[XFS] XFS: Kill xfs_vtoi()
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_dir2.h"
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
38 #include "xfs_rw.h"
39 #include "xfs_iomap.h"
40 #include "xfs_vnodeops.h"
41 #include <linux/mpage.h>
42 #include <linux/pagevec.h>
43 #include <linux/writeback.h>
44
45 STATIC void
46 xfs_count_page_state(
47 struct page *page,
48 int *delalloc,
49 int *unmapped,
50 int *unwritten)
51 {
52 struct buffer_head *bh, *head;
53
54 *delalloc = *unmapped = *unwritten = 0;
55
56 bh = head = page_buffers(page);
57 do {
58 if (buffer_uptodate(bh) && !buffer_mapped(bh))
59 (*unmapped) = 1;
60 else if (buffer_unwritten(bh))
61 (*unwritten) = 1;
62 else if (buffer_delay(bh))
63 (*delalloc) = 1;
64 } while ((bh = bh->b_this_page) != head);
65 }
66
67 #if defined(XFS_RW_TRACE)
68 void
69 xfs_page_trace(
70 int tag,
71 struct inode *inode,
72 struct page *page,
73 unsigned long pgoff)
74 {
75 xfs_inode_t *ip;
76 loff_t isize = i_size_read(inode);
77 loff_t offset = page_offset(page);
78 int delalloc = -1, unmapped = -1, unwritten = -1;
79
80 if (page_has_buffers(page))
81 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
82
83 ip = XFS_I(inode);
84 if (!ip->i_rwtrace)
85 return;
86
87 ktrace_enter(ip->i_rwtrace,
88 (void *)((unsigned long)tag),
89 (void *)ip,
90 (void *)inode,
91 (void *)page,
92 (void *)pgoff,
93 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
94 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
95 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
96 (void *)((unsigned long)(isize & 0xffffffff)),
97 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
98 (void *)((unsigned long)(offset & 0xffffffff)),
99 (void *)((unsigned long)delalloc),
100 (void *)((unsigned long)unmapped),
101 (void *)((unsigned long)unwritten),
102 (void *)((unsigned long)current_pid()),
103 (void *)NULL);
104 }
105 #else
106 #define xfs_page_trace(tag, inode, page, pgoff)
107 #endif
108
109 STATIC struct block_device *
110 xfs_find_bdev_for_inode(
111 struct xfs_inode *ip)
112 {
113 struct xfs_mount *mp = ip->i_mount;
114
115 if (XFS_IS_REALTIME_INODE(ip))
116 return mp->m_rtdev_targp->bt_bdev;
117 else
118 return mp->m_ddev_targp->bt_bdev;
119 }
120
121 /*
122 * Schedule IO completion handling on a xfsdatad if this was
123 * the final hold on this ioend. If we are asked to wait,
124 * flush the workqueue.
125 */
126 STATIC void
127 xfs_finish_ioend(
128 xfs_ioend_t *ioend,
129 int wait)
130 {
131 if (atomic_dec_and_test(&ioend->io_remaining)) {
132 queue_work(xfsdatad_workqueue, &ioend->io_work);
133 if (wait)
134 flush_workqueue(xfsdatad_workqueue);
135 }
136 }
137
138 /*
139 * We're now finished for good with this ioend structure.
140 * Update the page state via the associated buffer_heads,
141 * release holds on the inode and bio, and finally free
142 * up memory. Do not use the ioend after this.
143 */
144 STATIC void
145 xfs_destroy_ioend(
146 xfs_ioend_t *ioend)
147 {
148 struct buffer_head *bh, *next;
149
150 for (bh = ioend->io_buffer_head; bh; bh = next) {
151 next = bh->b_private;
152 bh->b_end_io(bh, !ioend->io_error);
153 }
154 if (unlikely(ioend->io_error)) {
155 vn_ioerror(XFS_I(ioend->io_inode), ioend->io_error,
156 __FILE__,__LINE__);
157 }
158 vn_iowake(XFS_I(ioend->io_inode));
159 mempool_free(ioend, xfs_ioend_pool);
160 }
161
162 /*
163 * Update on-disk file size now that data has been written to disk.
164 * The current in-memory file size is i_size. If a write is beyond
165 * eof i_new_size will be the intended file size until i_size is
166 * updated. If this write does not extend all the way to the valid
167 * file size then restrict this update to the end of the write.
168 */
169 STATIC void
170 xfs_setfilesize(
171 xfs_ioend_t *ioend)
172 {
173 xfs_inode_t *ip = XFS_I(ioend->io_inode);
174 xfs_fsize_t isize;
175 xfs_fsize_t bsize;
176
177 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
178 ASSERT(ioend->io_type != IOMAP_READ);
179
180 if (unlikely(ioend->io_error))
181 return;
182
183 bsize = ioend->io_offset + ioend->io_size;
184
185 xfs_ilock(ip, XFS_ILOCK_EXCL);
186
187 isize = MAX(ip->i_size, ip->i_new_size);
188 isize = MIN(isize, bsize);
189
190 if (ip->i_d.di_size < isize) {
191 ip->i_d.di_size = isize;
192 ip->i_update_core = 1;
193 ip->i_update_size = 1;
194 mark_inode_dirty_sync(ioend->io_inode);
195 }
196
197 xfs_iunlock(ip, XFS_ILOCK_EXCL);
198 }
199
200 /*
201 * Buffered IO write completion for delayed allocate extents.
202 */
203 STATIC void
204 xfs_end_bio_delalloc(
205 struct work_struct *work)
206 {
207 xfs_ioend_t *ioend =
208 container_of(work, xfs_ioend_t, io_work);
209
210 xfs_setfilesize(ioend);
211 xfs_destroy_ioend(ioend);
212 }
213
214 /*
215 * Buffered IO write completion for regular, written extents.
216 */
217 STATIC void
218 xfs_end_bio_written(
219 struct work_struct *work)
220 {
221 xfs_ioend_t *ioend =
222 container_of(work, xfs_ioend_t, io_work);
223
224 xfs_setfilesize(ioend);
225 xfs_destroy_ioend(ioend);
226 }
227
228 /*
229 * IO write completion for unwritten extents.
230 *
231 * Issue transactions to convert a buffer range from unwritten
232 * to written extents.
233 */
234 STATIC void
235 xfs_end_bio_unwritten(
236 struct work_struct *work)
237 {
238 xfs_ioend_t *ioend =
239 container_of(work, xfs_ioend_t, io_work);
240 struct xfs_inode *ip = XFS_I(ioend->io_inode);
241 xfs_off_t offset = ioend->io_offset;
242 size_t size = ioend->io_size;
243
244 if (likely(!ioend->io_error)) {
245 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
246 int error;
247 error = xfs_iomap_write_unwritten(ip, offset, size);
248 if (error)
249 ioend->io_error = error;
250 }
251 xfs_setfilesize(ioend);
252 }
253 xfs_destroy_ioend(ioend);
254 }
255
256 /*
257 * IO read completion for regular, written extents.
258 */
259 STATIC void
260 xfs_end_bio_read(
261 struct work_struct *work)
262 {
263 xfs_ioend_t *ioend =
264 container_of(work, xfs_ioend_t, io_work);
265
266 xfs_destroy_ioend(ioend);
267 }
268
269 /*
270 * Allocate and initialise an IO completion structure.
271 * We need to track unwritten extent write completion here initially.
272 * We'll need to extend this for updating the ondisk inode size later
273 * (vs. incore size).
274 */
275 STATIC xfs_ioend_t *
276 xfs_alloc_ioend(
277 struct inode *inode,
278 unsigned int type)
279 {
280 xfs_ioend_t *ioend;
281
282 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
283
284 /*
285 * Set the count to 1 initially, which will prevent an I/O
286 * completion callback from happening before we have started
287 * all the I/O from calling the completion routine too early.
288 */
289 atomic_set(&ioend->io_remaining, 1);
290 ioend->io_error = 0;
291 ioend->io_list = NULL;
292 ioend->io_type = type;
293 ioend->io_inode = inode;
294 ioend->io_buffer_head = NULL;
295 ioend->io_buffer_tail = NULL;
296 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
297 ioend->io_offset = 0;
298 ioend->io_size = 0;
299
300 if (type == IOMAP_UNWRITTEN)
301 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
302 else if (type == IOMAP_DELAY)
303 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
304 else if (type == IOMAP_READ)
305 INIT_WORK(&ioend->io_work, xfs_end_bio_read);
306 else
307 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
308
309 return ioend;
310 }
311
312 STATIC int
313 xfs_map_blocks(
314 struct inode *inode,
315 loff_t offset,
316 ssize_t count,
317 xfs_iomap_t *mapp,
318 int flags)
319 {
320 xfs_inode_t *ip = XFS_I(inode);
321 int error, nmaps = 1;
322
323 error = xfs_iomap(ip, offset, count,
324 flags, mapp, &nmaps);
325 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
326 xfs_iflags_set(ip, XFS_IMODIFIED);
327 return -error;
328 }
329
330 STATIC_INLINE int
331 xfs_iomap_valid(
332 xfs_iomap_t *iomapp,
333 loff_t offset)
334 {
335 return offset >= iomapp->iomap_offset &&
336 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
337 }
338
339 /*
340 * BIO completion handler for buffered IO.
341 */
342 STATIC void
343 xfs_end_bio(
344 struct bio *bio,
345 int error)
346 {
347 xfs_ioend_t *ioend = bio->bi_private;
348
349 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
350 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
351
352 /* Toss bio and pass work off to an xfsdatad thread */
353 bio->bi_private = NULL;
354 bio->bi_end_io = NULL;
355 bio_put(bio);
356
357 xfs_finish_ioend(ioend, 0);
358 }
359
360 STATIC void
361 xfs_submit_ioend_bio(
362 xfs_ioend_t *ioend,
363 struct bio *bio)
364 {
365 atomic_inc(&ioend->io_remaining);
366
367 bio->bi_private = ioend;
368 bio->bi_end_io = xfs_end_bio;
369
370 submit_bio(WRITE, bio);
371 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
372 bio_put(bio);
373 }
374
375 STATIC struct bio *
376 xfs_alloc_ioend_bio(
377 struct buffer_head *bh)
378 {
379 struct bio *bio;
380 int nvecs = bio_get_nr_vecs(bh->b_bdev);
381
382 do {
383 bio = bio_alloc(GFP_NOIO, nvecs);
384 nvecs >>= 1;
385 } while (!bio);
386
387 ASSERT(bio->bi_private == NULL);
388 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
389 bio->bi_bdev = bh->b_bdev;
390 bio_get(bio);
391 return bio;
392 }
393
394 STATIC void
395 xfs_start_buffer_writeback(
396 struct buffer_head *bh)
397 {
398 ASSERT(buffer_mapped(bh));
399 ASSERT(buffer_locked(bh));
400 ASSERT(!buffer_delay(bh));
401 ASSERT(!buffer_unwritten(bh));
402
403 mark_buffer_async_write(bh);
404 set_buffer_uptodate(bh);
405 clear_buffer_dirty(bh);
406 }
407
408 STATIC void
409 xfs_start_page_writeback(
410 struct page *page,
411 int clear_dirty,
412 int buffers)
413 {
414 ASSERT(PageLocked(page));
415 ASSERT(!PageWriteback(page));
416 if (clear_dirty)
417 clear_page_dirty_for_io(page);
418 set_page_writeback(page);
419 unlock_page(page);
420 /* If no buffers on the page are to be written, finish it here */
421 if (!buffers)
422 end_page_writeback(page);
423 }
424
425 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
426 {
427 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
428 }
429
430 /*
431 * Submit all of the bios for all of the ioends we have saved up, covering the
432 * initial writepage page and also any probed pages.
433 *
434 * Because we may have multiple ioends spanning a page, we need to start
435 * writeback on all the buffers before we submit them for I/O. If we mark the
436 * buffers as we got, then we can end up with a page that only has buffers
437 * marked async write and I/O complete on can occur before we mark the other
438 * buffers async write.
439 *
440 * The end result of this is that we trip a bug in end_page_writeback() because
441 * we call it twice for the one page as the code in end_buffer_async_write()
442 * assumes that all buffers on the page are started at the same time.
443 *
444 * The fix is two passes across the ioend list - one to start writeback on the
445 * buffer_heads, and then submit them for I/O on the second pass.
446 */
447 STATIC void
448 xfs_submit_ioend(
449 xfs_ioend_t *ioend)
450 {
451 xfs_ioend_t *head = ioend;
452 xfs_ioend_t *next;
453 struct buffer_head *bh;
454 struct bio *bio;
455 sector_t lastblock = 0;
456
457 /* Pass 1 - start writeback */
458 do {
459 next = ioend->io_list;
460 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
461 xfs_start_buffer_writeback(bh);
462 }
463 } while ((ioend = next) != NULL);
464
465 /* Pass 2 - submit I/O */
466 ioend = head;
467 do {
468 next = ioend->io_list;
469 bio = NULL;
470
471 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
472
473 if (!bio) {
474 retry:
475 bio = xfs_alloc_ioend_bio(bh);
476 } else if (bh->b_blocknr != lastblock + 1) {
477 xfs_submit_ioend_bio(ioend, bio);
478 goto retry;
479 }
480
481 if (bio_add_buffer(bio, bh) != bh->b_size) {
482 xfs_submit_ioend_bio(ioend, bio);
483 goto retry;
484 }
485
486 lastblock = bh->b_blocknr;
487 }
488 if (bio)
489 xfs_submit_ioend_bio(ioend, bio);
490 xfs_finish_ioend(ioend, 0);
491 } while ((ioend = next) != NULL);
492 }
493
494 /*
495 * Cancel submission of all buffer_heads so far in this endio.
496 * Toss the endio too. Only ever called for the initial page
497 * in a writepage request, so only ever one page.
498 */
499 STATIC void
500 xfs_cancel_ioend(
501 xfs_ioend_t *ioend)
502 {
503 xfs_ioend_t *next;
504 struct buffer_head *bh, *next_bh;
505
506 do {
507 next = ioend->io_list;
508 bh = ioend->io_buffer_head;
509 do {
510 next_bh = bh->b_private;
511 clear_buffer_async_write(bh);
512 unlock_buffer(bh);
513 } while ((bh = next_bh) != NULL);
514
515 vn_iowake(XFS_I(ioend->io_inode));
516 mempool_free(ioend, xfs_ioend_pool);
517 } while ((ioend = next) != NULL);
518 }
519
520 /*
521 * Test to see if we've been building up a completion structure for
522 * earlier buffers -- if so, we try to append to this ioend if we
523 * can, otherwise we finish off any current ioend and start another.
524 * Return true if we've finished the given ioend.
525 */
526 STATIC void
527 xfs_add_to_ioend(
528 struct inode *inode,
529 struct buffer_head *bh,
530 xfs_off_t offset,
531 unsigned int type,
532 xfs_ioend_t **result,
533 int need_ioend)
534 {
535 xfs_ioend_t *ioend = *result;
536
537 if (!ioend || need_ioend || type != ioend->io_type) {
538 xfs_ioend_t *previous = *result;
539
540 ioend = xfs_alloc_ioend(inode, type);
541 ioend->io_offset = offset;
542 ioend->io_buffer_head = bh;
543 ioend->io_buffer_tail = bh;
544 if (previous)
545 previous->io_list = ioend;
546 *result = ioend;
547 } else {
548 ioend->io_buffer_tail->b_private = bh;
549 ioend->io_buffer_tail = bh;
550 }
551
552 bh->b_private = NULL;
553 ioend->io_size += bh->b_size;
554 }
555
556 STATIC void
557 xfs_map_buffer(
558 struct buffer_head *bh,
559 xfs_iomap_t *mp,
560 xfs_off_t offset,
561 uint block_bits)
562 {
563 sector_t bn;
564
565 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
566
567 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
568 ((offset - mp->iomap_offset) >> block_bits);
569
570 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
571
572 bh->b_blocknr = bn;
573 set_buffer_mapped(bh);
574 }
575
576 STATIC void
577 xfs_map_at_offset(
578 struct buffer_head *bh,
579 loff_t offset,
580 int block_bits,
581 xfs_iomap_t *iomapp)
582 {
583 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
584 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
585
586 lock_buffer(bh);
587 xfs_map_buffer(bh, iomapp, offset, block_bits);
588 bh->b_bdev = iomapp->iomap_target->bt_bdev;
589 set_buffer_mapped(bh);
590 clear_buffer_delay(bh);
591 clear_buffer_unwritten(bh);
592 }
593
594 /*
595 * Look for a page at index that is suitable for clustering.
596 */
597 STATIC unsigned int
598 xfs_probe_page(
599 struct page *page,
600 unsigned int pg_offset,
601 int mapped)
602 {
603 int ret = 0;
604
605 if (PageWriteback(page))
606 return 0;
607
608 if (page->mapping && PageDirty(page)) {
609 if (page_has_buffers(page)) {
610 struct buffer_head *bh, *head;
611
612 bh = head = page_buffers(page);
613 do {
614 if (!buffer_uptodate(bh))
615 break;
616 if (mapped != buffer_mapped(bh))
617 break;
618 ret += bh->b_size;
619 if (ret >= pg_offset)
620 break;
621 } while ((bh = bh->b_this_page) != head);
622 } else
623 ret = mapped ? 0 : PAGE_CACHE_SIZE;
624 }
625
626 return ret;
627 }
628
629 STATIC size_t
630 xfs_probe_cluster(
631 struct inode *inode,
632 struct page *startpage,
633 struct buffer_head *bh,
634 struct buffer_head *head,
635 int mapped)
636 {
637 struct pagevec pvec;
638 pgoff_t tindex, tlast, tloff;
639 size_t total = 0;
640 int done = 0, i;
641
642 /* First sum forwards in this page */
643 do {
644 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
645 return total;
646 total += bh->b_size;
647 } while ((bh = bh->b_this_page) != head);
648
649 /* if we reached the end of the page, sum forwards in following pages */
650 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
651 tindex = startpage->index + 1;
652
653 /* Prune this back to avoid pathological behavior */
654 tloff = min(tlast, startpage->index + 64);
655
656 pagevec_init(&pvec, 0);
657 while (!done && tindex <= tloff) {
658 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
659
660 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
661 break;
662
663 for (i = 0; i < pagevec_count(&pvec); i++) {
664 struct page *page = pvec.pages[i];
665 size_t pg_offset, pg_len = 0;
666
667 if (tindex == tlast) {
668 pg_offset =
669 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
670 if (!pg_offset) {
671 done = 1;
672 break;
673 }
674 } else
675 pg_offset = PAGE_CACHE_SIZE;
676
677 if (page->index == tindex && trylock_page(page)) {
678 pg_len = xfs_probe_page(page, pg_offset, mapped);
679 unlock_page(page);
680 }
681
682 if (!pg_len) {
683 done = 1;
684 break;
685 }
686
687 total += pg_len;
688 tindex++;
689 }
690
691 pagevec_release(&pvec);
692 cond_resched();
693 }
694
695 return total;
696 }
697
698 /*
699 * Test if a given page is suitable for writing as part of an unwritten
700 * or delayed allocate extent.
701 */
702 STATIC int
703 xfs_is_delayed_page(
704 struct page *page,
705 unsigned int type)
706 {
707 if (PageWriteback(page))
708 return 0;
709
710 if (page->mapping && page_has_buffers(page)) {
711 struct buffer_head *bh, *head;
712 int acceptable = 0;
713
714 bh = head = page_buffers(page);
715 do {
716 if (buffer_unwritten(bh))
717 acceptable = (type == IOMAP_UNWRITTEN);
718 else if (buffer_delay(bh))
719 acceptable = (type == IOMAP_DELAY);
720 else if (buffer_dirty(bh) && buffer_mapped(bh))
721 acceptable = (type == IOMAP_NEW);
722 else
723 break;
724 } while ((bh = bh->b_this_page) != head);
725
726 if (acceptable)
727 return 1;
728 }
729
730 return 0;
731 }
732
733 /*
734 * Allocate & map buffers for page given the extent map. Write it out.
735 * except for the original page of a writepage, this is called on
736 * delalloc/unwritten pages only, for the original page it is possible
737 * that the page has no mapping at all.
738 */
739 STATIC int
740 xfs_convert_page(
741 struct inode *inode,
742 struct page *page,
743 loff_t tindex,
744 xfs_iomap_t *mp,
745 xfs_ioend_t **ioendp,
746 struct writeback_control *wbc,
747 int startio,
748 int all_bh)
749 {
750 struct buffer_head *bh, *head;
751 xfs_off_t end_offset;
752 unsigned long p_offset;
753 unsigned int type;
754 int bbits = inode->i_blkbits;
755 int len, page_dirty;
756 int count = 0, done = 0, uptodate = 1;
757 xfs_off_t offset = page_offset(page);
758
759 if (page->index != tindex)
760 goto fail;
761 if (!trylock_page(page))
762 goto fail;
763 if (PageWriteback(page))
764 goto fail_unlock_page;
765 if (page->mapping != inode->i_mapping)
766 goto fail_unlock_page;
767 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
768 goto fail_unlock_page;
769
770 /*
771 * page_dirty is initially a count of buffers on the page before
772 * EOF and is decremented as we move each into a cleanable state.
773 *
774 * Derivation:
775 *
776 * End offset is the highest offset that this page should represent.
777 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
778 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
779 * hence give us the correct page_dirty count. On any other page,
780 * it will be zero and in that case we need page_dirty to be the
781 * count of buffers on the page.
782 */
783 end_offset = min_t(unsigned long long,
784 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
785 i_size_read(inode));
786
787 len = 1 << inode->i_blkbits;
788 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
789 PAGE_CACHE_SIZE);
790 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
791 page_dirty = p_offset / len;
792
793 bh = head = page_buffers(page);
794 do {
795 if (offset >= end_offset)
796 break;
797 if (!buffer_uptodate(bh))
798 uptodate = 0;
799 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
800 done = 1;
801 continue;
802 }
803
804 if (buffer_unwritten(bh) || buffer_delay(bh)) {
805 if (buffer_unwritten(bh))
806 type = IOMAP_UNWRITTEN;
807 else
808 type = IOMAP_DELAY;
809
810 if (!xfs_iomap_valid(mp, offset)) {
811 done = 1;
812 continue;
813 }
814
815 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
816 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
817
818 xfs_map_at_offset(bh, offset, bbits, mp);
819 if (startio) {
820 xfs_add_to_ioend(inode, bh, offset,
821 type, ioendp, done);
822 } else {
823 set_buffer_dirty(bh);
824 unlock_buffer(bh);
825 mark_buffer_dirty(bh);
826 }
827 page_dirty--;
828 count++;
829 } else {
830 type = IOMAP_NEW;
831 if (buffer_mapped(bh) && all_bh && startio) {
832 lock_buffer(bh);
833 xfs_add_to_ioend(inode, bh, offset,
834 type, ioendp, done);
835 count++;
836 page_dirty--;
837 } else {
838 done = 1;
839 }
840 }
841 } while (offset += len, (bh = bh->b_this_page) != head);
842
843 if (uptodate && bh == head)
844 SetPageUptodate(page);
845
846 if (startio) {
847 if (count) {
848 struct backing_dev_info *bdi;
849
850 bdi = inode->i_mapping->backing_dev_info;
851 wbc->nr_to_write--;
852 if (bdi_write_congested(bdi)) {
853 wbc->encountered_congestion = 1;
854 done = 1;
855 } else if (wbc->nr_to_write <= 0) {
856 done = 1;
857 }
858 }
859 xfs_start_page_writeback(page, !page_dirty, count);
860 }
861
862 return done;
863 fail_unlock_page:
864 unlock_page(page);
865 fail:
866 return 1;
867 }
868
869 /*
870 * Convert & write out a cluster of pages in the same extent as defined
871 * by mp and following the start page.
872 */
873 STATIC void
874 xfs_cluster_write(
875 struct inode *inode,
876 pgoff_t tindex,
877 xfs_iomap_t *iomapp,
878 xfs_ioend_t **ioendp,
879 struct writeback_control *wbc,
880 int startio,
881 int all_bh,
882 pgoff_t tlast)
883 {
884 struct pagevec pvec;
885 int done = 0, i;
886
887 pagevec_init(&pvec, 0);
888 while (!done && tindex <= tlast) {
889 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
890
891 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
892 break;
893
894 for (i = 0; i < pagevec_count(&pvec); i++) {
895 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
896 iomapp, ioendp, wbc, startio, all_bh);
897 if (done)
898 break;
899 }
900
901 pagevec_release(&pvec);
902 cond_resched();
903 }
904 }
905
906 /*
907 * Calling this without startio set means we are being asked to make a dirty
908 * page ready for freeing it's buffers. When called with startio set then
909 * we are coming from writepage.
910 *
911 * When called with startio set it is important that we write the WHOLE
912 * page if possible.
913 * The bh->b_state's cannot know if any of the blocks or which block for
914 * that matter are dirty due to mmap writes, and therefore bh uptodate is
915 * only valid if the page itself isn't completely uptodate. Some layers
916 * may clear the page dirty flag prior to calling write page, under the
917 * assumption the entire page will be written out; by not writing out the
918 * whole page the page can be reused before all valid dirty data is
919 * written out. Note: in the case of a page that has been dirty'd by
920 * mapwrite and but partially setup by block_prepare_write the
921 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
922 * valid state, thus the whole page must be written out thing.
923 */
924
925 STATIC int
926 xfs_page_state_convert(
927 struct inode *inode,
928 struct page *page,
929 struct writeback_control *wbc,
930 int startio,
931 int unmapped) /* also implies page uptodate */
932 {
933 struct buffer_head *bh, *head;
934 xfs_iomap_t iomap;
935 xfs_ioend_t *ioend = NULL, *iohead = NULL;
936 loff_t offset;
937 unsigned long p_offset = 0;
938 unsigned int type;
939 __uint64_t end_offset;
940 pgoff_t end_index, last_index, tlast;
941 ssize_t size, len;
942 int flags, err, iomap_valid = 0, uptodate = 1;
943 int page_dirty, count = 0;
944 int trylock = 0;
945 int all_bh = unmapped;
946
947 if (startio) {
948 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
949 trylock |= BMAPI_TRYLOCK;
950 }
951
952 /* Is this page beyond the end of the file? */
953 offset = i_size_read(inode);
954 end_index = offset >> PAGE_CACHE_SHIFT;
955 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
956 if (page->index >= end_index) {
957 if ((page->index >= end_index + 1) ||
958 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
959 if (startio)
960 unlock_page(page);
961 return 0;
962 }
963 }
964
965 /*
966 * page_dirty is initially a count of buffers on the page before
967 * EOF and is decremented as we move each into a cleanable state.
968 *
969 * Derivation:
970 *
971 * End offset is the highest offset that this page should represent.
972 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
973 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
974 * hence give us the correct page_dirty count. On any other page,
975 * it will be zero and in that case we need page_dirty to be the
976 * count of buffers on the page.
977 */
978 end_offset = min_t(unsigned long long,
979 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
980 len = 1 << inode->i_blkbits;
981 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
982 PAGE_CACHE_SIZE);
983 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
984 page_dirty = p_offset / len;
985
986 bh = head = page_buffers(page);
987 offset = page_offset(page);
988 flags = BMAPI_READ;
989 type = IOMAP_NEW;
990
991 /* TODO: cleanup count and page_dirty */
992
993 do {
994 if (offset >= end_offset)
995 break;
996 if (!buffer_uptodate(bh))
997 uptodate = 0;
998 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
999 /*
1000 * the iomap is actually still valid, but the ioend
1001 * isn't. shouldn't happen too often.
1002 */
1003 iomap_valid = 0;
1004 continue;
1005 }
1006
1007 if (iomap_valid)
1008 iomap_valid = xfs_iomap_valid(&iomap, offset);
1009
1010 /*
1011 * First case, map an unwritten extent and prepare for
1012 * extent state conversion transaction on completion.
1013 *
1014 * Second case, allocate space for a delalloc buffer.
1015 * We can return EAGAIN here in the release page case.
1016 *
1017 * Third case, an unmapped buffer was found, and we are
1018 * in a path where we need to write the whole page out.
1019 */
1020 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1021 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1022 !buffer_mapped(bh) && (unmapped || startio))) {
1023 int new_ioend = 0;
1024
1025 /*
1026 * Make sure we don't use a read-only iomap
1027 */
1028 if (flags == BMAPI_READ)
1029 iomap_valid = 0;
1030
1031 if (buffer_unwritten(bh)) {
1032 type = IOMAP_UNWRITTEN;
1033 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
1034 } else if (buffer_delay(bh)) {
1035 type = IOMAP_DELAY;
1036 flags = BMAPI_ALLOCATE | trylock;
1037 } else {
1038 type = IOMAP_NEW;
1039 flags = BMAPI_WRITE | BMAPI_MMAP;
1040 }
1041
1042 if (!iomap_valid) {
1043 /*
1044 * if we didn't have a valid mapping then we
1045 * need to ensure that we put the new mapping
1046 * in a new ioend structure. This needs to be
1047 * done to ensure that the ioends correctly
1048 * reflect the block mappings at io completion
1049 * for unwritten extent conversion.
1050 */
1051 new_ioend = 1;
1052 if (type == IOMAP_NEW) {
1053 size = xfs_probe_cluster(inode,
1054 page, bh, head, 0);
1055 } else {
1056 size = len;
1057 }
1058
1059 err = xfs_map_blocks(inode, offset, size,
1060 &iomap, flags);
1061 if (err)
1062 goto error;
1063 iomap_valid = xfs_iomap_valid(&iomap, offset);
1064 }
1065 if (iomap_valid) {
1066 xfs_map_at_offset(bh, offset,
1067 inode->i_blkbits, &iomap);
1068 if (startio) {
1069 xfs_add_to_ioend(inode, bh, offset,
1070 type, &ioend,
1071 new_ioend);
1072 } else {
1073 set_buffer_dirty(bh);
1074 unlock_buffer(bh);
1075 mark_buffer_dirty(bh);
1076 }
1077 page_dirty--;
1078 count++;
1079 }
1080 } else if (buffer_uptodate(bh) && startio) {
1081 /*
1082 * we got here because the buffer is already mapped.
1083 * That means it must already have extents allocated
1084 * underneath it. Map the extent by reading it.
1085 */
1086 if (!iomap_valid || flags != BMAPI_READ) {
1087 flags = BMAPI_READ;
1088 size = xfs_probe_cluster(inode, page, bh,
1089 head, 1);
1090 err = xfs_map_blocks(inode, offset, size,
1091 &iomap, flags);
1092 if (err)
1093 goto error;
1094 iomap_valid = xfs_iomap_valid(&iomap, offset);
1095 }
1096
1097 /*
1098 * We set the type to IOMAP_NEW in case we are doing a
1099 * small write at EOF that is extending the file but
1100 * without needing an allocation. We need to update the
1101 * file size on I/O completion in this case so it is
1102 * the same case as having just allocated a new extent
1103 * that we are writing into for the first time.
1104 */
1105 type = IOMAP_NEW;
1106 if (trylock_buffer(bh)) {
1107 ASSERT(buffer_mapped(bh));
1108 if (iomap_valid)
1109 all_bh = 1;
1110 xfs_add_to_ioend(inode, bh, offset, type,
1111 &ioend, !iomap_valid);
1112 page_dirty--;
1113 count++;
1114 } else {
1115 iomap_valid = 0;
1116 }
1117 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1118 (unmapped || startio)) {
1119 iomap_valid = 0;
1120 }
1121
1122 if (!iohead)
1123 iohead = ioend;
1124
1125 } while (offset += len, ((bh = bh->b_this_page) != head));
1126
1127 if (uptodate && bh == head)
1128 SetPageUptodate(page);
1129
1130 if (startio)
1131 xfs_start_page_writeback(page, 1, count);
1132
1133 if (ioend && iomap_valid) {
1134 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1135 PAGE_CACHE_SHIFT;
1136 tlast = min_t(pgoff_t, offset, last_index);
1137 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
1138 wbc, startio, all_bh, tlast);
1139 }
1140
1141 if (iohead)
1142 xfs_submit_ioend(iohead);
1143
1144 return page_dirty;
1145
1146 error:
1147 if (iohead)
1148 xfs_cancel_ioend(iohead);
1149
1150 /*
1151 * If it's delalloc and we have nowhere to put it,
1152 * throw it away, unless the lower layers told
1153 * us to try again.
1154 */
1155 if (err != -EAGAIN) {
1156 if (!unmapped)
1157 block_invalidatepage(page, 0);
1158 ClearPageUptodate(page);
1159 }
1160 return err;
1161 }
1162
1163 /*
1164 * writepage: Called from one of two places:
1165 *
1166 * 1. we are flushing a delalloc buffer head.
1167 *
1168 * 2. we are writing out a dirty page. Typically the page dirty
1169 * state is cleared before we get here. In this case is it
1170 * conceivable we have no buffer heads.
1171 *
1172 * For delalloc space on the page we need to allocate space and
1173 * flush it. For unmapped buffer heads on the page we should
1174 * allocate space if the page is uptodate. For any other dirty
1175 * buffer heads on the page we should flush them.
1176 *
1177 * If we detect that a transaction would be required to flush
1178 * the page, we have to check the process flags first, if we
1179 * are already in a transaction or disk I/O during allocations
1180 * is off, we need to fail the writepage and redirty the page.
1181 */
1182
1183 STATIC int
1184 xfs_vm_writepage(
1185 struct page *page,
1186 struct writeback_control *wbc)
1187 {
1188 int error;
1189 int need_trans;
1190 int delalloc, unmapped, unwritten;
1191 struct inode *inode = page->mapping->host;
1192
1193 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1194
1195 /*
1196 * We need a transaction if:
1197 * 1. There are delalloc buffers on the page
1198 * 2. The page is uptodate and we have unmapped buffers
1199 * 3. The page is uptodate and we have no buffers
1200 * 4. There are unwritten buffers on the page
1201 */
1202
1203 if (!page_has_buffers(page)) {
1204 unmapped = 1;
1205 need_trans = 1;
1206 } else {
1207 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1208 if (!PageUptodate(page))
1209 unmapped = 0;
1210 need_trans = delalloc + unmapped + unwritten;
1211 }
1212
1213 /*
1214 * If we need a transaction and the process flags say
1215 * we are already in a transaction, or no IO is allowed
1216 * then mark the page dirty again and leave the page
1217 * as is.
1218 */
1219 if (current_test_flags(PF_FSTRANS) && need_trans)
1220 goto out_fail;
1221
1222 /*
1223 * Delay hooking up buffer heads until we have
1224 * made our go/no-go decision.
1225 */
1226 if (!page_has_buffers(page))
1227 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1228
1229 /*
1230 * Convert delayed allocate, unwritten or unmapped space
1231 * to real space and flush out to disk.
1232 */
1233 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1234 if (error == -EAGAIN)
1235 goto out_fail;
1236 if (unlikely(error < 0))
1237 goto out_unlock;
1238
1239 return 0;
1240
1241 out_fail:
1242 redirty_page_for_writepage(wbc, page);
1243 unlock_page(page);
1244 return 0;
1245 out_unlock:
1246 unlock_page(page);
1247 return error;
1248 }
1249
1250 STATIC int
1251 xfs_vm_writepages(
1252 struct address_space *mapping,
1253 struct writeback_control *wbc)
1254 {
1255 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1256 return generic_writepages(mapping, wbc);
1257 }
1258
1259 /*
1260 * Called to move a page into cleanable state - and from there
1261 * to be released. Possibly the page is already clean. We always
1262 * have buffer heads in this call.
1263 *
1264 * Returns 0 if the page is ok to release, 1 otherwise.
1265 *
1266 * Possible scenarios are:
1267 *
1268 * 1. We are being called to release a page which has been written
1269 * to via regular I/O. buffer heads will be dirty and possibly
1270 * delalloc. If no delalloc buffer heads in this case then we
1271 * can just return zero.
1272 *
1273 * 2. We are called to release a page which has been written via
1274 * mmap, all we need to do is ensure there is no delalloc
1275 * state in the buffer heads, if not we can let the caller
1276 * free them and we should come back later via writepage.
1277 */
1278 STATIC int
1279 xfs_vm_releasepage(
1280 struct page *page,
1281 gfp_t gfp_mask)
1282 {
1283 struct inode *inode = page->mapping->host;
1284 int dirty, delalloc, unmapped, unwritten;
1285 struct writeback_control wbc = {
1286 .sync_mode = WB_SYNC_ALL,
1287 .nr_to_write = 1,
1288 };
1289
1290 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
1291
1292 if (!page_has_buffers(page))
1293 return 0;
1294
1295 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1296 if (!delalloc && !unwritten)
1297 goto free_buffers;
1298
1299 if (!(gfp_mask & __GFP_FS))
1300 return 0;
1301
1302 /* If we are already inside a transaction or the thread cannot
1303 * do I/O, we cannot release this page.
1304 */
1305 if (current_test_flags(PF_FSTRANS))
1306 return 0;
1307
1308 /*
1309 * Convert delalloc space to real space, do not flush the
1310 * data out to disk, that will be done by the caller.
1311 * Never need to allocate space here - we will always
1312 * come back to writepage in that case.
1313 */
1314 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1315 if (dirty == 0 && !unwritten)
1316 goto free_buffers;
1317 return 0;
1318
1319 free_buffers:
1320 return try_to_free_buffers(page);
1321 }
1322
1323 STATIC int
1324 __xfs_get_blocks(
1325 struct inode *inode,
1326 sector_t iblock,
1327 struct buffer_head *bh_result,
1328 int create,
1329 int direct,
1330 bmapi_flags_t flags)
1331 {
1332 xfs_iomap_t iomap;
1333 xfs_off_t offset;
1334 ssize_t size;
1335 int niomap = 1;
1336 int error;
1337
1338 offset = (xfs_off_t)iblock << inode->i_blkbits;
1339 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1340 size = bh_result->b_size;
1341 error = xfs_iomap(XFS_I(inode), offset, size,
1342 create ? flags : BMAPI_READ, &iomap, &niomap);
1343 if (error)
1344 return -error;
1345 if (niomap == 0)
1346 return 0;
1347
1348 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
1349 /*
1350 * For unwritten extents do not report a disk address on
1351 * the read case (treat as if we're reading into a hole).
1352 */
1353 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1354 xfs_map_buffer(bh_result, &iomap, offset,
1355 inode->i_blkbits);
1356 }
1357 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1358 if (direct)
1359 bh_result->b_private = inode;
1360 set_buffer_unwritten(bh_result);
1361 }
1362 }
1363
1364 /*
1365 * If this is a realtime file, data may be on a different device.
1366 * to that pointed to from the buffer_head b_bdev currently.
1367 */
1368 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1369
1370 /*
1371 * If we previously allocated a block out beyond eof and we are now
1372 * coming back to use it then we will need to flag it as new even if it
1373 * has a disk address.
1374 *
1375 * With sub-block writes into unwritten extents we also need to mark
1376 * the buffer as new so that the unwritten parts of the buffer gets
1377 * correctly zeroed.
1378 */
1379 if (create &&
1380 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1381 (offset >= i_size_read(inode)) ||
1382 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1383 set_buffer_new(bh_result);
1384
1385 if (iomap.iomap_flags & IOMAP_DELAY) {
1386 BUG_ON(direct);
1387 if (create) {
1388 set_buffer_uptodate(bh_result);
1389 set_buffer_mapped(bh_result);
1390 set_buffer_delay(bh_result);
1391 }
1392 }
1393
1394 if (direct || size > (1 << inode->i_blkbits)) {
1395 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1396 offset = min_t(xfs_off_t,
1397 iomap.iomap_bsize - iomap.iomap_delta, size);
1398 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1399 }
1400
1401 return 0;
1402 }
1403
1404 int
1405 xfs_get_blocks(
1406 struct inode *inode,
1407 sector_t iblock,
1408 struct buffer_head *bh_result,
1409 int create)
1410 {
1411 return __xfs_get_blocks(inode, iblock,
1412 bh_result, create, 0, BMAPI_WRITE);
1413 }
1414
1415 STATIC int
1416 xfs_get_blocks_direct(
1417 struct inode *inode,
1418 sector_t iblock,
1419 struct buffer_head *bh_result,
1420 int create)
1421 {
1422 return __xfs_get_blocks(inode, iblock,
1423 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1424 }
1425
1426 STATIC void
1427 xfs_end_io_direct(
1428 struct kiocb *iocb,
1429 loff_t offset,
1430 ssize_t size,
1431 void *private)
1432 {
1433 xfs_ioend_t *ioend = iocb->private;
1434
1435 /*
1436 * Non-NULL private data means we need to issue a transaction to
1437 * convert a range from unwritten to written extents. This needs
1438 * to happen from process context but aio+dio I/O completion
1439 * happens from irq context so we need to defer it to a workqueue.
1440 * This is not necessary for synchronous direct I/O, but we do
1441 * it anyway to keep the code uniform and simpler.
1442 *
1443 * Well, if only it were that simple. Because synchronous direct I/O
1444 * requires extent conversion to occur *before* we return to userspace,
1445 * we have to wait for extent conversion to complete. Look at the
1446 * iocb that has been passed to us to determine if this is AIO or
1447 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1448 * workqueue and wait for it to complete.
1449 *
1450 * The core direct I/O code might be changed to always call the
1451 * completion handler in the future, in which case all this can
1452 * go away.
1453 */
1454 ioend->io_offset = offset;
1455 ioend->io_size = size;
1456 if (ioend->io_type == IOMAP_READ) {
1457 xfs_finish_ioend(ioend, 0);
1458 } else if (private && size > 0) {
1459 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
1460 } else {
1461 /*
1462 * A direct I/O write ioend starts it's life in unwritten
1463 * state in case they map an unwritten extent. This write
1464 * didn't map an unwritten extent so switch it's completion
1465 * handler.
1466 */
1467 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
1468 xfs_finish_ioend(ioend, 0);
1469 }
1470
1471 /*
1472 * blockdev_direct_IO can return an error even after the I/O
1473 * completion handler was called. Thus we need to protect
1474 * against double-freeing.
1475 */
1476 iocb->private = NULL;
1477 }
1478
1479 STATIC ssize_t
1480 xfs_vm_direct_IO(
1481 int rw,
1482 struct kiocb *iocb,
1483 const struct iovec *iov,
1484 loff_t offset,
1485 unsigned long nr_segs)
1486 {
1487 struct file *file = iocb->ki_filp;
1488 struct inode *inode = file->f_mapping->host;
1489 struct block_device *bdev;
1490 ssize_t ret;
1491
1492 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1493
1494 if (rw == WRITE) {
1495 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
1496 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1497 bdev, iov, offset, nr_segs,
1498 xfs_get_blocks_direct,
1499 xfs_end_io_direct);
1500 } else {
1501 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
1502 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
1503 bdev, iov, offset, nr_segs,
1504 xfs_get_blocks_direct,
1505 xfs_end_io_direct);
1506 }
1507
1508 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
1509 xfs_destroy_ioend(iocb->private);
1510 return ret;
1511 }
1512
1513 STATIC int
1514 xfs_vm_write_begin(
1515 struct file *file,
1516 struct address_space *mapping,
1517 loff_t pos,
1518 unsigned len,
1519 unsigned flags,
1520 struct page **pagep,
1521 void **fsdata)
1522 {
1523 *pagep = NULL;
1524 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1525 xfs_get_blocks);
1526 }
1527
1528 STATIC sector_t
1529 xfs_vm_bmap(
1530 struct address_space *mapping,
1531 sector_t block)
1532 {
1533 struct inode *inode = (struct inode *)mapping->host;
1534 struct xfs_inode *ip = XFS_I(inode);
1535
1536 xfs_itrace_entry(XFS_I(inode));
1537 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1538 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1539 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1540 return generic_block_bmap(mapping, block, xfs_get_blocks);
1541 }
1542
1543 STATIC int
1544 xfs_vm_readpage(
1545 struct file *unused,
1546 struct page *page)
1547 {
1548 return mpage_readpage(page, xfs_get_blocks);
1549 }
1550
1551 STATIC int
1552 xfs_vm_readpages(
1553 struct file *unused,
1554 struct address_space *mapping,
1555 struct list_head *pages,
1556 unsigned nr_pages)
1557 {
1558 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1559 }
1560
1561 STATIC void
1562 xfs_vm_invalidatepage(
1563 struct page *page,
1564 unsigned long offset)
1565 {
1566 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1567 page->mapping->host, page, offset);
1568 block_invalidatepage(page, offset);
1569 }
1570
1571 const struct address_space_operations xfs_address_space_operations = {
1572 .readpage = xfs_vm_readpage,
1573 .readpages = xfs_vm_readpages,
1574 .writepage = xfs_vm_writepage,
1575 .writepages = xfs_vm_writepages,
1576 .sync_page = block_sync_page,
1577 .releasepage = xfs_vm_releasepage,
1578 .invalidatepage = xfs_vm_invalidatepage,
1579 .write_begin = xfs_vm_write_begin,
1580 .write_end = generic_write_end,
1581 .bmap = xfs_vm_bmap,
1582 .direct_IO = xfs_vm_direct_IO,
1583 .migratepage = buffer_migrate_page,
1584 };
This page took 0.082762 seconds and 5 git commands to generate.