Merge branch 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_dir2.h"
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
38 #include "xfs_rw.h"
39 #include "xfs_iomap.h"
40 #include <linux/mpage.h>
41 #include <linux/pagevec.h>
42 #include <linux/writeback.h>
43
44 STATIC void
45 xfs_count_page_state(
46 struct page *page,
47 int *delalloc,
48 int *unmapped,
49 int *unwritten)
50 {
51 struct buffer_head *bh, *head;
52
53 *delalloc = *unmapped = *unwritten = 0;
54
55 bh = head = page_buffers(page);
56 do {
57 if (buffer_uptodate(bh) && !buffer_mapped(bh))
58 (*unmapped) = 1;
59 else if (buffer_unwritten(bh))
60 (*unwritten) = 1;
61 else if (buffer_delay(bh))
62 (*delalloc) = 1;
63 } while ((bh = bh->b_this_page) != head);
64 }
65
66 #if defined(XFS_RW_TRACE)
67 void
68 xfs_page_trace(
69 int tag,
70 struct inode *inode,
71 struct page *page,
72 unsigned long pgoff)
73 {
74 xfs_inode_t *ip;
75 bhv_vnode_t *vp = vn_from_inode(inode);
76 loff_t isize = i_size_read(inode);
77 loff_t offset = page_offset(page);
78 int delalloc = -1, unmapped = -1, unwritten = -1;
79
80 if (page_has_buffers(page))
81 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
82
83 ip = xfs_vtoi(vp);
84 if (!ip->i_rwtrace)
85 return;
86
87 ktrace_enter(ip->i_rwtrace,
88 (void *)((unsigned long)tag),
89 (void *)ip,
90 (void *)inode,
91 (void *)page,
92 (void *)pgoff,
93 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
94 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
95 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
96 (void *)((unsigned long)(isize & 0xffffffff)),
97 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
98 (void *)((unsigned long)(offset & 0xffffffff)),
99 (void *)((unsigned long)delalloc),
100 (void *)((unsigned long)unmapped),
101 (void *)((unsigned long)unwritten),
102 (void *)((unsigned long)current_pid()),
103 (void *)NULL);
104 }
105 #else
106 #define xfs_page_trace(tag, inode, page, pgoff)
107 #endif
108
109 /*
110 * Schedule IO completion handling on a xfsdatad if this was
111 * the final hold on this ioend.
112 */
113 STATIC void
114 xfs_finish_ioend(
115 xfs_ioend_t *ioend)
116 {
117 if (atomic_dec_and_test(&ioend->io_remaining))
118 queue_work(xfsdatad_workqueue, &ioend->io_work);
119 }
120
121 /*
122 * We're now finished for good with this ioend structure.
123 * Update the page state via the associated buffer_heads,
124 * release holds on the inode and bio, and finally free
125 * up memory. Do not use the ioend after this.
126 */
127 STATIC void
128 xfs_destroy_ioend(
129 xfs_ioend_t *ioend)
130 {
131 struct buffer_head *bh, *next;
132
133 for (bh = ioend->io_buffer_head; bh; bh = next) {
134 next = bh->b_private;
135 bh->b_end_io(bh, !ioend->io_error);
136 }
137 if (unlikely(ioend->io_error))
138 vn_ioerror(ioend->io_vnode, ioend->io_error, __FILE__,__LINE__);
139 vn_iowake(ioend->io_vnode);
140 mempool_free(ioend, xfs_ioend_pool);
141 }
142
143 /*
144 * Update on-disk file size now that data has been written to disk.
145 * The current in-memory file size is i_size. If a write is beyond
146 * eof io_new_size will be the intended file size until i_size is
147 * updated. If this write does not extend all the way to the valid
148 * file size then restrict this update to the end of the write.
149 */
150 STATIC void
151 xfs_setfilesize(
152 xfs_ioend_t *ioend)
153 {
154 xfs_inode_t *ip;
155 xfs_fsize_t isize;
156 xfs_fsize_t bsize;
157
158 ip = xfs_vtoi(ioend->io_vnode);
159
160 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
161 ASSERT(ioend->io_type != IOMAP_READ);
162
163 if (unlikely(ioend->io_error))
164 return;
165
166 bsize = ioend->io_offset + ioend->io_size;
167
168 xfs_ilock(ip, XFS_ILOCK_EXCL);
169
170 isize = MAX(ip->i_size, ip->i_iocore.io_new_size);
171 isize = MIN(isize, bsize);
172
173 if (ip->i_d.di_size < isize) {
174 ip->i_d.di_size = isize;
175 ip->i_update_core = 1;
176 ip->i_update_size = 1;
177 }
178
179 xfs_iunlock(ip, XFS_ILOCK_EXCL);
180 }
181
182 /*
183 * Buffered IO write completion for delayed allocate extents.
184 */
185 STATIC void
186 xfs_end_bio_delalloc(
187 struct work_struct *work)
188 {
189 xfs_ioend_t *ioend =
190 container_of(work, xfs_ioend_t, io_work);
191
192 xfs_setfilesize(ioend);
193 xfs_destroy_ioend(ioend);
194 }
195
196 /*
197 * Buffered IO write completion for regular, written extents.
198 */
199 STATIC void
200 xfs_end_bio_written(
201 struct work_struct *work)
202 {
203 xfs_ioend_t *ioend =
204 container_of(work, xfs_ioend_t, io_work);
205
206 xfs_setfilesize(ioend);
207 xfs_destroy_ioend(ioend);
208 }
209
210 /*
211 * IO write completion for unwritten extents.
212 *
213 * Issue transactions to convert a buffer range from unwritten
214 * to written extents.
215 */
216 STATIC void
217 xfs_end_bio_unwritten(
218 struct work_struct *work)
219 {
220 xfs_ioend_t *ioend =
221 container_of(work, xfs_ioend_t, io_work);
222 bhv_vnode_t *vp = ioend->io_vnode;
223 xfs_off_t offset = ioend->io_offset;
224 size_t size = ioend->io_size;
225
226 if (likely(!ioend->io_error)) {
227 bhv_vop_bmap(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL);
228 xfs_setfilesize(ioend);
229 }
230 xfs_destroy_ioend(ioend);
231 }
232
233 /*
234 * IO read completion for regular, written extents.
235 */
236 STATIC void
237 xfs_end_bio_read(
238 struct work_struct *work)
239 {
240 xfs_ioend_t *ioend =
241 container_of(work, xfs_ioend_t, io_work);
242
243 xfs_destroy_ioend(ioend);
244 }
245
246 /*
247 * Allocate and initialise an IO completion structure.
248 * We need to track unwritten extent write completion here initially.
249 * We'll need to extend this for updating the ondisk inode size later
250 * (vs. incore size).
251 */
252 STATIC xfs_ioend_t *
253 xfs_alloc_ioend(
254 struct inode *inode,
255 unsigned int type)
256 {
257 xfs_ioend_t *ioend;
258
259 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
260
261 /*
262 * Set the count to 1 initially, which will prevent an I/O
263 * completion callback from happening before we have started
264 * all the I/O from calling the completion routine too early.
265 */
266 atomic_set(&ioend->io_remaining, 1);
267 ioend->io_error = 0;
268 ioend->io_list = NULL;
269 ioend->io_type = type;
270 ioend->io_vnode = vn_from_inode(inode);
271 ioend->io_buffer_head = NULL;
272 ioend->io_buffer_tail = NULL;
273 atomic_inc(&ioend->io_vnode->v_iocount);
274 ioend->io_offset = 0;
275 ioend->io_size = 0;
276
277 if (type == IOMAP_UNWRITTEN)
278 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
279 else if (type == IOMAP_DELAY)
280 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
281 else if (type == IOMAP_READ)
282 INIT_WORK(&ioend->io_work, xfs_end_bio_read);
283 else
284 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
285
286 return ioend;
287 }
288
289 STATIC int
290 xfs_map_blocks(
291 struct inode *inode,
292 loff_t offset,
293 ssize_t count,
294 xfs_iomap_t *mapp,
295 int flags)
296 {
297 bhv_vnode_t *vp = vn_from_inode(inode);
298 int error, nmaps = 1;
299
300 error = bhv_vop_bmap(vp, offset, count, flags, mapp, &nmaps);
301 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
302 VMODIFY(vp);
303 return -error;
304 }
305
306 STATIC_INLINE int
307 xfs_iomap_valid(
308 xfs_iomap_t *iomapp,
309 loff_t offset)
310 {
311 return offset >= iomapp->iomap_offset &&
312 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
313 }
314
315 /*
316 * BIO completion handler for buffered IO.
317 */
318 STATIC int
319 xfs_end_bio(
320 struct bio *bio,
321 unsigned int bytes_done,
322 int error)
323 {
324 xfs_ioend_t *ioend = bio->bi_private;
325
326 if (bio->bi_size)
327 return 1;
328
329 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
330 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
331
332 /* Toss bio and pass work off to an xfsdatad thread */
333 bio->bi_private = NULL;
334 bio->bi_end_io = NULL;
335 bio_put(bio);
336
337 xfs_finish_ioend(ioend);
338 return 0;
339 }
340
341 STATIC void
342 xfs_submit_ioend_bio(
343 xfs_ioend_t *ioend,
344 struct bio *bio)
345 {
346 atomic_inc(&ioend->io_remaining);
347
348 bio->bi_private = ioend;
349 bio->bi_end_io = xfs_end_bio;
350
351 submit_bio(WRITE, bio);
352 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
353 bio_put(bio);
354 }
355
356 STATIC struct bio *
357 xfs_alloc_ioend_bio(
358 struct buffer_head *bh)
359 {
360 struct bio *bio;
361 int nvecs = bio_get_nr_vecs(bh->b_bdev);
362
363 do {
364 bio = bio_alloc(GFP_NOIO, nvecs);
365 nvecs >>= 1;
366 } while (!bio);
367
368 ASSERT(bio->bi_private == NULL);
369 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
370 bio->bi_bdev = bh->b_bdev;
371 bio_get(bio);
372 return bio;
373 }
374
375 STATIC void
376 xfs_start_buffer_writeback(
377 struct buffer_head *bh)
378 {
379 ASSERT(buffer_mapped(bh));
380 ASSERT(buffer_locked(bh));
381 ASSERT(!buffer_delay(bh));
382 ASSERT(!buffer_unwritten(bh));
383
384 mark_buffer_async_write(bh);
385 set_buffer_uptodate(bh);
386 clear_buffer_dirty(bh);
387 }
388
389 STATIC void
390 xfs_start_page_writeback(
391 struct page *page,
392 struct writeback_control *wbc,
393 int clear_dirty,
394 int buffers)
395 {
396 ASSERT(PageLocked(page));
397 ASSERT(!PageWriteback(page));
398 if (clear_dirty)
399 clear_page_dirty_for_io(page);
400 set_page_writeback(page);
401 unlock_page(page);
402 if (!buffers) {
403 end_page_writeback(page);
404 wbc->pages_skipped++; /* We didn't write this page */
405 }
406 }
407
408 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
409 {
410 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
411 }
412
413 /*
414 * Submit all of the bios for all of the ioends we have saved up, covering the
415 * initial writepage page and also any probed pages.
416 *
417 * Because we may have multiple ioends spanning a page, we need to start
418 * writeback on all the buffers before we submit them for I/O. If we mark the
419 * buffers as we got, then we can end up with a page that only has buffers
420 * marked async write and I/O complete on can occur before we mark the other
421 * buffers async write.
422 *
423 * The end result of this is that we trip a bug in end_page_writeback() because
424 * we call it twice for the one page as the code in end_buffer_async_write()
425 * assumes that all buffers on the page are started at the same time.
426 *
427 * The fix is two passes across the ioend list - one to start writeback on the
428 * buffer_heads, and then submit them for I/O on the second pass.
429 */
430 STATIC void
431 xfs_submit_ioend(
432 xfs_ioend_t *ioend)
433 {
434 xfs_ioend_t *head = ioend;
435 xfs_ioend_t *next;
436 struct buffer_head *bh;
437 struct bio *bio;
438 sector_t lastblock = 0;
439
440 /* Pass 1 - start writeback */
441 do {
442 next = ioend->io_list;
443 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
444 xfs_start_buffer_writeback(bh);
445 }
446 } while ((ioend = next) != NULL);
447
448 /* Pass 2 - submit I/O */
449 ioend = head;
450 do {
451 next = ioend->io_list;
452 bio = NULL;
453
454 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
455
456 if (!bio) {
457 retry:
458 bio = xfs_alloc_ioend_bio(bh);
459 } else if (bh->b_blocknr != lastblock + 1) {
460 xfs_submit_ioend_bio(ioend, bio);
461 goto retry;
462 }
463
464 if (bio_add_buffer(bio, bh) != bh->b_size) {
465 xfs_submit_ioend_bio(ioend, bio);
466 goto retry;
467 }
468
469 lastblock = bh->b_blocknr;
470 }
471 if (bio)
472 xfs_submit_ioend_bio(ioend, bio);
473 xfs_finish_ioend(ioend);
474 } while ((ioend = next) != NULL);
475 }
476
477 /*
478 * Cancel submission of all buffer_heads so far in this endio.
479 * Toss the endio too. Only ever called for the initial page
480 * in a writepage request, so only ever one page.
481 */
482 STATIC void
483 xfs_cancel_ioend(
484 xfs_ioend_t *ioend)
485 {
486 xfs_ioend_t *next;
487 struct buffer_head *bh, *next_bh;
488
489 do {
490 next = ioend->io_list;
491 bh = ioend->io_buffer_head;
492 do {
493 next_bh = bh->b_private;
494 clear_buffer_async_write(bh);
495 unlock_buffer(bh);
496 } while ((bh = next_bh) != NULL);
497
498 vn_iowake(ioend->io_vnode);
499 mempool_free(ioend, xfs_ioend_pool);
500 } while ((ioend = next) != NULL);
501 }
502
503 /*
504 * Test to see if we've been building up a completion structure for
505 * earlier buffers -- if so, we try to append to this ioend if we
506 * can, otherwise we finish off any current ioend and start another.
507 * Return true if we've finished the given ioend.
508 */
509 STATIC void
510 xfs_add_to_ioend(
511 struct inode *inode,
512 struct buffer_head *bh,
513 xfs_off_t offset,
514 unsigned int type,
515 xfs_ioend_t **result,
516 int need_ioend)
517 {
518 xfs_ioend_t *ioend = *result;
519
520 if (!ioend || need_ioend || type != ioend->io_type) {
521 xfs_ioend_t *previous = *result;
522
523 ioend = xfs_alloc_ioend(inode, type);
524 ioend->io_offset = offset;
525 ioend->io_buffer_head = bh;
526 ioend->io_buffer_tail = bh;
527 if (previous)
528 previous->io_list = ioend;
529 *result = ioend;
530 } else {
531 ioend->io_buffer_tail->b_private = bh;
532 ioend->io_buffer_tail = bh;
533 }
534
535 bh->b_private = NULL;
536 ioend->io_size += bh->b_size;
537 }
538
539 STATIC void
540 xfs_map_buffer(
541 struct buffer_head *bh,
542 xfs_iomap_t *mp,
543 xfs_off_t offset,
544 uint block_bits)
545 {
546 sector_t bn;
547
548 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
549
550 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
551 ((offset - mp->iomap_offset) >> block_bits);
552
553 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
554
555 bh->b_blocknr = bn;
556 set_buffer_mapped(bh);
557 }
558
559 STATIC void
560 xfs_map_at_offset(
561 struct buffer_head *bh,
562 loff_t offset,
563 int block_bits,
564 xfs_iomap_t *iomapp)
565 {
566 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
567 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
568
569 lock_buffer(bh);
570 xfs_map_buffer(bh, iomapp, offset, block_bits);
571 bh->b_bdev = iomapp->iomap_target->bt_bdev;
572 set_buffer_mapped(bh);
573 clear_buffer_delay(bh);
574 clear_buffer_unwritten(bh);
575 }
576
577 /*
578 * Look for a page at index that is suitable for clustering.
579 */
580 STATIC unsigned int
581 xfs_probe_page(
582 struct page *page,
583 unsigned int pg_offset,
584 int mapped)
585 {
586 int ret = 0;
587
588 if (PageWriteback(page))
589 return 0;
590
591 if (page->mapping && PageDirty(page)) {
592 if (page_has_buffers(page)) {
593 struct buffer_head *bh, *head;
594
595 bh = head = page_buffers(page);
596 do {
597 if (!buffer_uptodate(bh))
598 break;
599 if (mapped != buffer_mapped(bh))
600 break;
601 ret += bh->b_size;
602 if (ret >= pg_offset)
603 break;
604 } while ((bh = bh->b_this_page) != head);
605 } else
606 ret = mapped ? 0 : PAGE_CACHE_SIZE;
607 }
608
609 return ret;
610 }
611
612 STATIC size_t
613 xfs_probe_cluster(
614 struct inode *inode,
615 struct page *startpage,
616 struct buffer_head *bh,
617 struct buffer_head *head,
618 int mapped)
619 {
620 struct pagevec pvec;
621 pgoff_t tindex, tlast, tloff;
622 size_t total = 0;
623 int done = 0, i;
624
625 /* First sum forwards in this page */
626 do {
627 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
628 return total;
629 total += bh->b_size;
630 } while ((bh = bh->b_this_page) != head);
631
632 /* if we reached the end of the page, sum forwards in following pages */
633 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
634 tindex = startpage->index + 1;
635
636 /* Prune this back to avoid pathological behavior */
637 tloff = min(tlast, startpage->index + 64);
638
639 pagevec_init(&pvec, 0);
640 while (!done && tindex <= tloff) {
641 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
642
643 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
644 break;
645
646 for (i = 0; i < pagevec_count(&pvec); i++) {
647 struct page *page = pvec.pages[i];
648 size_t pg_offset, len = 0;
649
650 if (tindex == tlast) {
651 pg_offset =
652 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
653 if (!pg_offset) {
654 done = 1;
655 break;
656 }
657 } else
658 pg_offset = PAGE_CACHE_SIZE;
659
660 if (page->index == tindex && !TestSetPageLocked(page)) {
661 len = xfs_probe_page(page, pg_offset, mapped);
662 unlock_page(page);
663 }
664
665 if (!len) {
666 done = 1;
667 break;
668 }
669
670 total += len;
671 tindex++;
672 }
673
674 pagevec_release(&pvec);
675 cond_resched();
676 }
677
678 return total;
679 }
680
681 /*
682 * Test if a given page is suitable for writing as part of an unwritten
683 * or delayed allocate extent.
684 */
685 STATIC int
686 xfs_is_delayed_page(
687 struct page *page,
688 unsigned int type)
689 {
690 if (PageWriteback(page))
691 return 0;
692
693 if (page->mapping && page_has_buffers(page)) {
694 struct buffer_head *bh, *head;
695 int acceptable = 0;
696
697 bh = head = page_buffers(page);
698 do {
699 if (buffer_unwritten(bh))
700 acceptable = (type == IOMAP_UNWRITTEN);
701 else if (buffer_delay(bh))
702 acceptable = (type == IOMAP_DELAY);
703 else if (buffer_dirty(bh) && buffer_mapped(bh))
704 acceptable = (type == 0);
705 else
706 break;
707 } while ((bh = bh->b_this_page) != head);
708
709 if (acceptable)
710 return 1;
711 }
712
713 return 0;
714 }
715
716 /*
717 * Allocate & map buffers for page given the extent map. Write it out.
718 * except for the original page of a writepage, this is called on
719 * delalloc/unwritten pages only, for the original page it is possible
720 * that the page has no mapping at all.
721 */
722 STATIC int
723 xfs_convert_page(
724 struct inode *inode,
725 struct page *page,
726 loff_t tindex,
727 xfs_iomap_t *mp,
728 xfs_ioend_t **ioendp,
729 struct writeback_control *wbc,
730 int startio,
731 int all_bh)
732 {
733 struct buffer_head *bh, *head;
734 xfs_off_t end_offset;
735 unsigned long p_offset;
736 unsigned int type;
737 int bbits = inode->i_blkbits;
738 int len, page_dirty;
739 int count = 0, done = 0, uptodate = 1;
740 xfs_off_t offset = page_offset(page);
741
742 if (page->index != tindex)
743 goto fail;
744 if (TestSetPageLocked(page))
745 goto fail;
746 if (PageWriteback(page))
747 goto fail_unlock_page;
748 if (page->mapping != inode->i_mapping)
749 goto fail_unlock_page;
750 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
751 goto fail_unlock_page;
752
753 /*
754 * page_dirty is initially a count of buffers on the page before
755 * EOF and is decremented as we move each into a cleanable state.
756 *
757 * Derivation:
758 *
759 * End offset is the highest offset that this page should represent.
760 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
761 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
762 * hence give us the correct page_dirty count. On any other page,
763 * it will be zero and in that case we need page_dirty to be the
764 * count of buffers on the page.
765 */
766 end_offset = min_t(unsigned long long,
767 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
768 i_size_read(inode));
769
770 len = 1 << inode->i_blkbits;
771 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
772 PAGE_CACHE_SIZE);
773 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
774 page_dirty = p_offset / len;
775
776 bh = head = page_buffers(page);
777 do {
778 if (offset >= end_offset)
779 break;
780 if (!buffer_uptodate(bh))
781 uptodate = 0;
782 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
783 done = 1;
784 continue;
785 }
786
787 if (buffer_unwritten(bh) || buffer_delay(bh)) {
788 if (buffer_unwritten(bh))
789 type = IOMAP_UNWRITTEN;
790 else
791 type = IOMAP_DELAY;
792
793 if (!xfs_iomap_valid(mp, offset)) {
794 done = 1;
795 continue;
796 }
797
798 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
799 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
800
801 xfs_map_at_offset(bh, offset, bbits, mp);
802 if (startio) {
803 xfs_add_to_ioend(inode, bh, offset,
804 type, ioendp, done);
805 } else {
806 set_buffer_dirty(bh);
807 unlock_buffer(bh);
808 mark_buffer_dirty(bh);
809 }
810 page_dirty--;
811 count++;
812 } else {
813 type = 0;
814 if (buffer_mapped(bh) && all_bh && startio) {
815 lock_buffer(bh);
816 xfs_add_to_ioend(inode, bh, offset,
817 type, ioendp, done);
818 count++;
819 page_dirty--;
820 } else {
821 done = 1;
822 }
823 }
824 } while (offset += len, (bh = bh->b_this_page) != head);
825
826 if (uptodate && bh == head)
827 SetPageUptodate(page);
828
829 if (startio) {
830 if (count) {
831 struct backing_dev_info *bdi;
832
833 bdi = inode->i_mapping->backing_dev_info;
834 wbc->nr_to_write--;
835 if (bdi_write_congested(bdi)) {
836 wbc->encountered_congestion = 1;
837 done = 1;
838 } else if (wbc->nr_to_write <= 0) {
839 done = 1;
840 }
841 }
842 xfs_start_page_writeback(page, wbc, !page_dirty, count);
843 }
844
845 return done;
846 fail_unlock_page:
847 unlock_page(page);
848 fail:
849 return 1;
850 }
851
852 /*
853 * Convert & write out a cluster of pages in the same extent as defined
854 * by mp and following the start page.
855 */
856 STATIC void
857 xfs_cluster_write(
858 struct inode *inode,
859 pgoff_t tindex,
860 xfs_iomap_t *iomapp,
861 xfs_ioend_t **ioendp,
862 struct writeback_control *wbc,
863 int startio,
864 int all_bh,
865 pgoff_t tlast)
866 {
867 struct pagevec pvec;
868 int done = 0, i;
869
870 pagevec_init(&pvec, 0);
871 while (!done && tindex <= tlast) {
872 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
873
874 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
875 break;
876
877 for (i = 0; i < pagevec_count(&pvec); i++) {
878 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
879 iomapp, ioendp, wbc, startio, all_bh);
880 if (done)
881 break;
882 }
883
884 pagevec_release(&pvec);
885 cond_resched();
886 }
887 }
888
889 /*
890 * Calling this without startio set means we are being asked to make a dirty
891 * page ready for freeing it's buffers. When called with startio set then
892 * we are coming from writepage.
893 *
894 * When called with startio set it is important that we write the WHOLE
895 * page if possible.
896 * The bh->b_state's cannot know if any of the blocks or which block for
897 * that matter are dirty due to mmap writes, and therefore bh uptodate is
898 * only valid if the page itself isn't completely uptodate. Some layers
899 * may clear the page dirty flag prior to calling write page, under the
900 * assumption the entire page will be written out; by not writing out the
901 * whole page the page can be reused before all valid dirty data is
902 * written out. Note: in the case of a page that has been dirty'd by
903 * mapwrite and but partially setup by block_prepare_write the
904 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
905 * valid state, thus the whole page must be written out thing.
906 */
907
908 STATIC int
909 xfs_page_state_convert(
910 struct inode *inode,
911 struct page *page,
912 struct writeback_control *wbc,
913 int startio,
914 int unmapped) /* also implies page uptodate */
915 {
916 struct buffer_head *bh, *head;
917 xfs_iomap_t iomap;
918 xfs_ioend_t *ioend = NULL, *iohead = NULL;
919 loff_t offset;
920 unsigned long p_offset = 0;
921 unsigned int type;
922 __uint64_t end_offset;
923 pgoff_t end_index, last_index, tlast;
924 ssize_t size, len;
925 int flags, err, iomap_valid = 0, uptodate = 1;
926 int page_dirty, count = 0;
927 int trylock = 0;
928 int all_bh = unmapped;
929
930 if (startio) {
931 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
932 trylock |= BMAPI_TRYLOCK;
933 }
934
935 /* Is this page beyond the end of the file? */
936 offset = i_size_read(inode);
937 end_index = offset >> PAGE_CACHE_SHIFT;
938 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
939 if (page->index >= end_index) {
940 if ((page->index >= end_index + 1) ||
941 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
942 if (startio)
943 unlock_page(page);
944 return 0;
945 }
946 }
947
948 /*
949 * page_dirty is initially a count of buffers on the page before
950 * EOF and is decremented as we move each into a cleanable state.
951 *
952 * Derivation:
953 *
954 * End offset is the highest offset that this page should represent.
955 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
956 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
957 * hence give us the correct page_dirty count. On any other page,
958 * it will be zero and in that case we need page_dirty to be the
959 * count of buffers on the page.
960 */
961 end_offset = min_t(unsigned long long,
962 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
963 len = 1 << inode->i_blkbits;
964 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
965 PAGE_CACHE_SIZE);
966 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
967 page_dirty = p_offset / len;
968
969 bh = head = page_buffers(page);
970 offset = page_offset(page);
971 flags = -1;
972 type = IOMAP_READ;
973
974 /* TODO: cleanup count and page_dirty */
975
976 do {
977 if (offset >= end_offset)
978 break;
979 if (!buffer_uptodate(bh))
980 uptodate = 0;
981 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
982 /*
983 * the iomap is actually still valid, but the ioend
984 * isn't. shouldn't happen too often.
985 */
986 iomap_valid = 0;
987 continue;
988 }
989
990 if (iomap_valid)
991 iomap_valid = xfs_iomap_valid(&iomap, offset);
992
993 /*
994 * First case, map an unwritten extent and prepare for
995 * extent state conversion transaction on completion.
996 *
997 * Second case, allocate space for a delalloc buffer.
998 * We can return EAGAIN here in the release page case.
999 *
1000 * Third case, an unmapped buffer was found, and we are
1001 * in a path where we need to write the whole page out.
1002 */
1003 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1004 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1005 !buffer_mapped(bh) && (unmapped || startio))) {
1006 /*
1007 * Make sure we don't use a read-only iomap
1008 */
1009 if (flags == BMAPI_READ)
1010 iomap_valid = 0;
1011
1012 if (buffer_unwritten(bh)) {
1013 type = IOMAP_UNWRITTEN;
1014 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
1015 } else if (buffer_delay(bh)) {
1016 type = IOMAP_DELAY;
1017 flags = BMAPI_ALLOCATE | trylock;
1018 } else {
1019 type = IOMAP_NEW;
1020 flags = BMAPI_WRITE | BMAPI_MMAP;
1021 }
1022
1023 if (!iomap_valid) {
1024 if (type == IOMAP_NEW) {
1025 size = xfs_probe_cluster(inode,
1026 page, bh, head, 0);
1027 } else {
1028 size = len;
1029 }
1030
1031 err = xfs_map_blocks(inode, offset, size,
1032 &iomap, flags);
1033 if (err)
1034 goto error;
1035 iomap_valid = xfs_iomap_valid(&iomap, offset);
1036 }
1037 if (iomap_valid) {
1038 xfs_map_at_offset(bh, offset,
1039 inode->i_blkbits, &iomap);
1040 if (startio) {
1041 xfs_add_to_ioend(inode, bh, offset,
1042 type, &ioend,
1043 !iomap_valid);
1044 } else {
1045 set_buffer_dirty(bh);
1046 unlock_buffer(bh);
1047 mark_buffer_dirty(bh);
1048 }
1049 page_dirty--;
1050 count++;
1051 }
1052 } else if (buffer_uptodate(bh) && startio) {
1053 /*
1054 * we got here because the buffer is already mapped.
1055 * That means it must already have extents allocated
1056 * underneath it. Map the extent by reading it.
1057 */
1058 if (!iomap_valid || type != IOMAP_READ) {
1059 flags = BMAPI_READ;
1060 size = xfs_probe_cluster(inode, page, bh,
1061 head, 1);
1062 err = xfs_map_blocks(inode, offset, size,
1063 &iomap, flags);
1064 if (err)
1065 goto error;
1066 iomap_valid = xfs_iomap_valid(&iomap, offset);
1067 }
1068
1069 type = IOMAP_READ;
1070 if (!test_and_set_bit(BH_Lock, &bh->b_state)) {
1071 ASSERT(buffer_mapped(bh));
1072 if (iomap_valid)
1073 all_bh = 1;
1074 xfs_add_to_ioend(inode, bh, offset, type,
1075 &ioend, !iomap_valid);
1076 page_dirty--;
1077 count++;
1078 } else {
1079 iomap_valid = 0;
1080 }
1081 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1082 (unmapped || startio)) {
1083 iomap_valid = 0;
1084 }
1085
1086 if (!iohead)
1087 iohead = ioend;
1088
1089 } while (offset += len, ((bh = bh->b_this_page) != head));
1090
1091 if (uptodate && bh == head)
1092 SetPageUptodate(page);
1093
1094 if (startio)
1095 xfs_start_page_writeback(page, wbc, 1, count);
1096
1097 if (ioend && iomap_valid) {
1098 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1099 PAGE_CACHE_SHIFT;
1100 tlast = min_t(pgoff_t, offset, last_index);
1101 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
1102 wbc, startio, all_bh, tlast);
1103 }
1104
1105 if (iohead)
1106 xfs_submit_ioend(iohead);
1107
1108 return page_dirty;
1109
1110 error:
1111 if (iohead)
1112 xfs_cancel_ioend(iohead);
1113
1114 /*
1115 * If it's delalloc and we have nowhere to put it,
1116 * throw it away, unless the lower layers told
1117 * us to try again.
1118 */
1119 if (err != -EAGAIN) {
1120 if (!unmapped)
1121 block_invalidatepage(page, 0);
1122 ClearPageUptodate(page);
1123 }
1124 return err;
1125 }
1126
1127 /*
1128 * writepage: Called from one of two places:
1129 *
1130 * 1. we are flushing a delalloc buffer head.
1131 *
1132 * 2. we are writing out a dirty page. Typically the page dirty
1133 * state is cleared before we get here. In this case is it
1134 * conceivable we have no buffer heads.
1135 *
1136 * For delalloc space on the page we need to allocate space and
1137 * flush it. For unmapped buffer heads on the page we should
1138 * allocate space if the page is uptodate. For any other dirty
1139 * buffer heads on the page we should flush them.
1140 *
1141 * If we detect that a transaction would be required to flush
1142 * the page, we have to check the process flags first, if we
1143 * are already in a transaction or disk I/O during allocations
1144 * is off, we need to fail the writepage and redirty the page.
1145 */
1146
1147 STATIC int
1148 xfs_vm_writepage(
1149 struct page *page,
1150 struct writeback_control *wbc)
1151 {
1152 int error;
1153 int need_trans;
1154 int delalloc, unmapped, unwritten;
1155 struct inode *inode = page->mapping->host;
1156
1157 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1158
1159 /*
1160 * We need a transaction if:
1161 * 1. There are delalloc buffers on the page
1162 * 2. The page is uptodate and we have unmapped buffers
1163 * 3. The page is uptodate and we have no buffers
1164 * 4. There are unwritten buffers on the page
1165 */
1166
1167 if (!page_has_buffers(page)) {
1168 unmapped = 1;
1169 need_trans = 1;
1170 } else {
1171 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1172 if (!PageUptodate(page))
1173 unmapped = 0;
1174 need_trans = delalloc + unmapped + unwritten;
1175 }
1176
1177 /*
1178 * If we need a transaction and the process flags say
1179 * we are already in a transaction, or no IO is allowed
1180 * then mark the page dirty again and leave the page
1181 * as is.
1182 */
1183 if (current_test_flags(PF_FSTRANS) && need_trans)
1184 goto out_fail;
1185
1186 /*
1187 * Delay hooking up buffer heads until we have
1188 * made our go/no-go decision.
1189 */
1190 if (!page_has_buffers(page))
1191 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1192
1193 /*
1194 * Convert delayed allocate, unwritten or unmapped space
1195 * to real space and flush out to disk.
1196 */
1197 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1198 if (error == -EAGAIN)
1199 goto out_fail;
1200 if (unlikely(error < 0))
1201 goto out_unlock;
1202
1203 return 0;
1204
1205 out_fail:
1206 redirty_page_for_writepage(wbc, page);
1207 unlock_page(page);
1208 return 0;
1209 out_unlock:
1210 unlock_page(page);
1211 return error;
1212 }
1213
1214 STATIC int
1215 xfs_vm_writepages(
1216 struct address_space *mapping,
1217 struct writeback_control *wbc)
1218 {
1219 struct bhv_vnode *vp = vn_from_inode(mapping->host);
1220
1221 if (VN_TRUNC(vp))
1222 VUNTRUNCATE(vp);
1223 return generic_writepages(mapping, wbc);
1224 }
1225
1226 /*
1227 * Called to move a page into cleanable state - and from there
1228 * to be released. Possibly the page is already clean. We always
1229 * have buffer heads in this call.
1230 *
1231 * Returns 0 if the page is ok to release, 1 otherwise.
1232 *
1233 * Possible scenarios are:
1234 *
1235 * 1. We are being called to release a page which has been written
1236 * to via regular I/O. buffer heads will be dirty and possibly
1237 * delalloc. If no delalloc buffer heads in this case then we
1238 * can just return zero.
1239 *
1240 * 2. We are called to release a page which has been written via
1241 * mmap, all we need to do is ensure there is no delalloc
1242 * state in the buffer heads, if not we can let the caller
1243 * free them and we should come back later via writepage.
1244 */
1245 STATIC int
1246 xfs_vm_releasepage(
1247 struct page *page,
1248 gfp_t gfp_mask)
1249 {
1250 struct inode *inode = page->mapping->host;
1251 int dirty, delalloc, unmapped, unwritten;
1252 struct writeback_control wbc = {
1253 .sync_mode = WB_SYNC_ALL,
1254 .nr_to_write = 1,
1255 };
1256
1257 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
1258
1259 if (!page_has_buffers(page))
1260 return 0;
1261
1262 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1263 if (!delalloc && !unwritten)
1264 goto free_buffers;
1265
1266 if (!(gfp_mask & __GFP_FS))
1267 return 0;
1268
1269 /* If we are already inside a transaction or the thread cannot
1270 * do I/O, we cannot release this page.
1271 */
1272 if (current_test_flags(PF_FSTRANS))
1273 return 0;
1274
1275 /*
1276 * Convert delalloc space to real space, do not flush the
1277 * data out to disk, that will be done by the caller.
1278 * Never need to allocate space here - we will always
1279 * come back to writepage in that case.
1280 */
1281 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1282 if (dirty == 0 && !unwritten)
1283 goto free_buffers;
1284 return 0;
1285
1286 free_buffers:
1287 return try_to_free_buffers(page);
1288 }
1289
1290 STATIC int
1291 __xfs_get_blocks(
1292 struct inode *inode,
1293 sector_t iblock,
1294 struct buffer_head *bh_result,
1295 int create,
1296 int direct,
1297 bmapi_flags_t flags)
1298 {
1299 bhv_vnode_t *vp = vn_from_inode(inode);
1300 xfs_iomap_t iomap;
1301 xfs_off_t offset;
1302 ssize_t size;
1303 int niomap = 1;
1304 int error;
1305
1306 offset = (xfs_off_t)iblock << inode->i_blkbits;
1307 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1308 size = bh_result->b_size;
1309 error = bhv_vop_bmap(vp, offset, size,
1310 create ? flags : BMAPI_READ, &iomap, &niomap);
1311 if (error)
1312 return -error;
1313 if (niomap == 0)
1314 return 0;
1315
1316 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
1317 /*
1318 * For unwritten extents do not report a disk address on
1319 * the read case (treat as if we're reading into a hole).
1320 */
1321 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1322 xfs_map_buffer(bh_result, &iomap, offset,
1323 inode->i_blkbits);
1324 }
1325 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1326 if (direct)
1327 bh_result->b_private = inode;
1328 set_buffer_unwritten(bh_result);
1329 }
1330 }
1331
1332 /*
1333 * If this is a realtime file, data may be on a different device.
1334 * to that pointed to from the buffer_head b_bdev currently.
1335 */
1336 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1337
1338 /*
1339 * If we previously allocated a block out beyond eof and we are now
1340 * coming back to use it then we will need to flag it as new even if it
1341 * has a disk address.
1342 *
1343 * With sub-block writes into unwritten extents we also need to mark
1344 * the buffer as new so that the unwritten parts of the buffer gets
1345 * correctly zeroed.
1346 */
1347 if (create &&
1348 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1349 (offset >= i_size_read(inode)) ||
1350 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1351 set_buffer_new(bh_result);
1352
1353 if (iomap.iomap_flags & IOMAP_DELAY) {
1354 BUG_ON(direct);
1355 if (create) {
1356 set_buffer_uptodate(bh_result);
1357 set_buffer_mapped(bh_result);
1358 set_buffer_delay(bh_result);
1359 }
1360 }
1361
1362 if (direct || size > (1 << inode->i_blkbits)) {
1363 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1364 offset = min_t(xfs_off_t,
1365 iomap.iomap_bsize - iomap.iomap_delta, size);
1366 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1367 }
1368
1369 return 0;
1370 }
1371
1372 int
1373 xfs_get_blocks(
1374 struct inode *inode,
1375 sector_t iblock,
1376 struct buffer_head *bh_result,
1377 int create)
1378 {
1379 return __xfs_get_blocks(inode, iblock,
1380 bh_result, create, 0, BMAPI_WRITE);
1381 }
1382
1383 STATIC int
1384 xfs_get_blocks_direct(
1385 struct inode *inode,
1386 sector_t iblock,
1387 struct buffer_head *bh_result,
1388 int create)
1389 {
1390 return __xfs_get_blocks(inode, iblock,
1391 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1392 }
1393
1394 STATIC void
1395 xfs_end_io_direct(
1396 struct kiocb *iocb,
1397 loff_t offset,
1398 ssize_t size,
1399 void *private)
1400 {
1401 xfs_ioend_t *ioend = iocb->private;
1402
1403 /*
1404 * Non-NULL private data means we need to issue a transaction to
1405 * convert a range from unwritten to written extents. This needs
1406 * to happen from process context but aio+dio I/O completion
1407 * happens from irq context so we need to defer it to a workqueue.
1408 * This is not necessary for synchronous direct I/O, but we do
1409 * it anyway to keep the code uniform and simpler.
1410 *
1411 * The core direct I/O code might be changed to always call the
1412 * completion handler in the future, in which case all this can
1413 * go away.
1414 */
1415 ioend->io_offset = offset;
1416 ioend->io_size = size;
1417 if (ioend->io_type == IOMAP_READ) {
1418 xfs_finish_ioend(ioend);
1419 } else if (private && size > 0) {
1420 xfs_finish_ioend(ioend);
1421 } else {
1422 /*
1423 * A direct I/O write ioend starts it's life in unwritten
1424 * state in case they map an unwritten extent. This write
1425 * didn't map an unwritten extent so switch it's completion
1426 * handler.
1427 */
1428 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
1429 xfs_finish_ioend(ioend);
1430 }
1431
1432 /*
1433 * blockdev_direct_IO can return an error even after the I/O
1434 * completion handler was called. Thus we need to protect
1435 * against double-freeing.
1436 */
1437 iocb->private = NULL;
1438 }
1439
1440 STATIC ssize_t
1441 xfs_vm_direct_IO(
1442 int rw,
1443 struct kiocb *iocb,
1444 const struct iovec *iov,
1445 loff_t offset,
1446 unsigned long nr_segs)
1447 {
1448 struct file *file = iocb->ki_filp;
1449 struct inode *inode = file->f_mapping->host;
1450 bhv_vnode_t *vp = vn_from_inode(inode);
1451 xfs_iomap_t iomap;
1452 int maps = 1;
1453 int error;
1454 ssize_t ret;
1455
1456 error = bhv_vop_bmap(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps);
1457 if (error)
1458 return -error;
1459
1460 if (rw == WRITE) {
1461 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
1462 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1463 iomap.iomap_target->bt_bdev,
1464 iov, offset, nr_segs,
1465 xfs_get_blocks_direct,
1466 xfs_end_io_direct);
1467 } else {
1468 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
1469 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
1470 iomap.iomap_target->bt_bdev,
1471 iov, offset, nr_segs,
1472 xfs_get_blocks_direct,
1473 xfs_end_io_direct);
1474 }
1475
1476 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
1477 xfs_destroy_ioend(iocb->private);
1478 return ret;
1479 }
1480
1481 STATIC int
1482 xfs_vm_prepare_write(
1483 struct file *file,
1484 struct page *page,
1485 unsigned int from,
1486 unsigned int to)
1487 {
1488 return block_prepare_write(page, from, to, xfs_get_blocks);
1489 }
1490
1491 STATIC sector_t
1492 xfs_vm_bmap(
1493 struct address_space *mapping,
1494 sector_t block)
1495 {
1496 struct inode *inode = (struct inode *)mapping->host;
1497 bhv_vnode_t *vp = vn_from_inode(inode);
1498
1499 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
1500 bhv_vop_rwlock(vp, VRWLOCK_READ);
1501 bhv_vop_flush_pages(vp, (xfs_off_t)0, -1, 0, FI_REMAPF);
1502 bhv_vop_rwunlock(vp, VRWLOCK_READ);
1503 return generic_block_bmap(mapping, block, xfs_get_blocks);
1504 }
1505
1506 STATIC int
1507 xfs_vm_readpage(
1508 struct file *unused,
1509 struct page *page)
1510 {
1511 return mpage_readpage(page, xfs_get_blocks);
1512 }
1513
1514 STATIC int
1515 xfs_vm_readpages(
1516 struct file *unused,
1517 struct address_space *mapping,
1518 struct list_head *pages,
1519 unsigned nr_pages)
1520 {
1521 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1522 }
1523
1524 STATIC void
1525 xfs_vm_invalidatepage(
1526 struct page *page,
1527 unsigned long offset)
1528 {
1529 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1530 page->mapping->host, page, offset);
1531 block_invalidatepage(page, offset);
1532 }
1533
1534 const struct address_space_operations xfs_address_space_operations = {
1535 .readpage = xfs_vm_readpage,
1536 .readpages = xfs_vm_readpages,
1537 .writepage = xfs_vm_writepage,
1538 .writepages = xfs_vm_writepages,
1539 .sync_page = block_sync_page,
1540 .releasepage = xfs_vm_releasepage,
1541 .invalidatepage = xfs_vm_invalidatepage,
1542 .prepare_write = xfs_vm_prepare_write,
1543 .commit_write = generic_commit_write,
1544 .bmap = xfs_vm_bmap,
1545 .direct_IO = xfs_vm_direct_IO,
1546 .migratepage = buffer_migrate_page,
1547 };
This page took 0.066317 seconds and 6 git commands to generate.