we don't modify the free list if we fail to have an exact
402 * block. If we don't have an exact match, and every oher
403 * attempt allocation attempt fails, we'll end up cancelling
404 * a dirty transaction and shutting down.
405 *
406 * For an exact allocation, alignment must be 1,
407 * however we need to take cluster alignment into account when
408 * fixing up the freelist. Use the minalignslop field to
409 * indicate that extra blocks might be required for alignment,
410 * but not to use them in the actual exact allocation.
411 */
412 args.alignment = 1;
413 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
414
415 /* Allow space for the inode btree to split. */
416 args.minleft = args.mp->m_in_maxlevels - 1;
417 if ((error = xfs_alloc_vextent(&args)))
418 return error;
419
420 /*
421 * This request might have dirtied the transaction if the AG can
422 * satisfy the request, but the exact block was not available.
423 * If the allocation did fail, subsequent requests will relax
424 * the exact agbno requirement and increase the alignment
425 * instead. It is critical that the total size of the request
426 * (len + alignment + slop) does not increase from this point
427 * on, so reset minalignslop to ensure it is not included in
428 * subsequent requests.
429 */
430 args.minalignslop = 0;
431 } else
432 args.fsbno = NULLFSBLOCK;
433
434 if (unlikely(args.fsbno == NULLFSBLOCK)) {
435 /*
436 * Set the alignment for the allocation.
437 * If stripe alignment is turned on then align at stripe unit
438 * boundary.
439 * If the cluster size is smaller than a filesystem block
440 * then we're doing I/O for inodes in filesystem block size
441 * pieces, so don't need alignment anyway.
442 */
443 isaligned = 0;
444 if (args.mp->m_sinoalign) {
445 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
446 args.alignment = args.mp->m_dalign;
447 isaligned = 1;
448 } else
449 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
450 /*
451 * Need to figure out where to allocate the inode blocks.
452 * Ideally they should be spaced out through the a.g.
453 * For now, just allocate blocks up front.
454 */
455 args.agbno = be32_to_cpu(agi->agi_root);
456 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
457 /*
458 * Allocate a fixed-size extent of inodes.
459 */
460 args.type = XFS_ALLOCTYPE_NEAR_BNO;
461 args.prod = 1;
462 /*
463 * Allow space for the inode btree to split.
464 */
465 args.minleft = args.mp->m_in_maxlevels - 1;
466 if ((error = xfs_alloc_vextent(&args)))
467 return error;
468 }
469
470 /*
471 * If stripe alignment is turned on, then try again with cluster
472 * alignment.
473 */
474 if (isaligned && args.fsbno == NULLFSBLOCK) {
475 args.type = XFS_ALLOCTYPE_NEAR_BNO;
476 args.agbno = be32_to_cpu(agi->agi_root);
477 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
478 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
479 if ((error = xfs_alloc_vextent(&args)))
480 return error;
481 }
482
483 if (args.fsbno == NULLFSBLOCK) {
484 *alloc = 0;
485 return 0;
486 }
487 ASSERT(args.len == args.minlen);
488
489 /*
490 * Stamp and write the inode buffers.
491 *
492 * Seed the new inode cluster with a random generation number. This
493 * prevents short-term reuse of generation numbers if a chunk is
494 * freed and then immediately reallocated. We use random numbers
495 * rather than a linear progression to prevent the next generation
496 * number from being easily guessable.
497 */
498 error = xfs_ialloc_inode_init(args.mp, tp, NULL, agno, args.agbno,
499 args.len, prandom_u32());
500
501 if (error)
502 return error;
503 /*
504 * Convert the results.
505 */
506 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
507 be32_add_cpu(&agi->agi_count, newlen);
508 be32_add_cpu(&agi->agi_freecount, newlen);
509 pag = xfs_perag_get(args.mp, agno);
510 pag->pagi_freecount += newlen;
511 xfs_perag_put(pag);
512 agi->agi_newino = cpu_to_be32(newino);
513
514 /*
515 * Insert records describing the new inode chunk into the btrees.
516 */
517 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
518 XFS_BTNUM_INO);
519 if (error)
520 return error;
521
522 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
523 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
524 XFS_BTNUM_FINO);
525 if (error)
526 return error;
527 }
528 /*
529 * Log allocation group header fields
530 */
531 xfs_ialloc_log_agi(tp, agbp,
532 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
533 /*
534 * Modify/log superblock values for inode count and inode free count.
535 */
536 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
537 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
538 *alloc = 1;
539 return 0;
540 }
541
542 STATIC xfs_agnumber_t
543 xfs_ialloc_next_ag(
544 xfs_mount_t *mp)
545 {
546 xfs_agnumber_t agno;
547
548 spin_lock(&mp->m_agirotor_lock);
549 agno = mp->m_agirotor;
550 if (++mp->m_agirotor >= mp->m_maxagi)
551 mp->m_agirotor = 0;
552 spin_unlock(&mp->m_agirotor_lock);
553
554 return agno;
555 }
556
557 /*
558 * Select an allocation group to look for a free inode in, based on the parent
559 * inode and the mode. Return the allocation group buffer.
560 */
561 STATIC xfs_agnumber_t
562 xfs_ialloc_ag_select(
563 xfs_trans_t *tp, /* transaction pointer */
564 xfs_ino_t parent, /* parent directory inode number */
565 umode_t mode, /* bits set to indicate file type */
566 int okalloc) /* ok to allocate more space */
567 {
568 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
569 xfs_agnumber_t agno; /* current ag number */
570 int flags; /* alloc buffer locking flags */
571 xfs_extlen_t ineed; /* blocks needed for inode allocation */
572 xfs_extlen_t longest = 0; /* longest extent available */
573 xfs_mount_t *mp; /* mount point structure */
574 int needspace; /* file mode implies space allocated */
575 xfs_perag_t *pag; /* per allocation group data */
576 xfs_agnumber_t pagno; /* parent (starting) ag number */
577 int error;
578
579 /*
580 * Files of these types need at least one block if length > 0
581 * (and they won't fit in the inode, but that's hard to figure out).
582 */
583 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
584 mp = tp->t_mountp;
585 agcount = mp->m_maxagi;
586 if (S_ISDIR(mode))
587 pagno = xfs_ialloc_next_ag(mp);
588 else {
589 pagno = XFS_INO_TO_AGNO(mp, parent);
590 if (pagno >= agcount)
591 pagno = 0;
592 }
593
594 ASSERT(pagno < agcount);
595
596 /*
597 * Loop through allocation groups, looking for one with a little
598 * free space in it. Note we don't look for free inodes, exactly.
599 * Instead, we include whether there is a need to allocate inodes
600 * to mean that blocks must be allocated for them,
601 * if none are currently free.
602 */
603 agno = pagno;
604 flags = XFS_ALLOC_FLAG_TRYLOCK;
605 for (;;) {
606 pag = xfs_perag_get(mp, agno);
607 if (!pag->pagi_inodeok) {
608 xfs_ialloc_next_ag(mp);
609 goto nextag;
610 }
611
612 if (!pag->pagi_init) {
613 error = xfs_ialloc_pagi_init(mp, tp, agno);
614 if (error)
615 goto nextag;
616 }
617
618 if (pag->pagi_freecount) {
619 xfs_perag_put(pag);
620 return agno;
621 }
622
623 if (!okalloc)
624 goto nextag;
625
626 if (!pag->pagf_init) {
627 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
628 if (error)
629 goto nextag;
630 }
631
632 /*
633 * Check that there is enough free space for the file plus a
634 * chunk of inodes if we need to allocate some. If this is the
635 * first pass across the AGs, take into account the potential
636 * space needed for alignment of inode chunks when checking the
637 * longest contiguous free space in the AG - this prevents us
638 * from getting ENOSPC because we have free space larger than
639 * m_ialloc_blks but alignment constraints prevent us from using
640 * it.
641 *
642 * If we can't find an AG with space for full alignment slack to
643 * be taken into account, we must be near ENOSPC in all AGs.
644 * Hence we don't include alignment for the second pass and so
645 * if we fail allocation due to alignment issues then it is most
646 * likely a real ENOSPC condition.
647 */
648 ineed = mp->m_ialloc_blks;
649 if (flags && ineed > 1)
650 ineed += xfs_ialloc_cluster_alignment(mp);
651 longest = pag->pagf_longest;
652 if (!longest)
653 longest = pag->pagf_flcount > 0;
654
655 if (pag->pagf_freeblks >= needspace + ineed &&
656 longest >= ineed) {
657 xfs_perag_put(pag);
658 return agno;
659 }
660 nextag:
661 xfs_perag_put(pag);
662 /*
663 * No point in iterating over the rest, if we're shutting
664 * down.
665 */
666 if (XFS_FORCED_SHUTDOWN(mp))
667 return NULLAGNUMBER;
668 agno++;
669 if (agno >= agcount)
670 agno = 0;
671 if (agno == pagno) {
672 if (flags == 0)
673 return NULLAGNUMBER;
674 flags = 0;
675 }
676 }
677 }
678
679 /*
680 * Try to retrieve the next record to the left/right from the current one.
681 */
682 STATIC int
683 xfs_ialloc_next_rec(
684 struct xfs_btree_cur *cur,
685 xfs_inobt_rec_incore_t *rec,
686 int *done,
687 int left)
688 {
689 int error;
690 int i;
691
692 if (left)
693 error = xfs_btree_decrement(cur, 0, &i);
694 else
695 error = xfs_btree_increment(cur, 0, &i);
696
697 if (error)
698 return error;
699 *done = !i;
700 if (i) {
701 error = xfs_inobt_get_rec(cur, rec, &i);
702 if (error)
703 return error;
704 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
705 }
706
707 return 0;
708 }
709
710 STATIC int
711 xfs_ialloc_get_rec(
712 struct xfs_btree_cur *cur,
713 xfs_agino_t agino,
714 xfs_inobt_rec_incore_t *rec,
715 int *done)
716 {
717 int error;
718 int i;
719
720 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
721 if (error)
722 return error;
723 *done = !i;
724 if (i) {
725 error = xfs_inobt_get_rec(cur, rec, &i);
726 if (error)
727 return error;
728 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
729 }
730
731 return 0;
732 }
733
734 /*
735 * Allocate an inode using the inobt-only algorithm.
736 */
737 STATIC int
738 xfs_dialloc_ag_inobt(
739 struct xfs_trans *tp,
740 struct xfs_buf *agbp,
741 xfs_ino_t parent,
742 xfs_ino_t *inop)
743 {
744 struct xfs_mount *mp = tp->t_mountp;
745 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
746 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
747 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
748 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
749 struct xfs_perag *pag;
750 struct xfs_btree_cur *cur, *tcur;
751 struct xfs_inobt_rec_incore rec, trec;
752 xfs_ino_t ino;
753 int error;
754 int offset;
755 int i, j;
756
757 pag = xfs_perag_get(mp, agno);
758
759 ASSERT(pag->pagi_init);
760 ASSERT(pag->pagi_inodeok);
761 ASSERT(pag->pagi_freecount > 0);
762
763 restart_pagno:
764 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
765 /*
766 * If pagino is 0 (this is the root inode allocation) use newino.
767 * This must work because we've just allocated some.
768 */
769 if (!pagino)
770 pagino = be32_to_cpu(agi->agi_newino);
771
772 error = xfs_check_agi_freecount(cur, agi);
773 if (error)
774 goto error0;
775
776 /*
777 * If in the same AG as the parent, try to get near the parent.
778 */
779 if (pagno == agno) {
780 int doneleft; /* done, to the left */
781 int doneright; /* done, to the right */
782 int searchdistance = 10;
783
784 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
785 if (error)
786 goto error0;
787 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
788
789 error = xfs_inobt_get_rec(cur, &rec, &j);
790 if (error)
791 goto error0;
792 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
793
794 if (rec.ir_freecount > 0) {
795 /*
796 * Found a free inode in the same chunk
797 * as the parent, done.
798 */
799 goto alloc_inode;
800 }
801
802
803 /*
804 * In the same AG as parent, but parent's chunk is full.
805 */
806
807 /* duplicate the cursor, search left & right simultaneously */
808 error = xfs_btree_dup_cursor(cur, &tcur);
809 if (error)
810 goto error0;
811
812 /*
813 * Skip to last blocks looked up if same parent inode.
814 */
815 if (pagino != NULLAGINO &&
816 pag->pagl_pagino == pagino &&
817 pag->pagl_leftrec != NULLAGINO &&
818 pag->pagl_rightrec != NULLAGINO) {
819 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
820 &trec, &doneleft);
821 if (error)
822 goto error1;
823
824 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
825 &rec, &doneright);
826 if (error)
827 goto error1;
828 } else {
829 /* search left with tcur, back up 1 record */
830 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
831 if (error)
832 goto error1;
833
834 /* search right with cur, go forward 1 record. */
835 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
836 if (error)
837 goto error1;
838 }
839
840 /*
841 * Loop until we find an inode chunk with a free inode.
842 */
843 while (!doneleft || !doneright) {
844 int useleft; /* using left inode chunk this time */
845
846 if (!--searchdistance) {
847 /*
848 * Not in range - save last search
849 * location and allocate a new inode
850 */
851 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
852 pag->pagl_leftrec = trec.ir_startino;
853 pag->pagl_rightrec = rec.ir_startino;
854 pag->pagl_pagino = pagino;
855 goto newino;
856 }
857
858 /* figure out the closer block if both are valid. */
859 if (!doneleft && !doneright) {
860 useleft = pagino -
861 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
862 rec.ir_startino - pagino;
863 } else {
864 useleft = !doneleft;
865 }
866
867 /* free inodes to the left? */
868 if (useleft && trec.ir_freecount) {
869 rec = trec;
870 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
871 cur = tcur;
872
873 pag->pagl_leftrec = trec.ir_startino;
874 pag->pagl_rightrec = rec.ir_startino;
875 pag->pagl_pagino = pagino;
876 goto alloc_inode;
877 }
878
879 /* free inodes to the right? */
880 if (!useleft && rec.ir_freecount) {
881 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
882
883 pag->pagl_leftrec = trec.ir_startino;
884 pag->pagl_rightrec = rec.ir_startino;
885 pag->pagl_pagino = pagino;
886 goto alloc_inode;
887 }
888
889 /* get next record to check */
890 if (useleft) {
891 error = xfs_ialloc_next_rec(tcur, &trec,
892 &doneleft, 1);
893 } else {
894 error = xfs_ialloc_next_rec(cur, &rec,
895 &doneright, 0);
896 }
897 if (error)
898 goto error1;
899 }
900
901 /*
902 * We've reached the end of the btree. because
903 * we are only searching a small chunk of the
904 * btree each search, there is obviously free
905 * inodes closer to the parent inode than we
906 * are now. restart the search again.
907 */
908 pag->pagl_pagino = NULLAGINO;
909 pag->pagl_leftrec = NULLAGINO;
910 pag->pagl_rightrec = NULLAGINO;
911 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
912 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
913 goto restart_pagno;
914 }
915
916 /*
917 * In a different AG from the parent.
918 * See if the most recently allocated block has any free.
919 */
920 newino:
921 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
922 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
923 XFS_LOOKUP_EQ, &i);
924 if (error)
925 goto error0;
926
927 if (i == 1) {
928 error = xfs_inobt_get_rec(cur, &rec, &j);
929 if (error)
930 goto error0;
931
932 if (j == 1 && rec.ir_freecount > 0) {
933 /*
934 * The last chunk allocated in the group
935 * still has a free inode.
936 */
937 goto alloc_inode;
938 }
939 }
940 }
941
942 /*
943 * None left in the last group, search the whole AG
944 */
945 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
946 if (error)
947 goto error0;
948 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
949
950 for (;;) {
951 error = xfs_inobt_get_rec(cur, &rec, &i);
952 if (error)
953 goto error0;
954 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
955 if (rec.ir_freecount > 0)
956 break;
957 error = xfs_btree_increment(cur, 0, &i);
958 if (error)
959 goto error0;
960 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
961 }
962
963 alloc_inode:
964 offset = xfs_lowbit64(rec.ir_free);
965 ASSERT(offset >= 0);
966 ASSERT(offset < XFS_INODES_PER_CHUNK);
967 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
968 XFS_INODES_PER_CHUNK) == 0);
969 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
970 rec.ir_free &= ~XFS_INOBT_MASK(offset);
971 rec.ir_freecount--;
972 error = xfs_inobt_update(cur, &rec);
973 if (error)
974 goto error0;
975 be32_add_cpu(&agi->agi_freecount, -1);
976 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
977 pag->pagi_freecount--;
978
979 error = xfs_check_agi_freecount(cur, agi);
980 if (error)
981 goto error0;
982
983 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
984 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
985 xfs_perag_put(pag);
986 *inop = ino;
987 return 0;
988 error1:
989 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
990 error0:
991 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
992 xfs_perag_put(pag);
993 return error;
994 }
995
996 /*
997 * Use the free inode btree to allocate an inode based on distance from the
998 * parent. Note that the provided cursor may be deleted and replaced.
999 */
1000 STATIC int
1001 xfs_dialloc_ag_finobt_near(
1002 xfs_agino_t pagino,
1003 struct xfs_btree_cur **ocur,
1004 struct xfs_inobt_rec_incore *rec)
1005 {
1006 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1007 struct xfs_btree_cur *rcur; /* right search cursor */
1008 struct xfs_inobt_rec_incore rrec;
1009 int error;
1010 int i, j;
1011
1012 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1013 if (error)
1014 return error;
1015
1016 if (i == 1) {
1017 error = xfs_inobt_get_rec(lcur, rec, &i);
1018 if (error)
1019 return error;
1020 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1021
1022 /*
1023 * See if we've landed in the parent inode record. The finobt
1024 * only tracks chunks with at least one free inode, so record
1025 * existence is enough.
1026 */
1027 if (pagino >= rec->ir_startino &&
1028 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1029 return 0;
1030 }
1031
1032 error = xfs_btree_dup_cursor(lcur, &rcur);
1033 if (error)
1034 return error;
1035
1036 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1037 if (error)
1038 goto error_rcur;
1039 if (j == 1) {
1040 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1041 if (error)
1042 goto error_rcur;
1043 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1044 }
1045
1046 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1047 if (i == 1 && j == 1) {
1048 /*
1049 * Both the left and right records are valid. Choose the closer
1050 * inode chunk to the target.
1051 */
1052 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1053 (rrec.ir_startino - pagino)) {
1054 *rec = rrec;
1055 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1056 *ocur = rcur;
1057 } else {
1058 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1059 }
1060 } else if (j == 1) {
1061 /* only the right record is valid */
1062 *rec = rrec;
1063 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1064 *ocur = rcur;
1065 } else if (i == 1) {
1066 /* only the left record is valid */
1067 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1068 }
1069
1070 return 0;
1071
1072 error_rcur:
1073 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1074 return error;
1075 }
1076
1077 /*
1078 * Use the free inode btree to find a free inode based on a newino hint. If
1079 * the hint is NULL, find the first free inode in the AG.
1080 */
1081 STATIC int
1082 xfs_dialloc_ag_finobt_newino(
1083 struct xfs_agi *agi,
1084 struct xfs_btree_cur *cur,
1085 struct xfs_inobt_rec_incore *rec)
1086 {
1087 int error;
1088 int i;
1089
1090 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1091 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1092 XFS_LOOKUP_EQ, &i);
1093 if (error)
1094 return error;
1095 if (i == 1) {
1096 error = xfs_inobt_get_rec(cur, rec, &i);
1097 if (error)
1098 return error;
1099 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1100 return 0;
1101 }
1102 }
1103
1104 /*
1105 * Find the first inode available in the AG.
1106 */
1107 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1108 if (error)
1109 return error;
1110 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1111
1112 error = xfs_inobt_get_rec(cur, rec, &i);
1113 if (error)
1114 return error;
1115 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1116
1117 return 0;
1118 }
1119
1120 /*
1121 * Update the inobt based on a modification made to the finobt. Also ensure that
1122 * the records from both trees are equivalent post-modification.
1123 */
1124 STATIC int
1125 xfs_dialloc_ag_update_inobt(
1126 struct xfs_btree_cur *cur, /* inobt cursor */
1127 struct xfs_inobt_rec_incore *frec, /* finobt record */
1128 int offset) /* inode offset */
1129 {
1130 struct xfs_inobt_rec_incore rec;
1131 int error;
1132 int i;
1133
1134 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1135 if (error)
1136 return error;
1137 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1138
1139 error = xfs_inobt_get_rec(cur, &rec, &i);
1140 if (error)
1141 return error;
1142 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1143 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1144 XFS_INODES_PER_CHUNK) == 0);
1145
1146 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1147 rec.ir_freecount--;
1148
1149 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1150 (rec.ir_freecount == frec->ir_freecount));
1151
1152 return xfs_inobt_update(cur, &rec);
1153 }
1154
1155 /*
1156 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1157 * back to the inobt search algorithm.
1158 *
1159 * The caller selected an AG for us, and made sure that free inodes are
1160 * available.
1161 */
1162 STATIC int
1163 xfs_dialloc_ag(
1164 struct xfs_trans *tp,
1165 struct xfs_buf *agbp,
1166 xfs_ino_t parent,
1167 xfs_ino_t *inop)
1168 {
1169 struct xfs_mount *mp = tp->t_mountp;
1170 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1171 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1172 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1173 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1174 struct xfs_perag *pag;
1175 struct xfs_btree_cur *cur; /* finobt cursor */
1176 struct xfs_btree_cur *icur; /* inobt cursor */
1177 struct xfs_inobt_rec_incore rec;
1178 xfs_ino_t ino;
1179 int error;
1180 int offset;
1181 int i;
1182
1183 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1184 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1185
1186 pag = xfs_perag_get(mp, agno);
1187
1188 /*
1189 * If pagino is 0 (this is the root inode allocation) use newino.
1190 * This must work because we've just allocated some.
1191 */
1192 if (!pagino)
1193 pagino = be32_to_cpu(agi->agi_newino);
1194
1195 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1196
1197 error = xfs_check_agi_freecount(cur, agi);
1198 if (error)
1199 goto error_cur;
1200
1201 /*
1202 * The search algorithm depends on whether we're in the same AG as the
1203 * parent. If so, find the closest available inode to the parent. If
1204 * not, consider the agi hint or find the first free inode in the AG.
1205 */
1206 if (agno == pagno)
1207 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1208 else
1209 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1210 if (error)
1211 goto error_cur;
1212
1213 offset = xfs_lowbit64(rec.ir_free);
1214 ASSERT(offset >= 0);
1215 ASSERT(offset < XFS_INODES_PER_CHUNK);
1216 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1217 XFS_INODES_PER_CHUNK) == 0);
1218 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1219
1220 /*
1221 * Modify or remove the finobt record.
1222 */
1223 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1224 rec.ir_freecount--;
1225 if (rec.ir_freecount)
1226 error = xfs_inobt_update(cur, &rec);
1227 else
1228 error = xfs_btree_delete(cur, &i);
1229 if (error)
1230 goto error_cur;
1231
1232 /*
1233 * The finobt has now been updated appropriately. We haven't updated the
1234 * agi and superblock yet, so we can create an inobt cursor and validate
1235 * the original freecount. If all is well, make the equivalent update to
1236 * the inobt using the finobt record and offset information.
1237 */
1238 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1239
1240 error = xfs_check_agi_freecount(icur, agi);
1241 if (error)
1242 goto error_icur;
1243
1244 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1245 if (error)
1246 goto error_icur;
1247
1248 /*
1249 * Both trees have now been updated. We must update the perag and
1250 * superblock before we can check the freecount for each btree.
1251 */
1252 be32_add_cpu(&agi->agi_freecount, -1);
1253 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1254 pag->pagi_freecount--;
1255
1256 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1257
1258 error = xfs_check_agi_freecount(icur, agi);
1259 if (error)
1260 goto error_icur;
1261 error = xfs_check_agi_freecount(cur, agi);
1262 if (error)
1263 goto error_icur;
1264
1265 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1266 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1267 xfs_perag_put(pag);
1268 *inop = ino;
1269 return 0;
1270
1271 error_icur:
1272 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1273 error_cur:
1274 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1275 xfs_perag_put(pag);
1276 return error;
1277 }
1278
1279 /*
1280 * Allocate an inode on disk.
1281 *
1282 * Mode is used to tell whether the new inode will need space, and whether it
1283 * is a directory.
1284 *
1285 * This function is designed to be called twice if it has to do an allocation
1286 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1287 * If an inode is available without having to performn an allocation, an inode
1288 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1289 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1290 * The caller should then commit the current transaction, allocate a
1291 * new transaction, and call xfs_dialloc() again, passing in the previous value
1292 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1293 * buffer is locked across the two calls, the second call is guaranteed to have
1294 * a free inode available.
1295 *
1296 * Once we successfully pick an inode its number is returned and the on-disk
1297 * data structures are updated. The inode itself is not read in, since doing so
1298 * would break ordering constraints with xfs_reclaim.
1299 */
1300 int
1301 xfs_dialloc(
1302 struct xfs_trans *tp,
1303 xfs_ino_t parent,
1304 umode_t mode,
1305 int okalloc,
1306 struct xfs_buf **IO_agbp,
1307 xfs_ino_t *inop)
1308 {
1309 struct xfs_mount *mp = tp->t_mountp;
1310 struct xfs_buf *agbp;
1311 xfs_agnumber_t agno;
1312 int error;
1313 int ialloced;
1314 int noroom = 0;
1315 xfs_agnumber_t start_agno;
1316 struct xfs_perag *pag;
1317
1318 if (*IO_agbp) {
1319 /*
1320 * If the caller passes in a pointer to the AGI buffer,
1321 * continue where we left off before. In this case, we
1322 * know that the allocation group has free inodes.
1323 */
1324 agbp = *IO_agbp;
1325 goto out_alloc;
1326 }
1327
1328 /*
1329 * We do not have an agbp, so select an initial allocation
1330 * group for inode allocation.
1331 */
1332 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1333 if (start_agno == NULLAGNUMBER) {
1334 *inop = NULLFSINO;
1335 return 0;
1336 }
1337
1338 /*
1339 * If we have already hit the ceiling of inode blocks then clear
1340 * okalloc so we scan all available agi structures for a free
1341 * inode.
1342 */
1343 if (mp->m_maxicount &&
1344 percpu_counter_read(&mp->m_icount) + mp->m_ialloc_inos >
1345 mp->m_maxicount) {
1346 noroom = 1;
1347 okalloc = 0;
1348 }
1349
1350 /*
1351 * Loop until we find an allocation group that either has free inodes
1352 * or in which we can allocate some inodes. Iterate through the
1353 * allocation groups upward, wrapping at the end.
1354 */
1355 agno = start_agno;
1356 for (;;) {
1357 pag = xfs_perag_get(mp, agno);
1358 if (!pag->pagi_inodeok) {
1359 xfs_ialloc_next_ag(mp);
1360 goto nextag;
1361 }
1362
1363 if (!pag->pagi_init) {
1364 error = xfs_ialloc_pagi_init(mp, tp, agno);
1365 if (error)
1366 goto out_error;
1367 }
1368
1369 /*
1370 * Do a first racy fast path check if this AG is usable.
1371 */
1372 if (!pag->pagi_freecount && !okalloc)
1373 goto nextag;
1374
1375 /*
1376 * Then read in the AGI buffer and recheck with the AGI buffer
1377 * lock held.
1378 */
1379 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1380 if (error)
1381 goto out_error;
1382
1383 if (pag->pagi_freecount) {
1384 xfs_perag_put(pag);
1385 goto out_alloc;
1386 }
1387
1388 if (!okalloc)
1389 goto nextag_relse_buffer;
1390
1391
1392 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1393 if (error) {
1394 xfs_trans_brelse(tp, agbp);
1395
1396 if (error != -ENOSPC)
1397 goto out_error;
1398
1399 xfs_perag_put(pag);
1400 *inop = NULLFSINO;
1401 return 0;
1402 }
1403
1404 if (ialloced) {
1405 /*
1406 * We successfully allocated some inodes, return
1407 * the current context to the caller so that it
1408 * can commit the current transaction and call
1409 * us again where we left off.
1410 */
1411 ASSERT(pag->pagi_freecount > 0);
1412 xfs_perag_put(pag);
1413
1414 *IO_agbp = agbp;
1415 *inop = NULLFSINO;
1416 return 0;
1417 }
1418
1419 nextag_relse_buffer:
1420 xfs_trans_brelse(tp, agbp);
1421 nextag:
1422 xfs_perag_put(pag);
1423 if (++agno == mp->m_sb.sb_agcount)
1424 agno = 0;
1425 if (agno == start_agno) {
1426 *inop = NULLFSINO;
1427 return noroom ? -ENOSPC : 0;
1428 }
1429 }
1430
1431 out_alloc:
1432 *IO_agbp = NULL;
1433 return xfs_dialloc_ag(tp, agbp, parent, inop);
1434 out_error:
1435 xfs_perag_put(pag);
1436 return error;
1437 }
1438
1439 STATIC int
1440 xfs_difree_inobt(
1441 struct xfs_mount *mp,
1442 struct xfs_trans *tp,
1443 struct xfs_buf *agbp,
1444 xfs_agino_t agino,
1445 struct xfs_bmap_free *flist,
1446 int *deleted,
1447 xfs_ino_t *first_ino,
1448 struct xfs_inobt_rec_incore *orec)
1449 {
1450 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1451 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1452 struct xfs_perag *pag;
1453 struct xfs_btree_cur *cur;
1454 struct xfs_inobt_rec_incore rec;
1455 int ilen;
1456 int error;
1457 int i;
1458 int off;
1459
1460 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1461 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1462
1463 /*
1464 * Initialize the cursor.
1465 */
1466 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1467
1468 error = xfs_check_agi_freecount(cur, agi);
1469 if (error)
1470 goto error0;
1471
1472 /*
1473 * Look for the entry describing this inode.
1474 */
1475 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1476 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1477 __func__, error);
1478 goto error0;
1479 }
1480 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1481 error = xfs_inobt_get_rec(cur, &rec, &i);
1482 if (error) {
1483 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1484 __func__, error);
1485 goto error0;
1486 }
1487 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1488 /*
1489 * Get the offset in the inode chunk.
1490 */
1491 off = agino - rec.ir_startino;
1492 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1493 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1494 /*
1495 * Mark the inode free & increment the count.
1496 */
1497 rec.ir_free |= XFS_INOBT_MASK(off);
1498 rec.ir_freecount++;
1499
1500 /*
1501 * When an inode cluster is free, it becomes eligible for removal
1502 */
1503 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1504 (rec.ir_freecount == mp->m_ialloc_inos)) {
1505
1506 *deleted = 1;
1507 *first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1508
1509 /*
1510 * Remove the inode cluster from the AGI B+Tree, adjust the
1511 * AGI and Superblock inode counts, and mark the disk space
1512 * to be freed when the transaction is committed.
1513 */
1514 ilen = mp->m_ialloc_inos;
1515 be32_add_cpu(&agi->agi_count, -ilen);
1516 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1517 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1518 pag = xfs_perag_get(mp, agno);
1519 pag->pagi_freecount -= ilen - 1;
1520 xfs_perag_put(pag);
1521 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1522 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1523
1524 if ((error = xfs_btree_delete(cur, &i))) {
1525 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1526 __func__, error);
1527 goto error0;
1528 }
1529
1530 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
1531 XFS_AGINO_TO_AGBNO(mp, rec.ir_startino)),
1532 mp->m_ialloc_blks, flist, mp);
1533 } else {
1534 *deleted = 0;
1535
1536 error = xfs_inobt_update(cur, &rec);
1537 if (error) {
1538 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1539 __func__, error);
1540 goto error0;
1541 }
1542
1543 /*
1544 * Change the inode free counts and log the ag/sb changes.
1545 */
1546 be32_add_cpu(&agi->agi_freecount, 1);
1547 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1548 pag = xfs_perag_get(mp, agno);
1549 pag->pagi_freecount++;
1550 xfs_perag_put(pag);
1551 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
1552 }
1553
1554 error = xfs_check_agi_freecount(cur, agi);
1555 if (error)
1556 goto error0;
1557
1558 *orec = rec;
1559 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1560 return 0;
1561
1562 error0:
1563 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1564 return error;
1565 }
1566
1567 /*
1568 * Free an inode in the free inode btree.
1569 */
1570 STATIC int
1571 xfs_difree_finobt(
1572 struct xfs_mount *mp,
1573 struct xfs_trans *tp,
1574 struct xfs_buf *agbp,
1575 xfs_agino_t agino,
1576 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
1577 {
1578 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1579 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1580 struct xfs_btree_cur *cur;
1581 struct xfs_inobt_rec_incore rec;
1582 int offset = agino - ibtrec->ir_startino;
1583 int error;
1584 int i;
1585
1586 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1587
1588 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
1589 if (error)
1590 goto error;
1591 if (i == 0) {
1592 /*
1593 * If the record does not exist in the finobt, we must have just
1594 * freed an inode in a previously fully allocated chunk. If not,
1595 * something is out of sync.
1596 */
1597 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
1598
1599 error = xfs_inobt_insert_rec(cur, ibtrec->ir_freecount,
1600 ibtrec->ir_free, &i);
1601 if (error)
1602 goto error;
1603 ASSERT(i == 1);
1604
1605 goto out;
1606 }
1607
1608 /*
1609 * Read and update the existing record. We could just copy the ibtrec
1610 * across here, but that would defeat the purpose of having redundant
1611 * metadata. By making the modifications independently, we can catch
1612 * corruptions that we wouldn't see if we just copied from one record
1613 * to another.
1614 */
1615 error = xfs_inobt_get_rec(cur, &rec, &i);
1616 if (error)
1617 goto error;
1618 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
1619
1620 rec.ir_free |= XFS_INOBT_MASK(offset);
1621 rec.ir_freecount++;
1622
1623 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
1624 (rec.ir_freecount == ibtrec->ir_freecount),
1625 error);
1626
1627 /*
1628 * The content of inobt records should always match between the inobt
1629 * and finobt. The lifecycle of records in the finobt is different from
1630 * the inobt in that the finobt only tracks records with at least one
1631 * free inode. Hence, if all of the inodes are free and we aren't
1632 * keeping inode chunks permanently on disk, remove the record.
1633 * Otherwise, update the record with the new information.
1634 */
1635 if (rec.ir_freecount == mp->m_ialloc_inos &&
1636 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
1637 error = xfs_btree_delete(cur, &i);
1638 if (error)
1639 goto error;
1640 ASSERT(i == 1);
1641 } else {
1642 error = xfs_inobt_update(cur, &rec);
1643 if (error)
1644 goto error;
1645 }
1646
1647 out:
1648 error = xfs_check_agi_freecount(cur, agi);
1649 if (error)
1650 goto error;
1651
1652 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1653 return 0;
1654
1655 error:
1656 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1657 return error;
1658 }
1659
1660 /*
1661 * Free disk inode. Carefully avoids touching the incore inode, all
1662 * manipulations incore are the caller's responsibility.
1663 * The on-disk inode is not changed by this operation, only the
1664 * btree (free inode mask) is changed.
1665 */
1666 int
1667 xfs_difree(
1668 struct xfs_trans *tp, /* transaction pointer */
1669 xfs_ino_t inode, /* inode to be freed */
1670 struct xfs_bmap_free *flist, /* extents to free */
1671 int *deleted,/* set if inode cluster was deleted */
1672 xfs_ino_t *first_ino)/* first inode in deleted cluster */
1673 {
1674 /* REFERENCED */
1675 xfs_agblock_t agbno; /* block number containing inode */
1676 struct xfs_buf *agbp; /* buffer for allocation group header */
1677 xfs_agino_t agino; /* allocation group inode number */
1678 xfs_agnumber_t agno; /* allocation group number */
1679 int error; /* error return value */
1680 struct xfs_mount *mp; /* mount structure for filesystem */
1681 struct xfs_inobt_rec_incore rec;/* btree record */
1682
1683 mp = tp->t_mountp;
1684
1685 /*
1686 * Break up inode number into its components.
1687 */
1688 agno = XFS_INO_TO_AGNO(mp, inode);
1689 if (agno >= mp->m_sb.sb_agcount) {
1690 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
1691 __func__, agno, mp->m_sb.sb_agcount);
1692 ASSERT(0);
1693 return -EINVAL;
1694 }
1695 agino = XFS_INO_TO_AGINO(mp, inode);
1696 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
1697 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
1698 __func__, (unsigned long long)inode,
1699 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
1700 ASSERT(0);
1701 return -EINVAL;
1702 }
1703 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1704 if (agbno >= mp->m_sb.sb_agblocks) {
1705 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
1706 __func__, agbno, mp->m_sb.sb_agblocks);
1707 ASSERT(0);
1708 return -EINVAL;
1709 }
1710 /*
1711 * Get the allocation group header.
1712 */
1713 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1714 if (error) {
1715 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
1716 __func__, error);
1717 return error;
1718 }
1719
1720 /*
1721 * Fix up the inode allocation btree.
1722 */
1723 error = xfs_difree_inobt(mp, tp, agbp, agino, flist, deleted, first_ino,
1724 &rec);
1725 if (error)
1726 goto error0;
1727
1728 /*
1729 * Fix up the free inode btree.
1730 */
1731 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
1732 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
1733 if (error)
1734 goto error0;
1735 }
1736
1737 return 0;
1738
1739 error0:
1740 return error;
1741 }
1742
1743 STATIC int
1744 xfs_imap_lookup(
1745 struct xfs_mount *mp,
1746 struct xfs_trans *tp,
1747 xfs_agnumber_t agno,
1748 xfs_agino_t agino,
1749 xfs_agblock_t agbno,
1750 xfs_agblock_t *chunk_agbno,
1751 xfs_agblock_t *offset_agbno,
1752 int flags)
1753 {
1754 struct xfs_inobt_rec_incore rec;
1755 struct xfs_btree_cur *cur;
1756 struct xfs_buf *agbp;
1757 int error;
1758 int i;
1759
1760 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1761 if (error) {
1762 xfs_alert(mp,
1763 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
1764 __func__, error, agno);
1765 return error;
1766 }
1767
1768 /*
1769 * Lookup the inode record for the given agino. If the record cannot be
1770 * found, then it's an invalid inode number and we should abort. Once
1771 * we have a record, we need to ensure it contains the inode number
1772 * we are looking up.
1773 */
1774 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1775 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
1776 if (!error) {
1777 if (i)
1778 error = xfs_inobt_get_rec(cur, &rec, &i);
1779 if (!error && i == 0)
1780 error = -EINVAL;
1781 }
1782
1783 xfs_trans_brelse(tp, agbp);
1784 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1785 if (error)
1786 return error;
1787
1788 /* check that the returned record contains the required inode */
1789 if (rec.ir_startino > agino ||
1790 rec.ir_startino + mp->m_ialloc_inos <= agino)
1791 return -EINVAL;
1792
1793 /* for untrusted inodes check it is allocated first */
1794 if ((flags & XFS_IGET_UNTRUSTED) &&
1795 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
1796 return -EINVAL;
1797
1798 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
1799 *offset_agbno = agbno - *chunk_agbno;
1800 return 0;
1801 }
1802
1803 /*
1804 * Return the location of the inode in imap, for mapping it into a buffer.
1805 */
1806 int
1807 xfs_imap(
1808 xfs_mount_t *mp, /* file system mount structure */
1809 xfs_trans_t *tp, /* transaction pointer */
1810 xfs_ino_t ino, /* inode to locate */
1811 struct xfs_imap *imap, /* location map structure */
1812 uint flags) /* flags for inode btree lookup */
1813 {
1814 xfs_agblock_t agbno; /* block number of inode in the alloc group */
1815 xfs_agino_t agino; /* inode number within alloc group */
1816 xfs_agnumber_t agno; /* allocation group number */
1817 int blks_per_cluster; /* num blocks per inode cluster */
1818 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
1819 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
1820 int error; /* error code */
1821 int offset; /* index of inode in its buffer */
1822 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
1823
1824 ASSERT(ino != NULLFSINO);
1825
1826 /*
1827 * Split up the inode number into its parts.
1828 */
1829 agno = XFS_INO_TO_AGNO(mp, ino);
1830 agino = XFS_INO_TO_AGINO(mp, ino);
1831 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1832 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
1833 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
1834 #ifdef DEBUG
1835 /*
1836 * Don't output diagnostic information for untrusted inodes
1837 * as they can be invalid without implying corruption.
1838 */
1839 if (flags & XFS_IGET_UNTRUSTED)
1840 return -EINVAL;
1841 if (agno >= mp->m_sb.sb_agcount) {
1842 xfs_alert(mp,
1843 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
1844 __func__, agno, mp->m_sb.sb_agcount);
1845 }
1846 if (agbno >= mp->m_sb.sb_agblocks) {
1847 xfs_alert(mp,
1848 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
1849 __func__, (unsigned long long)agbno,
1850 (unsigned long)mp->m_sb.sb_agblocks);
1851 }
1852 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
1853 xfs_alert(mp,
1854 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
1855 __func__, ino,
1856 XFS_AGINO_TO_INO(mp, agno, agino));
1857 }
1858 xfs_stack_trace();
1859 #endif /* DEBUG */
1860 return -EINVAL;
1861 }
1862
1863 blks_per_cluster = xfs_icluster_size_fsb(mp);
1864
1865 /*
1866 * For bulkstat and handle lookups, we have an untrusted inode number
1867 * that we have to verify is valid. We cannot do this just by reading
1868 * the inode buffer as it may have been unlinked and removed leaving
1869 * inodes in stale state on disk. Hence we have to do a btree lookup
1870 * in all cases where an untrusted inode number is passed.
1871 */
1872 if (flags & XFS_IGET_UNTRUSTED) {
1873 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1874 &chunk_agbno, &offset_agbno, flags);
1875 if (error)
1876 return error;
1877 goto out_map;
1878 }
1879
1880 /*
1881 * If the inode cluster size is the same as the blocksize or
1882 * smaller we get to the buffer by simple arithmetics.
1883 */
1884 if (blks_per_cluster == 1) {
1885 offset = XFS_INO_TO_OFFSET(mp, ino);
1886 ASSERT(offset < mp->m_sb.sb_inopblock);
1887
1888 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
1889 imap->im_len = XFS_FSB_TO_BB(mp, 1);
1890 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1891 return 0;
1892 }
1893
1894 /*
1895 * If the inode chunks are aligned then use simple maths to
1896 * find the location. Otherwise we have to do a btree
1897 * lookup to find the location.
1898 */
1899 if (mp->m_inoalign_mask) {
1900 offset_agbno = agbno & mp->m_inoalign_mask;
1901 chunk_agbno = agbno - offset_agbno;
1902 } else {
1903 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1904 &chunk_agbno, &offset_agbno, flags);
1905 if (error)
1906 return error;
1907 }
1908
1909 out_map:
1910 ASSERT(agbno >= chunk_agbno);
1911 cluster_agbno = chunk_agbno +
1912 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
1913 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
1914 XFS_INO_TO_OFFSET(mp, ino);
1915
1916 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
1917 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
1918 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1919
1920 /*
1921 * If the inode number maps to a block outside the bounds
1922 * of the file system then return NULL rather than calling
1923 * read_buf and panicing when we get an error from the
1924 * driver.
1925 */
1926 if ((imap->im_blkno + imap->im_len) >
1927 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
1928 xfs_alert(mp,
1929 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
1930 __func__, (unsigned long long) imap->im_blkno,
1931 (unsigned long long) imap->im_len,
1932 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
1933 return -EINVAL;
1934 }
1935 return 0;
1936 }
1937
1938 /*
1939 * Compute and fill in value of m_in_maxlevels.
1940 */
1941 void
1942 xfs_ialloc_compute_maxlevels(
1943 xfs_mount_t *mp) /* file system mount structure */
1944 {
1945 int level;
1946 uint maxblocks;
1947 uint maxleafents;
1948 int minleafrecs;
1949 int minnoderecs;
1950
1951 maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
1952 XFS_INODES_PER_CHUNK_LOG;
1953 minleafrecs = mp->m_alloc_mnr[0];
1954 minnoderecs = mp->m_alloc_mnr[1];
1955 maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
1956 for (level = 1; maxblocks > 1; level++)
1957 maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
1958 mp->m_in_maxlevels = level;
1959 }
1960
1961 /*
1962 * Log specified fields for the ag hdr (inode section). The growth of the agi
1963 * structure over time requires that we interpret the buffer as two logical
1964 * regions delineated by the end of the unlinked list. This is due to the size
1965 * of the hash table and its location in the middle of the agi.
1966 *
1967 * For example, a request to log a field before agi_unlinked and a field after
1968 * agi_unlinked could cause us to log the entire hash table and use an excessive
1969 * amount of log space. To avoid this behavior, log the region up through
1970 * agi_unlinked in one call and the region after agi_unlinked through the end of
1971 * the structure in another.
1972 */
1973 void
1974 xfs_ialloc_log_agi(
1975 xfs_trans_t *tp, /* transaction pointer */
1976 xfs_buf_t *bp, /* allocation group header buffer */
1977 int fields) /* bitmask of fields to log */
1978 {
1979 int first; /* first byte number */
1980 int last; /* last byte number */
1981 static const short offsets[] = { /* field starting offsets */
1982 /* keep in sync with bit definitions */
1983 offsetof(xfs_agi_t, agi_magicnum),
1984 offsetof(xfs_agi_t, agi_versionnum),
1985 offsetof(xfs_agi_t, agi_seqno),
1986 offsetof(xfs_agi_t, agi_length),
1987 offsetof(xfs_agi_t, agi_count),
1988 offsetof(xfs_agi_t, agi_root),
1989 offsetof(xfs_agi_t, agi_level),
1990 offsetof(xfs_agi_t, agi_freecount),
1991 offsetof(xfs_agi_t, agi_newino),
1992 offsetof(xfs_agi_t, agi_dirino),
1993 offsetof(xfs_agi_t, agi_unlinked),
1994 offsetof(xfs_agi_t, agi_free_root),
1995 offsetof(xfs_agi_t, agi_free_level),
1996 sizeof(xfs_agi_t)
1997 };
1998 #ifdef DEBUG
1999 xfs_agi_t *agi; /* allocation group header */
2000
2001 agi = XFS_BUF_TO_AGI(bp);
2002 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2003 #endif
2004
2005 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
2006
2007 /*
2008 * Compute byte offsets for the first and last fields in the first
2009 * region and log the agi buffer. This only logs up through
2010 * agi_unlinked.
2011 */
2012 if (fields & XFS_AGI_ALL_BITS_R1) {
2013 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2014 &first, &last);
2015 xfs_trans_log_buf(tp, bp, first, last);
2016 }
2017
2018 /*
2019 * Mask off the bits in the first region and calculate the first and
2020 * last field offsets for any bits in the second region.
2021 */
2022 fields &= ~XFS_AGI_ALL_BITS_R1;
2023 if (fields) {
2024 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2025 &first, &last);
2026 xfs_trans_log_buf(tp, bp, first, last);
2027 }
2028 }
2029
2030 #ifdef DEBUG
2031 STATIC void
2032 xfs_check_agi_unlinked(
2033 struct xfs_agi *agi)
2034 {
2035 int i;
2036
2037 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2038 ASSERT(agi->agi_unlinked[i]);
2039 }
2040 #else
2041 #define xfs_check_agi_unlinked(agi)
2042 #endif
2043
2044 static bool
2045 xfs_agi_verify(
2046 struct xfs_buf *bp)
2047 {
2048 struct xfs_mount *mp = bp->b_target->bt_mount;
2049 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2050
2051 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2052 !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_uuid))
2053 return false;
2054 /*
2055 * Validate the magic number of the agi block.
2056 */
2057 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2058 return false;
2059 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2060 return false;
2061
2062 if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2063 return false;
2064 /*
2065 * during growfs operations, the perag is not fully initialised,
2066 * so we can't use it for any useful checking. growfs ensures we can't
2067 * use it by using uncached buffers that don't have the perag attached
2068 * so we can detect and avoid this problem.
2069 */
2070 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2071 return false;
2072
2073 xfs_check_agi_unlinked(agi);
2074 return true;
2075 }
2076
2077 static void
2078 xfs_agi_read_verify(
2079 struct xfs_buf *bp)
2080 {
2081 struct xfs_mount *mp = bp->b_target->bt_mount;
2082
2083 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2084 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2085 xfs_buf_ioerror(bp, -EFSBADCRC);
2086 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2087 XFS_ERRTAG_IALLOC_READ_AGI,
2088 XFS_RANDOM_IALLOC_READ_AGI))
2089 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2090
2091 if (bp->b_error)
2092 xfs_verifier_error(bp);
2093 }
2094
2095 static void
2096 xfs_agi_write_verify(
2097 struct xfs_buf *bp)
2098 {
2099 struct xfs_mount *mp = bp->b_target->bt_mount;
2100 struct xfs_buf_log_item *bip = bp->b_fspriv;
2101
2102 if (!xfs_agi_verify(bp)) {
2103 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2104 xfs_verifier_error(bp);
2105 return;
2106 }
2107
2108 if (!xfs_sb_version_hascrc(&mp->m_sb))
2109 return;
2110
2111 if (bip)
2112 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2113 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2114 }
2115
2116 const struct xfs_buf_ops xfs_agi_buf_ops = {
2117 .verify_read = xfs_agi_read_verify,
2118 .verify_write = xfs_agi_write_verify,
2119 };
2120
2121 /*
2122 * Read in the allocation group header (inode allocation section)
2123 */
2124 int
2125 xfs_read_agi(
2126 struct xfs_mount *mp, /* file system mount structure */
2127 struct xfs_trans *tp, /* transaction pointer */
2128 xfs_agnumber_t agno, /* allocation group number */
2129 struct xfs_buf **bpp) /* allocation group hdr buf */
2130 {
2131 int error;
2132
2133 trace_xfs_read_agi(mp, agno);
2134
2135 ASSERT(agno != NULLAGNUMBER);
2136 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2137 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2138 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2139 if (error)
2140 return error;
2141
2142 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2143 return 0;
2144 }
2145
2146 int
2147 xfs_ialloc_read_agi(
2148 struct xfs_mount *mp, /* file system mount structure */
2149 struct xfs_trans *tp, /* transaction pointer */
2150 xfs_agnumber_t agno, /* allocation group number */
2151 struct xfs_buf **bpp) /* allocation group hdr buf */
2152 {
2153 struct xfs_agi *agi; /* allocation group header */
2154 struct xfs_perag *pag; /* per allocation group data */
2155 int error;
2156
2157 trace_xfs_ialloc_read_agi(mp, agno);
2158
2159 error = xfs_read_agi(mp, tp, agno, bpp);
2160 if (error)
2161 return error;
2162
2163 agi = XFS_BUF_TO_AGI(*bpp);
2164 pag = xfs_perag_get(mp, agno);
2165 if (!pag->pagi_init) {
2166 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2167 pag->pagi_count = be32_to_cpu(agi->agi_count);
2168 pag->pagi_init = 1;
2169 }
2170
2171 /*
2172 * It's possible for these to be out of sync if
2173 * we are in the middle of a forced shutdown.
2174 */
2175 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2176 XFS_FORCED_SHUTDOWN(mp));
2177 xfs_perag_put(pag);
2178 return 0;
2179 }
2180
2181 /*
2182 * Read in the agi to initialise the per-ag data in the mount structure
2183 */
2184 int
2185 xfs_ialloc_pagi_init(
2186 xfs_mount_t *mp, /* file system mount structure */
2187 xfs_trans_t *tp, /* transaction pointer */
2188 xfs_agnumber_t agno) /* allocation group number */
2189 {
2190 xfs_buf_t *bp = NULL;
2191 int error;
2192
2193 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2194 if (error)
2195 return error;
2196 if (bp)
2197 xfs_trans_brelse(tp, bp);
2198 return 0;
2199 }
This page took 0.075742 seconds and 5 git commands to generate.