xfs: move aio completion after unwritten extent conversion
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_trans.h"
25 #include "xfs_mount.h"
26 #include "xfs_bmap_btree.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_alloc.h"
30 #include "xfs_error.h"
31 #include "xfs_rw.h"
32 #include "xfs_iomap.h"
33 #include "xfs_vnodeops.h"
34 #include "xfs_trace.h"
35 #include "xfs_bmap.h"
36 #include <linux/gfp.h>
37 #include <linux/mpage.h>
38 #include <linux/pagevec.h>
39 #include <linux/writeback.h>
40
41 /*
42 * Types of I/O for bmap clustering and I/O completion tracking.
43 */
44 enum {
45 IO_READ, /* mapping for a read */
46 IO_DELAY, /* mapping covers delalloc region */
47 IO_UNWRITTEN, /* mapping covers allocated but uninitialized data */
48 IO_NEW /* just allocated */
49 };
50
51 /*
52 * Prime number of hash buckets since address is used as the key.
53 */
54 #define NVSYNC 37
55 #define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
56 static wait_queue_head_t xfs_ioend_wq[NVSYNC];
57
58 void __init
59 xfs_ioend_init(void)
60 {
61 int i;
62
63 for (i = 0; i < NVSYNC; i++)
64 init_waitqueue_head(&xfs_ioend_wq[i]);
65 }
66
67 void
68 xfs_ioend_wait(
69 xfs_inode_t *ip)
70 {
71 wait_queue_head_t *wq = to_ioend_wq(ip);
72
73 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
74 }
75
76 STATIC void
77 xfs_ioend_wake(
78 xfs_inode_t *ip)
79 {
80 if (atomic_dec_and_test(&ip->i_iocount))
81 wake_up(to_ioend_wq(ip));
82 }
83
84 void
85 xfs_count_page_state(
86 struct page *page,
87 int *delalloc,
88 int *unwritten)
89 {
90 struct buffer_head *bh, *head;
91
92 *delalloc = *unwritten = 0;
93
94 bh = head = page_buffers(page);
95 do {
96 if (buffer_unwritten(bh))
97 (*unwritten) = 1;
98 else if (buffer_delay(bh))
99 (*delalloc) = 1;
100 } while ((bh = bh->b_this_page) != head);
101 }
102
103 STATIC struct block_device *
104 xfs_find_bdev_for_inode(
105 struct inode *inode)
106 {
107 struct xfs_inode *ip = XFS_I(inode);
108 struct xfs_mount *mp = ip->i_mount;
109
110 if (XFS_IS_REALTIME_INODE(ip))
111 return mp->m_rtdev_targp->bt_bdev;
112 else
113 return mp->m_ddev_targp->bt_bdev;
114 }
115
116 /*
117 * We're now finished for good with this ioend structure.
118 * Update the page state via the associated buffer_heads,
119 * release holds on the inode and bio, and finally free
120 * up memory. Do not use the ioend after this.
121 */
122 STATIC void
123 xfs_destroy_ioend(
124 xfs_ioend_t *ioend)
125 {
126 struct buffer_head *bh, *next;
127 struct xfs_inode *ip = XFS_I(ioend->io_inode);
128
129 for (bh = ioend->io_buffer_head; bh; bh = next) {
130 next = bh->b_private;
131 bh->b_end_io(bh, !ioend->io_error);
132 }
133
134 /*
135 * Volume managers supporting multiple paths can send back ENODEV
136 * when the final path disappears. In this case continuing to fill
137 * the page cache with dirty data which cannot be written out is
138 * evil, so prevent that.
139 */
140 if (unlikely(ioend->io_error == -ENODEV)) {
141 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
142 __FILE__, __LINE__);
143 }
144
145 xfs_ioend_wake(ip);
146 mempool_free(ioend, xfs_ioend_pool);
147 }
148
149 /*
150 * If the end of the current ioend is beyond the current EOF,
151 * return the new EOF value, otherwise zero.
152 */
153 STATIC xfs_fsize_t
154 xfs_ioend_new_eof(
155 xfs_ioend_t *ioend)
156 {
157 xfs_inode_t *ip = XFS_I(ioend->io_inode);
158 xfs_fsize_t isize;
159 xfs_fsize_t bsize;
160
161 bsize = ioend->io_offset + ioend->io_size;
162 isize = MAX(ip->i_size, ip->i_new_size);
163 isize = MIN(isize, bsize);
164 return isize > ip->i_d.di_size ? isize : 0;
165 }
166
167 /*
168 * Update on-disk file size now that data has been written to disk. The
169 * current in-memory file size is i_size. If a write is beyond eof i_new_size
170 * will be the intended file size until i_size is updated. If this write does
171 * not extend all the way to the valid file size then restrict this update to
172 * the end of the write.
173 *
174 * This function does not block as blocking on the inode lock in IO completion
175 * can lead to IO completion order dependency deadlocks.. If it can't get the
176 * inode ilock it will return EAGAIN. Callers must handle this.
177 */
178 STATIC int
179 xfs_setfilesize(
180 xfs_ioend_t *ioend)
181 {
182 xfs_inode_t *ip = XFS_I(ioend->io_inode);
183 xfs_fsize_t isize;
184
185 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
186 ASSERT(ioend->io_type != IO_READ);
187
188 if (unlikely(ioend->io_error))
189 return 0;
190
191 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
192 return EAGAIN;
193
194 isize = xfs_ioend_new_eof(ioend);
195 if (isize) {
196 ip->i_d.di_size = isize;
197 xfs_mark_inode_dirty(ip);
198 }
199
200 xfs_iunlock(ip, XFS_ILOCK_EXCL);
201 return 0;
202 }
203
204 /*
205 * Schedule IO completion handling on a xfsdatad if this was
206 * the final hold on this ioend. If we are asked to wait,
207 * flush the workqueue.
208 */
209 STATIC void
210 xfs_finish_ioend(
211 xfs_ioend_t *ioend,
212 int wait)
213 {
214 if (atomic_dec_and_test(&ioend->io_remaining)) {
215 struct workqueue_struct *wq;
216
217 wq = (ioend->io_type == IO_UNWRITTEN) ?
218 xfsconvertd_workqueue : xfsdatad_workqueue;
219 queue_work(wq, &ioend->io_work);
220 if (wait)
221 flush_workqueue(wq);
222 }
223 }
224
225 /*
226 * IO write completion.
227 */
228 STATIC void
229 xfs_end_io(
230 struct work_struct *work)
231 {
232 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
233 struct xfs_inode *ip = XFS_I(ioend->io_inode);
234 int error = 0;
235
236 /*
237 * For unwritten extents we need to issue transactions to convert a
238 * range to normal written extens after the data I/O has finished.
239 */
240 if (ioend->io_type == IO_UNWRITTEN &&
241 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
242
243 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
244 ioend->io_size);
245 if (error)
246 ioend->io_error = error;
247 }
248
249 /*
250 * We might have to update the on-disk file size after extending
251 * writes.
252 */
253 if (ioend->io_type != IO_READ) {
254 error = xfs_setfilesize(ioend);
255 ASSERT(!error || error == EAGAIN);
256 }
257
258 /*
259 * If we didn't complete processing of the ioend, requeue it to the
260 * tail of the workqueue for another attempt later. Otherwise destroy
261 * it.
262 */
263 if (error == EAGAIN) {
264 atomic_inc(&ioend->io_remaining);
265 xfs_finish_ioend(ioend, 0);
266 /* ensure we don't spin on blocked ioends */
267 delay(1);
268 } else {
269 if (ioend->io_iocb)
270 aio_complete(ioend->io_iocb, ioend->io_result, 0);
271 xfs_destroy_ioend(ioend);
272 }
273 }
274
275 /*
276 * Allocate and initialise an IO completion structure.
277 * We need to track unwritten extent write completion here initially.
278 * We'll need to extend this for updating the ondisk inode size later
279 * (vs. incore size).
280 */
281 STATIC xfs_ioend_t *
282 xfs_alloc_ioend(
283 struct inode *inode,
284 unsigned int type)
285 {
286 xfs_ioend_t *ioend;
287
288 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
289
290 /*
291 * Set the count to 1 initially, which will prevent an I/O
292 * completion callback from happening before we have started
293 * all the I/O from calling the completion routine too early.
294 */
295 atomic_set(&ioend->io_remaining, 1);
296 ioend->io_error = 0;
297 ioend->io_list = NULL;
298 ioend->io_type = type;
299 ioend->io_inode = inode;
300 ioend->io_buffer_head = NULL;
301 ioend->io_buffer_tail = NULL;
302 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
303 ioend->io_offset = 0;
304 ioend->io_size = 0;
305 ioend->io_iocb = NULL;
306 ioend->io_result = 0;
307
308 INIT_WORK(&ioend->io_work, xfs_end_io);
309 return ioend;
310 }
311
312 STATIC int
313 xfs_map_blocks(
314 struct inode *inode,
315 loff_t offset,
316 ssize_t count,
317 struct xfs_bmbt_irec *imap,
318 int flags)
319 {
320 int nmaps = 1;
321 int new = 0;
322
323 return -xfs_iomap(XFS_I(inode), offset, count, flags, imap, &nmaps, &new);
324 }
325
326 STATIC int
327 xfs_imap_valid(
328 struct inode *inode,
329 struct xfs_bmbt_irec *imap,
330 xfs_off_t offset)
331 {
332 offset >>= inode->i_blkbits;
333
334 return offset >= imap->br_startoff &&
335 offset < imap->br_startoff + imap->br_blockcount;
336 }
337
338 /*
339 * BIO completion handler for buffered IO.
340 */
341 STATIC void
342 xfs_end_bio(
343 struct bio *bio,
344 int error)
345 {
346 xfs_ioend_t *ioend = bio->bi_private;
347
348 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
349 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
350
351 /* Toss bio and pass work off to an xfsdatad thread */
352 bio->bi_private = NULL;
353 bio->bi_end_io = NULL;
354 bio_put(bio);
355
356 xfs_finish_ioend(ioend, 0);
357 }
358
359 STATIC void
360 xfs_submit_ioend_bio(
361 struct writeback_control *wbc,
362 xfs_ioend_t *ioend,
363 struct bio *bio)
364 {
365 atomic_inc(&ioend->io_remaining);
366 bio->bi_private = ioend;
367 bio->bi_end_io = xfs_end_bio;
368
369 /*
370 * If the I/O is beyond EOF we mark the inode dirty immediately
371 * but don't update the inode size until I/O completion.
372 */
373 if (xfs_ioend_new_eof(ioend))
374 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
375
376 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
377 WRITE_SYNC_PLUG : WRITE, bio);
378 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
379 bio_put(bio);
380 }
381
382 STATIC struct bio *
383 xfs_alloc_ioend_bio(
384 struct buffer_head *bh)
385 {
386 struct bio *bio;
387 int nvecs = bio_get_nr_vecs(bh->b_bdev);
388
389 do {
390 bio = bio_alloc(GFP_NOIO, nvecs);
391 nvecs >>= 1;
392 } while (!bio);
393
394 ASSERT(bio->bi_private == NULL);
395 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
396 bio->bi_bdev = bh->b_bdev;
397 bio_get(bio);
398 return bio;
399 }
400
401 STATIC void
402 xfs_start_buffer_writeback(
403 struct buffer_head *bh)
404 {
405 ASSERT(buffer_mapped(bh));
406 ASSERT(buffer_locked(bh));
407 ASSERT(!buffer_delay(bh));
408 ASSERT(!buffer_unwritten(bh));
409
410 mark_buffer_async_write(bh);
411 set_buffer_uptodate(bh);
412 clear_buffer_dirty(bh);
413 }
414
415 STATIC void
416 xfs_start_page_writeback(
417 struct page *page,
418 int clear_dirty,
419 int buffers)
420 {
421 ASSERT(PageLocked(page));
422 ASSERT(!PageWriteback(page));
423 if (clear_dirty)
424 clear_page_dirty_for_io(page);
425 set_page_writeback(page);
426 unlock_page(page);
427 /* If no buffers on the page are to be written, finish it here */
428 if (!buffers)
429 end_page_writeback(page);
430 }
431
432 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
433 {
434 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
435 }
436
437 /*
438 * Submit all of the bios for all of the ioends we have saved up, covering the
439 * initial writepage page and also any probed pages.
440 *
441 * Because we may have multiple ioends spanning a page, we need to start
442 * writeback on all the buffers before we submit them for I/O. If we mark the
443 * buffers as we got, then we can end up with a page that only has buffers
444 * marked async write and I/O complete on can occur before we mark the other
445 * buffers async write.
446 *
447 * The end result of this is that we trip a bug in end_page_writeback() because
448 * we call it twice for the one page as the code in end_buffer_async_write()
449 * assumes that all buffers on the page are started at the same time.
450 *
451 * The fix is two passes across the ioend list - one to start writeback on the
452 * buffer_heads, and then submit them for I/O on the second pass.
453 */
454 STATIC void
455 xfs_submit_ioend(
456 struct writeback_control *wbc,
457 xfs_ioend_t *ioend)
458 {
459 xfs_ioend_t *head = ioend;
460 xfs_ioend_t *next;
461 struct buffer_head *bh;
462 struct bio *bio;
463 sector_t lastblock = 0;
464
465 /* Pass 1 - start writeback */
466 do {
467 next = ioend->io_list;
468 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
469 xfs_start_buffer_writeback(bh);
470 }
471 } while ((ioend = next) != NULL);
472
473 /* Pass 2 - submit I/O */
474 ioend = head;
475 do {
476 next = ioend->io_list;
477 bio = NULL;
478
479 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
480
481 if (!bio) {
482 retry:
483 bio = xfs_alloc_ioend_bio(bh);
484 } else if (bh->b_blocknr != lastblock + 1) {
485 xfs_submit_ioend_bio(wbc, ioend, bio);
486 goto retry;
487 }
488
489 if (bio_add_buffer(bio, bh) != bh->b_size) {
490 xfs_submit_ioend_bio(wbc, ioend, bio);
491 goto retry;
492 }
493
494 lastblock = bh->b_blocknr;
495 }
496 if (bio)
497 xfs_submit_ioend_bio(wbc, ioend, bio);
498 xfs_finish_ioend(ioend, 0);
499 } while ((ioend = next) != NULL);
500 }
501
502 /*
503 * Cancel submission of all buffer_heads so far in this endio.
504 * Toss the endio too. Only ever called for the initial page
505 * in a writepage request, so only ever one page.
506 */
507 STATIC void
508 xfs_cancel_ioend(
509 xfs_ioend_t *ioend)
510 {
511 xfs_ioend_t *next;
512 struct buffer_head *bh, *next_bh;
513
514 do {
515 next = ioend->io_list;
516 bh = ioend->io_buffer_head;
517 do {
518 next_bh = bh->b_private;
519 clear_buffer_async_write(bh);
520 unlock_buffer(bh);
521 } while ((bh = next_bh) != NULL);
522
523 xfs_ioend_wake(XFS_I(ioend->io_inode));
524 mempool_free(ioend, xfs_ioend_pool);
525 } while ((ioend = next) != NULL);
526 }
527
528 /*
529 * Test to see if we've been building up a completion structure for
530 * earlier buffers -- if so, we try to append to this ioend if we
531 * can, otherwise we finish off any current ioend and start another.
532 * Return true if we've finished the given ioend.
533 */
534 STATIC void
535 xfs_add_to_ioend(
536 struct inode *inode,
537 struct buffer_head *bh,
538 xfs_off_t offset,
539 unsigned int type,
540 xfs_ioend_t **result,
541 int need_ioend)
542 {
543 xfs_ioend_t *ioend = *result;
544
545 if (!ioend || need_ioend || type != ioend->io_type) {
546 xfs_ioend_t *previous = *result;
547
548 ioend = xfs_alloc_ioend(inode, type);
549 ioend->io_offset = offset;
550 ioend->io_buffer_head = bh;
551 ioend->io_buffer_tail = bh;
552 if (previous)
553 previous->io_list = ioend;
554 *result = ioend;
555 } else {
556 ioend->io_buffer_tail->b_private = bh;
557 ioend->io_buffer_tail = bh;
558 }
559
560 bh->b_private = NULL;
561 ioend->io_size += bh->b_size;
562 }
563
564 STATIC void
565 xfs_map_buffer(
566 struct inode *inode,
567 struct buffer_head *bh,
568 struct xfs_bmbt_irec *imap,
569 xfs_off_t offset)
570 {
571 sector_t bn;
572 struct xfs_mount *m = XFS_I(inode)->i_mount;
573 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
574 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
575
576 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
577 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
578
579 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
580 ((offset - iomap_offset) >> inode->i_blkbits);
581
582 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
583
584 bh->b_blocknr = bn;
585 set_buffer_mapped(bh);
586 }
587
588 STATIC void
589 xfs_map_at_offset(
590 struct inode *inode,
591 struct buffer_head *bh,
592 struct xfs_bmbt_irec *imap,
593 xfs_off_t offset)
594 {
595 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
596 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
597
598 lock_buffer(bh);
599 xfs_map_buffer(inode, bh, imap, offset);
600 bh->b_bdev = xfs_find_bdev_for_inode(inode);
601 set_buffer_mapped(bh);
602 clear_buffer_delay(bh);
603 clear_buffer_unwritten(bh);
604 }
605
606 /*
607 * Look for a page at index that is suitable for clustering.
608 */
609 STATIC unsigned int
610 xfs_probe_page(
611 struct page *page,
612 unsigned int pg_offset)
613 {
614 struct buffer_head *bh, *head;
615 int ret = 0;
616
617 if (PageWriteback(page))
618 return 0;
619 if (!PageDirty(page))
620 return 0;
621 if (!page->mapping)
622 return 0;
623 if (!page_has_buffers(page))
624 return 0;
625
626 bh = head = page_buffers(page);
627 do {
628 if (!buffer_uptodate(bh))
629 break;
630 if (!buffer_mapped(bh))
631 break;
632 ret += bh->b_size;
633 if (ret >= pg_offset)
634 break;
635 } while ((bh = bh->b_this_page) != head);
636
637 return ret;
638 }
639
640 STATIC size_t
641 xfs_probe_cluster(
642 struct inode *inode,
643 struct page *startpage,
644 struct buffer_head *bh,
645 struct buffer_head *head)
646 {
647 struct pagevec pvec;
648 pgoff_t tindex, tlast, tloff;
649 size_t total = 0;
650 int done = 0, i;
651
652 /* First sum forwards in this page */
653 do {
654 if (!buffer_uptodate(bh) || !buffer_mapped(bh))
655 return total;
656 total += bh->b_size;
657 } while ((bh = bh->b_this_page) != head);
658
659 /* if we reached the end of the page, sum forwards in following pages */
660 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
661 tindex = startpage->index + 1;
662
663 /* Prune this back to avoid pathological behavior */
664 tloff = min(tlast, startpage->index + 64);
665
666 pagevec_init(&pvec, 0);
667 while (!done && tindex <= tloff) {
668 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
669
670 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
671 break;
672
673 for (i = 0; i < pagevec_count(&pvec); i++) {
674 struct page *page = pvec.pages[i];
675 size_t pg_offset, pg_len = 0;
676
677 if (tindex == tlast) {
678 pg_offset =
679 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
680 if (!pg_offset) {
681 done = 1;
682 break;
683 }
684 } else
685 pg_offset = PAGE_CACHE_SIZE;
686
687 if (page->index == tindex && trylock_page(page)) {
688 pg_len = xfs_probe_page(page, pg_offset);
689 unlock_page(page);
690 }
691
692 if (!pg_len) {
693 done = 1;
694 break;
695 }
696
697 total += pg_len;
698 tindex++;
699 }
700
701 pagevec_release(&pvec);
702 cond_resched();
703 }
704
705 return total;
706 }
707
708 /*
709 * Test if a given page is suitable for writing as part of an unwritten
710 * or delayed allocate extent.
711 */
712 STATIC int
713 xfs_is_delayed_page(
714 struct page *page,
715 unsigned int type)
716 {
717 if (PageWriteback(page))
718 return 0;
719
720 if (page->mapping && page_has_buffers(page)) {
721 struct buffer_head *bh, *head;
722 int acceptable = 0;
723
724 bh = head = page_buffers(page);
725 do {
726 if (buffer_unwritten(bh))
727 acceptable = (type == IO_UNWRITTEN);
728 else if (buffer_delay(bh))
729 acceptable = (type == IO_DELAY);
730 else if (buffer_dirty(bh) && buffer_mapped(bh))
731 acceptable = (type == IO_NEW);
732 else
733 break;
734 } while ((bh = bh->b_this_page) != head);
735
736 if (acceptable)
737 return 1;
738 }
739
740 return 0;
741 }
742
743 /*
744 * Allocate & map buffers for page given the extent map. Write it out.
745 * except for the original page of a writepage, this is called on
746 * delalloc/unwritten pages only, for the original page it is possible
747 * that the page has no mapping at all.
748 */
749 STATIC int
750 xfs_convert_page(
751 struct inode *inode,
752 struct page *page,
753 loff_t tindex,
754 struct xfs_bmbt_irec *imap,
755 xfs_ioend_t **ioendp,
756 struct writeback_control *wbc,
757 int all_bh)
758 {
759 struct buffer_head *bh, *head;
760 xfs_off_t end_offset;
761 unsigned long p_offset;
762 unsigned int type;
763 int len, page_dirty;
764 int count = 0, done = 0, uptodate = 1;
765 xfs_off_t offset = page_offset(page);
766
767 if (page->index != tindex)
768 goto fail;
769 if (!trylock_page(page))
770 goto fail;
771 if (PageWriteback(page))
772 goto fail_unlock_page;
773 if (page->mapping != inode->i_mapping)
774 goto fail_unlock_page;
775 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
776 goto fail_unlock_page;
777
778 /*
779 * page_dirty is initially a count of buffers on the page before
780 * EOF and is decremented as we move each into a cleanable state.
781 *
782 * Derivation:
783 *
784 * End offset is the highest offset that this page should represent.
785 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
786 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
787 * hence give us the correct page_dirty count. On any other page,
788 * it will be zero and in that case we need page_dirty to be the
789 * count of buffers on the page.
790 */
791 end_offset = min_t(unsigned long long,
792 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
793 i_size_read(inode));
794
795 len = 1 << inode->i_blkbits;
796 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
797 PAGE_CACHE_SIZE);
798 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
799 page_dirty = p_offset / len;
800
801 bh = head = page_buffers(page);
802 do {
803 if (offset >= end_offset)
804 break;
805 if (!buffer_uptodate(bh))
806 uptodate = 0;
807 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
808 done = 1;
809 continue;
810 }
811
812 if (buffer_unwritten(bh) || buffer_delay(bh)) {
813 if (buffer_unwritten(bh))
814 type = IO_UNWRITTEN;
815 else
816 type = IO_DELAY;
817
818 if (!xfs_imap_valid(inode, imap, offset)) {
819 done = 1;
820 continue;
821 }
822
823 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
824 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
825
826 xfs_map_at_offset(inode, bh, imap, offset);
827 xfs_add_to_ioend(inode, bh, offset, type,
828 ioendp, done);
829
830 page_dirty--;
831 count++;
832 } else {
833 type = IO_NEW;
834 if (buffer_mapped(bh) && all_bh) {
835 lock_buffer(bh);
836 xfs_add_to_ioend(inode, bh, offset,
837 type, ioendp, done);
838 count++;
839 page_dirty--;
840 } else {
841 done = 1;
842 }
843 }
844 } while (offset += len, (bh = bh->b_this_page) != head);
845
846 if (uptodate && bh == head)
847 SetPageUptodate(page);
848
849 if (count) {
850 wbc->nr_to_write--;
851 if (wbc->nr_to_write <= 0)
852 done = 1;
853 }
854 xfs_start_page_writeback(page, !page_dirty, count);
855
856 return done;
857 fail_unlock_page:
858 unlock_page(page);
859 fail:
860 return 1;
861 }
862
863 /*
864 * Convert & write out a cluster of pages in the same extent as defined
865 * by mp and following the start page.
866 */
867 STATIC void
868 xfs_cluster_write(
869 struct inode *inode,
870 pgoff_t tindex,
871 struct xfs_bmbt_irec *imap,
872 xfs_ioend_t **ioendp,
873 struct writeback_control *wbc,
874 int all_bh,
875 pgoff_t tlast)
876 {
877 struct pagevec pvec;
878 int done = 0, i;
879
880 pagevec_init(&pvec, 0);
881 while (!done && tindex <= tlast) {
882 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
883
884 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
885 break;
886
887 for (i = 0; i < pagevec_count(&pvec); i++) {
888 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
889 imap, ioendp, wbc, all_bh);
890 if (done)
891 break;
892 }
893
894 pagevec_release(&pvec);
895 cond_resched();
896 }
897 }
898
899 STATIC void
900 xfs_vm_invalidatepage(
901 struct page *page,
902 unsigned long offset)
903 {
904 trace_xfs_invalidatepage(page->mapping->host, page, offset);
905 block_invalidatepage(page, offset);
906 }
907
908 /*
909 * If the page has delalloc buffers on it, we need to punch them out before we
910 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
911 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
912 * is done on that same region - the delalloc extent is returned when none is
913 * supposed to be there.
914 *
915 * We prevent this by truncating away the delalloc regions on the page before
916 * invalidating it. Because they are delalloc, we can do this without needing a
917 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
918 * truncation without a transaction as there is no space left for block
919 * reservation (typically why we see a ENOSPC in writeback).
920 *
921 * This is not a performance critical path, so for now just do the punching a
922 * buffer head at a time.
923 */
924 STATIC void
925 xfs_aops_discard_page(
926 struct page *page)
927 {
928 struct inode *inode = page->mapping->host;
929 struct xfs_inode *ip = XFS_I(inode);
930 struct buffer_head *bh, *head;
931 loff_t offset = page_offset(page);
932 ssize_t len = 1 << inode->i_blkbits;
933
934 if (!xfs_is_delayed_page(page, IO_DELAY))
935 goto out_invalidate;
936
937 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
938 goto out_invalidate;
939
940 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
941 "page discard on page %p, inode 0x%llx, offset %llu.",
942 page, ip->i_ino, offset);
943
944 xfs_ilock(ip, XFS_ILOCK_EXCL);
945 bh = head = page_buffers(page);
946 do {
947 int done;
948 xfs_fileoff_t offset_fsb;
949 xfs_bmbt_irec_t imap;
950 int nimaps = 1;
951 int error;
952 xfs_fsblock_t firstblock;
953 xfs_bmap_free_t flist;
954
955 if (!buffer_delay(bh))
956 goto next_buffer;
957
958 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
959
960 /*
961 * Map the range first and check that it is a delalloc extent
962 * before trying to unmap the range. Otherwise we will be
963 * trying to remove a real extent (which requires a
964 * transaction) or a hole, which is probably a bad idea...
965 */
966 error = xfs_bmapi(NULL, ip, offset_fsb, 1,
967 XFS_BMAPI_ENTIRE, NULL, 0, &imap,
968 &nimaps, NULL);
969
970 if (error) {
971 /* something screwed, just bail */
972 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
973 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
974 "page discard failed delalloc mapping lookup.");
975 }
976 break;
977 }
978 if (!nimaps) {
979 /* nothing there */
980 goto next_buffer;
981 }
982 if (imap.br_startblock != DELAYSTARTBLOCK) {
983 /* been converted, ignore */
984 goto next_buffer;
985 }
986 WARN_ON(imap.br_blockcount == 0);
987
988 /*
989 * Note: while we initialise the firstblock/flist pair, they
990 * should never be used because blocks should never be
991 * allocated or freed for a delalloc extent and hence we need
992 * don't cancel or finish them after the xfs_bunmapi() call.
993 */
994 xfs_bmap_init(&flist, &firstblock);
995 error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock,
996 &flist, &done);
997
998 ASSERT(!flist.xbf_count && !flist.xbf_first);
999 if (error) {
1000 /* something screwed, just bail */
1001 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1002 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
1003 "page discard unable to remove delalloc mapping.");
1004 }
1005 break;
1006 }
1007 next_buffer:
1008 offset += len;
1009
1010 } while ((bh = bh->b_this_page) != head);
1011
1012 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1013 out_invalidate:
1014 xfs_vm_invalidatepage(page, 0);
1015 return;
1016 }
1017
1018 /*
1019 * Write out a dirty page.
1020 *
1021 * For delalloc space on the page we need to allocate space and flush it.
1022 * For unwritten space on the page we need to start the conversion to
1023 * regular allocated space.
1024 * For any other dirty buffer heads on the page we should flush them.
1025 *
1026 * If we detect that a transaction would be required to flush the page, we
1027 * have to check the process flags first, if we are already in a transaction
1028 * or disk I/O during allocations is off, we need to fail the writepage and
1029 * redirty the page.
1030 */
1031 STATIC int
1032 xfs_vm_writepage(
1033 struct page *page,
1034 struct writeback_control *wbc)
1035 {
1036 struct inode *inode = page->mapping->host;
1037 int delalloc, unwritten;
1038 struct buffer_head *bh, *head;
1039 struct xfs_bmbt_irec imap;
1040 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1041 loff_t offset;
1042 unsigned int type;
1043 __uint64_t end_offset;
1044 pgoff_t end_index, last_index;
1045 ssize_t size, len;
1046 int flags, err, imap_valid = 0, uptodate = 1;
1047 int count = 0;
1048 int all_bh = 0;
1049
1050 trace_xfs_writepage(inode, page, 0);
1051
1052 ASSERT(page_has_buffers(page));
1053
1054 /*
1055 * Refuse to write the page out if we are called from reclaim context.
1056 *
1057 * This avoids stack overflows when called from deeply used stacks in
1058 * random callers for direct reclaim or memcg reclaim. We explicitly
1059 * allow reclaim from kswapd as the stack usage there is relatively low.
1060 *
1061 * This should really be done by the core VM, but until that happens
1062 * filesystems like XFS, btrfs and ext4 have to take care of this
1063 * by themselves.
1064 */
1065 if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
1066 goto out_fail;
1067
1068 /*
1069 * We need a transaction if there are delalloc or unwritten buffers
1070 * on the page.
1071 *
1072 * If we need a transaction and the process flags say we are already
1073 * in a transaction, or no IO is allowed then mark the page dirty
1074 * again and leave the page as is.
1075 */
1076 xfs_count_page_state(page, &delalloc, &unwritten);
1077 if ((current->flags & PF_FSTRANS) && (delalloc || unwritten))
1078 goto out_fail;
1079
1080 /* Is this page beyond the end of the file? */
1081 offset = i_size_read(inode);
1082 end_index = offset >> PAGE_CACHE_SHIFT;
1083 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1084 if (page->index >= end_index) {
1085 if ((page->index >= end_index + 1) ||
1086 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
1087 unlock_page(page);
1088 return 0;
1089 }
1090 }
1091
1092 end_offset = min_t(unsigned long long,
1093 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
1094 offset);
1095 len = 1 << inode->i_blkbits;
1096
1097 bh = head = page_buffers(page);
1098 offset = page_offset(page);
1099 flags = BMAPI_READ;
1100 type = IO_NEW;
1101
1102 do {
1103 if (offset >= end_offset)
1104 break;
1105 if (!buffer_uptodate(bh))
1106 uptodate = 0;
1107
1108 /*
1109 * A hole may still be marked uptodate because discard_buffer
1110 * leaves the flag set.
1111 */
1112 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1113 ASSERT(!buffer_dirty(bh));
1114 imap_valid = 0;
1115 continue;
1116 }
1117
1118 if (imap_valid)
1119 imap_valid = xfs_imap_valid(inode, &imap, offset);
1120
1121 if (buffer_unwritten(bh) || buffer_delay(bh)) {
1122 int new_ioend = 0;
1123
1124 /*
1125 * Make sure we don't use a read-only iomap
1126 */
1127 if (flags == BMAPI_READ)
1128 imap_valid = 0;
1129
1130 if (buffer_unwritten(bh)) {
1131 type = IO_UNWRITTEN;
1132 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
1133 } else if (buffer_delay(bh)) {
1134 type = IO_DELAY;
1135 flags = BMAPI_ALLOCATE;
1136
1137 if (wbc->sync_mode == WB_SYNC_NONE &&
1138 wbc->nonblocking)
1139 flags |= BMAPI_TRYLOCK;
1140 }
1141
1142 if (!imap_valid) {
1143 /*
1144 * If we didn't have a valid mapping then we
1145 * need to ensure that we put the new mapping
1146 * in a new ioend structure. This needs to be
1147 * done to ensure that the ioends correctly
1148 * reflect the block mappings at io completion
1149 * for unwritten extent conversion.
1150 */
1151 new_ioend = 1;
1152 err = xfs_map_blocks(inode, offset, len,
1153 &imap, flags);
1154 if (err)
1155 goto error;
1156 imap_valid = xfs_imap_valid(inode, &imap,
1157 offset);
1158 }
1159 if (imap_valid) {
1160 xfs_map_at_offset(inode, bh, &imap, offset);
1161 xfs_add_to_ioend(inode, bh, offset, type,
1162 &ioend, new_ioend);
1163 count++;
1164 }
1165 } else if (buffer_uptodate(bh)) {
1166 /*
1167 * we got here because the buffer is already mapped.
1168 * That means it must already have extents allocated
1169 * underneath it. Map the extent by reading it.
1170 */
1171 if (!imap_valid || flags != BMAPI_READ) {
1172 flags = BMAPI_READ;
1173 size = xfs_probe_cluster(inode, page, bh, head);
1174 err = xfs_map_blocks(inode, offset, size,
1175 &imap, flags);
1176 if (err)
1177 goto error;
1178 imap_valid = xfs_imap_valid(inode, &imap,
1179 offset);
1180 }
1181
1182 /*
1183 * We set the type to IO_NEW in case we are doing a
1184 * small write at EOF that is extending the file but
1185 * without needing an allocation. We need to update the
1186 * file size on I/O completion in this case so it is
1187 * the same case as having just allocated a new extent
1188 * that we are writing into for the first time.
1189 */
1190 type = IO_NEW;
1191 if (trylock_buffer(bh)) {
1192 if (imap_valid)
1193 all_bh = 1;
1194 xfs_add_to_ioend(inode, bh, offset, type,
1195 &ioend, !imap_valid);
1196 count++;
1197 } else {
1198 imap_valid = 0;
1199 }
1200 } else if (PageUptodate(page)) {
1201 ASSERT(buffer_mapped(bh));
1202 imap_valid = 0;
1203 }
1204
1205 if (!iohead)
1206 iohead = ioend;
1207
1208 } while (offset += len, ((bh = bh->b_this_page) != head));
1209
1210 if (uptodate && bh == head)
1211 SetPageUptodate(page);
1212
1213 xfs_start_page_writeback(page, 1, count);
1214
1215 if (ioend && imap_valid) {
1216 xfs_off_t end_index;
1217
1218 end_index = imap.br_startoff + imap.br_blockcount;
1219
1220 /* to bytes */
1221 end_index <<= inode->i_blkbits;
1222
1223 /* to pages */
1224 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1225
1226 /* check against file size */
1227 if (end_index > last_index)
1228 end_index = last_index;
1229
1230 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1231 wbc, all_bh, end_index);
1232 }
1233
1234 if (iohead)
1235 xfs_submit_ioend(wbc, iohead);
1236
1237 return 0;
1238
1239 error:
1240 if (iohead)
1241 xfs_cancel_ioend(iohead);
1242
1243 xfs_aops_discard_page(page);
1244 ClearPageUptodate(page);
1245 unlock_page(page);
1246 return err;
1247
1248 out_fail:
1249 redirty_page_for_writepage(wbc, page);
1250 unlock_page(page);
1251 return 0;
1252 }
1253
1254 STATIC int
1255 xfs_vm_writepages(
1256 struct address_space *mapping,
1257 struct writeback_control *wbc)
1258 {
1259 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1260 return generic_writepages(mapping, wbc);
1261 }
1262
1263 /*
1264 * Called to move a page into cleanable state - and from there
1265 * to be released. The page should already be clean. We always
1266 * have buffer heads in this call.
1267 *
1268 * Returns 1 if the page is ok to release, 0 otherwise.
1269 */
1270 STATIC int
1271 xfs_vm_releasepage(
1272 struct page *page,
1273 gfp_t gfp_mask)
1274 {
1275 int delalloc, unwritten;
1276
1277 trace_xfs_releasepage(page->mapping->host, page, 0);
1278
1279 xfs_count_page_state(page, &delalloc, &unwritten);
1280
1281 if (WARN_ON(delalloc))
1282 return 0;
1283 if (WARN_ON(unwritten))
1284 return 0;
1285
1286 return try_to_free_buffers(page);
1287 }
1288
1289 STATIC int
1290 __xfs_get_blocks(
1291 struct inode *inode,
1292 sector_t iblock,
1293 struct buffer_head *bh_result,
1294 int create,
1295 int direct)
1296 {
1297 int flags = create ? BMAPI_WRITE : BMAPI_READ;
1298 struct xfs_bmbt_irec imap;
1299 xfs_off_t offset;
1300 ssize_t size;
1301 int nimap = 1;
1302 int new = 0;
1303 int error;
1304
1305 offset = (xfs_off_t)iblock << inode->i_blkbits;
1306 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1307 size = bh_result->b_size;
1308
1309 if (!create && direct && offset >= i_size_read(inode))
1310 return 0;
1311
1312 if (direct && create)
1313 flags |= BMAPI_DIRECT;
1314
1315 error = xfs_iomap(XFS_I(inode), offset, size, flags, &imap, &nimap,
1316 &new);
1317 if (error)
1318 return -error;
1319 if (nimap == 0)
1320 return 0;
1321
1322 if (imap.br_startblock != HOLESTARTBLOCK &&
1323 imap.br_startblock != DELAYSTARTBLOCK) {
1324 /*
1325 * For unwritten extents do not report a disk address on
1326 * the read case (treat as if we're reading into a hole).
1327 */
1328 if (create || !ISUNWRITTEN(&imap))
1329 xfs_map_buffer(inode, bh_result, &imap, offset);
1330 if (create && ISUNWRITTEN(&imap)) {
1331 if (direct)
1332 bh_result->b_private = inode;
1333 set_buffer_unwritten(bh_result);
1334 }
1335 }
1336
1337 /*
1338 * If this is a realtime file, data may be on a different device.
1339 * to that pointed to from the buffer_head b_bdev currently.
1340 */
1341 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1342
1343 /*
1344 * If we previously allocated a block out beyond eof and we are now
1345 * coming back to use it then we will need to flag it as new even if it
1346 * has a disk address.
1347 *
1348 * With sub-block writes into unwritten extents we also need to mark
1349 * the buffer as new so that the unwritten parts of the buffer gets
1350 * correctly zeroed.
1351 */
1352 if (create &&
1353 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1354 (offset >= i_size_read(inode)) ||
1355 (new || ISUNWRITTEN(&imap))))
1356 set_buffer_new(bh_result);
1357
1358 if (imap.br_startblock == DELAYSTARTBLOCK) {
1359 BUG_ON(direct);
1360 if (create) {
1361 set_buffer_uptodate(bh_result);
1362 set_buffer_mapped(bh_result);
1363 set_buffer_delay(bh_result);
1364 }
1365 }
1366
1367 /*
1368 * If this is O_DIRECT or the mpage code calling tell them how large
1369 * the mapping is, so that we can avoid repeated get_blocks calls.
1370 */
1371 if (direct || size > (1 << inode->i_blkbits)) {
1372 xfs_off_t mapping_size;
1373
1374 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1375 mapping_size <<= inode->i_blkbits;
1376
1377 ASSERT(mapping_size > 0);
1378 if (mapping_size > size)
1379 mapping_size = size;
1380 if (mapping_size > LONG_MAX)
1381 mapping_size = LONG_MAX;
1382
1383 bh_result->b_size = mapping_size;
1384 }
1385
1386 return 0;
1387 }
1388
1389 int
1390 xfs_get_blocks(
1391 struct inode *inode,
1392 sector_t iblock,
1393 struct buffer_head *bh_result,
1394 int create)
1395 {
1396 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1397 }
1398
1399 STATIC int
1400 xfs_get_blocks_direct(
1401 struct inode *inode,
1402 sector_t iblock,
1403 struct buffer_head *bh_result,
1404 int create)
1405 {
1406 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1407 }
1408
1409 STATIC void
1410 xfs_end_io_direct(
1411 struct kiocb *iocb,
1412 loff_t offset,
1413 ssize_t size,
1414 void *private,
1415 int ret,
1416 bool is_async)
1417 {
1418 xfs_ioend_t *ioend = iocb->private;
1419 bool complete_aio = is_async;
1420
1421 /*
1422 * Non-NULL private data means we need to issue a transaction to
1423 * convert a range from unwritten to written extents. This needs
1424 * to happen from process context but aio+dio I/O completion
1425 * happens from irq context so we need to defer it to a workqueue.
1426 * This is not necessary for synchronous direct I/O, but we do
1427 * it anyway to keep the code uniform and simpler.
1428 *
1429 * Well, if only it were that simple. Because synchronous direct I/O
1430 * requires extent conversion to occur *before* we return to userspace,
1431 * we have to wait for extent conversion to complete. Look at the
1432 * iocb that has been passed to us to determine if this is AIO or
1433 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1434 * workqueue and wait for it to complete.
1435 *
1436 * The core direct I/O code might be changed to always call the
1437 * completion handler in the future, in which case all this can
1438 * go away.
1439 */
1440 ioend->io_offset = offset;
1441 ioend->io_size = size;
1442 if (ioend->io_type == IO_READ) {
1443 xfs_finish_ioend(ioend, 0);
1444 } else if (private && size > 0) {
1445 if (is_async) {
1446 ioend->io_iocb = iocb;
1447 ioend->io_result = ret;
1448 complete_aio = false;
1449 xfs_finish_ioend(ioend, 0);
1450 } else {
1451 xfs_finish_ioend(ioend, 1);
1452 }
1453 } else {
1454 /*
1455 * A direct I/O write ioend starts it's life in unwritten
1456 * state in case they map an unwritten extent. This write
1457 * didn't map an unwritten extent so switch it's completion
1458 * handler.
1459 */
1460 ioend->io_type = IO_NEW;
1461 xfs_finish_ioend(ioend, 0);
1462 }
1463
1464 /*
1465 * blockdev_direct_IO can return an error even after the I/O
1466 * completion handler was called. Thus we need to protect
1467 * against double-freeing.
1468 */
1469 iocb->private = NULL;
1470
1471 if (complete_aio)
1472 aio_complete(iocb, ret, 0);
1473 }
1474
1475 STATIC ssize_t
1476 xfs_vm_direct_IO(
1477 int rw,
1478 struct kiocb *iocb,
1479 const struct iovec *iov,
1480 loff_t offset,
1481 unsigned long nr_segs)
1482 {
1483 struct file *file = iocb->ki_filp;
1484 struct inode *inode = file->f_mapping->host;
1485 struct block_device *bdev;
1486 ssize_t ret;
1487
1488 bdev = xfs_find_bdev_for_inode(inode);
1489
1490 iocb->private = xfs_alloc_ioend(inode, rw == WRITE ?
1491 IO_UNWRITTEN : IO_READ);
1492
1493 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov,
1494 offset, nr_segs,
1495 xfs_get_blocks_direct,
1496 xfs_end_io_direct);
1497
1498 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
1499 xfs_destroy_ioend(iocb->private);
1500 return ret;
1501 }
1502
1503 STATIC int
1504 xfs_vm_write_begin(
1505 struct file *file,
1506 struct address_space *mapping,
1507 loff_t pos,
1508 unsigned len,
1509 unsigned flags,
1510 struct page **pagep,
1511 void **fsdata)
1512 {
1513 *pagep = NULL;
1514 return block_write_begin(file, mapping, pos, len, flags | AOP_FLAG_NOFS,
1515 pagep, fsdata, xfs_get_blocks);
1516 }
1517
1518 STATIC sector_t
1519 xfs_vm_bmap(
1520 struct address_space *mapping,
1521 sector_t block)
1522 {
1523 struct inode *inode = (struct inode *)mapping->host;
1524 struct xfs_inode *ip = XFS_I(inode);
1525
1526 trace_xfs_vm_bmap(XFS_I(inode));
1527 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1528 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1529 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1530 return generic_block_bmap(mapping, block, xfs_get_blocks);
1531 }
1532
1533 STATIC int
1534 xfs_vm_readpage(
1535 struct file *unused,
1536 struct page *page)
1537 {
1538 return mpage_readpage(page, xfs_get_blocks);
1539 }
1540
1541 STATIC int
1542 xfs_vm_readpages(
1543 struct file *unused,
1544 struct address_space *mapping,
1545 struct list_head *pages,
1546 unsigned nr_pages)
1547 {
1548 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1549 }
1550
1551 const struct address_space_operations xfs_address_space_operations = {
1552 .readpage = xfs_vm_readpage,
1553 .readpages = xfs_vm_readpages,
1554 .writepage = xfs_vm_writepage,
1555 .writepages = xfs_vm_writepages,
1556 .sync_page = block_sync_page,
1557 .releasepage = xfs_vm_releasepage,
1558 .invalidatepage = xfs_vm_invalidatepage,
1559 .write_begin = xfs_vm_write_begin,
1560 .write_end = generic_write_end,
1561 .bmap = xfs_vm_bmap,
1562 .direct_IO = xfs_vm_direct_IO,
1563 .migratepage = buffer_migrate_page,
1564 .is_partially_uptodate = block_is_partially_uptodate,
1565 .error_remove_page = generic_error_remove_page,
1566 };
This page took 0.078903 seconds and 5 git commands to generate.