xfs: kill the STATIC_INLINE macro
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_dir2.h"
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
38 #include "xfs_rw.h"
39 #include "xfs_iomap.h"
40 #include "xfs_vnodeops.h"
41 #include <linux/mpage.h>
42 #include <linux/pagevec.h>
43 #include <linux/writeback.h>
44
45
46 /*
47 * Prime number of hash buckets since address is used as the key.
48 */
49 #define NVSYNC 37
50 #define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
51 static wait_queue_head_t xfs_ioend_wq[NVSYNC];
52
53 void __init
54 xfs_ioend_init(void)
55 {
56 int i;
57
58 for (i = 0; i < NVSYNC; i++)
59 init_waitqueue_head(&xfs_ioend_wq[i]);
60 }
61
62 void
63 xfs_ioend_wait(
64 xfs_inode_t *ip)
65 {
66 wait_queue_head_t *wq = to_ioend_wq(ip);
67
68 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
69 }
70
71 STATIC void
72 xfs_ioend_wake(
73 xfs_inode_t *ip)
74 {
75 if (atomic_dec_and_test(&ip->i_iocount))
76 wake_up(to_ioend_wq(ip));
77 }
78
79 STATIC void
80 xfs_count_page_state(
81 struct page *page,
82 int *delalloc,
83 int *unmapped,
84 int *unwritten)
85 {
86 struct buffer_head *bh, *head;
87
88 *delalloc = *unmapped = *unwritten = 0;
89
90 bh = head = page_buffers(page);
91 do {
92 if (buffer_uptodate(bh) && !buffer_mapped(bh))
93 (*unmapped) = 1;
94 else if (buffer_unwritten(bh))
95 (*unwritten) = 1;
96 else if (buffer_delay(bh))
97 (*delalloc) = 1;
98 } while ((bh = bh->b_this_page) != head);
99 }
100
101 #if defined(XFS_RW_TRACE)
102 void
103 xfs_page_trace(
104 int tag,
105 struct inode *inode,
106 struct page *page,
107 unsigned long pgoff)
108 {
109 xfs_inode_t *ip;
110 loff_t isize = i_size_read(inode);
111 loff_t offset = page_offset(page);
112 int delalloc = -1, unmapped = -1, unwritten = -1;
113
114 if (page_has_buffers(page))
115 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
116
117 ip = XFS_I(inode);
118 if (!ip->i_rwtrace)
119 return;
120
121 ktrace_enter(ip->i_rwtrace,
122 (void *)((unsigned long)tag),
123 (void *)ip,
124 (void *)inode,
125 (void *)page,
126 (void *)pgoff,
127 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
128 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
129 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
130 (void *)((unsigned long)(isize & 0xffffffff)),
131 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
132 (void *)((unsigned long)(offset & 0xffffffff)),
133 (void *)((unsigned long)delalloc),
134 (void *)((unsigned long)unmapped),
135 (void *)((unsigned long)unwritten),
136 (void *)((unsigned long)current_pid()),
137 (void *)NULL);
138 }
139 #else
140 #define xfs_page_trace(tag, inode, page, pgoff)
141 #endif
142
143 STATIC struct block_device *
144 xfs_find_bdev_for_inode(
145 struct xfs_inode *ip)
146 {
147 struct xfs_mount *mp = ip->i_mount;
148
149 if (XFS_IS_REALTIME_INODE(ip))
150 return mp->m_rtdev_targp->bt_bdev;
151 else
152 return mp->m_ddev_targp->bt_bdev;
153 }
154
155 /*
156 * We're now finished for good with this ioend structure.
157 * Update the page state via the associated buffer_heads,
158 * release holds on the inode and bio, and finally free
159 * up memory. Do not use the ioend after this.
160 */
161 STATIC void
162 xfs_destroy_ioend(
163 xfs_ioend_t *ioend)
164 {
165 struct buffer_head *bh, *next;
166 struct xfs_inode *ip = XFS_I(ioend->io_inode);
167
168 for (bh = ioend->io_buffer_head; bh; bh = next) {
169 next = bh->b_private;
170 bh->b_end_io(bh, !ioend->io_error);
171 }
172
173 /*
174 * Volume managers supporting multiple paths can send back ENODEV
175 * when the final path disappears. In this case continuing to fill
176 * the page cache with dirty data which cannot be written out is
177 * evil, so prevent that.
178 */
179 if (unlikely(ioend->io_error == -ENODEV)) {
180 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
181 __FILE__, __LINE__);
182 }
183
184 xfs_ioend_wake(ip);
185 mempool_free(ioend, xfs_ioend_pool);
186 }
187
188 /*
189 * If the end of the current ioend is beyond the current EOF,
190 * return the new EOF value, otherwise zero.
191 */
192 STATIC xfs_fsize_t
193 xfs_ioend_new_eof(
194 xfs_ioend_t *ioend)
195 {
196 xfs_inode_t *ip = XFS_I(ioend->io_inode);
197 xfs_fsize_t isize;
198 xfs_fsize_t bsize;
199
200 bsize = ioend->io_offset + ioend->io_size;
201 isize = MAX(ip->i_size, ip->i_new_size);
202 isize = MIN(isize, bsize);
203 return isize > ip->i_d.di_size ? isize : 0;
204 }
205
206 /*
207 * Update on-disk file size now that data has been written to disk.
208 * The current in-memory file size is i_size. If a write is beyond
209 * eof i_new_size will be the intended file size until i_size is
210 * updated. If this write does not extend all the way to the valid
211 * file size then restrict this update to the end of the write.
212 */
213
214 STATIC void
215 xfs_setfilesize(
216 xfs_ioend_t *ioend)
217 {
218 xfs_inode_t *ip = XFS_I(ioend->io_inode);
219 xfs_fsize_t isize;
220
221 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
222 ASSERT(ioend->io_type != IOMAP_READ);
223
224 if (unlikely(ioend->io_error))
225 return;
226
227 xfs_ilock(ip, XFS_ILOCK_EXCL);
228 isize = xfs_ioend_new_eof(ioend);
229 if (isize) {
230 ip->i_d.di_size = isize;
231 xfs_mark_inode_dirty_sync(ip);
232 }
233
234 xfs_iunlock(ip, XFS_ILOCK_EXCL);
235 }
236
237 /*
238 * IO write completion.
239 */
240 STATIC void
241 xfs_end_io(
242 struct work_struct *work)
243 {
244 xfs_ioend_t *ioend =
245 container_of(work, xfs_ioend_t, io_work);
246 struct xfs_inode *ip = XFS_I(ioend->io_inode);
247
248 /*
249 * For unwritten extents we need to issue transactions to convert a
250 * range to normal written extens after the data I/O has finished.
251 */
252 if (ioend->io_type == IOMAP_UNWRITTEN &&
253 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
254 int error;
255
256 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
257 ioend->io_size);
258 if (error)
259 ioend->io_error = error;
260 }
261
262 /*
263 * We might have to update the on-disk file size after extending
264 * writes.
265 */
266 if (ioend->io_type != IOMAP_READ)
267 xfs_setfilesize(ioend);
268 xfs_destroy_ioend(ioend);
269 }
270
271 /*
272 * Schedule IO completion handling on a xfsdatad if this was
273 * the final hold on this ioend. If we are asked to wait,
274 * flush the workqueue.
275 */
276 STATIC void
277 xfs_finish_ioend(
278 xfs_ioend_t *ioend,
279 int wait)
280 {
281 if (atomic_dec_and_test(&ioend->io_remaining)) {
282 struct workqueue_struct *wq;
283
284 wq = (ioend->io_type == IOMAP_UNWRITTEN) ?
285 xfsconvertd_workqueue : xfsdatad_workqueue;
286 queue_work(wq, &ioend->io_work);
287 if (wait)
288 flush_workqueue(wq);
289 }
290 }
291
292 /*
293 * Allocate and initialise an IO completion structure.
294 * We need to track unwritten extent write completion here initially.
295 * We'll need to extend this for updating the ondisk inode size later
296 * (vs. incore size).
297 */
298 STATIC xfs_ioend_t *
299 xfs_alloc_ioend(
300 struct inode *inode,
301 unsigned int type)
302 {
303 xfs_ioend_t *ioend;
304
305 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
306
307 /*
308 * Set the count to 1 initially, which will prevent an I/O
309 * completion callback from happening before we have started
310 * all the I/O from calling the completion routine too early.
311 */
312 atomic_set(&ioend->io_remaining, 1);
313 ioend->io_error = 0;
314 ioend->io_list = NULL;
315 ioend->io_type = type;
316 ioend->io_inode = inode;
317 ioend->io_buffer_head = NULL;
318 ioend->io_buffer_tail = NULL;
319 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
320 ioend->io_offset = 0;
321 ioend->io_size = 0;
322
323 INIT_WORK(&ioend->io_work, xfs_end_io);
324 return ioend;
325 }
326
327 STATIC int
328 xfs_map_blocks(
329 struct inode *inode,
330 loff_t offset,
331 ssize_t count,
332 xfs_iomap_t *mapp,
333 int flags)
334 {
335 int nmaps = 1;
336
337 return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
338 }
339
340 STATIC int
341 xfs_iomap_valid(
342 xfs_iomap_t *iomapp,
343 loff_t offset)
344 {
345 return offset >= iomapp->iomap_offset &&
346 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
347 }
348
349 /*
350 * BIO completion handler for buffered IO.
351 */
352 STATIC void
353 xfs_end_bio(
354 struct bio *bio,
355 int error)
356 {
357 xfs_ioend_t *ioend = bio->bi_private;
358
359 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
360 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
361
362 /* Toss bio and pass work off to an xfsdatad thread */
363 bio->bi_private = NULL;
364 bio->bi_end_io = NULL;
365 bio_put(bio);
366
367 xfs_finish_ioend(ioend, 0);
368 }
369
370 STATIC void
371 xfs_submit_ioend_bio(
372 struct writeback_control *wbc,
373 xfs_ioend_t *ioend,
374 struct bio *bio)
375 {
376 atomic_inc(&ioend->io_remaining);
377 bio->bi_private = ioend;
378 bio->bi_end_io = xfs_end_bio;
379
380 /*
381 * If the I/O is beyond EOF we mark the inode dirty immediately
382 * but don't update the inode size until I/O completion.
383 */
384 if (xfs_ioend_new_eof(ioend))
385 xfs_mark_inode_dirty_sync(XFS_I(ioend->io_inode));
386
387 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
388 WRITE_SYNC_PLUG : WRITE, bio);
389 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
390 bio_put(bio);
391 }
392
393 STATIC struct bio *
394 xfs_alloc_ioend_bio(
395 struct buffer_head *bh)
396 {
397 struct bio *bio;
398 int nvecs = bio_get_nr_vecs(bh->b_bdev);
399
400 do {
401 bio = bio_alloc(GFP_NOIO, nvecs);
402 nvecs >>= 1;
403 } while (!bio);
404
405 ASSERT(bio->bi_private == NULL);
406 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
407 bio->bi_bdev = bh->b_bdev;
408 bio_get(bio);
409 return bio;
410 }
411
412 STATIC void
413 xfs_start_buffer_writeback(
414 struct buffer_head *bh)
415 {
416 ASSERT(buffer_mapped(bh));
417 ASSERT(buffer_locked(bh));
418 ASSERT(!buffer_delay(bh));
419 ASSERT(!buffer_unwritten(bh));
420
421 mark_buffer_async_write(bh);
422 set_buffer_uptodate(bh);
423 clear_buffer_dirty(bh);
424 }
425
426 STATIC void
427 xfs_start_page_writeback(
428 struct page *page,
429 int clear_dirty,
430 int buffers)
431 {
432 ASSERT(PageLocked(page));
433 ASSERT(!PageWriteback(page));
434 if (clear_dirty)
435 clear_page_dirty_for_io(page);
436 set_page_writeback(page);
437 unlock_page(page);
438 /* If no buffers on the page are to be written, finish it here */
439 if (!buffers)
440 end_page_writeback(page);
441 }
442
443 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
444 {
445 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
446 }
447
448 /*
449 * Submit all of the bios for all of the ioends we have saved up, covering the
450 * initial writepage page and also any probed pages.
451 *
452 * Because we may have multiple ioends spanning a page, we need to start
453 * writeback on all the buffers before we submit them for I/O. If we mark the
454 * buffers as we got, then we can end up with a page that only has buffers
455 * marked async write and I/O complete on can occur before we mark the other
456 * buffers async write.
457 *
458 * The end result of this is that we trip a bug in end_page_writeback() because
459 * we call it twice for the one page as the code in end_buffer_async_write()
460 * assumes that all buffers on the page are started at the same time.
461 *
462 * The fix is two passes across the ioend list - one to start writeback on the
463 * buffer_heads, and then submit them for I/O on the second pass.
464 */
465 STATIC void
466 xfs_submit_ioend(
467 struct writeback_control *wbc,
468 xfs_ioend_t *ioend)
469 {
470 xfs_ioend_t *head = ioend;
471 xfs_ioend_t *next;
472 struct buffer_head *bh;
473 struct bio *bio;
474 sector_t lastblock = 0;
475
476 /* Pass 1 - start writeback */
477 do {
478 next = ioend->io_list;
479 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
480 xfs_start_buffer_writeback(bh);
481 }
482 } while ((ioend = next) != NULL);
483
484 /* Pass 2 - submit I/O */
485 ioend = head;
486 do {
487 next = ioend->io_list;
488 bio = NULL;
489
490 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
491
492 if (!bio) {
493 retry:
494 bio = xfs_alloc_ioend_bio(bh);
495 } else if (bh->b_blocknr != lastblock + 1) {
496 xfs_submit_ioend_bio(wbc, ioend, bio);
497 goto retry;
498 }
499
500 if (bio_add_buffer(bio, bh) != bh->b_size) {
501 xfs_submit_ioend_bio(wbc, ioend, bio);
502 goto retry;
503 }
504
505 lastblock = bh->b_blocknr;
506 }
507 if (bio)
508 xfs_submit_ioend_bio(wbc, ioend, bio);
509 xfs_finish_ioend(ioend, 0);
510 } while ((ioend = next) != NULL);
511 }
512
513 /*
514 * Cancel submission of all buffer_heads so far in this endio.
515 * Toss the endio too. Only ever called for the initial page
516 * in a writepage request, so only ever one page.
517 */
518 STATIC void
519 xfs_cancel_ioend(
520 xfs_ioend_t *ioend)
521 {
522 xfs_ioend_t *next;
523 struct buffer_head *bh, *next_bh;
524
525 do {
526 next = ioend->io_list;
527 bh = ioend->io_buffer_head;
528 do {
529 next_bh = bh->b_private;
530 clear_buffer_async_write(bh);
531 unlock_buffer(bh);
532 } while ((bh = next_bh) != NULL);
533
534 xfs_ioend_wake(XFS_I(ioend->io_inode));
535 mempool_free(ioend, xfs_ioend_pool);
536 } while ((ioend = next) != NULL);
537 }
538
539 /*
540 * Test to see if we've been building up a completion structure for
541 * earlier buffers -- if so, we try to append to this ioend if we
542 * can, otherwise we finish off any current ioend and start another.
543 * Return true if we've finished the given ioend.
544 */
545 STATIC void
546 xfs_add_to_ioend(
547 struct inode *inode,
548 struct buffer_head *bh,
549 xfs_off_t offset,
550 unsigned int type,
551 xfs_ioend_t **result,
552 int need_ioend)
553 {
554 xfs_ioend_t *ioend = *result;
555
556 if (!ioend || need_ioend || type != ioend->io_type) {
557 xfs_ioend_t *previous = *result;
558
559 ioend = xfs_alloc_ioend(inode, type);
560 ioend->io_offset = offset;
561 ioend->io_buffer_head = bh;
562 ioend->io_buffer_tail = bh;
563 if (previous)
564 previous->io_list = ioend;
565 *result = ioend;
566 } else {
567 ioend->io_buffer_tail->b_private = bh;
568 ioend->io_buffer_tail = bh;
569 }
570
571 bh->b_private = NULL;
572 ioend->io_size += bh->b_size;
573 }
574
575 STATIC void
576 xfs_map_buffer(
577 struct buffer_head *bh,
578 xfs_iomap_t *mp,
579 xfs_off_t offset,
580 uint block_bits)
581 {
582 sector_t bn;
583
584 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
585
586 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
587 ((offset - mp->iomap_offset) >> block_bits);
588
589 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
590
591 bh->b_blocknr = bn;
592 set_buffer_mapped(bh);
593 }
594
595 STATIC void
596 xfs_map_at_offset(
597 struct buffer_head *bh,
598 loff_t offset,
599 int block_bits,
600 xfs_iomap_t *iomapp)
601 {
602 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
603 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
604
605 lock_buffer(bh);
606 xfs_map_buffer(bh, iomapp, offset, block_bits);
607 bh->b_bdev = iomapp->iomap_target->bt_bdev;
608 set_buffer_mapped(bh);
609 clear_buffer_delay(bh);
610 clear_buffer_unwritten(bh);
611 }
612
613 /*
614 * Look for a page at index that is suitable for clustering.
615 */
616 STATIC unsigned int
617 xfs_probe_page(
618 struct page *page,
619 unsigned int pg_offset,
620 int mapped)
621 {
622 int ret = 0;
623
624 if (PageWriteback(page))
625 return 0;
626
627 if (page->mapping && PageDirty(page)) {
628 if (page_has_buffers(page)) {
629 struct buffer_head *bh, *head;
630
631 bh = head = page_buffers(page);
632 do {
633 if (!buffer_uptodate(bh))
634 break;
635 if (mapped != buffer_mapped(bh))
636 break;
637 ret += bh->b_size;
638 if (ret >= pg_offset)
639 break;
640 } while ((bh = bh->b_this_page) != head);
641 } else
642 ret = mapped ? 0 : PAGE_CACHE_SIZE;
643 }
644
645 return ret;
646 }
647
648 STATIC size_t
649 xfs_probe_cluster(
650 struct inode *inode,
651 struct page *startpage,
652 struct buffer_head *bh,
653 struct buffer_head *head,
654 int mapped)
655 {
656 struct pagevec pvec;
657 pgoff_t tindex, tlast, tloff;
658 size_t total = 0;
659 int done = 0, i;
660
661 /* First sum forwards in this page */
662 do {
663 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
664 return total;
665 total += bh->b_size;
666 } while ((bh = bh->b_this_page) != head);
667
668 /* if we reached the end of the page, sum forwards in following pages */
669 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
670 tindex = startpage->index + 1;
671
672 /* Prune this back to avoid pathological behavior */
673 tloff = min(tlast, startpage->index + 64);
674
675 pagevec_init(&pvec, 0);
676 while (!done && tindex <= tloff) {
677 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
678
679 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
680 break;
681
682 for (i = 0; i < pagevec_count(&pvec); i++) {
683 struct page *page = pvec.pages[i];
684 size_t pg_offset, pg_len = 0;
685
686 if (tindex == tlast) {
687 pg_offset =
688 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
689 if (!pg_offset) {
690 done = 1;
691 break;
692 }
693 } else
694 pg_offset = PAGE_CACHE_SIZE;
695
696 if (page->index == tindex && trylock_page(page)) {
697 pg_len = xfs_probe_page(page, pg_offset, mapped);
698 unlock_page(page);
699 }
700
701 if (!pg_len) {
702 done = 1;
703 break;
704 }
705
706 total += pg_len;
707 tindex++;
708 }
709
710 pagevec_release(&pvec);
711 cond_resched();
712 }
713
714 return total;
715 }
716
717 /*
718 * Test if a given page is suitable for writing as part of an unwritten
719 * or delayed allocate extent.
720 */
721 STATIC int
722 xfs_is_delayed_page(
723 struct page *page,
724 unsigned int type)
725 {
726 if (PageWriteback(page))
727 return 0;
728
729 if (page->mapping && page_has_buffers(page)) {
730 struct buffer_head *bh, *head;
731 int acceptable = 0;
732
733 bh = head = page_buffers(page);
734 do {
735 if (buffer_unwritten(bh))
736 acceptable = (type == IOMAP_UNWRITTEN);
737 else if (buffer_delay(bh))
738 acceptable = (type == IOMAP_DELAY);
739 else if (buffer_dirty(bh) && buffer_mapped(bh))
740 acceptable = (type == IOMAP_NEW);
741 else
742 break;
743 } while ((bh = bh->b_this_page) != head);
744
745 if (acceptable)
746 return 1;
747 }
748
749 return 0;
750 }
751
752 /*
753 * Allocate & map buffers for page given the extent map. Write it out.
754 * except for the original page of a writepage, this is called on
755 * delalloc/unwritten pages only, for the original page it is possible
756 * that the page has no mapping at all.
757 */
758 STATIC int
759 xfs_convert_page(
760 struct inode *inode,
761 struct page *page,
762 loff_t tindex,
763 xfs_iomap_t *mp,
764 xfs_ioend_t **ioendp,
765 struct writeback_control *wbc,
766 int startio,
767 int all_bh)
768 {
769 struct buffer_head *bh, *head;
770 xfs_off_t end_offset;
771 unsigned long p_offset;
772 unsigned int type;
773 int bbits = inode->i_blkbits;
774 int len, page_dirty;
775 int count = 0, done = 0, uptodate = 1;
776 xfs_off_t offset = page_offset(page);
777
778 if (page->index != tindex)
779 goto fail;
780 if (!trylock_page(page))
781 goto fail;
782 if (PageWriteback(page))
783 goto fail_unlock_page;
784 if (page->mapping != inode->i_mapping)
785 goto fail_unlock_page;
786 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
787 goto fail_unlock_page;
788
789 /*
790 * page_dirty is initially a count of buffers on the page before
791 * EOF and is decremented as we move each into a cleanable state.
792 *
793 * Derivation:
794 *
795 * End offset is the highest offset that this page should represent.
796 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
797 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
798 * hence give us the correct page_dirty count. On any other page,
799 * it will be zero and in that case we need page_dirty to be the
800 * count of buffers on the page.
801 */
802 end_offset = min_t(unsigned long long,
803 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
804 i_size_read(inode));
805
806 len = 1 << inode->i_blkbits;
807 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
808 PAGE_CACHE_SIZE);
809 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
810 page_dirty = p_offset / len;
811
812 bh = head = page_buffers(page);
813 do {
814 if (offset >= end_offset)
815 break;
816 if (!buffer_uptodate(bh))
817 uptodate = 0;
818 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
819 done = 1;
820 continue;
821 }
822
823 if (buffer_unwritten(bh) || buffer_delay(bh)) {
824 if (buffer_unwritten(bh))
825 type = IOMAP_UNWRITTEN;
826 else
827 type = IOMAP_DELAY;
828
829 if (!xfs_iomap_valid(mp, offset)) {
830 done = 1;
831 continue;
832 }
833
834 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
835 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
836
837 xfs_map_at_offset(bh, offset, bbits, mp);
838 if (startio) {
839 xfs_add_to_ioend(inode, bh, offset,
840 type, ioendp, done);
841 } else {
842 set_buffer_dirty(bh);
843 unlock_buffer(bh);
844 mark_buffer_dirty(bh);
845 }
846 page_dirty--;
847 count++;
848 } else {
849 type = IOMAP_NEW;
850 if (buffer_mapped(bh) && all_bh && startio) {
851 lock_buffer(bh);
852 xfs_add_to_ioend(inode, bh, offset,
853 type, ioendp, done);
854 count++;
855 page_dirty--;
856 } else {
857 done = 1;
858 }
859 }
860 } while (offset += len, (bh = bh->b_this_page) != head);
861
862 if (uptodate && bh == head)
863 SetPageUptodate(page);
864
865 if (startio) {
866 if (count) {
867 struct backing_dev_info *bdi;
868
869 bdi = inode->i_mapping->backing_dev_info;
870 wbc->nr_to_write--;
871 if (bdi_write_congested(bdi)) {
872 wbc->encountered_congestion = 1;
873 done = 1;
874 } else if (wbc->nr_to_write <= 0) {
875 done = 1;
876 }
877 }
878 xfs_start_page_writeback(page, !page_dirty, count);
879 }
880
881 return done;
882 fail_unlock_page:
883 unlock_page(page);
884 fail:
885 return 1;
886 }
887
888 /*
889 * Convert & write out a cluster of pages in the same extent as defined
890 * by mp and following the start page.
891 */
892 STATIC void
893 xfs_cluster_write(
894 struct inode *inode,
895 pgoff_t tindex,
896 xfs_iomap_t *iomapp,
897 xfs_ioend_t **ioendp,
898 struct writeback_control *wbc,
899 int startio,
900 int all_bh,
901 pgoff_t tlast)
902 {
903 struct pagevec pvec;
904 int done = 0, i;
905
906 pagevec_init(&pvec, 0);
907 while (!done && tindex <= tlast) {
908 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
909
910 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
911 break;
912
913 for (i = 0; i < pagevec_count(&pvec); i++) {
914 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
915 iomapp, ioendp, wbc, startio, all_bh);
916 if (done)
917 break;
918 }
919
920 pagevec_release(&pvec);
921 cond_resched();
922 }
923 }
924
925 /*
926 * Calling this without startio set means we are being asked to make a dirty
927 * page ready for freeing it's buffers. When called with startio set then
928 * we are coming from writepage.
929 *
930 * When called with startio set it is important that we write the WHOLE
931 * page if possible.
932 * The bh->b_state's cannot know if any of the blocks or which block for
933 * that matter are dirty due to mmap writes, and therefore bh uptodate is
934 * only valid if the page itself isn't completely uptodate. Some layers
935 * may clear the page dirty flag prior to calling write page, under the
936 * assumption the entire page will be written out; by not writing out the
937 * whole page the page can be reused before all valid dirty data is
938 * written out. Note: in the case of a page that has been dirty'd by
939 * mapwrite and but partially setup by block_prepare_write the
940 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
941 * valid state, thus the whole page must be written out thing.
942 */
943
944 STATIC int
945 xfs_page_state_convert(
946 struct inode *inode,
947 struct page *page,
948 struct writeback_control *wbc,
949 int startio,
950 int unmapped) /* also implies page uptodate */
951 {
952 struct buffer_head *bh, *head;
953 xfs_iomap_t iomap;
954 xfs_ioend_t *ioend = NULL, *iohead = NULL;
955 loff_t offset;
956 unsigned long p_offset = 0;
957 unsigned int type;
958 __uint64_t end_offset;
959 pgoff_t end_index, last_index, tlast;
960 ssize_t size, len;
961 int flags, err, iomap_valid = 0, uptodate = 1;
962 int page_dirty, count = 0;
963 int trylock = 0;
964 int all_bh = unmapped;
965
966 if (startio) {
967 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
968 trylock |= BMAPI_TRYLOCK;
969 }
970
971 /* Is this page beyond the end of the file? */
972 offset = i_size_read(inode);
973 end_index = offset >> PAGE_CACHE_SHIFT;
974 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
975 if (page->index >= end_index) {
976 if ((page->index >= end_index + 1) ||
977 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
978 if (startio)
979 unlock_page(page);
980 return 0;
981 }
982 }
983
984 /*
985 * page_dirty is initially a count of buffers on the page before
986 * EOF and is decremented as we move each into a cleanable state.
987 *
988 * Derivation:
989 *
990 * End offset is the highest offset that this page should represent.
991 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
992 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
993 * hence give us the correct page_dirty count. On any other page,
994 * it will be zero and in that case we need page_dirty to be the
995 * count of buffers on the page.
996 */
997 end_offset = min_t(unsigned long long,
998 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
999 len = 1 << inode->i_blkbits;
1000 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
1001 PAGE_CACHE_SIZE);
1002 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
1003 page_dirty = p_offset / len;
1004
1005 bh = head = page_buffers(page);
1006 offset = page_offset(page);
1007 flags = BMAPI_READ;
1008 type = IOMAP_NEW;
1009
1010 /* TODO: cleanup count and page_dirty */
1011
1012 do {
1013 if (offset >= end_offset)
1014 break;
1015 if (!buffer_uptodate(bh))
1016 uptodate = 0;
1017 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1018 /*
1019 * the iomap is actually still valid, but the ioend
1020 * isn't. shouldn't happen too often.
1021 */
1022 iomap_valid = 0;
1023 continue;
1024 }
1025
1026 if (iomap_valid)
1027 iomap_valid = xfs_iomap_valid(&iomap, offset);
1028
1029 /*
1030 * First case, map an unwritten extent and prepare for
1031 * extent state conversion transaction on completion.
1032 *
1033 * Second case, allocate space for a delalloc buffer.
1034 * We can return EAGAIN here in the release page case.
1035 *
1036 * Third case, an unmapped buffer was found, and we are
1037 * in a path where we need to write the whole page out.
1038 */
1039 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1040 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1041 !buffer_mapped(bh) && (unmapped || startio))) {
1042 int new_ioend = 0;
1043
1044 /*
1045 * Make sure we don't use a read-only iomap
1046 */
1047 if (flags == BMAPI_READ)
1048 iomap_valid = 0;
1049
1050 if (buffer_unwritten(bh)) {
1051 type = IOMAP_UNWRITTEN;
1052 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
1053 } else if (buffer_delay(bh)) {
1054 type = IOMAP_DELAY;
1055 flags = BMAPI_ALLOCATE | trylock;
1056 } else {
1057 type = IOMAP_NEW;
1058 flags = BMAPI_WRITE | BMAPI_MMAP;
1059 }
1060
1061 if (!iomap_valid) {
1062 /*
1063 * if we didn't have a valid mapping then we
1064 * need to ensure that we put the new mapping
1065 * in a new ioend structure. This needs to be
1066 * done to ensure that the ioends correctly
1067 * reflect the block mappings at io completion
1068 * for unwritten extent conversion.
1069 */
1070 new_ioend = 1;
1071 if (type == IOMAP_NEW) {
1072 size = xfs_probe_cluster(inode,
1073 page, bh, head, 0);
1074 } else {
1075 size = len;
1076 }
1077
1078 err = xfs_map_blocks(inode, offset, size,
1079 &iomap, flags);
1080 if (err)
1081 goto error;
1082 iomap_valid = xfs_iomap_valid(&iomap, offset);
1083 }
1084 if (iomap_valid) {
1085 xfs_map_at_offset(bh, offset,
1086 inode->i_blkbits, &iomap);
1087 if (startio) {
1088 xfs_add_to_ioend(inode, bh, offset,
1089 type, &ioend,
1090 new_ioend);
1091 } else {
1092 set_buffer_dirty(bh);
1093 unlock_buffer(bh);
1094 mark_buffer_dirty(bh);
1095 }
1096 page_dirty--;
1097 count++;
1098 }
1099 } else if (buffer_uptodate(bh) && startio) {
1100 /*
1101 * we got here because the buffer is already mapped.
1102 * That means it must already have extents allocated
1103 * underneath it. Map the extent by reading it.
1104 */
1105 if (!iomap_valid || flags != BMAPI_READ) {
1106 flags = BMAPI_READ;
1107 size = xfs_probe_cluster(inode, page, bh,
1108 head, 1);
1109 err = xfs_map_blocks(inode, offset, size,
1110 &iomap, flags);
1111 if (err)
1112 goto error;
1113 iomap_valid = xfs_iomap_valid(&iomap, offset);
1114 }
1115
1116 /*
1117 * We set the type to IOMAP_NEW in case we are doing a
1118 * small write at EOF that is extending the file but
1119 * without needing an allocation. We need to update the
1120 * file size on I/O completion in this case so it is
1121 * the same case as having just allocated a new extent
1122 * that we are writing into for the first time.
1123 */
1124 type = IOMAP_NEW;
1125 if (trylock_buffer(bh)) {
1126 ASSERT(buffer_mapped(bh));
1127 if (iomap_valid)
1128 all_bh = 1;
1129 xfs_add_to_ioend(inode, bh, offset, type,
1130 &ioend, !iomap_valid);
1131 page_dirty--;
1132 count++;
1133 } else {
1134 iomap_valid = 0;
1135 }
1136 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1137 (unmapped || startio)) {
1138 iomap_valid = 0;
1139 }
1140
1141 if (!iohead)
1142 iohead = ioend;
1143
1144 } while (offset += len, ((bh = bh->b_this_page) != head));
1145
1146 if (uptodate && bh == head)
1147 SetPageUptodate(page);
1148
1149 if (startio)
1150 xfs_start_page_writeback(page, 1, count);
1151
1152 if (ioend && iomap_valid) {
1153 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1154 PAGE_CACHE_SHIFT;
1155 tlast = min_t(pgoff_t, offset, last_index);
1156 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
1157 wbc, startio, all_bh, tlast);
1158 }
1159
1160 if (iohead)
1161 xfs_submit_ioend(wbc, iohead);
1162
1163 return page_dirty;
1164
1165 error:
1166 if (iohead)
1167 xfs_cancel_ioend(iohead);
1168
1169 /*
1170 * If it's delalloc and we have nowhere to put it,
1171 * throw it away, unless the lower layers told
1172 * us to try again.
1173 */
1174 if (err != -EAGAIN) {
1175 if (!unmapped)
1176 block_invalidatepage(page, 0);
1177 ClearPageUptodate(page);
1178 }
1179 return err;
1180 }
1181
1182 /*
1183 * writepage: Called from one of two places:
1184 *
1185 * 1. we are flushing a delalloc buffer head.
1186 *
1187 * 2. we are writing out a dirty page. Typically the page dirty
1188 * state is cleared before we get here. In this case is it
1189 * conceivable we have no buffer heads.
1190 *
1191 * For delalloc space on the page we need to allocate space and
1192 * flush it. For unmapped buffer heads on the page we should
1193 * allocate space if the page is uptodate. For any other dirty
1194 * buffer heads on the page we should flush them.
1195 *
1196 * If we detect that a transaction would be required to flush
1197 * the page, we have to check the process flags first, if we
1198 * are already in a transaction or disk I/O during allocations
1199 * is off, we need to fail the writepage and redirty the page.
1200 */
1201
1202 STATIC int
1203 xfs_vm_writepage(
1204 struct page *page,
1205 struct writeback_control *wbc)
1206 {
1207 int error;
1208 int need_trans;
1209 int delalloc, unmapped, unwritten;
1210 struct inode *inode = page->mapping->host;
1211
1212 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1213
1214 /*
1215 * We need a transaction if:
1216 * 1. There are delalloc buffers on the page
1217 * 2. The page is uptodate and we have unmapped buffers
1218 * 3. The page is uptodate and we have no buffers
1219 * 4. There are unwritten buffers on the page
1220 */
1221
1222 if (!page_has_buffers(page)) {
1223 unmapped = 1;
1224 need_trans = 1;
1225 } else {
1226 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1227 if (!PageUptodate(page))
1228 unmapped = 0;
1229 need_trans = delalloc + unmapped + unwritten;
1230 }
1231
1232 /*
1233 * If we need a transaction and the process flags say
1234 * we are already in a transaction, or no IO is allowed
1235 * then mark the page dirty again and leave the page
1236 * as is.
1237 */
1238 if (current_test_flags(PF_FSTRANS) && need_trans)
1239 goto out_fail;
1240
1241 /*
1242 * Delay hooking up buffer heads until we have
1243 * made our go/no-go decision.
1244 */
1245 if (!page_has_buffers(page))
1246 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1247
1248
1249 /*
1250 * VM calculation for nr_to_write seems off. Bump it way
1251 * up, this gets simple streaming writes zippy again.
1252 * To be reviewed again after Jens' writeback changes.
1253 */
1254 wbc->nr_to_write *= 4;
1255
1256 /*
1257 * Convert delayed allocate, unwritten or unmapped space
1258 * to real space and flush out to disk.
1259 */
1260 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1261 if (error == -EAGAIN)
1262 goto out_fail;
1263 if (unlikely(error < 0))
1264 goto out_unlock;
1265
1266 return 0;
1267
1268 out_fail:
1269 redirty_page_for_writepage(wbc, page);
1270 unlock_page(page);
1271 return 0;
1272 out_unlock:
1273 unlock_page(page);
1274 return error;
1275 }
1276
1277 STATIC int
1278 xfs_vm_writepages(
1279 struct address_space *mapping,
1280 struct writeback_control *wbc)
1281 {
1282 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1283 return generic_writepages(mapping, wbc);
1284 }
1285
1286 /*
1287 * Called to move a page into cleanable state - and from there
1288 * to be released. Possibly the page is already clean. We always
1289 * have buffer heads in this call.
1290 *
1291 * Returns 0 if the page is ok to release, 1 otherwise.
1292 *
1293 * Possible scenarios are:
1294 *
1295 * 1. We are being called to release a page which has been written
1296 * to via regular I/O. buffer heads will be dirty and possibly
1297 * delalloc. If no delalloc buffer heads in this case then we
1298 * can just return zero.
1299 *
1300 * 2. We are called to release a page which has been written via
1301 * mmap, all we need to do is ensure there is no delalloc
1302 * state in the buffer heads, if not we can let the caller
1303 * free them and we should come back later via writepage.
1304 */
1305 STATIC int
1306 xfs_vm_releasepage(
1307 struct page *page,
1308 gfp_t gfp_mask)
1309 {
1310 struct inode *inode = page->mapping->host;
1311 int dirty, delalloc, unmapped, unwritten;
1312 struct writeback_control wbc = {
1313 .sync_mode = WB_SYNC_ALL,
1314 .nr_to_write = 1,
1315 };
1316
1317 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
1318
1319 if (!page_has_buffers(page))
1320 return 0;
1321
1322 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1323 if (!delalloc && !unwritten)
1324 goto free_buffers;
1325
1326 if (!(gfp_mask & __GFP_FS))
1327 return 0;
1328
1329 /* If we are already inside a transaction or the thread cannot
1330 * do I/O, we cannot release this page.
1331 */
1332 if (current_test_flags(PF_FSTRANS))
1333 return 0;
1334
1335 /*
1336 * Convert delalloc space to real space, do not flush the
1337 * data out to disk, that will be done by the caller.
1338 * Never need to allocate space here - we will always
1339 * come back to writepage in that case.
1340 */
1341 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1342 if (dirty == 0 && !unwritten)
1343 goto free_buffers;
1344 return 0;
1345
1346 free_buffers:
1347 return try_to_free_buffers(page);
1348 }
1349
1350 STATIC int
1351 __xfs_get_blocks(
1352 struct inode *inode,
1353 sector_t iblock,
1354 struct buffer_head *bh_result,
1355 int create,
1356 int direct,
1357 bmapi_flags_t flags)
1358 {
1359 xfs_iomap_t iomap;
1360 xfs_off_t offset;
1361 ssize_t size;
1362 int niomap = 1;
1363 int error;
1364
1365 offset = (xfs_off_t)iblock << inode->i_blkbits;
1366 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1367 size = bh_result->b_size;
1368
1369 if (!create && direct && offset >= i_size_read(inode))
1370 return 0;
1371
1372 error = xfs_iomap(XFS_I(inode), offset, size,
1373 create ? flags : BMAPI_READ, &iomap, &niomap);
1374 if (error)
1375 return -error;
1376 if (niomap == 0)
1377 return 0;
1378
1379 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
1380 /*
1381 * For unwritten extents do not report a disk address on
1382 * the read case (treat as if we're reading into a hole).
1383 */
1384 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1385 xfs_map_buffer(bh_result, &iomap, offset,
1386 inode->i_blkbits);
1387 }
1388 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1389 if (direct)
1390 bh_result->b_private = inode;
1391 set_buffer_unwritten(bh_result);
1392 }
1393 }
1394
1395 /*
1396 * If this is a realtime file, data may be on a different device.
1397 * to that pointed to from the buffer_head b_bdev currently.
1398 */
1399 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1400
1401 /*
1402 * If we previously allocated a block out beyond eof and we are now
1403 * coming back to use it then we will need to flag it as new even if it
1404 * has a disk address.
1405 *
1406 * With sub-block writes into unwritten extents we also need to mark
1407 * the buffer as new so that the unwritten parts of the buffer gets
1408 * correctly zeroed.
1409 */
1410 if (create &&
1411 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1412 (offset >= i_size_read(inode)) ||
1413 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1414 set_buffer_new(bh_result);
1415
1416 if (iomap.iomap_flags & IOMAP_DELAY) {
1417 BUG_ON(direct);
1418 if (create) {
1419 set_buffer_uptodate(bh_result);
1420 set_buffer_mapped(bh_result);
1421 set_buffer_delay(bh_result);
1422 }
1423 }
1424
1425 if (direct || size > (1 << inode->i_blkbits)) {
1426 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1427 offset = min_t(xfs_off_t,
1428 iomap.iomap_bsize - iomap.iomap_delta, size);
1429 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1430 }
1431
1432 return 0;
1433 }
1434
1435 int
1436 xfs_get_blocks(
1437 struct inode *inode,
1438 sector_t iblock,
1439 struct buffer_head *bh_result,
1440 int create)
1441 {
1442 return __xfs_get_blocks(inode, iblock,
1443 bh_result, create, 0, BMAPI_WRITE);
1444 }
1445
1446 STATIC int
1447 xfs_get_blocks_direct(
1448 struct inode *inode,
1449 sector_t iblock,
1450 struct buffer_head *bh_result,
1451 int create)
1452 {
1453 return __xfs_get_blocks(inode, iblock,
1454 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1455 }
1456
1457 STATIC void
1458 xfs_end_io_direct(
1459 struct kiocb *iocb,
1460 loff_t offset,
1461 ssize_t size,
1462 void *private)
1463 {
1464 xfs_ioend_t *ioend = iocb->private;
1465
1466 /*
1467 * Non-NULL private data means we need to issue a transaction to
1468 * convert a range from unwritten to written extents. This needs
1469 * to happen from process context but aio+dio I/O completion
1470 * happens from irq context so we need to defer it to a workqueue.
1471 * This is not necessary for synchronous direct I/O, but we do
1472 * it anyway to keep the code uniform and simpler.
1473 *
1474 * Well, if only it were that simple. Because synchronous direct I/O
1475 * requires extent conversion to occur *before* we return to userspace,
1476 * we have to wait for extent conversion to complete. Look at the
1477 * iocb that has been passed to us to determine if this is AIO or
1478 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1479 * workqueue and wait for it to complete.
1480 *
1481 * The core direct I/O code might be changed to always call the
1482 * completion handler in the future, in which case all this can
1483 * go away.
1484 */
1485 ioend->io_offset = offset;
1486 ioend->io_size = size;
1487 if (ioend->io_type == IOMAP_READ) {
1488 xfs_finish_ioend(ioend, 0);
1489 } else if (private && size > 0) {
1490 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
1491 } else {
1492 /*
1493 * A direct I/O write ioend starts it's life in unwritten
1494 * state in case they map an unwritten extent. This write
1495 * didn't map an unwritten extent so switch it's completion
1496 * handler.
1497 */
1498 ioend->io_type = IOMAP_NEW;
1499 xfs_finish_ioend(ioend, 0);
1500 }
1501
1502 /*
1503 * blockdev_direct_IO can return an error even after the I/O
1504 * completion handler was called. Thus we need to protect
1505 * against double-freeing.
1506 */
1507 iocb->private = NULL;
1508 }
1509
1510 STATIC ssize_t
1511 xfs_vm_direct_IO(
1512 int rw,
1513 struct kiocb *iocb,
1514 const struct iovec *iov,
1515 loff_t offset,
1516 unsigned long nr_segs)
1517 {
1518 struct file *file = iocb->ki_filp;
1519 struct inode *inode = file->f_mapping->host;
1520 struct block_device *bdev;
1521 ssize_t ret;
1522
1523 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1524
1525 if (rw == WRITE) {
1526 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
1527 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1528 bdev, iov, offset, nr_segs,
1529 xfs_get_blocks_direct,
1530 xfs_end_io_direct);
1531 } else {
1532 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
1533 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
1534 bdev, iov, offset, nr_segs,
1535 xfs_get_blocks_direct,
1536 xfs_end_io_direct);
1537 }
1538
1539 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
1540 xfs_destroy_ioend(iocb->private);
1541 return ret;
1542 }
1543
1544 STATIC int
1545 xfs_vm_write_begin(
1546 struct file *file,
1547 struct address_space *mapping,
1548 loff_t pos,
1549 unsigned len,
1550 unsigned flags,
1551 struct page **pagep,
1552 void **fsdata)
1553 {
1554 *pagep = NULL;
1555 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1556 xfs_get_blocks);
1557 }
1558
1559 STATIC sector_t
1560 xfs_vm_bmap(
1561 struct address_space *mapping,
1562 sector_t block)
1563 {
1564 struct inode *inode = (struct inode *)mapping->host;
1565 struct xfs_inode *ip = XFS_I(inode);
1566
1567 xfs_itrace_entry(XFS_I(inode));
1568 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1569 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1570 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1571 return generic_block_bmap(mapping, block, xfs_get_blocks);
1572 }
1573
1574 STATIC int
1575 xfs_vm_readpage(
1576 struct file *unused,
1577 struct page *page)
1578 {
1579 return mpage_readpage(page, xfs_get_blocks);
1580 }
1581
1582 STATIC int
1583 xfs_vm_readpages(
1584 struct file *unused,
1585 struct address_space *mapping,
1586 struct list_head *pages,
1587 unsigned nr_pages)
1588 {
1589 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1590 }
1591
1592 STATIC void
1593 xfs_vm_invalidatepage(
1594 struct page *page,
1595 unsigned long offset)
1596 {
1597 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1598 page->mapping->host, page, offset);
1599 block_invalidatepage(page, offset);
1600 }
1601
1602 const struct address_space_operations xfs_address_space_operations = {
1603 .readpage = xfs_vm_readpage,
1604 .readpages = xfs_vm_readpages,
1605 .writepage = xfs_vm_writepage,
1606 .writepages = xfs_vm_writepages,
1607 .sync_page = block_sync_page,
1608 .releasepage = xfs_vm_releasepage,
1609 .invalidatepage = xfs_vm_invalidatepage,
1610 .write_begin = xfs_vm_write_begin,
1611 .write_end = generic_write_end,
1612 .bmap = xfs_vm_bmap,
1613 .direct_IO = xfs_vm_direct_IO,
1614 .migratepage = buffer_migrate_page,
1615 .is_partially_uptodate = block_is_partially_uptodate,
1616 .error_remove_page = generic_error_remove_page,
1617 };
This page took 0.068107 seconds and 5 git commands to generate.