[PATCH] mark address_space_operations const
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include <linux/stddef.h>
19 #include <linux/errno.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/sysctl.h>
26 #include <linux/proc_fs.h>
27 #include <linux/workqueue.h>
28 #include <linux/percpu.h>
29 #include <linux/blkdev.h>
30 #include <linux/hash.h>
31 #include <linux/kthread.h>
32 #include <linux/migrate.h>
33 #include "xfs_linux.h"
34
35 STATIC kmem_zone_t *xfs_buf_zone;
36 STATIC kmem_shaker_t xfs_buf_shake;
37 STATIC int xfsbufd(void *);
38 STATIC int xfsbufd_wakeup(int, gfp_t);
39 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
40
41 STATIC struct workqueue_struct *xfslogd_workqueue;
42 struct workqueue_struct *xfsdatad_workqueue;
43
44 #ifdef XFS_BUF_TRACE
45 void
46 xfs_buf_trace(
47 xfs_buf_t *bp,
48 char *id,
49 void *data,
50 void *ra)
51 {
52 ktrace_enter(xfs_buf_trace_buf,
53 bp, id,
54 (void *)(unsigned long)bp->b_flags,
55 (void *)(unsigned long)bp->b_hold.counter,
56 (void *)(unsigned long)bp->b_sema.count.counter,
57 (void *)current,
58 data, ra,
59 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
60 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
61 (void *)(unsigned long)bp->b_buffer_length,
62 NULL, NULL, NULL, NULL, NULL);
63 }
64 ktrace_t *xfs_buf_trace_buf;
65 #define XFS_BUF_TRACE_SIZE 4096
66 #define XB_TRACE(bp, id, data) \
67 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
68 #else
69 #define XB_TRACE(bp, id, data) do { } while (0)
70 #endif
71
72 #ifdef XFS_BUF_LOCK_TRACKING
73 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
74 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
75 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
76 #else
77 # define XB_SET_OWNER(bp) do { } while (0)
78 # define XB_CLEAR_OWNER(bp) do { } while (0)
79 # define XB_GET_OWNER(bp) do { } while (0)
80 #endif
81
82 #define xb_to_gfp(flags) \
83 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
84 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
85
86 #define xb_to_km(flags) \
87 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
88
89 #define xfs_buf_allocate(flags) \
90 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
91 #define xfs_buf_deallocate(bp) \
92 kmem_zone_free(xfs_buf_zone, (bp));
93
94 /*
95 * Page Region interfaces.
96 *
97 * For pages in filesystems where the blocksize is smaller than the
98 * pagesize, we use the page->private field (long) to hold a bitmap
99 * of uptodate regions within the page.
100 *
101 * Each such region is "bytes per page / bits per long" bytes long.
102 *
103 * NBPPR == number-of-bytes-per-page-region
104 * BTOPR == bytes-to-page-region (rounded up)
105 * BTOPRT == bytes-to-page-region-truncated (rounded down)
106 */
107 #if (BITS_PER_LONG == 32)
108 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
109 #elif (BITS_PER_LONG == 64)
110 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
111 #else
112 #error BITS_PER_LONG must be 32 or 64
113 #endif
114 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
115 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
116 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
117
118 STATIC unsigned long
119 page_region_mask(
120 size_t offset,
121 size_t length)
122 {
123 unsigned long mask;
124 int first, final;
125
126 first = BTOPR(offset);
127 final = BTOPRT(offset + length - 1);
128 first = min(first, final);
129
130 mask = ~0UL;
131 mask <<= BITS_PER_LONG - (final - first);
132 mask >>= BITS_PER_LONG - (final);
133
134 ASSERT(offset + length <= PAGE_CACHE_SIZE);
135 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
136
137 return mask;
138 }
139
140 STATIC inline void
141 set_page_region(
142 struct page *page,
143 size_t offset,
144 size_t length)
145 {
146 set_page_private(page,
147 page_private(page) | page_region_mask(offset, length));
148 if (page_private(page) == ~0UL)
149 SetPageUptodate(page);
150 }
151
152 STATIC inline int
153 test_page_region(
154 struct page *page,
155 size_t offset,
156 size_t length)
157 {
158 unsigned long mask = page_region_mask(offset, length);
159
160 return (mask && (page_private(page) & mask) == mask);
161 }
162
163 /*
164 * Mapping of multi-page buffers into contiguous virtual space
165 */
166
167 typedef struct a_list {
168 void *vm_addr;
169 struct a_list *next;
170 } a_list_t;
171
172 STATIC a_list_t *as_free_head;
173 STATIC int as_list_len;
174 STATIC DEFINE_SPINLOCK(as_lock);
175
176 /*
177 * Try to batch vunmaps because they are costly.
178 */
179 STATIC void
180 free_address(
181 void *addr)
182 {
183 a_list_t *aentry;
184
185 aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
186 if (likely(aentry)) {
187 spin_lock(&as_lock);
188 aentry->next = as_free_head;
189 aentry->vm_addr = addr;
190 as_free_head = aentry;
191 as_list_len++;
192 spin_unlock(&as_lock);
193 } else {
194 vunmap(addr);
195 }
196 }
197
198 STATIC void
199 purge_addresses(void)
200 {
201 a_list_t *aentry, *old;
202
203 if (as_free_head == NULL)
204 return;
205
206 spin_lock(&as_lock);
207 aentry = as_free_head;
208 as_free_head = NULL;
209 as_list_len = 0;
210 spin_unlock(&as_lock);
211
212 while ((old = aentry) != NULL) {
213 vunmap(aentry->vm_addr);
214 aentry = aentry->next;
215 kfree(old);
216 }
217 }
218
219 /*
220 * Internal xfs_buf_t object manipulation
221 */
222
223 STATIC void
224 _xfs_buf_initialize(
225 xfs_buf_t *bp,
226 xfs_buftarg_t *target,
227 xfs_off_t range_base,
228 size_t range_length,
229 xfs_buf_flags_t flags)
230 {
231 /*
232 * We don't want certain flags to appear in b_flags.
233 */
234 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
235
236 memset(bp, 0, sizeof(xfs_buf_t));
237 atomic_set(&bp->b_hold, 1);
238 init_MUTEX_LOCKED(&bp->b_iodonesema);
239 INIT_LIST_HEAD(&bp->b_list);
240 INIT_LIST_HEAD(&bp->b_hash_list);
241 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
242 XB_SET_OWNER(bp);
243 bp->b_target = target;
244 bp->b_file_offset = range_base;
245 /*
246 * Set buffer_length and count_desired to the same value initially.
247 * I/O routines should use count_desired, which will be the same in
248 * most cases but may be reset (e.g. XFS recovery).
249 */
250 bp->b_buffer_length = bp->b_count_desired = range_length;
251 bp->b_flags = flags;
252 bp->b_bn = XFS_BUF_DADDR_NULL;
253 atomic_set(&bp->b_pin_count, 0);
254 init_waitqueue_head(&bp->b_waiters);
255
256 XFS_STATS_INC(xb_create);
257 XB_TRACE(bp, "initialize", target);
258 }
259
260 /*
261 * Allocate a page array capable of holding a specified number
262 * of pages, and point the page buf at it.
263 */
264 STATIC int
265 _xfs_buf_get_pages(
266 xfs_buf_t *bp,
267 int page_count,
268 xfs_buf_flags_t flags)
269 {
270 /* Make sure that we have a page list */
271 if (bp->b_pages == NULL) {
272 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
273 bp->b_page_count = page_count;
274 if (page_count <= XB_PAGES) {
275 bp->b_pages = bp->b_page_array;
276 } else {
277 bp->b_pages = kmem_alloc(sizeof(struct page *) *
278 page_count, xb_to_km(flags));
279 if (bp->b_pages == NULL)
280 return -ENOMEM;
281 }
282 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
283 }
284 return 0;
285 }
286
287 /*
288 * Frees b_pages if it was allocated.
289 */
290 STATIC void
291 _xfs_buf_free_pages(
292 xfs_buf_t *bp)
293 {
294 if (bp->b_pages != bp->b_page_array) {
295 kmem_free(bp->b_pages,
296 bp->b_page_count * sizeof(struct page *));
297 }
298 }
299
300 /*
301 * Releases the specified buffer.
302 *
303 * The modification state of any associated pages is left unchanged.
304 * The buffer most not be on any hash - use xfs_buf_rele instead for
305 * hashed and refcounted buffers
306 */
307 void
308 xfs_buf_free(
309 xfs_buf_t *bp)
310 {
311 XB_TRACE(bp, "free", 0);
312
313 ASSERT(list_empty(&bp->b_hash_list));
314
315 if (bp->b_flags & _XBF_PAGE_CACHE) {
316 uint i;
317
318 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
319 free_address(bp->b_addr - bp->b_offset);
320
321 for (i = 0; i < bp->b_page_count; i++)
322 page_cache_release(bp->b_pages[i]);
323 _xfs_buf_free_pages(bp);
324 } else if (bp->b_flags & _XBF_KMEM_ALLOC) {
325 /*
326 * XXX(hch): bp->b_count_desired might be incorrect (see
327 * xfs_buf_associate_memory for details), but fortunately
328 * the Linux version of kmem_free ignores the len argument..
329 */
330 kmem_free(bp->b_addr, bp->b_count_desired);
331 _xfs_buf_free_pages(bp);
332 }
333
334 xfs_buf_deallocate(bp);
335 }
336
337 /*
338 * Finds all pages for buffer in question and builds it's page list.
339 */
340 STATIC int
341 _xfs_buf_lookup_pages(
342 xfs_buf_t *bp,
343 uint flags)
344 {
345 struct address_space *mapping = bp->b_target->bt_mapping;
346 size_t blocksize = bp->b_target->bt_bsize;
347 size_t size = bp->b_count_desired;
348 size_t nbytes, offset;
349 gfp_t gfp_mask = xb_to_gfp(flags);
350 unsigned short page_count, i;
351 pgoff_t first;
352 xfs_off_t end;
353 int error;
354
355 end = bp->b_file_offset + bp->b_buffer_length;
356 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
357
358 error = _xfs_buf_get_pages(bp, page_count, flags);
359 if (unlikely(error))
360 return error;
361 bp->b_flags |= _XBF_PAGE_CACHE;
362
363 offset = bp->b_offset;
364 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
365
366 for (i = 0; i < bp->b_page_count; i++) {
367 struct page *page;
368 uint retries = 0;
369
370 retry:
371 page = find_or_create_page(mapping, first + i, gfp_mask);
372 if (unlikely(page == NULL)) {
373 if (flags & XBF_READ_AHEAD) {
374 bp->b_page_count = i;
375 for (i = 0; i < bp->b_page_count; i++)
376 unlock_page(bp->b_pages[i]);
377 return -ENOMEM;
378 }
379
380 /*
381 * This could deadlock.
382 *
383 * But until all the XFS lowlevel code is revamped to
384 * handle buffer allocation failures we can't do much.
385 */
386 if (!(++retries % 100))
387 printk(KERN_ERR
388 "XFS: possible memory allocation "
389 "deadlock in %s (mode:0x%x)\n",
390 __FUNCTION__, gfp_mask);
391
392 XFS_STATS_INC(xb_page_retries);
393 xfsbufd_wakeup(0, gfp_mask);
394 blk_congestion_wait(WRITE, HZ/50);
395 goto retry;
396 }
397
398 XFS_STATS_INC(xb_page_found);
399
400 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
401 size -= nbytes;
402
403 if (!PageUptodate(page)) {
404 page_count--;
405 if (blocksize >= PAGE_CACHE_SIZE) {
406 if (flags & XBF_READ)
407 bp->b_locked = 1;
408 } else if (!PagePrivate(page)) {
409 if (test_page_region(page, offset, nbytes))
410 page_count++;
411 }
412 }
413
414 bp->b_pages[i] = page;
415 offset = 0;
416 }
417
418 if (!bp->b_locked) {
419 for (i = 0; i < bp->b_page_count; i++)
420 unlock_page(bp->b_pages[i]);
421 }
422
423 if (page_count == bp->b_page_count)
424 bp->b_flags |= XBF_DONE;
425
426 XB_TRACE(bp, "lookup_pages", (long)page_count);
427 return error;
428 }
429
430 /*
431 * Map buffer into kernel address-space if nessecary.
432 */
433 STATIC int
434 _xfs_buf_map_pages(
435 xfs_buf_t *bp,
436 uint flags)
437 {
438 /* A single page buffer is always mappable */
439 if (bp->b_page_count == 1) {
440 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
441 bp->b_flags |= XBF_MAPPED;
442 } else if (flags & XBF_MAPPED) {
443 if (as_list_len > 64)
444 purge_addresses();
445 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
446 VM_MAP, PAGE_KERNEL);
447 if (unlikely(bp->b_addr == NULL))
448 return -ENOMEM;
449 bp->b_addr += bp->b_offset;
450 bp->b_flags |= XBF_MAPPED;
451 }
452
453 return 0;
454 }
455
456 /*
457 * Finding and Reading Buffers
458 */
459
460 /*
461 * Look up, and creates if absent, a lockable buffer for
462 * a given range of an inode. The buffer is returned
463 * locked. If other overlapping buffers exist, they are
464 * released before the new buffer is created and locked,
465 * which may imply that this call will block until those buffers
466 * are unlocked. No I/O is implied by this call.
467 */
468 xfs_buf_t *
469 _xfs_buf_find(
470 xfs_buftarg_t *btp, /* block device target */
471 xfs_off_t ioff, /* starting offset of range */
472 size_t isize, /* length of range */
473 xfs_buf_flags_t flags,
474 xfs_buf_t *new_bp)
475 {
476 xfs_off_t range_base;
477 size_t range_length;
478 xfs_bufhash_t *hash;
479 xfs_buf_t *bp, *n;
480
481 range_base = (ioff << BBSHIFT);
482 range_length = (isize << BBSHIFT);
483
484 /* Check for IOs smaller than the sector size / not sector aligned */
485 ASSERT(!(range_length < (1 << btp->bt_sshift)));
486 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
487
488 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
489
490 spin_lock(&hash->bh_lock);
491
492 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
493 ASSERT(btp == bp->b_target);
494 if (bp->b_file_offset == range_base &&
495 bp->b_buffer_length == range_length) {
496 /*
497 * If we look at something, bring it to the
498 * front of the list for next time.
499 */
500 atomic_inc(&bp->b_hold);
501 list_move(&bp->b_hash_list, &hash->bh_list);
502 goto found;
503 }
504 }
505
506 /* No match found */
507 if (new_bp) {
508 _xfs_buf_initialize(new_bp, btp, range_base,
509 range_length, flags);
510 new_bp->b_hash = hash;
511 list_add(&new_bp->b_hash_list, &hash->bh_list);
512 } else {
513 XFS_STATS_INC(xb_miss_locked);
514 }
515
516 spin_unlock(&hash->bh_lock);
517 return new_bp;
518
519 found:
520 spin_unlock(&hash->bh_lock);
521
522 /* Attempt to get the semaphore without sleeping,
523 * if this does not work then we need to drop the
524 * spinlock and do a hard attempt on the semaphore.
525 */
526 if (down_trylock(&bp->b_sema)) {
527 if (!(flags & XBF_TRYLOCK)) {
528 /* wait for buffer ownership */
529 XB_TRACE(bp, "get_lock", 0);
530 xfs_buf_lock(bp);
531 XFS_STATS_INC(xb_get_locked_waited);
532 } else {
533 /* We asked for a trylock and failed, no need
534 * to look at file offset and length here, we
535 * know that this buffer at least overlaps our
536 * buffer and is locked, therefore our buffer
537 * either does not exist, or is this buffer.
538 */
539 xfs_buf_rele(bp);
540 XFS_STATS_INC(xb_busy_locked);
541 return NULL;
542 }
543 } else {
544 /* trylock worked */
545 XB_SET_OWNER(bp);
546 }
547
548 if (bp->b_flags & XBF_STALE) {
549 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
550 bp->b_flags &= XBF_MAPPED;
551 }
552 XB_TRACE(bp, "got_lock", 0);
553 XFS_STATS_INC(xb_get_locked);
554 return bp;
555 }
556
557 /*
558 * Assembles a buffer covering the specified range.
559 * Storage in memory for all portions of the buffer will be allocated,
560 * although backing storage may not be.
561 */
562 xfs_buf_t *
563 xfs_buf_get_flags(
564 xfs_buftarg_t *target,/* target for buffer */
565 xfs_off_t ioff, /* starting offset of range */
566 size_t isize, /* length of range */
567 xfs_buf_flags_t flags)
568 {
569 xfs_buf_t *bp, *new_bp;
570 int error = 0, i;
571
572 new_bp = xfs_buf_allocate(flags);
573 if (unlikely(!new_bp))
574 return NULL;
575
576 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
577 if (bp == new_bp) {
578 error = _xfs_buf_lookup_pages(bp, flags);
579 if (error)
580 goto no_buffer;
581 } else {
582 xfs_buf_deallocate(new_bp);
583 if (unlikely(bp == NULL))
584 return NULL;
585 }
586
587 for (i = 0; i < bp->b_page_count; i++)
588 mark_page_accessed(bp->b_pages[i]);
589
590 if (!(bp->b_flags & XBF_MAPPED)) {
591 error = _xfs_buf_map_pages(bp, flags);
592 if (unlikely(error)) {
593 printk(KERN_WARNING "%s: failed to map pages\n",
594 __FUNCTION__);
595 goto no_buffer;
596 }
597 }
598
599 XFS_STATS_INC(xb_get);
600
601 /*
602 * Always fill in the block number now, the mapped cases can do
603 * their own overlay of this later.
604 */
605 bp->b_bn = ioff;
606 bp->b_count_desired = bp->b_buffer_length;
607
608 XB_TRACE(bp, "get", (unsigned long)flags);
609 return bp;
610
611 no_buffer:
612 if (flags & (XBF_LOCK | XBF_TRYLOCK))
613 xfs_buf_unlock(bp);
614 xfs_buf_rele(bp);
615 return NULL;
616 }
617
618 xfs_buf_t *
619 xfs_buf_read_flags(
620 xfs_buftarg_t *target,
621 xfs_off_t ioff,
622 size_t isize,
623 xfs_buf_flags_t flags)
624 {
625 xfs_buf_t *bp;
626
627 flags |= XBF_READ;
628
629 bp = xfs_buf_get_flags(target, ioff, isize, flags);
630 if (bp) {
631 if (!XFS_BUF_ISDONE(bp)) {
632 XB_TRACE(bp, "read", (unsigned long)flags);
633 XFS_STATS_INC(xb_get_read);
634 xfs_buf_iostart(bp, flags);
635 } else if (flags & XBF_ASYNC) {
636 XB_TRACE(bp, "read_async", (unsigned long)flags);
637 /*
638 * Read ahead call which is already satisfied,
639 * drop the buffer
640 */
641 goto no_buffer;
642 } else {
643 XB_TRACE(bp, "read_done", (unsigned long)flags);
644 /* We do not want read in the flags */
645 bp->b_flags &= ~XBF_READ;
646 }
647 }
648
649 return bp;
650
651 no_buffer:
652 if (flags & (XBF_LOCK | XBF_TRYLOCK))
653 xfs_buf_unlock(bp);
654 xfs_buf_rele(bp);
655 return NULL;
656 }
657
658 /*
659 * If we are not low on memory then do the readahead in a deadlock
660 * safe manner.
661 */
662 void
663 xfs_buf_readahead(
664 xfs_buftarg_t *target,
665 xfs_off_t ioff,
666 size_t isize,
667 xfs_buf_flags_t flags)
668 {
669 struct backing_dev_info *bdi;
670
671 bdi = target->bt_mapping->backing_dev_info;
672 if (bdi_read_congested(bdi))
673 return;
674
675 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
676 xfs_buf_read_flags(target, ioff, isize, flags);
677 }
678
679 xfs_buf_t *
680 xfs_buf_get_empty(
681 size_t len,
682 xfs_buftarg_t *target)
683 {
684 xfs_buf_t *bp;
685
686 bp = xfs_buf_allocate(0);
687 if (bp)
688 _xfs_buf_initialize(bp, target, 0, len, 0);
689 return bp;
690 }
691
692 static inline struct page *
693 mem_to_page(
694 void *addr)
695 {
696 if (((unsigned long)addr < VMALLOC_START) ||
697 ((unsigned long)addr >= VMALLOC_END)) {
698 return virt_to_page(addr);
699 } else {
700 return vmalloc_to_page(addr);
701 }
702 }
703
704 int
705 xfs_buf_associate_memory(
706 xfs_buf_t *bp,
707 void *mem,
708 size_t len)
709 {
710 int rval;
711 int i = 0;
712 size_t ptr;
713 size_t end, end_cur;
714 off_t offset;
715 int page_count;
716
717 page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
718 offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
719 if (offset && (len > PAGE_CACHE_SIZE))
720 page_count++;
721
722 /* Free any previous set of page pointers */
723 if (bp->b_pages)
724 _xfs_buf_free_pages(bp);
725
726 bp->b_pages = NULL;
727 bp->b_addr = mem;
728
729 rval = _xfs_buf_get_pages(bp, page_count, 0);
730 if (rval)
731 return rval;
732
733 bp->b_offset = offset;
734 ptr = (size_t) mem & PAGE_CACHE_MASK;
735 end = PAGE_CACHE_ALIGN((size_t) mem + len);
736 end_cur = end;
737 /* set up first page */
738 bp->b_pages[0] = mem_to_page(mem);
739
740 ptr += PAGE_CACHE_SIZE;
741 bp->b_page_count = ++i;
742 while (ptr < end) {
743 bp->b_pages[i] = mem_to_page((void *)ptr);
744 bp->b_page_count = ++i;
745 ptr += PAGE_CACHE_SIZE;
746 }
747 bp->b_locked = 0;
748
749 bp->b_count_desired = bp->b_buffer_length = len;
750 bp->b_flags |= XBF_MAPPED;
751
752 return 0;
753 }
754
755 xfs_buf_t *
756 xfs_buf_get_noaddr(
757 size_t len,
758 xfs_buftarg_t *target)
759 {
760 size_t malloc_len = len;
761 xfs_buf_t *bp;
762 void *data;
763 int error;
764
765 bp = xfs_buf_allocate(0);
766 if (unlikely(bp == NULL))
767 goto fail;
768 _xfs_buf_initialize(bp, target, 0, len, 0);
769
770 try_again:
771 data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
772 if (unlikely(data == NULL))
773 goto fail_free_buf;
774
775 /* check whether alignment matches.. */
776 if ((__psunsigned_t)data !=
777 ((__psunsigned_t)data & ~target->bt_smask)) {
778 /* .. else double the size and try again */
779 kmem_free(data, malloc_len);
780 malloc_len <<= 1;
781 goto try_again;
782 }
783
784 error = xfs_buf_associate_memory(bp, data, len);
785 if (error)
786 goto fail_free_mem;
787 bp->b_flags |= _XBF_KMEM_ALLOC;
788
789 xfs_buf_unlock(bp);
790
791 XB_TRACE(bp, "no_daddr", data);
792 return bp;
793 fail_free_mem:
794 kmem_free(data, malloc_len);
795 fail_free_buf:
796 xfs_buf_free(bp);
797 fail:
798 return NULL;
799 }
800
801 /*
802 * Increment reference count on buffer, to hold the buffer concurrently
803 * with another thread which may release (free) the buffer asynchronously.
804 * Must hold the buffer already to call this function.
805 */
806 void
807 xfs_buf_hold(
808 xfs_buf_t *bp)
809 {
810 atomic_inc(&bp->b_hold);
811 XB_TRACE(bp, "hold", 0);
812 }
813
814 /*
815 * Releases a hold on the specified buffer. If the
816 * the hold count is 1, calls xfs_buf_free.
817 */
818 void
819 xfs_buf_rele(
820 xfs_buf_t *bp)
821 {
822 xfs_bufhash_t *hash = bp->b_hash;
823
824 XB_TRACE(bp, "rele", bp->b_relse);
825
826 if (unlikely(!hash)) {
827 ASSERT(!bp->b_relse);
828 if (atomic_dec_and_test(&bp->b_hold))
829 xfs_buf_free(bp);
830 return;
831 }
832
833 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
834 if (bp->b_relse) {
835 atomic_inc(&bp->b_hold);
836 spin_unlock(&hash->bh_lock);
837 (*(bp->b_relse)) (bp);
838 } else if (bp->b_flags & XBF_FS_MANAGED) {
839 spin_unlock(&hash->bh_lock);
840 } else {
841 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
842 list_del_init(&bp->b_hash_list);
843 spin_unlock(&hash->bh_lock);
844 xfs_buf_free(bp);
845 }
846 } else {
847 /*
848 * Catch reference count leaks
849 */
850 ASSERT(atomic_read(&bp->b_hold) >= 0);
851 }
852 }
853
854
855 /*
856 * Mutual exclusion on buffers. Locking model:
857 *
858 * Buffers associated with inodes for which buffer locking
859 * is not enabled are not protected by semaphores, and are
860 * assumed to be exclusively owned by the caller. There is a
861 * spinlock in the buffer, used by the caller when concurrent
862 * access is possible.
863 */
864
865 /*
866 * Locks a buffer object, if it is not already locked.
867 * Note that this in no way locks the underlying pages, so it is only
868 * useful for synchronizing concurrent use of buffer objects, not for
869 * synchronizing independent access to the underlying pages.
870 */
871 int
872 xfs_buf_cond_lock(
873 xfs_buf_t *bp)
874 {
875 int locked;
876
877 locked = down_trylock(&bp->b_sema) == 0;
878 if (locked) {
879 XB_SET_OWNER(bp);
880 }
881 XB_TRACE(bp, "cond_lock", (long)locked);
882 return locked ? 0 : -EBUSY;
883 }
884
885 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
886 int
887 xfs_buf_lock_value(
888 xfs_buf_t *bp)
889 {
890 return atomic_read(&bp->b_sema.count);
891 }
892 #endif
893
894 /*
895 * Locks a buffer object.
896 * Note that this in no way locks the underlying pages, so it is only
897 * useful for synchronizing concurrent use of buffer objects, not for
898 * synchronizing independent access to the underlying pages.
899 */
900 void
901 xfs_buf_lock(
902 xfs_buf_t *bp)
903 {
904 XB_TRACE(bp, "lock", 0);
905 if (atomic_read(&bp->b_io_remaining))
906 blk_run_address_space(bp->b_target->bt_mapping);
907 down(&bp->b_sema);
908 XB_SET_OWNER(bp);
909 XB_TRACE(bp, "locked", 0);
910 }
911
912 /*
913 * Releases the lock on the buffer object.
914 * If the buffer is marked delwri but is not queued, do so before we
915 * unlock the buffer as we need to set flags correctly. We also need to
916 * take a reference for the delwri queue because the unlocker is going to
917 * drop their's and they don't know we just queued it.
918 */
919 void
920 xfs_buf_unlock(
921 xfs_buf_t *bp)
922 {
923 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
924 atomic_inc(&bp->b_hold);
925 bp->b_flags |= XBF_ASYNC;
926 xfs_buf_delwri_queue(bp, 0);
927 }
928
929 XB_CLEAR_OWNER(bp);
930 up(&bp->b_sema);
931 XB_TRACE(bp, "unlock", 0);
932 }
933
934
935 /*
936 * Pinning Buffer Storage in Memory
937 * Ensure that no attempt to force a buffer to disk will succeed.
938 */
939 void
940 xfs_buf_pin(
941 xfs_buf_t *bp)
942 {
943 atomic_inc(&bp->b_pin_count);
944 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
945 }
946
947 void
948 xfs_buf_unpin(
949 xfs_buf_t *bp)
950 {
951 if (atomic_dec_and_test(&bp->b_pin_count))
952 wake_up_all(&bp->b_waiters);
953 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
954 }
955
956 int
957 xfs_buf_ispin(
958 xfs_buf_t *bp)
959 {
960 return atomic_read(&bp->b_pin_count);
961 }
962
963 STATIC void
964 xfs_buf_wait_unpin(
965 xfs_buf_t *bp)
966 {
967 DECLARE_WAITQUEUE (wait, current);
968
969 if (atomic_read(&bp->b_pin_count) == 0)
970 return;
971
972 add_wait_queue(&bp->b_waiters, &wait);
973 for (;;) {
974 set_current_state(TASK_UNINTERRUPTIBLE);
975 if (atomic_read(&bp->b_pin_count) == 0)
976 break;
977 if (atomic_read(&bp->b_io_remaining))
978 blk_run_address_space(bp->b_target->bt_mapping);
979 schedule();
980 }
981 remove_wait_queue(&bp->b_waiters, &wait);
982 set_current_state(TASK_RUNNING);
983 }
984
985 /*
986 * Buffer Utility Routines
987 */
988
989 STATIC void
990 xfs_buf_iodone_work(
991 void *v)
992 {
993 xfs_buf_t *bp = (xfs_buf_t *)v;
994
995 if (bp->b_iodone)
996 (*(bp->b_iodone))(bp);
997 else if (bp->b_flags & XBF_ASYNC)
998 xfs_buf_relse(bp);
999 }
1000
1001 void
1002 xfs_buf_ioend(
1003 xfs_buf_t *bp,
1004 int schedule)
1005 {
1006 bp->b_flags &= ~(XBF_READ | XBF_WRITE);
1007 if (bp->b_error == 0)
1008 bp->b_flags |= XBF_DONE;
1009
1010 XB_TRACE(bp, "iodone", bp->b_iodone);
1011
1012 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1013 if (schedule) {
1014 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work, bp);
1015 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1016 } else {
1017 xfs_buf_iodone_work(bp);
1018 }
1019 } else {
1020 up(&bp->b_iodonesema);
1021 }
1022 }
1023
1024 void
1025 xfs_buf_ioerror(
1026 xfs_buf_t *bp,
1027 int error)
1028 {
1029 ASSERT(error >= 0 && error <= 0xffff);
1030 bp->b_error = (unsigned short)error;
1031 XB_TRACE(bp, "ioerror", (unsigned long)error);
1032 }
1033
1034 /*
1035 * Initiate I/O on a buffer, based on the flags supplied.
1036 * The b_iodone routine in the buffer supplied will only be called
1037 * when all of the subsidiary I/O requests, if any, have been completed.
1038 */
1039 int
1040 xfs_buf_iostart(
1041 xfs_buf_t *bp,
1042 xfs_buf_flags_t flags)
1043 {
1044 int status = 0;
1045
1046 XB_TRACE(bp, "iostart", (unsigned long)flags);
1047
1048 if (flags & XBF_DELWRI) {
1049 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1050 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1051 xfs_buf_delwri_queue(bp, 1);
1052 return status;
1053 }
1054
1055 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1056 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1057 bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1058 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1059
1060 BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1061
1062 /* For writes allow an alternate strategy routine to precede
1063 * the actual I/O request (which may not be issued at all in
1064 * a shutdown situation, for example).
1065 */
1066 status = (flags & XBF_WRITE) ?
1067 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1068
1069 /* Wait for I/O if we are not an async request.
1070 * Note: async I/O request completion will release the buffer,
1071 * and that can already be done by this point. So using the
1072 * buffer pointer from here on, after async I/O, is invalid.
1073 */
1074 if (!status && !(flags & XBF_ASYNC))
1075 status = xfs_buf_iowait(bp);
1076
1077 return status;
1078 }
1079
1080 STATIC __inline__ int
1081 _xfs_buf_iolocked(
1082 xfs_buf_t *bp)
1083 {
1084 ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE));
1085 if (bp->b_flags & XBF_READ)
1086 return bp->b_locked;
1087 return 0;
1088 }
1089
1090 STATIC __inline__ void
1091 _xfs_buf_ioend(
1092 xfs_buf_t *bp,
1093 int schedule)
1094 {
1095 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1096 bp->b_locked = 0;
1097 xfs_buf_ioend(bp, schedule);
1098 }
1099 }
1100
1101 STATIC int
1102 xfs_buf_bio_end_io(
1103 struct bio *bio,
1104 unsigned int bytes_done,
1105 int error)
1106 {
1107 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1108 unsigned int blocksize = bp->b_target->bt_bsize;
1109 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1110
1111 if (bio->bi_size)
1112 return 1;
1113
1114 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1115 bp->b_error = EIO;
1116
1117 do {
1118 struct page *page = bvec->bv_page;
1119
1120 if (unlikely(bp->b_error)) {
1121 if (bp->b_flags & XBF_READ)
1122 ClearPageUptodate(page);
1123 SetPageError(page);
1124 } else if (blocksize >= PAGE_CACHE_SIZE) {
1125 SetPageUptodate(page);
1126 } else if (!PagePrivate(page) &&
1127 (bp->b_flags & _XBF_PAGE_CACHE)) {
1128 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1129 }
1130
1131 if (--bvec >= bio->bi_io_vec)
1132 prefetchw(&bvec->bv_page->flags);
1133
1134 if (_xfs_buf_iolocked(bp)) {
1135 unlock_page(page);
1136 }
1137 } while (bvec >= bio->bi_io_vec);
1138
1139 _xfs_buf_ioend(bp, 1);
1140 bio_put(bio);
1141 return 0;
1142 }
1143
1144 STATIC void
1145 _xfs_buf_ioapply(
1146 xfs_buf_t *bp)
1147 {
1148 int i, rw, map_i, total_nr_pages, nr_pages;
1149 struct bio *bio;
1150 int offset = bp->b_offset;
1151 int size = bp->b_count_desired;
1152 sector_t sector = bp->b_bn;
1153 unsigned int blocksize = bp->b_target->bt_bsize;
1154 int locking = _xfs_buf_iolocked(bp);
1155
1156 total_nr_pages = bp->b_page_count;
1157 map_i = 0;
1158
1159 if (bp->b_flags & _XBF_RUN_QUEUES) {
1160 bp->b_flags &= ~_XBF_RUN_QUEUES;
1161 rw = (bp->b_flags & XBF_READ) ? READ_SYNC : WRITE_SYNC;
1162 } else {
1163 rw = (bp->b_flags & XBF_READ) ? READ : WRITE;
1164 }
1165
1166 if (bp->b_flags & XBF_ORDERED) {
1167 ASSERT(!(bp->b_flags & XBF_READ));
1168 rw = WRITE_BARRIER;
1169 }
1170
1171 /* Special code path for reading a sub page size buffer in --
1172 * we populate up the whole page, and hence the other metadata
1173 * in the same page. This optimization is only valid when the
1174 * filesystem block size is not smaller than the page size.
1175 */
1176 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1177 (bp->b_flags & XBF_READ) && locking &&
1178 (blocksize >= PAGE_CACHE_SIZE)) {
1179 bio = bio_alloc(GFP_NOIO, 1);
1180
1181 bio->bi_bdev = bp->b_target->bt_bdev;
1182 bio->bi_sector = sector - (offset >> BBSHIFT);
1183 bio->bi_end_io = xfs_buf_bio_end_io;
1184 bio->bi_private = bp;
1185
1186 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1187 size = 0;
1188
1189 atomic_inc(&bp->b_io_remaining);
1190
1191 goto submit_io;
1192 }
1193
1194 /* Lock down the pages which we need to for the request */
1195 if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) {
1196 for (i = 0; size; i++) {
1197 int nbytes = PAGE_CACHE_SIZE - offset;
1198 struct page *page = bp->b_pages[i];
1199
1200 if (nbytes > size)
1201 nbytes = size;
1202
1203 lock_page(page);
1204
1205 size -= nbytes;
1206 offset = 0;
1207 }
1208 offset = bp->b_offset;
1209 size = bp->b_count_desired;
1210 }
1211
1212 next_chunk:
1213 atomic_inc(&bp->b_io_remaining);
1214 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1215 if (nr_pages > total_nr_pages)
1216 nr_pages = total_nr_pages;
1217
1218 bio = bio_alloc(GFP_NOIO, nr_pages);
1219 bio->bi_bdev = bp->b_target->bt_bdev;
1220 bio->bi_sector = sector;
1221 bio->bi_end_io = xfs_buf_bio_end_io;
1222 bio->bi_private = bp;
1223
1224 for (; size && nr_pages; nr_pages--, map_i++) {
1225 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1226
1227 if (nbytes > size)
1228 nbytes = size;
1229
1230 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1231 if (rbytes < nbytes)
1232 break;
1233
1234 offset = 0;
1235 sector += nbytes >> BBSHIFT;
1236 size -= nbytes;
1237 total_nr_pages--;
1238 }
1239
1240 submit_io:
1241 if (likely(bio->bi_size)) {
1242 submit_bio(rw, bio);
1243 if (size)
1244 goto next_chunk;
1245 } else {
1246 bio_put(bio);
1247 xfs_buf_ioerror(bp, EIO);
1248 }
1249 }
1250
1251 int
1252 xfs_buf_iorequest(
1253 xfs_buf_t *bp)
1254 {
1255 XB_TRACE(bp, "iorequest", 0);
1256
1257 if (bp->b_flags & XBF_DELWRI) {
1258 xfs_buf_delwri_queue(bp, 1);
1259 return 0;
1260 }
1261
1262 if (bp->b_flags & XBF_WRITE) {
1263 xfs_buf_wait_unpin(bp);
1264 }
1265
1266 xfs_buf_hold(bp);
1267
1268 /* Set the count to 1 initially, this will stop an I/O
1269 * completion callout which happens before we have started
1270 * all the I/O from calling xfs_buf_ioend too early.
1271 */
1272 atomic_set(&bp->b_io_remaining, 1);
1273 _xfs_buf_ioapply(bp);
1274 _xfs_buf_ioend(bp, 0);
1275
1276 xfs_buf_rele(bp);
1277 return 0;
1278 }
1279
1280 /*
1281 * Waits for I/O to complete on the buffer supplied.
1282 * It returns immediately if no I/O is pending.
1283 * It returns the I/O error code, if any, or 0 if there was no error.
1284 */
1285 int
1286 xfs_buf_iowait(
1287 xfs_buf_t *bp)
1288 {
1289 XB_TRACE(bp, "iowait", 0);
1290 if (atomic_read(&bp->b_io_remaining))
1291 blk_run_address_space(bp->b_target->bt_mapping);
1292 down(&bp->b_iodonesema);
1293 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1294 return bp->b_error;
1295 }
1296
1297 xfs_caddr_t
1298 xfs_buf_offset(
1299 xfs_buf_t *bp,
1300 size_t offset)
1301 {
1302 struct page *page;
1303
1304 if (bp->b_flags & XBF_MAPPED)
1305 return XFS_BUF_PTR(bp) + offset;
1306
1307 offset += bp->b_offset;
1308 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1309 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1310 }
1311
1312 /*
1313 * Move data into or out of a buffer.
1314 */
1315 void
1316 xfs_buf_iomove(
1317 xfs_buf_t *bp, /* buffer to process */
1318 size_t boff, /* starting buffer offset */
1319 size_t bsize, /* length to copy */
1320 caddr_t data, /* data address */
1321 xfs_buf_rw_t mode) /* read/write/zero flag */
1322 {
1323 size_t bend, cpoff, csize;
1324 struct page *page;
1325
1326 bend = boff + bsize;
1327 while (boff < bend) {
1328 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1329 cpoff = xfs_buf_poff(boff + bp->b_offset);
1330 csize = min_t(size_t,
1331 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1332
1333 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1334
1335 switch (mode) {
1336 case XBRW_ZERO:
1337 memset(page_address(page) + cpoff, 0, csize);
1338 break;
1339 case XBRW_READ:
1340 memcpy(data, page_address(page) + cpoff, csize);
1341 break;
1342 case XBRW_WRITE:
1343 memcpy(page_address(page) + cpoff, data, csize);
1344 }
1345
1346 boff += csize;
1347 data += csize;
1348 }
1349 }
1350
1351 /*
1352 * Handling of buffer targets (buftargs).
1353 */
1354
1355 /*
1356 * Wait for any bufs with callbacks that have been submitted but
1357 * have not yet returned... walk the hash list for the target.
1358 */
1359 void
1360 xfs_wait_buftarg(
1361 xfs_buftarg_t *btp)
1362 {
1363 xfs_buf_t *bp, *n;
1364 xfs_bufhash_t *hash;
1365 uint i;
1366
1367 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1368 hash = &btp->bt_hash[i];
1369 again:
1370 spin_lock(&hash->bh_lock);
1371 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1372 ASSERT(btp == bp->b_target);
1373 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1374 spin_unlock(&hash->bh_lock);
1375 /*
1376 * Catch superblock reference count leaks
1377 * immediately
1378 */
1379 BUG_ON(bp->b_bn == 0);
1380 delay(100);
1381 goto again;
1382 }
1383 }
1384 spin_unlock(&hash->bh_lock);
1385 }
1386 }
1387
1388 /*
1389 * Allocate buffer hash table for a given target.
1390 * For devices containing metadata (i.e. not the log/realtime devices)
1391 * we need to allocate a much larger hash table.
1392 */
1393 STATIC void
1394 xfs_alloc_bufhash(
1395 xfs_buftarg_t *btp,
1396 int external)
1397 {
1398 unsigned int i;
1399
1400 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1401 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1402 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1403 sizeof(xfs_bufhash_t), KM_SLEEP);
1404 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1405 spin_lock_init(&btp->bt_hash[i].bh_lock);
1406 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1407 }
1408 }
1409
1410 STATIC void
1411 xfs_free_bufhash(
1412 xfs_buftarg_t *btp)
1413 {
1414 kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1415 btp->bt_hash = NULL;
1416 }
1417
1418 /*
1419 * buftarg list for delwrite queue processing
1420 */
1421 STATIC LIST_HEAD(xfs_buftarg_list);
1422 STATIC DEFINE_SPINLOCK(xfs_buftarg_lock);
1423
1424 STATIC void
1425 xfs_register_buftarg(
1426 xfs_buftarg_t *btp)
1427 {
1428 spin_lock(&xfs_buftarg_lock);
1429 list_add(&btp->bt_list, &xfs_buftarg_list);
1430 spin_unlock(&xfs_buftarg_lock);
1431 }
1432
1433 STATIC void
1434 xfs_unregister_buftarg(
1435 xfs_buftarg_t *btp)
1436 {
1437 spin_lock(&xfs_buftarg_lock);
1438 list_del(&btp->bt_list);
1439 spin_unlock(&xfs_buftarg_lock);
1440 }
1441
1442 void
1443 xfs_free_buftarg(
1444 xfs_buftarg_t *btp,
1445 int external)
1446 {
1447 xfs_flush_buftarg(btp, 1);
1448 if (external)
1449 xfs_blkdev_put(btp->bt_bdev);
1450 xfs_free_bufhash(btp);
1451 iput(btp->bt_mapping->host);
1452
1453 /* Unregister the buftarg first so that we don't get a
1454 * wakeup finding a non-existent task
1455 */
1456 xfs_unregister_buftarg(btp);
1457 kthread_stop(btp->bt_task);
1458
1459 kmem_free(btp, sizeof(*btp));
1460 }
1461
1462 STATIC int
1463 xfs_setsize_buftarg_flags(
1464 xfs_buftarg_t *btp,
1465 unsigned int blocksize,
1466 unsigned int sectorsize,
1467 int verbose)
1468 {
1469 btp->bt_bsize = blocksize;
1470 btp->bt_sshift = ffs(sectorsize) - 1;
1471 btp->bt_smask = sectorsize - 1;
1472
1473 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1474 printk(KERN_WARNING
1475 "XFS: Cannot set_blocksize to %u on device %s\n",
1476 sectorsize, XFS_BUFTARG_NAME(btp));
1477 return EINVAL;
1478 }
1479
1480 if (verbose &&
1481 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1482 printk(KERN_WARNING
1483 "XFS: %u byte sectors in use on device %s. "
1484 "This is suboptimal; %u or greater is ideal.\n",
1485 sectorsize, XFS_BUFTARG_NAME(btp),
1486 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1487 }
1488
1489 return 0;
1490 }
1491
1492 /*
1493 * When allocating the initial buffer target we have not yet
1494 * read in the superblock, so don't know what sized sectors
1495 * are being used is at this early stage. Play safe.
1496 */
1497 STATIC int
1498 xfs_setsize_buftarg_early(
1499 xfs_buftarg_t *btp,
1500 struct block_device *bdev)
1501 {
1502 return xfs_setsize_buftarg_flags(btp,
1503 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1504 }
1505
1506 int
1507 xfs_setsize_buftarg(
1508 xfs_buftarg_t *btp,
1509 unsigned int blocksize,
1510 unsigned int sectorsize)
1511 {
1512 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1513 }
1514
1515 STATIC int
1516 xfs_mapping_buftarg(
1517 xfs_buftarg_t *btp,
1518 struct block_device *bdev)
1519 {
1520 struct backing_dev_info *bdi;
1521 struct inode *inode;
1522 struct address_space *mapping;
1523 static const struct address_space_operations mapping_aops = {
1524 .sync_page = block_sync_page,
1525 .migratepage = fail_migrate_page,
1526 };
1527
1528 inode = new_inode(bdev->bd_inode->i_sb);
1529 if (!inode) {
1530 printk(KERN_WARNING
1531 "XFS: Cannot allocate mapping inode for device %s\n",
1532 XFS_BUFTARG_NAME(btp));
1533 return ENOMEM;
1534 }
1535 inode->i_mode = S_IFBLK;
1536 inode->i_bdev = bdev;
1537 inode->i_rdev = bdev->bd_dev;
1538 bdi = blk_get_backing_dev_info(bdev);
1539 if (!bdi)
1540 bdi = &default_backing_dev_info;
1541 mapping = &inode->i_data;
1542 mapping->a_ops = &mapping_aops;
1543 mapping->backing_dev_info = bdi;
1544 mapping_set_gfp_mask(mapping, GFP_NOFS);
1545 btp->bt_mapping = mapping;
1546 return 0;
1547 }
1548
1549 STATIC int
1550 xfs_alloc_delwrite_queue(
1551 xfs_buftarg_t *btp)
1552 {
1553 int error = 0;
1554
1555 INIT_LIST_HEAD(&btp->bt_list);
1556 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1557 spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
1558 btp->bt_flags = 0;
1559 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1560 if (IS_ERR(btp->bt_task)) {
1561 error = PTR_ERR(btp->bt_task);
1562 goto out_error;
1563 }
1564 xfs_register_buftarg(btp);
1565 out_error:
1566 return error;
1567 }
1568
1569 xfs_buftarg_t *
1570 xfs_alloc_buftarg(
1571 struct block_device *bdev,
1572 int external)
1573 {
1574 xfs_buftarg_t *btp;
1575
1576 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1577
1578 btp->bt_dev = bdev->bd_dev;
1579 btp->bt_bdev = bdev;
1580 if (xfs_setsize_buftarg_early(btp, bdev))
1581 goto error;
1582 if (xfs_mapping_buftarg(btp, bdev))
1583 goto error;
1584 if (xfs_alloc_delwrite_queue(btp))
1585 goto error;
1586 xfs_alloc_bufhash(btp, external);
1587 return btp;
1588
1589 error:
1590 kmem_free(btp, sizeof(*btp));
1591 return NULL;
1592 }
1593
1594
1595 /*
1596 * Delayed write buffer handling
1597 */
1598 STATIC void
1599 xfs_buf_delwri_queue(
1600 xfs_buf_t *bp,
1601 int unlock)
1602 {
1603 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1604 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1605
1606 XB_TRACE(bp, "delwri_q", (long)unlock);
1607 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1608
1609 spin_lock(dwlk);
1610 /* If already in the queue, dequeue and place at tail */
1611 if (!list_empty(&bp->b_list)) {
1612 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1613 if (unlock)
1614 atomic_dec(&bp->b_hold);
1615 list_del(&bp->b_list);
1616 }
1617
1618 bp->b_flags |= _XBF_DELWRI_Q;
1619 list_add_tail(&bp->b_list, dwq);
1620 bp->b_queuetime = jiffies;
1621 spin_unlock(dwlk);
1622
1623 if (unlock)
1624 xfs_buf_unlock(bp);
1625 }
1626
1627 void
1628 xfs_buf_delwri_dequeue(
1629 xfs_buf_t *bp)
1630 {
1631 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1632 int dequeued = 0;
1633
1634 spin_lock(dwlk);
1635 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1636 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1637 list_del_init(&bp->b_list);
1638 dequeued = 1;
1639 }
1640 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1641 spin_unlock(dwlk);
1642
1643 if (dequeued)
1644 xfs_buf_rele(bp);
1645
1646 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1647 }
1648
1649 STATIC void
1650 xfs_buf_runall_queues(
1651 struct workqueue_struct *queue)
1652 {
1653 flush_workqueue(queue);
1654 }
1655
1656 STATIC int
1657 xfsbufd_wakeup(
1658 int priority,
1659 gfp_t mask)
1660 {
1661 xfs_buftarg_t *btp;
1662
1663 spin_lock(&xfs_buftarg_lock);
1664 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1665 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1666 continue;
1667 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1668 wake_up_process(btp->bt_task);
1669 }
1670 spin_unlock(&xfs_buftarg_lock);
1671 return 0;
1672 }
1673
1674 STATIC int
1675 xfsbufd(
1676 void *data)
1677 {
1678 struct list_head tmp;
1679 unsigned long age;
1680 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1681 xfs_buf_t *bp, *n;
1682 struct list_head *dwq = &target->bt_delwrite_queue;
1683 spinlock_t *dwlk = &target->bt_delwrite_lock;
1684
1685 current->flags |= PF_MEMALLOC;
1686
1687 INIT_LIST_HEAD(&tmp);
1688 do {
1689 if (unlikely(freezing(current))) {
1690 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1691 refrigerator();
1692 } else {
1693 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1694 }
1695
1696 schedule_timeout_interruptible(
1697 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1698
1699 age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1700 spin_lock(dwlk);
1701 list_for_each_entry_safe(bp, n, dwq, b_list) {
1702 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1703 ASSERT(bp->b_flags & XBF_DELWRI);
1704
1705 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1706 if (!test_bit(XBT_FORCE_FLUSH,
1707 &target->bt_flags) &&
1708 time_before(jiffies,
1709 bp->b_queuetime + age)) {
1710 xfs_buf_unlock(bp);
1711 break;
1712 }
1713
1714 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1715 bp->b_flags |= XBF_WRITE;
1716 list_move(&bp->b_list, &tmp);
1717 }
1718 }
1719 spin_unlock(dwlk);
1720
1721 while (!list_empty(&tmp)) {
1722 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1723 ASSERT(target == bp->b_target);
1724
1725 list_del_init(&bp->b_list);
1726 xfs_buf_iostrategy(bp);
1727
1728 blk_run_address_space(target->bt_mapping);
1729 }
1730
1731 if (as_list_len > 0)
1732 purge_addresses();
1733
1734 clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1735 } while (!kthread_should_stop());
1736
1737 return 0;
1738 }
1739
1740 /*
1741 * Go through all incore buffers, and release buffers if they belong to
1742 * the given device. This is used in filesystem error handling to
1743 * preserve the consistency of its metadata.
1744 */
1745 int
1746 xfs_flush_buftarg(
1747 xfs_buftarg_t *target,
1748 int wait)
1749 {
1750 struct list_head tmp;
1751 xfs_buf_t *bp, *n;
1752 int pincount = 0;
1753 struct list_head *dwq = &target->bt_delwrite_queue;
1754 spinlock_t *dwlk = &target->bt_delwrite_lock;
1755
1756 xfs_buf_runall_queues(xfsdatad_workqueue);
1757 xfs_buf_runall_queues(xfslogd_workqueue);
1758
1759 INIT_LIST_HEAD(&tmp);
1760 spin_lock(dwlk);
1761 list_for_each_entry_safe(bp, n, dwq, b_list) {
1762 ASSERT(bp->b_target == target);
1763 ASSERT(bp->b_flags & (XBF_DELWRI | _XBF_DELWRI_Q));
1764 XB_TRACE(bp, "walkq2", (long)xfs_buf_ispin(bp));
1765 if (xfs_buf_ispin(bp)) {
1766 pincount++;
1767 continue;
1768 }
1769
1770 list_move(&bp->b_list, &tmp);
1771 }
1772 spin_unlock(dwlk);
1773
1774 /*
1775 * Dropped the delayed write list lock, now walk the temporary list
1776 */
1777 list_for_each_entry_safe(bp, n, &tmp, b_list) {
1778 xfs_buf_lock(bp);
1779 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1780 bp->b_flags |= XBF_WRITE;
1781 if (wait)
1782 bp->b_flags &= ~XBF_ASYNC;
1783 else
1784 list_del_init(&bp->b_list);
1785
1786 xfs_buf_iostrategy(bp);
1787 }
1788
1789 /*
1790 * Remaining list items must be flushed before returning
1791 */
1792 while (!list_empty(&tmp)) {
1793 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1794
1795 list_del_init(&bp->b_list);
1796 xfs_iowait(bp);
1797 xfs_buf_relse(bp);
1798 }
1799
1800 if (wait)
1801 blk_run_address_space(target->bt_mapping);
1802
1803 return pincount;
1804 }
1805
1806 int __init
1807 xfs_buf_init(void)
1808 {
1809 #ifdef XFS_BUF_TRACE
1810 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1811 #endif
1812
1813 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1814 KM_ZONE_HWALIGN, NULL);
1815 if (!xfs_buf_zone)
1816 goto out_free_trace_buf;
1817
1818 xfslogd_workqueue = create_workqueue("xfslogd");
1819 if (!xfslogd_workqueue)
1820 goto out_free_buf_zone;
1821
1822 xfsdatad_workqueue = create_workqueue("xfsdatad");
1823 if (!xfsdatad_workqueue)
1824 goto out_destroy_xfslogd_workqueue;
1825
1826 xfs_buf_shake = kmem_shake_register(xfsbufd_wakeup);
1827 if (!xfs_buf_shake)
1828 goto out_destroy_xfsdatad_workqueue;
1829
1830 return 0;
1831
1832 out_destroy_xfsdatad_workqueue:
1833 destroy_workqueue(xfsdatad_workqueue);
1834 out_destroy_xfslogd_workqueue:
1835 destroy_workqueue(xfslogd_workqueue);
1836 out_free_buf_zone:
1837 kmem_zone_destroy(xfs_buf_zone);
1838 out_free_trace_buf:
1839 #ifdef XFS_BUF_TRACE
1840 ktrace_free(xfs_buf_trace_buf);
1841 #endif
1842 return -ENOMEM;
1843 }
1844
1845 void
1846 xfs_buf_terminate(void)
1847 {
1848 kmem_shake_deregister(xfs_buf_shake);
1849 destroy_workqueue(xfsdatad_workqueue);
1850 destroy_workqueue(xfslogd_workqueue);
1851 kmem_zone_destroy(xfs_buf_zone);
1852 #ifdef XFS_BUF_TRACE
1853 ktrace_free(xfs_buf_trace_buf);
1854 #endif
1855 }
This page took 0.070466 seconds and 5 git commands to generate.