Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/shaggy...
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_dir2.h"
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
38 #include "xfs_rw.h"
39 #include "xfs_iomap.h"
40 #include <linux/mpage.h>
41 #include <linux/pagevec.h>
42 #include <linux/writeback.h>
43
44 STATIC void
45 xfs_count_page_state(
46 struct page *page,
47 int *delalloc,
48 int *unmapped,
49 int *unwritten)
50 {
51 struct buffer_head *bh, *head;
52
53 *delalloc = *unmapped = *unwritten = 0;
54
55 bh = head = page_buffers(page);
56 do {
57 if (buffer_uptodate(bh) && !buffer_mapped(bh))
58 (*unmapped) = 1;
59 else if (buffer_unwritten(bh))
60 (*unwritten) = 1;
61 else if (buffer_delay(bh))
62 (*delalloc) = 1;
63 } while ((bh = bh->b_this_page) != head);
64 }
65
66 #if defined(XFS_RW_TRACE)
67 void
68 xfs_page_trace(
69 int tag,
70 struct inode *inode,
71 struct page *page,
72 unsigned long pgoff)
73 {
74 xfs_inode_t *ip;
75 bhv_vnode_t *vp = vn_from_inode(inode);
76 loff_t isize = i_size_read(inode);
77 loff_t offset = page_offset(page);
78 int delalloc = -1, unmapped = -1, unwritten = -1;
79
80 if (page_has_buffers(page))
81 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
82
83 ip = xfs_vtoi(vp);
84 if (!ip->i_rwtrace)
85 return;
86
87 ktrace_enter(ip->i_rwtrace,
88 (void *)((unsigned long)tag),
89 (void *)ip,
90 (void *)inode,
91 (void *)page,
92 (void *)pgoff,
93 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
94 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
95 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
96 (void *)((unsigned long)(isize & 0xffffffff)),
97 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
98 (void *)((unsigned long)(offset & 0xffffffff)),
99 (void *)((unsigned long)delalloc),
100 (void *)((unsigned long)unmapped),
101 (void *)((unsigned long)unwritten),
102 (void *)((unsigned long)current_pid()),
103 (void *)NULL);
104 }
105 #else
106 #define xfs_page_trace(tag, inode, page, pgoff)
107 #endif
108
109 /*
110 * Schedule IO completion handling on a xfsdatad if this was
111 * the final hold on this ioend.
112 */
113 STATIC void
114 xfs_finish_ioend(
115 xfs_ioend_t *ioend)
116 {
117 if (atomic_dec_and_test(&ioend->io_remaining))
118 queue_work(xfsdatad_workqueue, &ioend->io_work);
119 }
120
121 /*
122 * We're now finished for good with this ioend structure.
123 * Update the page state via the associated buffer_heads,
124 * release holds on the inode and bio, and finally free
125 * up memory. Do not use the ioend after this.
126 */
127 STATIC void
128 xfs_destroy_ioend(
129 xfs_ioend_t *ioend)
130 {
131 struct buffer_head *bh, *next;
132
133 for (bh = ioend->io_buffer_head; bh; bh = next) {
134 next = bh->b_private;
135 bh->b_end_io(bh, !ioend->io_error);
136 }
137 if (unlikely(ioend->io_error))
138 vn_ioerror(ioend->io_vnode, ioend->io_error, __FILE__,__LINE__);
139 vn_iowake(ioend->io_vnode);
140 mempool_free(ioend, xfs_ioend_pool);
141 }
142
143 /*
144 * Buffered IO write completion for delayed allocate extents.
145 * TODO: Update ondisk isize now that we know the file data
146 * has been flushed (i.e. the notorious "NULL file" problem).
147 */
148 STATIC void
149 xfs_end_bio_delalloc(
150 struct work_struct *work)
151 {
152 xfs_ioend_t *ioend =
153 container_of(work, xfs_ioend_t, io_work);
154
155 xfs_destroy_ioend(ioend);
156 }
157
158 /*
159 * Buffered IO write completion for regular, written extents.
160 */
161 STATIC void
162 xfs_end_bio_written(
163 struct work_struct *work)
164 {
165 xfs_ioend_t *ioend =
166 container_of(work, xfs_ioend_t, io_work);
167
168 xfs_destroy_ioend(ioend);
169 }
170
171 /*
172 * IO write completion for unwritten extents.
173 *
174 * Issue transactions to convert a buffer range from unwritten
175 * to written extents.
176 */
177 STATIC void
178 xfs_end_bio_unwritten(
179 struct work_struct *work)
180 {
181 xfs_ioend_t *ioend =
182 container_of(work, xfs_ioend_t, io_work);
183 bhv_vnode_t *vp = ioend->io_vnode;
184 xfs_off_t offset = ioend->io_offset;
185 size_t size = ioend->io_size;
186
187 if (likely(!ioend->io_error))
188 bhv_vop_bmap(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL);
189 xfs_destroy_ioend(ioend);
190 }
191
192 /*
193 * Allocate and initialise an IO completion structure.
194 * We need to track unwritten extent write completion here initially.
195 * We'll need to extend this for updating the ondisk inode size later
196 * (vs. incore size).
197 */
198 STATIC xfs_ioend_t *
199 xfs_alloc_ioend(
200 struct inode *inode,
201 unsigned int type)
202 {
203 xfs_ioend_t *ioend;
204
205 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
206
207 /*
208 * Set the count to 1 initially, which will prevent an I/O
209 * completion callback from happening before we have started
210 * all the I/O from calling the completion routine too early.
211 */
212 atomic_set(&ioend->io_remaining, 1);
213 ioend->io_error = 0;
214 ioend->io_list = NULL;
215 ioend->io_type = type;
216 ioend->io_vnode = vn_from_inode(inode);
217 ioend->io_buffer_head = NULL;
218 ioend->io_buffer_tail = NULL;
219 atomic_inc(&ioend->io_vnode->v_iocount);
220 ioend->io_offset = 0;
221 ioend->io_size = 0;
222
223 if (type == IOMAP_UNWRITTEN)
224 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
225 else if (type == IOMAP_DELAY)
226 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
227 else
228 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
229
230 return ioend;
231 }
232
233 STATIC int
234 xfs_map_blocks(
235 struct inode *inode,
236 loff_t offset,
237 ssize_t count,
238 xfs_iomap_t *mapp,
239 int flags)
240 {
241 bhv_vnode_t *vp = vn_from_inode(inode);
242 int error, nmaps = 1;
243
244 error = bhv_vop_bmap(vp, offset, count, flags, mapp, &nmaps);
245 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
246 VMODIFY(vp);
247 return -error;
248 }
249
250 STATIC_INLINE int
251 xfs_iomap_valid(
252 xfs_iomap_t *iomapp,
253 loff_t offset)
254 {
255 return offset >= iomapp->iomap_offset &&
256 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
257 }
258
259 /*
260 * BIO completion handler for buffered IO.
261 */
262 STATIC int
263 xfs_end_bio(
264 struct bio *bio,
265 unsigned int bytes_done,
266 int error)
267 {
268 xfs_ioend_t *ioend = bio->bi_private;
269
270 if (bio->bi_size)
271 return 1;
272
273 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
274 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
275
276 /* Toss bio and pass work off to an xfsdatad thread */
277 bio->bi_private = NULL;
278 bio->bi_end_io = NULL;
279 bio_put(bio);
280
281 xfs_finish_ioend(ioend);
282 return 0;
283 }
284
285 STATIC void
286 xfs_submit_ioend_bio(
287 xfs_ioend_t *ioend,
288 struct bio *bio)
289 {
290 atomic_inc(&ioend->io_remaining);
291
292 bio->bi_private = ioend;
293 bio->bi_end_io = xfs_end_bio;
294
295 submit_bio(WRITE, bio);
296 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
297 bio_put(bio);
298 }
299
300 STATIC struct bio *
301 xfs_alloc_ioend_bio(
302 struct buffer_head *bh)
303 {
304 struct bio *bio;
305 int nvecs = bio_get_nr_vecs(bh->b_bdev);
306
307 do {
308 bio = bio_alloc(GFP_NOIO, nvecs);
309 nvecs >>= 1;
310 } while (!bio);
311
312 ASSERT(bio->bi_private == NULL);
313 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
314 bio->bi_bdev = bh->b_bdev;
315 bio_get(bio);
316 return bio;
317 }
318
319 STATIC void
320 xfs_start_buffer_writeback(
321 struct buffer_head *bh)
322 {
323 ASSERT(buffer_mapped(bh));
324 ASSERT(buffer_locked(bh));
325 ASSERT(!buffer_delay(bh));
326 ASSERT(!buffer_unwritten(bh));
327
328 mark_buffer_async_write(bh);
329 set_buffer_uptodate(bh);
330 clear_buffer_dirty(bh);
331 }
332
333 STATIC void
334 xfs_start_page_writeback(
335 struct page *page,
336 struct writeback_control *wbc,
337 int clear_dirty,
338 int buffers)
339 {
340 ASSERT(PageLocked(page));
341 ASSERT(!PageWriteback(page));
342 if (clear_dirty)
343 clear_page_dirty_for_io(page);
344 set_page_writeback(page);
345 unlock_page(page);
346 if (!buffers) {
347 end_page_writeback(page);
348 wbc->pages_skipped++; /* We didn't write this page */
349 }
350 }
351
352 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
353 {
354 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
355 }
356
357 /*
358 * Submit all of the bios for all of the ioends we have saved up, covering the
359 * initial writepage page and also any probed pages.
360 *
361 * Because we may have multiple ioends spanning a page, we need to start
362 * writeback on all the buffers before we submit them for I/O. If we mark the
363 * buffers as we got, then we can end up with a page that only has buffers
364 * marked async write and I/O complete on can occur before we mark the other
365 * buffers async write.
366 *
367 * The end result of this is that we trip a bug in end_page_writeback() because
368 * we call it twice for the one page as the code in end_buffer_async_write()
369 * assumes that all buffers on the page are started at the same time.
370 *
371 * The fix is two passes across the ioend list - one to start writeback on the
372 * buffer_heads, and then submit them for I/O on the second pass.
373 */
374 STATIC void
375 xfs_submit_ioend(
376 xfs_ioend_t *ioend)
377 {
378 xfs_ioend_t *head = ioend;
379 xfs_ioend_t *next;
380 struct buffer_head *bh;
381 struct bio *bio;
382 sector_t lastblock = 0;
383
384 /* Pass 1 - start writeback */
385 do {
386 next = ioend->io_list;
387 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
388 xfs_start_buffer_writeback(bh);
389 }
390 } while ((ioend = next) != NULL);
391
392 /* Pass 2 - submit I/O */
393 ioend = head;
394 do {
395 next = ioend->io_list;
396 bio = NULL;
397
398 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
399
400 if (!bio) {
401 retry:
402 bio = xfs_alloc_ioend_bio(bh);
403 } else if (bh->b_blocknr != lastblock + 1) {
404 xfs_submit_ioend_bio(ioend, bio);
405 goto retry;
406 }
407
408 if (bio_add_buffer(bio, bh) != bh->b_size) {
409 xfs_submit_ioend_bio(ioend, bio);
410 goto retry;
411 }
412
413 lastblock = bh->b_blocknr;
414 }
415 if (bio)
416 xfs_submit_ioend_bio(ioend, bio);
417 xfs_finish_ioend(ioend);
418 } while ((ioend = next) != NULL);
419 }
420
421 /*
422 * Cancel submission of all buffer_heads so far in this endio.
423 * Toss the endio too. Only ever called for the initial page
424 * in a writepage request, so only ever one page.
425 */
426 STATIC void
427 xfs_cancel_ioend(
428 xfs_ioend_t *ioend)
429 {
430 xfs_ioend_t *next;
431 struct buffer_head *bh, *next_bh;
432
433 do {
434 next = ioend->io_list;
435 bh = ioend->io_buffer_head;
436 do {
437 next_bh = bh->b_private;
438 clear_buffer_async_write(bh);
439 unlock_buffer(bh);
440 } while ((bh = next_bh) != NULL);
441
442 vn_iowake(ioend->io_vnode);
443 mempool_free(ioend, xfs_ioend_pool);
444 } while ((ioend = next) != NULL);
445 }
446
447 /*
448 * Test to see if we've been building up a completion structure for
449 * earlier buffers -- if so, we try to append to this ioend if we
450 * can, otherwise we finish off any current ioend and start another.
451 * Return true if we've finished the given ioend.
452 */
453 STATIC void
454 xfs_add_to_ioend(
455 struct inode *inode,
456 struct buffer_head *bh,
457 xfs_off_t offset,
458 unsigned int type,
459 xfs_ioend_t **result,
460 int need_ioend)
461 {
462 xfs_ioend_t *ioend = *result;
463
464 if (!ioend || need_ioend || type != ioend->io_type) {
465 xfs_ioend_t *previous = *result;
466
467 ioend = xfs_alloc_ioend(inode, type);
468 ioend->io_offset = offset;
469 ioend->io_buffer_head = bh;
470 ioend->io_buffer_tail = bh;
471 if (previous)
472 previous->io_list = ioend;
473 *result = ioend;
474 } else {
475 ioend->io_buffer_tail->b_private = bh;
476 ioend->io_buffer_tail = bh;
477 }
478
479 bh->b_private = NULL;
480 ioend->io_size += bh->b_size;
481 }
482
483 STATIC void
484 xfs_map_buffer(
485 struct buffer_head *bh,
486 xfs_iomap_t *mp,
487 xfs_off_t offset,
488 uint block_bits)
489 {
490 sector_t bn;
491
492 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
493
494 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
495 ((offset - mp->iomap_offset) >> block_bits);
496
497 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
498
499 bh->b_blocknr = bn;
500 set_buffer_mapped(bh);
501 }
502
503 STATIC void
504 xfs_map_at_offset(
505 struct buffer_head *bh,
506 loff_t offset,
507 int block_bits,
508 xfs_iomap_t *iomapp)
509 {
510 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
511 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
512
513 lock_buffer(bh);
514 xfs_map_buffer(bh, iomapp, offset, block_bits);
515 bh->b_bdev = iomapp->iomap_target->bt_bdev;
516 set_buffer_mapped(bh);
517 clear_buffer_delay(bh);
518 clear_buffer_unwritten(bh);
519 }
520
521 /*
522 * Look for a page at index that is suitable for clustering.
523 */
524 STATIC unsigned int
525 xfs_probe_page(
526 struct page *page,
527 unsigned int pg_offset,
528 int mapped)
529 {
530 int ret = 0;
531
532 if (PageWriteback(page))
533 return 0;
534
535 if (page->mapping && PageDirty(page)) {
536 if (page_has_buffers(page)) {
537 struct buffer_head *bh, *head;
538
539 bh = head = page_buffers(page);
540 do {
541 if (!buffer_uptodate(bh))
542 break;
543 if (mapped != buffer_mapped(bh))
544 break;
545 ret += bh->b_size;
546 if (ret >= pg_offset)
547 break;
548 } while ((bh = bh->b_this_page) != head);
549 } else
550 ret = mapped ? 0 : PAGE_CACHE_SIZE;
551 }
552
553 return ret;
554 }
555
556 STATIC size_t
557 xfs_probe_cluster(
558 struct inode *inode,
559 struct page *startpage,
560 struct buffer_head *bh,
561 struct buffer_head *head,
562 int mapped)
563 {
564 struct pagevec pvec;
565 pgoff_t tindex, tlast, tloff;
566 size_t total = 0;
567 int done = 0, i;
568
569 /* First sum forwards in this page */
570 do {
571 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
572 return total;
573 total += bh->b_size;
574 } while ((bh = bh->b_this_page) != head);
575
576 /* if we reached the end of the page, sum forwards in following pages */
577 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
578 tindex = startpage->index + 1;
579
580 /* Prune this back to avoid pathological behavior */
581 tloff = min(tlast, startpage->index + 64);
582
583 pagevec_init(&pvec, 0);
584 while (!done && tindex <= tloff) {
585 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
586
587 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
588 break;
589
590 for (i = 0; i < pagevec_count(&pvec); i++) {
591 struct page *page = pvec.pages[i];
592 size_t pg_offset, len = 0;
593
594 if (tindex == tlast) {
595 pg_offset =
596 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
597 if (!pg_offset) {
598 done = 1;
599 break;
600 }
601 } else
602 pg_offset = PAGE_CACHE_SIZE;
603
604 if (page->index == tindex && !TestSetPageLocked(page)) {
605 len = xfs_probe_page(page, pg_offset, mapped);
606 unlock_page(page);
607 }
608
609 if (!len) {
610 done = 1;
611 break;
612 }
613
614 total += len;
615 tindex++;
616 }
617
618 pagevec_release(&pvec);
619 cond_resched();
620 }
621
622 return total;
623 }
624
625 /*
626 * Test if a given page is suitable for writing as part of an unwritten
627 * or delayed allocate extent.
628 */
629 STATIC int
630 xfs_is_delayed_page(
631 struct page *page,
632 unsigned int type)
633 {
634 if (PageWriteback(page))
635 return 0;
636
637 if (page->mapping && page_has_buffers(page)) {
638 struct buffer_head *bh, *head;
639 int acceptable = 0;
640
641 bh = head = page_buffers(page);
642 do {
643 if (buffer_unwritten(bh))
644 acceptable = (type == IOMAP_UNWRITTEN);
645 else if (buffer_delay(bh))
646 acceptable = (type == IOMAP_DELAY);
647 else if (buffer_dirty(bh) && buffer_mapped(bh))
648 acceptable = (type == 0);
649 else
650 break;
651 } while ((bh = bh->b_this_page) != head);
652
653 if (acceptable)
654 return 1;
655 }
656
657 return 0;
658 }
659
660 /*
661 * Allocate & map buffers for page given the extent map. Write it out.
662 * except for the original page of a writepage, this is called on
663 * delalloc/unwritten pages only, for the original page it is possible
664 * that the page has no mapping at all.
665 */
666 STATIC int
667 xfs_convert_page(
668 struct inode *inode,
669 struct page *page,
670 loff_t tindex,
671 xfs_iomap_t *mp,
672 xfs_ioend_t **ioendp,
673 struct writeback_control *wbc,
674 int startio,
675 int all_bh)
676 {
677 struct buffer_head *bh, *head;
678 xfs_off_t end_offset;
679 unsigned long p_offset;
680 unsigned int type;
681 int bbits = inode->i_blkbits;
682 int len, page_dirty;
683 int count = 0, done = 0, uptodate = 1;
684 xfs_off_t offset = page_offset(page);
685
686 if (page->index != tindex)
687 goto fail;
688 if (TestSetPageLocked(page))
689 goto fail;
690 if (PageWriteback(page))
691 goto fail_unlock_page;
692 if (page->mapping != inode->i_mapping)
693 goto fail_unlock_page;
694 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
695 goto fail_unlock_page;
696
697 /*
698 * page_dirty is initially a count of buffers on the page before
699 * EOF and is decremented as we move each into a cleanable state.
700 *
701 * Derivation:
702 *
703 * End offset is the highest offset that this page should represent.
704 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
705 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
706 * hence give us the correct page_dirty count. On any other page,
707 * it will be zero and in that case we need page_dirty to be the
708 * count of buffers on the page.
709 */
710 end_offset = min_t(unsigned long long,
711 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
712 i_size_read(inode));
713
714 len = 1 << inode->i_blkbits;
715 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
716 PAGE_CACHE_SIZE);
717 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
718 page_dirty = p_offset / len;
719
720 bh = head = page_buffers(page);
721 do {
722 if (offset >= end_offset)
723 break;
724 if (!buffer_uptodate(bh))
725 uptodate = 0;
726 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
727 done = 1;
728 continue;
729 }
730
731 if (buffer_unwritten(bh) || buffer_delay(bh)) {
732 if (buffer_unwritten(bh))
733 type = IOMAP_UNWRITTEN;
734 else
735 type = IOMAP_DELAY;
736
737 if (!xfs_iomap_valid(mp, offset)) {
738 done = 1;
739 continue;
740 }
741
742 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
743 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
744
745 xfs_map_at_offset(bh, offset, bbits, mp);
746 if (startio) {
747 xfs_add_to_ioend(inode, bh, offset,
748 type, ioendp, done);
749 } else {
750 set_buffer_dirty(bh);
751 unlock_buffer(bh);
752 mark_buffer_dirty(bh);
753 }
754 page_dirty--;
755 count++;
756 } else {
757 type = 0;
758 if (buffer_mapped(bh) && all_bh && startio) {
759 lock_buffer(bh);
760 xfs_add_to_ioend(inode, bh, offset,
761 type, ioendp, done);
762 count++;
763 page_dirty--;
764 } else {
765 done = 1;
766 }
767 }
768 } while (offset += len, (bh = bh->b_this_page) != head);
769
770 if (uptodate && bh == head)
771 SetPageUptodate(page);
772
773 if (startio) {
774 if (count) {
775 struct backing_dev_info *bdi;
776
777 bdi = inode->i_mapping->backing_dev_info;
778 wbc->nr_to_write--;
779 if (bdi_write_congested(bdi)) {
780 wbc->encountered_congestion = 1;
781 done = 1;
782 } else if (wbc->nr_to_write <= 0) {
783 done = 1;
784 }
785 }
786 xfs_start_page_writeback(page, wbc, !page_dirty, count);
787 }
788
789 return done;
790 fail_unlock_page:
791 unlock_page(page);
792 fail:
793 return 1;
794 }
795
796 /*
797 * Convert & write out a cluster of pages in the same extent as defined
798 * by mp and following the start page.
799 */
800 STATIC void
801 xfs_cluster_write(
802 struct inode *inode,
803 pgoff_t tindex,
804 xfs_iomap_t *iomapp,
805 xfs_ioend_t **ioendp,
806 struct writeback_control *wbc,
807 int startio,
808 int all_bh,
809 pgoff_t tlast)
810 {
811 struct pagevec pvec;
812 int done = 0, i;
813
814 pagevec_init(&pvec, 0);
815 while (!done && tindex <= tlast) {
816 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
817
818 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
819 break;
820
821 for (i = 0; i < pagevec_count(&pvec); i++) {
822 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
823 iomapp, ioendp, wbc, startio, all_bh);
824 if (done)
825 break;
826 }
827
828 pagevec_release(&pvec);
829 cond_resched();
830 }
831 }
832
833 /*
834 * Calling this without startio set means we are being asked to make a dirty
835 * page ready for freeing it's buffers. When called with startio set then
836 * we are coming from writepage.
837 *
838 * When called with startio set it is important that we write the WHOLE
839 * page if possible.
840 * The bh->b_state's cannot know if any of the blocks or which block for
841 * that matter are dirty due to mmap writes, and therefore bh uptodate is
842 * only valid if the page itself isn't completely uptodate. Some layers
843 * may clear the page dirty flag prior to calling write page, under the
844 * assumption the entire page will be written out; by not writing out the
845 * whole page the page can be reused before all valid dirty data is
846 * written out. Note: in the case of a page that has been dirty'd by
847 * mapwrite and but partially setup by block_prepare_write the
848 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
849 * valid state, thus the whole page must be written out thing.
850 */
851
852 STATIC int
853 xfs_page_state_convert(
854 struct inode *inode,
855 struct page *page,
856 struct writeback_control *wbc,
857 int startio,
858 int unmapped) /* also implies page uptodate */
859 {
860 struct buffer_head *bh, *head;
861 xfs_iomap_t iomap;
862 xfs_ioend_t *ioend = NULL, *iohead = NULL;
863 loff_t offset;
864 unsigned long p_offset = 0;
865 unsigned int type;
866 __uint64_t end_offset;
867 pgoff_t end_index, last_index, tlast;
868 ssize_t size, len;
869 int flags, err, iomap_valid = 0, uptodate = 1;
870 int page_dirty, count = 0;
871 int trylock = 0;
872 int all_bh = unmapped;
873
874 if (startio) {
875 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
876 trylock |= BMAPI_TRYLOCK;
877 }
878
879 /* Is this page beyond the end of the file? */
880 offset = i_size_read(inode);
881 end_index = offset >> PAGE_CACHE_SHIFT;
882 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
883 if (page->index >= end_index) {
884 if ((page->index >= end_index + 1) ||
885 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
886 if (startio)
887 unlock_page(page);
888 return 0;
889 }
890 }
891
892 /*
893 * page_dirty is initially a count of buffers on the page before
894 * EOF and is decremented as we move each into a cleanable state.
895 *
896 * Derivation:
897 *
898 * End offset is the highest offset that this page should represent.
899 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
900 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
901 * hence give us the correct page_dirty count. On any other page,
902 * it will be zero and in that case we need page_dirty to be the
903 * count of buffers on the page.
904 */
905 end_offset = min_t(unsigned long long,
906 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
907 len = 1 << inode->i_blkbits;
908 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
909 PAGE_CACHE_SIZE);
910 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
911 page_dirty = p_offset / len;
912
913 bh = head = page_buffers(page);
914 offset = page_offset(page);
915 flags = -1;
916 type = 0;
917
918 /* TODO: cleanup count and page_dirty */
919
920 do {
921 if (offset >= end_offset)
922 break;
923 if (!buffer_uptodate(bh))
924 uptodate = 0;
925 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
926 /*
927 * the iomap is actually still valid, but the ioend
928 * isn't. shouldn't happen too often.
929 */
930 iomap_valid = 0;
931 continue;
932 }
933
934 if (iomap_valid)
935 iomap_valid = xfs_iomap_valid(&iomap, offset);
936
937 /*
938 * First case, map an unwritten extent and prepare for
939 * extent state conversion transaction on completion.
940 *
941 * Second case, allocate space for a delalloc buffer.
942 * We can return EAGAIN here in the release page case.
943 *
944 * Third case, an unmapped buffer was found, and we are
945 * in a path where we need to write the whole page out.
946 */
947 if (buffer_unwritten(bh) || buffer_delay(bh) ||
948 ((buffer_uptodate(bh) || PageUptodate(page)) &&
949 !buffer_mapped(bh) && (unmapped || startio))) {
950 /*
951 * Make sure we don't use a read-only iomap
952 */
953 if (flags == BMAPI_READ)
954 iomap_valid = 0;
955
956 if (buffer_unwritten(bh)) {
957 type = IOMAP_UNWRITTEN;
958 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
959 } else if (buffer_delay(bh)) {
960 type = IOMAP_DELAY;
961 flags = BMAPI_ALLOCATE | trylock;
962 } else {
963 type = IOMAP_NEW;
964 flags = BMAPI_WRITE | BMAPI_MMAP;
965 }
966
967 if (!iomap_valid) {
968 if (type == IOMAP_NEW) {
969 size = xfs_probe_cluster(inode,
970 page, bh, head, 0);
971 } else {
972 size = len;
973 }
974
975 err = xfs_map_blocks(inode, offset, size,
976 &iomap, flags);
977 if (err)
978 goto error;
979 iomap_valid = xfs_iomap_valid(&iomap, offset);
980 }
981 if (iomap_valid) {
982 xfs_map_at_offset(bh, offset,
983 inode->i_blkbits, &iomap);
984 if (startio) {
985 xfs_add_to_ioend(inode, bh, offset,
986 type, &ioend,
987 !iomap_valid);
988 } else {
989 set_buffer_dirty(bh);
990 unlock_buffer(bh);
991 mark_buffer_dirty(bh);
992 }
993 page_dirty--;
994 count++;
995 }
996 } else if (buffer_uptodate(bh) && startio) {
997 /*
998 * we got here because the buffer is already mapped.
999 * That means it must already have extents allocated
1000 * underneath it. Map the extent by reading it.
1001 */
1002 if (!iomap_valid || type != 0) {
1003 flags = BMAPI_READ;
1004 size = xfs_probe_cluster(inode, page, bh,
1005 head, 1);
1006 err = xfs_map_blocks(inode, offset, size,
1007 &iomap, flags);
1008 if (err)
1009 goto error;
1010 iomap_valid = xfs_iomap_valid(&iomap, offset);
1011 }
1012
1013 type = 0;
1014 if (!test_and_set_bit(BH_Lock, &bh->b_state)) {
1015 ASSERT(buffer_mapped(bh));
1016 if (iomap_valid)
1017 all_bh = 1;
1018 xfs_add_to_ioend(inode, bh, offset, type,
1019 &ioend, !iomap_valid);
1020 page_dirty--;
1021 count++;
1022 } else {
1023 iomap_valid = 0;
1024 }
1025 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1026 (unmapped || startio)) {
1027 iomap_valid = 0;
1028 }
1029
1030 if (!iohead)
1031 iohead = ioend;
1032
1033 } while (offset += len, ((bh = bh->b_this_page) != head));
1034
1035 if (uptodate && bh == head)
1036 SetPageUptodate(page);
1037
1038 if (startio)
1039 xfs_start_page_writeback(page, wbc, 1, count);
1040
1041 if (ioend && iomap_valid) {
1042 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1043 PAGE_CACHE_SHIFT;
1044 tlast = min_t(pgoff_t, offset, last_index);
1045 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
1046 wbc, startio, all_bh, tlast);
1047 }
1048
1049 if (iohead)
1050 xfs_submit_ioend(iohead);
1051
1052 return page_dirty;
1053
1054 error:
1055 if (iohead)
1056 xfs_cancel_ioend(iohead);
1057
1058 /*
1059 * If it's delalloc and we have nowhere to put it,
1060 * throw it away, unless the lower layers told
1061 * us to try again.
1062 */
1063 if (err != -EAGAIN) {
1064 if (!unmapped)
1065 block_invalidatepage(page, 0);
1066 ClearPageUptodate(page);
1067 }
1068 return err;
1069 }
1070
1071 /*
1072 * writepage: Called from one of two places:
1073 *
1074 * 1. we are flushing a delalloc buffer head.
1075 *
1076 * 2. we are writing out a dirty page. Typically the page dirty
1077 * state is cleared before we get here. In this case is it
1078 * conceivable we have no buffer heads.
1079 *
1080 * For delalloc space on the page we need to allocate space and
1081 * flush it. For unmapped buffer heads on the page we should
1082 * allocate space if the page is uptodate. For any other dirty
1083 * buffer heads on the page we should flush them.
1084 *
1085 * If we detect that a transaction would be required to flush
1086 * the page, we have to check the process flags first, if we
1087 * are already in a transaction or disk I/O during allocations
1088 * is off, we need to fail the writepage and redirty the page.
1089 */
1090
1091 STATIC int
1092 xfs_vm_writepage(
1093 struct page *page,
1094 struct writeback_control *wbc)
1095 {
1096 int error;
1097 int need_trans;
1098 int delalloc, unmapped, unwritten;
1099 struct inode *inode = page->mapping->host;
1100
1101 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1102
1103 /*
1104 * We need a transaction if:
1105 * 1. There are delalloc buffers on the page
1106 * 2. The page is uptodate and we have unmapped buffers
1107 * 3. The page is uptodate and we have no buffers
1108 * 4. There are unwritten buffers on the page
1109 */
1110
1111 if (!page_has_buffers(page)) {
1112 unmapped = 1;
1113 need_trans = 1;
1114 } else {
1115 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1116 if (!PageUptodate(page))
1117 unmapped = 0;
1118 need_trans = delalloc + unmapped + unwritten;
1119 }
1120
1121 /*
1122 * If we need a transaction and the process flags say
1123 * we are already in a transaction, or no IO is allowed
1124 * then mark the page dirty again and leave the page
1125 * as is.
1126 */
1127 if (current_test_flags(PF_FSTRANS) && need_trans)
1128 goto out_fail;
1129
1130 /*
1131 * Delay hooking up buffer heads until we have
1132 * made our go/no-go decision.
1133 */
1134 if (!page_has_buffers(page))
1135 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1136
1137 /*
1138 * Convert delayed allocate, unwritten or unmapped space
1139 * to real space and flush out to disk.
1140 */
1141 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1142 if (error == -EAGAIN)
1143 goto out_fail;
1144 if (unlikely(error < 0))
1145 goto out_unlock;
1146
1147 return 0;
1148
1149 out_fail:
1150 redirty_page_for_writepage(wbc, page);
1151 unlock_page(page);
1152 return 0;
1153 out_unlock:
1154 unlock_page(page);
1155 return error;
1156 }
1157
1158 STATIC int
1159 xfs_vm_writepages(
1160 struct address_space *mapping,
1161 struct writeback_control *wbc)
1162 {
1163 struct bhv_vnode *vp = vn_from_inode(mapping->host);
1164
1165 if (VN_TRUNC(vp))
1166 VUNTRUNCATE(vp);
1167 return generic_writepages(mapping, wbc);
1168 }
1169
1170 /*
1171 * Called to move a page into cleanable state - and from there
1172 * to be released. Possibly the page is already clean. We always
1173 * have buffer heads in this call.
1174 *
1175 * Returns 0 if the page is ok to release, 1 otherwise.
1176 *
1177 * Possible scenarios are:
1178 *
1179 * 1. We are being called to release a page which has been written
1180 * to via regular I/O. buffer heads will be dirty and possibly
1181 * delalloc. If no delalloc buffer heads in this case then we
1182 * can just return zero.
1183 *
1184 * 2. We are called to release a page which has been written via
1185 * mmap, all we need to do is ensure there is no delalloc
1186 * state in the buffer heads, if not we can let the caller
1187 * free them and we should come back later via writepage.
1188 */
1189 STATIC int
1190 xfs_vm_releasepage(
1191 struct page *page,
1192 gfp_t gfp_mask)
1193 {
1194 struct inode *inode = page->mapping->host;
1195 int dirty, delalloc, unmapped, unwritten;
1196 struct writeback_control wbc = {
1197 .sync_mode = WB_SYNC_ALL,
1198 .nr_to_write = 1,
1199 };
1200
1201 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
1202
1203 if (!page_has_buffers(page))
1204 return 0;
1205
1206 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1207 if (!delalloc && !unwritten)
1208 goto free_buffers;
1209
1210 if (!(gfp_mask & __GFP_FS))
1211 return 0;
1212
1213 /* If we are already inside a transaction or the thread cannot
1214 * do I/O, we cannot release this page.
1215 */
1216 if (current_test_flags(PF_FSTRANS))
1217 return 0;
1218
1219 /*
1220 * Convert delalloc space to real space, do not flush the
1221 * data out to disk, that will be done by the caller.
1222 * Never need to allocate space here - we will always
1223 * come back to writepage in that case.
1224 */
1225 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1226 if (dirty == 0 && !unwritten)
1227 goto free_buffers;
1228 return 0;
1229
1230 free_buffers:
1231 return try_to_free_buffers(page);
1232 }
1233
1234 STATIC int
1235 __xfs_get_blocks(
1236 struct inode *inode,
1237 sector_t iblock,
1238 struct buffer_head *bh_result,
1239 int create,
1240 int direct,
1241 bmapi_flags_t flags)
1242 {
1243 bhv_vnode_t *vp = vn_from_inode(inode);
1244 xfs_iomap_t iomap;
1245 xfs_off_t offset;
1246 ssize_t size;
1247 int niomap = 1;
1248 int error;
1249
1250 offset = (xfs_off_t)iblock << inode->i_blkbits;
1251 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1252 size = bh_result->b_size;
1253 error = bhv_vop_bmap(vp, offset, size,
1254 create ? flags : BMAPI_READ, &iomap, &niomap);
1255 if (error)
1256 return -error;
1257 if (niomap == 0)
1258 return 0;
1259
1260 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
1261 /*
1262 * For unwritten extents do not report a disk address on
1263 * the read case (treat as if we're reading into a hole).
1264 */
1265 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1266 xfs_map_buffer(bh_result, &iomap, offset,
1267 inode->i_blkbits);
1268 }
1269 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1270 if (direct)
1271 bh_result->b_private = inode;
1272 set_buffer_unwritten(bh_result);
1273 }
1274 }
1275
1276 /*
1277 * If this is a realtime file, data may be on a different device.
1278 * to that pointed to from the buffer_head b_bdev currently.
1279 */
1280 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1281
1282 /*
1283 * If we previously allocated a block out beyond eof and we are now
1284 * coming back to use it then we will need to flag it as new even if it
1285 * has a disk address.
1286 *
1287 * With sub-block writes into unwritten extents we also need to mark
1288 * the buffer as new so that the unwritten parts of the buffer gets
1289 * correctly zeroed.
1290 */
1291 if (create &&
1292 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1293 (offset >= i_size_read(inode)) ||
1294 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1295 set_buffer_new(bh_result);
1296
1297 if (iomap.iomap_flags & IOMAP_DELAY) {
1298 BUG_ON(direct);
1299 if (create) {
1300 set_buffer_uptodate(bh_result);
1301 set_buffer_mapped(bh_result);
1302 set_buffer_delay(bh_result);
1303 }
1304 }
1305
1306 if (direct || size > (1 << inode->i_blkbits)) {
1307 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1308 offset = min_t(xfs_off_t,
1309 iomap.iomap_bsize - iomap.iomap_delta, size);
1310 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1311 }
1312
1313 return 0;
1314 }
1315
1316 int
1317 xfs_get_blocks(
1318 struct inode *inode,
1319 sector_t iblock,
1320 struct buffer_head *bh_result,
1321 int create)
1322 {
1323 return __xfs_get_blocks(inode, iblock,
1324 bh_result, create, 0, BMAPI_WRITE);
1325 }
1326
1327 STATIC int
1328 xfs_get_blocks_direct(
1329 struct inode *inode,
1330 sector_t iblock,
1331 struct buffer_head *bh_result,
1332 int create)
1333 {
1334 return __xfs_get_blocks(inode, iblock,
1335 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1336 }
1337
1338 STATIC void
1339 xfs_end_io_direct(
1340 struct kiocb *iocb,
1341 loff_t offset,
1342 ssize_t size,
1343 void *private)
1344 {
1345 xfs_ioend_t *ioend = iocb->private;
1346
1347 /*
1348 * Non-NULL private data means we need to issue a transaction to
1349 * convert a range from unwritten to written extents. This needs
1350 * to happen from process context but aio+dio I/O completion
1351 * happens from irq context so we need to defer it to a workqueue.
1352 * This is not necessary for synchronous direct I/O, but we do
1353 * it anyway to keep the code uniform and simpler.
1354 *
1355 * The core direct I/O code might be changed to always call the
1356 * completion handler in the future, in which case all this can
1357 * go away.
1358 */
1359 if (private && size > 0) {
1360 ioend->io_offset = offset;
1361 ioend->io_size = size;
1362 xfs_finish_ioend(ioend);
1363 } else {
1364 xfs_destroy_ioend(ioend);
1365 }
1366
1367 /*
1368 * blockdev_direct_IO can return an error even after the I/O
1369 * completion handler was called. Thus we need to protect
1370 * against double-freeing.
1371 */
1372 iocb->private = NULL;
1373 }
1374
1375 STATIC ssize_t
1376 xfs_vm_direct_IO(
1377 int rw,
1378 struct kiocb *iocb,
1379 const struct iovec *iov,
1380 loff_t offset,
1381 unsigned long nr_segs)
1382 {
1383 struct file *file = iocb->ki_filp;
1384 struct inode *inode = file->f_mapping->host;
1385 bhv_vnode_t *vp = vn_from_inode(inode);
1386 xfs_iomap_t iomap;
1387 int maps = 1;
1388 int error;
1389 ssize_t ret;
1390
1391 error = bhv_vop_bmap(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps);
1392 if (error)
1393 return -error;
1394
1395 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
1396
1397 if (rw == WRITE) {
1398 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1399 iomap.iomap_target->bt_bdev,
1400 iov, offset, nr_segs,
1401 xfs_get_blocks_direct,
1402 xfs_end_io_direct);
1403 } else {
1404 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
1405 iomap.iomap_target->bt_bdev,
1406 iov, offset, nr_segs,
1407 xfs_get_blocks_direct,
1408 xfs_end_io_direct);
1409 }
1410
1411 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
1412 xfs_destroy_ioend(iocb->private);
1413 return ret;
1414 }
1415
1416 STATIC int
1417 xfs_vm_prepare_write(
1418 struct file *file,
1419 struct page *page,
1420 unsigned int from,
1421 unsigned int to)
1422 {
1423 return block_prepare_write(page, from, to, xfs_get_blocks);
1424 }
1425
1426 STATIC sector_t
1427 xfs_vm_bmap(
1428 struct address_space *mapping,
1429 sector_t block)
1430 {
1431 struct inode *inode = (struct inode *)mapping->host;
1432 bhv_vnode_t *vp = vn_from_inode(inode);
1433
1434 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
1435 bhv_vop_rwlock(vp, VRWLOCK_READ);
1436 bhv_vop_flush_pages(vp, (xfs_off_t)0, -1, 0, FI_REMAPF);
1437 bhv_vop_rwunlock(vp, VRWLOCK_READ);
1438 return generic_block_bmap(mapping, block, xfs_get_blocks);
1439 }
1440
1441 STATIC int
1442 xfs_vm_readpage(
1443 struct file *unused,
1444 struct page *page)
1445 {
1446 return mpage_readpage(page, xfs_get_blocks);
1447 }
1448
1449 STATIC int
1450 xfs_vm_readpages(
1451 struct file *unused,
1452 struct address_space *mapping,
1453 struct list_head *pages,
1454 unsigned nr_pages)
1455 {
1456 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1457 }
1458
1459 STATIC void
1460 xfs_vm_invalidatepage(
1461 struct page *page,
1462 unsigned long offset)
1463 {
1464 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1465 page->mapping->host, page, offset);
1466 block_invalidatepage(page, offset);
1467 }
1468
1469 const struct address_space_operations xfs_address_space_operations = {
1470 .readpage = xfs_vm_readpage,
1471 .readpages = xfs_vm_readpages,
1472 .writepage = xfs_vm_writepage,
1473 .writepages = xfs_vm_writepages,
1474 .sync_page = block_sync_page,
1475 .releasepage = xfs_vm_releasepage,
1476 .invalidatepage = xfs_vm_invalidatepage,
1477 .prepare_write = xfs_vm_prepare_write,
1478 .commit_write = generic_commit_write,
1479 .bmap = xfs_vm_bmap,
1480 .direct_IO = xfs_vm_direct_IO,
1481 .migratepage = buffer_migrate_page,
1482 };
This page took 0.06213 seconds and 6 git commands to generate.