tracing/selftest: remove TRACE_CONT reference
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 static kmem_zone_t *xfs_buf_zone;
38 STATIC int xfsbufd(void *);
39 STATIC int xfsbufd_wakeup(int, gfp_t);
40 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
41 static struct shrinker xfs_buf_shake = {
42 .shrink = xfsbufd_wakeup,
43 .seeks = DEFAULT_SEEKS,
44 };
45
46 static struct workqueue_struct *xfslogd_workqueue;
47 struct workqueue_struct *xfsdatad_workqueue;
48
49 #ifdef XFS_BUF_TRACE
50 void
51 xfs_buf_trace(
52 xfs_buf_t *bp,
53 char *id,
54 void *data,
55 void *ra)
56 {
57 ktrace_enter(xfs_buf_trace_buf,
58 bp, id,
59 (void *)(unsigned long)bp->b_flags,
60 (void *)(unsigned long)bp->b_hold.counter,
61 (void *)(unsigned long)bp->b_sema.count,
62 (void *)current,
63 data, ra,
64 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
65 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
66 (void *)(unsigned long)bp->b_buffer_length,
67 NULL, NULL, NULL, NULL, NULL);
68 }
69 ktrace_t *xfs_buf_trace_buf;
70 #define XFS_BUF_TRACE_SIZE 4096
71 #define XB_TRACE(bp, id, data) \
72 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
73 #else
74 #define XB_TRACE(bp, id, data) do { } while (0)
75 #endif
76
77 #ifdef XFS_BUF_LOCK_TRACKING
78 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
79 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
80 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
81 #else
82 # define XB_SET_OWNER(bp) do { } while (0)
83 # define XB_CLEAR_OWNER(bp) do { } while (0)
84 # define XB_GET_OWNER(bp) do { } while (0)
85 #endif
86
87 #define xb_to_gfp(flags) \
88 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
89 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
90
91 #define xb_to_km(flags) \
92 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
93
94 #define xfs_buf_allocate(flags) \
95 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
96 #define xfs_buf_deallocate(bp) \
97 kmem_zone_free(xfs_buf_zone, (bp));
98
99 /*
100 * Page Region interfaces.
101 *
102 * For pages in filesystems where the blocksize is smaller than the
103 * pagesize, we use the page->private field (long) to hold a bitmap
104 * of uptodate regions within the page.
105 *
106 * Each such region is "bytes per page / bits per long" bytes long.
107 *
108 * NBPPR == number-of-bytes-per-page-region
109 * BTOPR == bytes-to-page-region (rounded up)
110 * BTOPRT == bytes-to-page-region-truncated (rounded down)
111 */
112 #if (BITS_PER_LONG == 32)
113 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
114 #elif (BITS_PER_LONG == 64)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
116 #else
117 #error BITS_PER_LONG must be 32 or 64
118 #endif
119 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
120 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
121 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
122
123 STATIC unsigned long
124 page_region_mask(
125 size_t offset,
126 size_t length)
127 {
128 unsigned long mask;
129 int first, final;
130
131 first = BTOPR(offset);
132 final = BTOPRT(offset + length - 1);
133 first = min(first, final);
134
135 mask = ~0UL;
136 mask <<= BITS_PER_LONG - (final - first);
137 mask >>= BITS_PER_LONG - (final);
138
139 ASSERT(offset + length <= PAGE_CACHE_SIZE);
140 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
141
142 return mask;
143 }
144
145 STATIC_INLINE void
146 set_page_region(
147 struct page *page,
148 size_t offset,
149 size_t length)
150 {
151 set_page_private(page,
152 page_private(page) | page_region_mask(offset, length));
153 if (page_private(page) == ~0UL)
154 SetPageUptodate(page);
155 }
156
157 STATIC_INLINE int
158 test_page_region(
159 struct page *page,
160 size_t offset,
161 size_t length)
162 {
163 unsigned long mask = page_region_mask(offset, length);
164
165 return (mask && (page_private(page) & mask) == mask);
166 }
167
168 /*
169 * Mapping of multi-page buffers into contiguous virtual space
170 */
171
172 typedef struct a_list {
173 void *vm_addr;
174 struct a_list *next;
175 } a_list_t;
176
177 static a_list_t *as_free_head;
178 static int as_list_len;
179 static DEFINE_SPINLOCK(as_lock);
180
181 /*
182 * Try to batch vunmaps because they are costly.
183 */
184 STATIC void
185 free_address(
186 void *addr)
187 {
188 a_list_t *aentry;
189
190 #ifdef CONFIG_XEN
191 /*
192 * Xen needs to be able to make sure it can get an exclusive
193 * RO mapping of pages it wants to turn into a pagetable. If
194 * a newly allocated page is also still being vmap()ed by xfs,
195 * it will cause pagetable construction to fail. This is a
196 * quick workaround to always eagerly unmap pages so that Xen
197 * is happy.
198 */
199 vunmap(addr);
200 return;
201 #endif
202
203 aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
204 if (likely(aentry)) {
205 spin_lock(&as_lock);
206 aentry->next = as_free_head;
207 aentry->vm_addr = addr;
208 as_free_head = aentry;
209 as_list_len++;
210 spin_unlock(&as_lock);
211 } else {
212 vunmap(addr);
213 }
214 }
215
216 STATIC void
217 purge_addresses(void)
218 {
219 a_list_t *aentry, *old;
220
221 if (as_free_head == NULL)
222 return;
223
224 spin_lock(&as_lock);
225 aentry = as_free_head;
226 as_free_head = NULL;
227 as_list_len = 0;
228 spin_unlock(&as_lock);
229
230 while ((old = aentry) != NULL) {
231 vunmap(aentry->vm_addr);
232 aentry = aentry->next;
233 kfree(old);
234 }
235 }
236
237 /*
238 * Internal xfs_buf_t object manipulation
239 */
240
241 STATIC void
242 _xfs_buf_initialize(
243 xfs_buf_t *bp,
244 xfs_buftarg_t *target,
245 xfs_off_t range_base,
246 size_t range_length,
247 xfs_buf_flags_t flags)
248 {
249 /*
250 * We don't want certain flags to appear in b_flags.
251 */
252 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
253
254 memset(bp, 0, sizeof(xfs_buf_t));
255 atomic_set(&bp->b_hold, 1);
256 init_completion(&bp->b_iowait);
257 INIT_LIST_HEAD(&bp->b_list);
258 INIT_LIST_HEAD(&bp->b_hash_list);
259 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
260 XB_SET_OWNER(bp);
261 bp->b_target = target;
262 bp->b_file_offset = range_base;
263 /*
264 * Set buffer_length and count_desired to the same value initially.
265 * I/O routines should use count_desired, which will be the same in
266 * most cases but may be reset (e.g. XFS recovery).
267 */
268 bp->b_buffer_length = bp->b_count_desired = range_length;
269 bp->b_flags = flags;
270 bp->b_bn = XFS_BUF_DADDR_NULL;
271 atomic_set(&bp->b_pin_count, 0);
272 init_waitqueue_head(&bp->b_waiters);
273
274 XFS_STATS_INC(xb_create);
275 XB_TRACE(bp, "initialize", target);
276 }
277
278 /*
279 * Allocate a page array capable of holding a specified number
280 * of pages, and point the page buf at it.
281 */
282 STATIC int
283 _xfs_buf_get_pages(
284 xfs_buf_t *bp,
285 int page_count,
286 xfs_buf_flags_t flags)
287 {
288 /* Make sure that we have a page list */
289 if (bp->b_pages == NULL) {
290 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
291 bp->b_page_count = page_count;
292 if (page_count <= XB_PAGES) {
293 bp->b_pages = bp->b_page_array;
294 } else {
295 bp->b_pages = kmem_alloc(sizeof(struct page *) *
296 page_count, xb_to_km(flags));
297 if (bp->b_pages == NULL)
298 return -ENOMEM;
299 }
300 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
301 }
302 return 0;
303 }
304
305 /*
306 * Frees b_pages if it was allocated.
307 */
308 STATIC void
309 _xfs_buf_free_pages(
310 xfs_buf_t *bp)
311 {
312 if (bp->b_pages != bp->b_page_array) {
313 kmem_free(bp->b_pages);
314 }
315 }
316
317 /*
318 * Releases the specified buffer.
319 *
320 * The modification state of any associated pages is left unchanged.
321 * The buffer most not be on any hash - use xfs_buf_rele instead for
322 * hashed and refcounted buffers
323 */
324 void
325 xfs_buf_free(
326 xfs_buf_t *bp)
327 {
328 XB_TRACE(bp, "free", 0);
329
330 ASSERT(list_empty(&bp->b_hash_list));
331
332 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
333 uint i;
334
335 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
336 free_address(bp->b_addr - bp->b_offset);
337
338 for (i = 0; i < bp->b_page_count; i++) {
339 struct page *page = bp->b_pages[i];
340
341 if (bp->b_flags & _XBF_PAGE_CACHE)
342 ASSERT(!PagePrivate(page));
343 page_cache_release(page);
344 }
345 _xfs_buf_free_pages(bp);
346 }
347
348 xfs_buf_deallocate(bp);
349 }
350
351 /*
352 * Finds all pages for buffer in question and builds it's page list.
353 */
354 STATIC int
355 _xfs_buf_lookup_pages(
356 xfs_buf_t *bp,
357 uint flags)
358 {
359 struct address_space *mapping = bp->b_target->bt_mapping;
360 size_t blocksize = bp->b_target->bt_bsize;
361 size_t size = bp->b_count_desired;
362 size_t nbytes, offset;
363 gfp_t gfp_mask = xb_to_gfp(flags);
364 unsigned short page_count, i;
365 pgoff_t first;
366 xfs_off_t end;
367 int error;
368
369 end = bp->b_file_offset + bp->b_buffer_length;
370 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
371
372 error = _xfs_buf_get_pages(bp, page_count, flags);
373 if (unlikely(error))
374 return error;
375 bp->b_flags |= _XBF_PAGE_CACHE;
376
377 offset = bp->b_offset;
378 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
379
380 for (i = 0; i < bp->b_page_count; i++) {
381 struct page *page;
382 uint retries = 0;
383
384 retry:
385 page = find_or_create_page(mapping, first + i, gfp_mask);
386 if (unlikely(page == NULL)) {
387 if (flags & XBF_READ_AHEAD) {
388 bp->b_page_count = i;
389 for (i = 0; i < bp->b_page_count; i++)
390 unlock_page(bp->b_pages[i]);
391 return -ENOMEM;
392 }
393
394 /*
395 * This could deadlock.
396 *
397 * But until all the XFS lowlevel code is revamped to
398 * handle buffer allocation failures we can't do much.
399 */
400 if (!(++retries % 100))
401 printk(KERN_ERR
402 "XFS: possible memory allocation "
403 "deadlock in %s (mode:0x%x)\n",
404 __func__, gfp_mask);
405
406 XFS_STATS_INC(xb_page_retries);
407 xfsbufd_wakeup(0, gfp_mask);
408 congestion_wait(WRITE, HZ/50);
409 goto retry;
410 }
411
412 XFS_STATS_INC(xb_page_found);
413
414 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
415 size -= nbytes;
416
417 ASSERT(!PagePrivate(page));
418 if (!PageUptodate(page)) {
419 page_count--;
420 if (blocksize >= PAGE_CACHE_SIZE) {
421 if (flags & XBF_READ)
422 bp->b_flags |= _XBF_PAGE_LOCKED;
423 } else if (!PagePrivate(page)) {
424 if (test_page_region(page, offset, nbytes))
425 page_count++;
426 }
427 }
428
429 bp->b_pages[i] = page;
430 offset = 0;
431 }
432
433 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
434 for (i = 0; i < bp->b_page_count; i++)
435 unlock_page(bp->b_pages[i]);
436 }
437
438 if (page_count == bp->b_page_count)
439 bp->b_flags |= XBF_DONE;
440
441 XB_TRACE(bp, "lookup_pages", (long)page_count);
442 return error;
443 }
444
445 /*
446 * Map buffer into kernel address-space if nessecary.
447 */
448 STATIC int
449 _xfs_buf_map_pages(
450 xfs_buf_t *bp,
451 uint flags)
452 {
453 /* A single page buffer is always mappable */
454 if (bp->b_page_count == 1) {
455 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
456 bp->b_flags |= XBF_MAPPED;
457 } else if (flags & XBF_MAPPED) {
458 if (as_list_len > 64)
459 purge_addresses();
460 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
461 VM_MAP, PAGE_KERNEL);
462 if (unlikely(bp->b_addr == NULL))
463 return -ENOMEM;
464 bp->b_addr += bp->b_offset;
465 bp->b_flags |= XBF_MAPPED;
466 }
467
468 return 0;
469 }
470
471 /*
472 * Finding and Reading Buffers
473 */
474
475 /*
476 * Look up, and creates if absent, a lockable buffer for
477 * a given range of an inode. The buffer is returned
478 * locked. If other overlapping buffers exist, they are
479 * released before the new buffer is created and locked,
480 * which may imply that this call will block until those buffers
481 * are unlocked. No I/O is implied by this call.
482 */
483 xfs_buf_t *
484 _xfs_buf_find(
485 xfs_buftarg_t *btp, /* block device target */
486 xfs_off_t ioff, /* starting offset of range */
487 size_t isize, /* length of range */
488 xfs_buf_flags_t flags,
489 xfs_buf_t *new_bp)
490 {
491 xfs_off_t range_base;
492 size_t range_length;
493 xfs_bufhash_t *hash;
494 xfs_buf_t *bp, *n;
495
496 range_base = (ioff << BBSHIFT);
497 range_length = (isize << BBSHIFT);
498
499 /* Check for IOs smaller than the sector size / not sector aligned */
500 ASSERT(!(range_length < (1 << btp->bt_sshift)));
501 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
502
503 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
504
505 spin_lock(&hash->bh_lock);
506
507 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
508 ASSERT(btp == bp->b_target);
509 if (bp->b_file_offset == range_base &&
510 bp->b_buffer_length == range_length) {
511 /*
512 * If we look at something, bring it to the
513 * front of the list for next time.
514 */
515 atomic_inc(&bp->b_hold);
516 list_move(&bp->b_hash_list, &hash->bh_list);
517 goto found;
518 }
519 }
520
521 /* No match found */
522 if (new_bp) {
523 _xfs_buf_initialize(new_bp, btp, range_base,
524 range_length, flags);
525 new_bp->b_hash = hash;
526 list_add(&new_bp->b_hash_list, &hash->bh_list);
527 } else {
528 XFS_STATS_INC(xb_miss_locked);
529 }
530
531 spin_unlock(&hash->bh_lock);
532 return new_bp;
533
534 found:
535 spin_unlock(&hash->bh_lock);
536
537 /* Attempt to get the semaphore without sleeping,
538 * if this does not work then we need to drop the
539 * spinlock and do a hard attempt on the semaphore.
540 */
541 if (down_trylock(&bp->b_sema)) {
542 if (!(flags & XBF_TRYLOCK)) {
543 /* wait for buffer ownership */
544 XB_TRACE(bp, "get_lock", 0);
545 xfs_buf_lock(bp);
546 XFS_STATS_INC(xb_get_locked_waited);
547 } else {
548 /* We asked for a trylock and failed, no need
549 * to look at file offset and length here, we
550 * know that this buffer at least overlaps our
551 * buffer and is locked, therefore our buffer
552 * either does not exist, or is this buffer.
553 */
554 xfs_buf_rele(bp);
555 XFS_STATS_INC(xb_busy_locked);
556 return NULL;
557 }
558 } else {
559 /* trylock worked */
560 XB_SET_OWNER(bp);
561 }
562
563 if (bp->b_flags & XBF_STALE) {
564 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
565 bp->b_flags &= XBF_MAPPED;
566 }
567 XB_TRACE(bp, "got_lock", 0);
568 XFS_STATS_INC(xb_get_locked);
569 return bp;
570 }
571
572 /*
573 * Assembles a buffer covering the specified range.
574 * Storage in memory for all portions of the buffer will be allocated,
575 * although backing storage may not be.
576 */
577 xfs_buf_t *
578 xfs_buf_get_flags(
579 xfs_buftarg_t *target,/* target for buffer */
580 xfs_off_t ioff, /* starting offset of range */
581 size_t isize, /* length of range */
582 xfs_buf_flags_t flags)
583 {
584 xfs_buf_t *bp, *new_bp;
585 int error = 0, i;
586
587 new_bp = xfs_buf_allocate(flags);
588 if (unlikely(!new_bp))
589 return NULL;
590
591 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
592 if (bp == new_bp) {
593 error = _xfs_buf_lookup_pages(bp, flags);
594 if (error)
595 goto no_buffer;
596 } else {
597 xfs_buf_deallocate(new_bp);
598 if (unlikely(bp == NULL))
599 return NULL;
600 }
601
602 for (i = 0; i < bp->b_page_count; i++)
603 mark_page_accessed(bp->b_pages[i]);
604
605 if (!(bp->b_flags & XBF_MAPPED)) {
606 error = _xfs_buf_map_pages(bp, flags);
607 if (unlikely(error)) {
608 printk(KERN_WARNING "%s: failed to map pages\n",
609 __func__);
610 goto no_buffer;
611 }
612 }
613
614 XFS_STATS_INC(xb_get);
615
616 /*
617 * Always fill in the block number now, the mapped cases can do
618 * their own overlay of this later.
619 */
620 bp->b_bn = ioff;
621 bp->b_count_desired = bp->b_buffer_length;
622
623 XB_TRACE(bp, "get", (unsigned long)flags);
624 return bp;
625
626 no_buffer:
627 if (flags & (XBF_LOCK | XBF_TRYLOCK))
628 xfs_buf_unlock(bp);
629 xfs_buf_rele(bp);
630 return NULL;
631 }
632
633 xfs_buf_t *
634 xfs_buf_read_flags(
635 xfs_buftarg_t *target,
636 xfs_off_t ioff,
637 size_t isize,
638 xfs_buf_flags_t flags)
639 {
640 xfs_buf_t *bp;
641
642 flags |= XBF_READ;
643
644 bp = xfs_buf_get_flags(target, ioff, isize, flags);
645 if (bp) {
646 if (!XFS_BUF_ISDONE(bp)) {
647 XB_TRACE(bp, "read", (unsigned long)flags);
648 XFS_STATS_INC(xb_get_read);
649 xfs_buf_iostart(bp, flags);
650 } else if (flags & XBF_ASYNC) {
651 XB_TRACE(bp, "read_async", (unsigned long)flags);
652 /*
653 * Read ahead call which is already satisfied,
654 * drop the buffer
655 */
656 goto no_buffer;
657 } else {
658 XB_TRACE(bp, "read_done", (unsigned long)flags);
659 /* We do not want read in the flags */
660 bp->b_flags &= ~XBF_READ;
661 }
662 }
663
664 return bp;
665
666 no_buffer:
667 if (flags & (XBF_LOCK | XBF_TRYLOCK))
668 xfs_buf_unlock(bp);
669 xfs_buf_rele(bp);
670 return NULL;
671 }
672
673 /*
674 * If we are not low on memory then do the readahead in a deadlock
675 * safe manner.
676 */
677 void
678 xfs_buf_readahead(
679 xfs_buftarg_t *target,
680 xfs_off_t ioff,
681 size_t isize,
682 xfs_buf_flags_t flags)
683 {
684 struct backing_dev_info *bdi;
685
686 bdi = target->bt_mapping->backing_dev_info;
687 if (bdi_read_congested(bdi))
688 return;
689
690 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
691 xfs_buf_read_flags(target, ioff, isize, flags);
692 }
693
694 xfs_buf_t *
695 xfs_buf_get_empty(
696 size_t len,
697 xfs_buftarg_t *target)
698 {
699 xfs_buf_t *bp;
700
701 bp = xfs_buf_allocate(0);
702 if (bp)
703 _xfs_buf_initialize(bp, target, 0, len, 0);
704 return bp;
705 }
706
707 static inline struct page *
708 mem_to_page(
709 void *addr)
710 {
711 if ((!is_vmalloc_addr(addr))) {
712 return virt_to_page(addr);
713 } else {
714 return vmalloc_to_page(addr);
715 }
716 }
717
718 int
719 xfs_buf_associate_memory(
720 xfs_buf_t *bp,
721 void *mem,
722 size_t len)
723 {
724 int rval;
725 int i = 0;
726 unsigned long pageaddr;
727 unsigned long offset;
728 size_t buflen;
729 int page_count;
730
731 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
732 offset = (unsigned long)mem - pageaddr;
733 buflen = PAGE_CACHE_ALIGN(len + offset);
734 page_count = buflen >> PAGE_CACHE_SHIFT;
735
736 /* Free any previous set of page pointers */
737 if (bp->b_pages)
738 _xfs_buf_free_pages(bp);
739
740 bp->b_pages = NULL;
741 bp->b_addr = mem;
742
743 rval = _xfs_buf_get_pages(bp, page_count, 0);
744 if (rval)
745 return rval;
746
747 bp->b_offset = offset;
748
749 for (i = 0; i < bp->b_page_count; i++) {
750 bp->b_pages[i] = mem_to_page((void *)pageaddr);
751 pageaddr += PAGE_CACHE_SIZE;
752 }
753
754 bp->b_count_desired = len;
755 bp->b_buffer_length = buflen;
756 bp->b_flags |= XBF_MAPPED;
757 bp->b_flags &= ~_XBF_PAGE_LOCKED;
758
759 return 0;
760 }
761
762 xfs_buf_t *
763 xfs_buf_get_noaddr(
764 size_t len,
765 xfs_buftarg_t *target)
766 {
767 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
768 int error, i;
769 xfs_buf_t *bp;
770
771 bp = xfs_buf_allocate(0);
772 if (unlikely(bp == NULL))
773 goto fail;
774 _xfs_buf_initialize(bp, target, 0, len, 0);
775
776 error = _xfs_buf_get_pages(bp, page_count, 0);
777 if (error)
778 goto fail_free_buf;
779
780 for (i = 0; i < page_count; i++) {
781 bp->b_pages[i] = alloc_page(GFP_KERNEL);
782 if (!bp->b_pages[i])
783 goto fail_free_mem;
784 }
785 bp->b_flags |= _XBF_PAGES;
786
787 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
788 if (unlikely(error)) {
789 printk(KERN_WARNING "%s: failed to map pages\n",
790 __func__);
791 goto fail_free_mem;
792 }
793
794 xfs_buf_unlock(bp);
795
796 XB_TRACE(bp, "no_daddr", len);
797 return bp;
798
799 fail_free_mem:
800 while (--i >= 0)
801 __free_page(bp->b_pages[i]);
802 _xfs_buf_free_pages(bp);
803 fail_free_buf:
804 xfs_buf_deallocate(bp);
805 fail:
806 return NULL;
807 }
808
809 /*
810 * Increment reference count on buffer, to hold the buffer concurrently
811 * with another thread which may release (free) the buffer asynchronously.
812 * Must hold the buffer already to call this function.
813 */
814 void
815 xfs_buf_hold(
816 xfs_buf_t *bp)
817 {
818 atomic_inc(&bp->b_hold);
819 XB_TRACE(bp, "hold", 0);
820 }
821
822 /*
823 * Releases a hold on the specified buffer. If the
824 * the hold count is 1, calls xfs_buf_free.
825 */
826 void
827 xfs_buf_rele(
828 xfs_buf_t *bp)
829 {
830 xfs_bufhash_t *hash = bp->b_hash;
831
832 XB_TRACE(bp, "rele", bp->b_relse);
833
834 if (unlikely(!hash)) {
835 ASSERT(!bp->b_relse);
836 if (atomic_dec_and_test(&bp->b_hold))
837 xfs_buf_free(bp);
838 return;
839 }
840
841 ASSERT(atomic_read(&bp->b_hold) > 0);
842 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
843 if (bp->b_relse) {
844 atomic_inc(&bp->b_hold);
845 spin_unlock(&hash->bh_lock);
846 (*(bp->b_relse)) (bp);
847 } else if (bp->b_flags & XBF_FS_MANAGED) {
848 spin_unlock(&hash->bh_lock);
849 } else {
850 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
851 list_del_init(&bp->b_hash_list);
852 spin_unlock(&hash->bh_lock);
853 xfs_buf_free(bp);
854 }
855 }
856 }
857
858
859 /*
860 * Mutual exclusion on buffers. Locking model:
861 *
862 * Buffers associated with inodes for which buffer locking
863 * is not enabled are not protected by semaphores, and are
864 * assumed to be exclusively owned by the caller. There is a
865 * spinlock in the buffer, used by the caller when concurrent
866 * access is possible.
867 */
868
869 /*
870 * Locks a buffer object, if it is not already locked.
871 * Note that this in no way locks the underlying pages, so it is only
872 * useful for synchronizing concurrent use of buffer objects, not for
873 * synchronizing independent access to the underlying pages.
874 */
875 int
876 xfs_buf_cond_lock(
877 xfs_buf_t *bp)
878 {
879 int locked;
880
881 locked = down_trylock(&bp->b_sema) == 0;
882 if (locked) {
883 XB_SET_OWNER(bp);
884 }
885 XB_TRACE(bp, "cond_lock", (long)locked);
886 return locked ? 0 : -EBUSY;
887 }
888
889 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
890 int
891 xfs_buf_lock_value(
892 xfs_buf_t *bp)
893 {
894 return bp->b_sema.count;
895 }
896 #endif
897
898 /*
899 * Locks a buffer object.
900 * Note that this in no way locks the underlying pages, so it is only
901 * useful for synchronizing concurrent use of buffer objects, not for
902 * synchronizing independent access to the underlying pages.
903 */
904 void
905 xfs_buf_lock(
906 xfs_buf_t *bp)
907 {
908 XB_TRACE(bp, "lock", 0);
909 if (atomic_read(&bp->b_io_remaining))
910 blk_run_address_space(bp->b_target->bt_mapping);
911 down(&bp->b_sema);
912 XB_SET_OWNER(bp);
913 XB_TRACE(bp, "locked", 0);
914 }
915
916 /*
917 * Releases the lock on the buffer object.
918 * If the buffer is marked delwri but is not queued, do so before we
919 * unlock the buffer as we need to set flags correctly. We also need to
920 * take a reference for the delwri queue because the unlocker is going to
921 * drop their's and they don't know we just queued it.
922 */
923 void
924 xfs_buf_unlock(
925 xfs_buf_t *bp)
926 {
927 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
928 atomic_inc(&bp->b_hold);
929 bp->b_flags |= XBF_ASYNC;
930 xfs_buf_delwri_queue(bp, 0);
931 }
932
933 XB_CLEAR_OWNER(bp);
934 up(&bp->b_sema);
935 XB_TRACE(bp, "unlock", 0);
936 }
937
938
939 /*
940 * Pinning Buffer Storage in Memory
941 * Ensure that no attempt to force a buffer to disk will succeed.
942 */
943 void
944 xfs_buf_pin(
945 xfs_buf_t *bp)
946 {
947 atomic_inc(&bp->b_pin_count);
948 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
949 }
950
951 void
952 xfs_buf_unpin(
953 xfs_buf_t *bp)
954 {
955 if (atomic_dec_and_test(&bp->b_pin_count))
956 wake_up_all(&bp->b_waiters);
957 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
958 }
959
960 int
961 xfs_buf_ispin(
962 xfs_buf_t *bp)
963 {
964 return atomic_read(&bp->b_pin_count);
965 }
966
967 STATIC void
968 xfs_buf_wait_unpin(
969 xfs_buf_t *bp)
970 {
971 DECLARE_WAITQUEUE (wait, current);
972
973 if (atomic_read(&bp->b_pin_count) == 0)
974 return;
975
976 add_wait_queue(&bp->b_waiters, &wait);
977 for (;;) {
978 set_current_state(TASK_UNINTERRUPTIBLE);
979 if (atomic_read(&bp->b_pin_count) == 0)
980 break;
981 if (atomic_read(&bp->b_io_remaining))
982 blk_run_address_space(bp->b_target->bt_mapping);
983 schedule();
984 }
985 remove_wait_queue(&bp->b_waiters, &wait);
986 set_current_state(TASK_RUNNING);
987 }
988
989 /*
990 * Buffer Utility Routines
991 */
992
993 STATIC void
994 xfs_buf_iodone_work(
995 struct work_struct *work)
996 {
997 xfs_buf_t *bp =
998 container_of(work, xfs_buf_t, b_iodone_work);
999
1000 /*
1001 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
1002 * ordered flag and reissue them. Because we can't tell the higher
1003 * layers directly that they should not issue ordered I/O anymore, they
1004 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
1005 */
1006 if ((bp->b_error == EOPNOTSUPP) &&
1007 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
1008 XB_TRACE(bp, "ordered_retry", bp->b_iodone);
1009 bp->b_flags &= ~XBF_ORDERED;
1010 bp->b_flags |= _XFS_BARRIER_FAILED;
1011 xfs_buf_iorequest(bp);
1012 } else if (bp->b_iodone)
1013 (*(bp->b_iodone))(bp);
1014 else if (bp->b_flags & XBF_ASYNC)
1015 xfs_buf_relse(bp);
1016 }
1017
1018 void
1019 xfs_buf_ioend(
1020 xfs_buf_t *bp,
1021 int schedule)
1022 {
1023 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1024 if (bp->b_error == 0)
1025 bp->b_flags |= XBF_DONE;
1026
1027 XB_TRACE(bp, "iodone", bp->b_iodone);
1028
1029 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1030 if (schedule) {
1031 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1032 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1033 } else {
1034 xfs_buf_iodone_work(&bp->b_iodone_work);
1035 }
1036 } else {
1037 complete(&bp->b_iowait);
1038 }
1039 }
1040
1041 void
1042 xfs_buf_ioerror(
1043 xfs_buf_t *bp,
1044 int error)
1045 {
1046 ASSERT(error >= 0 && error <= 0xffff);
1047 bp->b_error = (unsigned short)error;
1048 XB_TRACE(bp, "ioerror", (unsigned long)error);
1049 }
1050
1051 /*
1052 * Initiate I/O on a buffer, based on the flags supplied.
1053 * The b_iodone routine in the buffer supplied will only be called
1054 * when all of the subsidiary I/O requests, if any, have been completed.
1055 */
1056 int
1057 xfs_buf_iostart(
1058 xfs_buf_t *bp,
1059 xfs_buf_flags_t flags)
1060 {
1061 int status = 0;
1062
1063 XB_TRACE(bp, "iostart", (unsigned long)flags);
1064
1065 if (flags & XBF_DELWRI) {
1066 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1067 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1068 xfs_buf_delwri_queue(bp, 1);
1069 return 0;
1070 }
1071
1072 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1073 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1074 bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1075 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1076
1077 BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1078
1079 /* For writes allow an alternate strategy routine to precede
1080 * the actual I/O request (which may not be issued at all in
1081 * a shutdown situation, for example).
1082 */
1083 status = (flags & XBF_WRITE) ?
1084 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1085
1086 /* Wait for I/O if we are not an async request.
1087 * Note: async I/O request completion will release the buffer,
1088 * and that can already be done by this point. So using the
1089 * buffer pointer from here on, after async I/O, is invalid.
1090 */
1091 if (!status && !(flags & XBF_ASYNC))
1092 status = xfs_buf_iowait(bp);
1093
1094 return status;
1095 }
1096
1097 STATIC_INLINE void
1098 _xfs_buf_ioend(
1099 xfs_buf_t *bp,
1100 int schedule)
1101 {
1102 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1103 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1104 xfs_buf_ioend(bp, schedule);
1105 }
1106 }
1107
1108 STATIC void
1109 xfs_buf_bio_end_io(
1110 struct bio *bio,
1111 int error)
1112 {
1113 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1114 unsigned int blocksize = bp->b_target->bt_bsize;
1115 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1116
1117 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1118 bp->b_error = EIO;
1119
1120 do {
1121 struct page *page = bvec->bv_page;
1122
1123 ASSERT(!PagePrivate(page));
1124 if (unlikely(bp->b_error)) {
1125 if (bp->b_flags & XBF_READ)
1126 ClearPageUptodate(page);
1127 } else if (blocksize >= PAGE_CACHE_SIZE) {
1128 SetPageUptodate(page);
1129 } else if (!PagePrivate(page) &&
1130 (bp->b_flags & _XBF_PAGE_CACHE)) {
1131 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1132 }
1133
1134 if (--bvec >= bio->bi_io_vec)
1135 prefetchw(&bvec->bv_page->flags);
1136
1137 if (bp->b_flags & _XBF_PAGE_LOCKED)
1138 unlock_page(page);
1139 } while (bvec >= bio->bi_io_vec);
1140
1141 _xfs_buf_ioend(bp, 1);
1142 bio_put(bio);
1143 }
1144
1145 STATIC void
1146 _xfs_buf_ioapply(
1147 xfs_buf_t *bp)
1148 {
1149 int rw, map_i, total_nr_pages, nr_pages;
1150 struct bio *bio;
1151 int offset = bp->b_offset;
1152 int size = bp->b_count_desired;
1153 sector_t sector = bp->b_bn;
1154 unsigned int blocksize = bp->b_target->bt_bsize;
1155
1156 total_nr_pages = bp->b_page_count;
1157 map_i = 0;
1158
1159 if (bp->b_flags & XBF_ORDERED) {
1160 ASSERT(!(bp->b_flags & XBF_READ));
1161 rw = WRITE_BARRIER;
1162 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1163 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1164 bp->b_flags &= ~_XBF_RUN_QUEUES;
1165 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1166 } else {
1167 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1168 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1169 }
1170
1171 /* Special code path for reading a sub page size buffer in --
1172 * we populate up the whole page, and hence the other metadata
1173 * in the same page. This optimization is only valid when the
1174 * filesystem block size is not smaller than the page size.
1175 */
1176 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1177 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1178 (XBF_READ|_XBF_PAGE_LOCKED)) &&
1179 (blocksize >= PAGE_CACHE_SIZE)) {
1180 bio = bio_alloc(GFP_NOIO, 1);
1181
1182 bio->bi_bdev = bp->b_target->bt_bdev;
1183 bio->bi_sector = sector - (offset >> BBSHIFT);
1184 bio->bi_end_io = xfs_buf_bio_end_io;
1185 bio->bi_private = bp;
1186
1187 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1188 size = 0;
1189
1190 atomic_inc(&bp->b_io_remaining);
1191
1192 goto submit_io;
1193 }
1194
1195 next_chunk:
1196 atomic_inc(&bp->b_io_remaining);
1197 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1198 if (nr_pages > total_nr_pages)
1199 nr_pages = total_nr_pages;
1200
1201 bio = bio_alloc(GFP_NOIO, nr_pages);
1202 bio->bi_bdev = bp->b_target->bt_bdev;
1203 bio->bi_sector = sector;
1204 bio->bi_end_io = xfs_buf_bio_end_io;
1205 bio->bi_private = bp;
1206
1207 for (; size && nr_pages; nr_pages--, map_i++) {
1208 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1209
1210 if (nbytes > size)
1211 nbytes = size;
1212
1213 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1214 if (rbytes < nbytes)
1215 break;
1216
1217 offset = 0;
1218 sector += nbytes >> BBSHIFT;
1219 size -= nbytes;
1220 total_nr_pages--;
1221 }
1222
1223 submit_io:
1224 if (likely(bio->bi_size)) {
1225 submit_bio(rw, bio);
1226 if (size)
1227 goto next_chunk;
1228 } else {
1229 bio_put(bio);
1230 xfs_buf_ioerror(bp, EIO);
1231 }
1232 }
1233
1234 int
1235 xfs_buf_iorequest(
1236 xfs_buf_t *bp)
1237 {
1238 XB_TRACE(bp, "iorequest", 0);
1239
1240 if (bp->b_flags & XBF_DELWRI) {
1241 xfs_buf_delwri_queue(bp, 1);
1242 return 0;
1243 }
1244
1245 if (bp->b_flags & XBF_WRITE) {
1246 xfs_buf_wait_unpin(bp);
1247 }
1248
1249 xfs_buf_hold(bp);
1250
1251 /* Set the count to 1 initially, this will stop an I/O
1252 * completion callout which happens before we have started
1253 * all the I/O from calling xfs_buf_ioend too early.
1254 */
1255 atomic_set(&bp->b_io_remaining, 1);
1256 _xfs_buf_ioapply(bp);
1257 _xfs_buf_ioend(bp, 0);
1258
1259 xfs_buf_rele(bp);
1260 return 0;
1261 }
1262
1263 /*
1264 * Waits for I/O to complete on the buffer supplied.
1265 * It returns immediately if no I/O is pending.
1266 * It returns the I/O error code, if any, or 0 if there was no error.
1267 */
1268 int
1269 xfs_buf_iowait(
1270 xfs_buf_t *bp)
1271 {
1272 XB_TRACE(bp, "iowait", 0);
1273 if (atomic_read(&bp->b_io_remaining))
1274 blk_run_address_space(bp->b_target->bt_mapping);
1275 wait_for_completion(&bp->b_iowait);
1276 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1277 return bp->b_error;
1278 }
1279
1280 xfs_caddr_t
1281 xfs_buf_offset(
1282 xfs_buf_t *bp,
1283 size_t offset)
1284 {
1285 struct page *page;
1286
1287 if (bp->b_flags & XBF_MAPPED)
1288 return XFS_BUF_PTR(bp) + offset;
1289
1290 offset += bp->b_offset;
1291 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1292 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1293 }
1294
1295 /*
1296 * Move data into or out of a buffer.
1297 */
1298 void
1299 xfs_buf_iomove(
1300 xfs_buf_t *bp, /* buffer to process */
1301 size_t boff, /* starting buffer offset */
1302 size_t bsize, /* length to copy */
1303 caddr_t data, /* data address */
1304 xfs_buf_rw_t mode) /* read/write/zero flag */
1305 {
1306 size_t bend, cpoff, csize;
1307 struct page *page;
1308
1309 bend = boff + bsize;
1310 while (boff < bend) {
1311 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1312 cpoff = xfs_buf_poff(boff + bp->b_offset);
1313 csize = min_t(size_t,
1314 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1315
1316 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1317
1318 switch (mode) {
1319 case XBRW_ZERO:
1320 memset(page_address(page) + cpoff, 0, csize);
1321 break;
1322 case XBRW_READ:
1323 memcpy(data, page_address(page) + cpoff, csize);
1324 break;
1325 case XBRW_WRITE:
1326 memcpy(page_address(page) + cpoff, data, csize);
1327 }
1328
1329 boff += csize;
1330 data += csize;
1331 }
1332 }
1333
1334 /*
1335 * Handling of buffer targets (buftargs).
1336 */
1337
1338 /*
1339 * Wait for any bufs with callbacks that have been submitted but
1340 * have not yet returned... walk the hash list for the target.
1341 */
1342 void
1343 xfs_wait_buftarg(
1344 xfs_buftarg_t *btp)
1345 {
1346 xfs_buf_t *bp, *n;
1347 xfs_bufhash_t *hash;
1348 uint i;
1349
1350 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1351 hash = &btp->bt_hash[i];
1352 again:
1353 spin_lock(&hash->bh_lock);
1354 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1355 ASSERT(btp == bp->b_target);
1356 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1357 spin_unlock(&hash->bh_lock);
1358 /*
1359 * Catch superblock reference count leaks
1360 * immediately
1361 */
1362 BUG_ON(bp->b_bn == 0);
1363 delay(100);
1364 goto again;
1365 }
1366 }
1367 spin_unlock(&hash->bh_lock);
1368 }
1369 }
1370
1371 /*
1372 * Allocate buffer hash table for a given target.
1373 * For devices containing metadata (i.e. not the log/realtime devices)
1374 * we need to allocate a much larger hash table.
1375 */
1376 STATIC void
1377 xfs_alloc_bufhash(
1378 xfs_buftarg_t *btp,
1379 int external)
1380 {
1381 unsigned int i;
1382
1383 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1384 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1385 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1386 sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1387 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1388 spin_lock_init(&btp->bt_hash[i].bh_lock);
1389 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1390 }
1391 }
1392
1393 STATIC void
1394 xfs_free_bufhash(
1395 xfs_buftarg_t *btp)
1396 {
1397 kmem_free(btp->bt_hash);
1398 btp->bt_hash = NULL;
1399 }
1400
1401 /*
1402 * buftarg list for delwrite queue processing
1403 */
1404 static LIST_HEAD(xfs_buftarg_list);
1405 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1406
1407 STATIC void
1408 xfs_register_buftarg(
1409 xfs_buftarg_t *btp)
1410 {
1411 spin_lock(&xfs_buftarg_lock);
1412 list_add(&btp->bt_list, &xfs_buftarg_list);
1413 spin_unlock(&xfs_buftarg_lock);
1414 }
1415
1416 STATIC void
1417 xfs_unregister_buftarg(
1418 xfs_buftarg_t *btp)
1419 {
1420 spin_lock(&xfs_buftarg_lock);
1421 list_del(&btp->bt_list);
1422 spin_unlock(&xfs_buftarg_lock);
1423 }
1424
1425 void
1426 xfs_free_buftarg(
1427 xfs_buftarg_t *btp)
1428 {
1429 xfs_flush_buftarg(btp, 1);
1430 xfs_blkdev_issue_flush(btp);
1431 xfs_free_bufhash(btp);
1432 iput(btp->bt_mapping->host);
1433
1434 /* Unregister the buftarg first so that we don't get a
1435 * wakeup finding a non-existent task
1436 */
1437 xfs_unregister_buftarg(btp);
1438 kthread_stop(btp->bt_task);
1439
1440 kmem_free(btp);
1441 }
1442
1443 STATIC int
1444 xfs_setsize_buftarg_flags(
1445 xfs_buftarg_t *btp,
1446 unsigned int blocksize,
1447 unsigned int sectorsize,
1448 int verbose)
1449 {
1450 btp->bt_bsize = blocksize;
1451 btp->bt_sshift = ffs(sectorsize) - 1;
1452 btp->bt_smask = sectorsize - 1;
1453
1454 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1455 printk(KERN_WARNING
1456 "XFS: Cannot set_blocksize to %u on device %s\n",
1457 sectorsize, XFS_BUFTARG_NAME(btp));
1458 return EINVAL;
1459 }
1460
1461 if (verbose &&
1462 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1463 printk(KERN_WARNING
1464 "XFS: %u byte sectors in use on device %s. "
1465 "This is suboptimal; %u or greater is ideal.\n",
1466 sectorsize, XFS_BUFTARG_NAME(btp),
1467 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1468 }
1469
1470 return 0;
1471 }
1472
1473 /*
1474 * When allocating the initial buffer target we have not yet
1475 * read in the superblock, so don't know what sized sectors
1476 * are being used is at this early stage. Play safe.
1477 */
1478 STATIC int
1479 xfs_setsize_buftarg_early(
1480 xfs_buftarg_t *btp,
1481 struct block_device *bdev)
1482 {
1483 return xfs_setsize_buftarg_flags(btp,
1484 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1485 }
1486
1487 int
1488 xfs_setsize_buftarg(
1489 xfs_buftarg_t *btp,
1490 unsigned int blocksize,
1491 unsigned int sectorsize)
1492 {
1493 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1494 }
1495
1496 STATIC int
1497 xfs_mapping_buftarg(
1498 xfs_buftarg_t *btp,
1499 struct block_device *bdev)
1500 {
1501 struct backing_dev_info *bdi;
1502 struct inode *inode;
1503 struct address_space *mapping;
1504 static const struct address_space_operations mapping_aops = {
1505 .sync_page = block_sync_page,
1506 .migratepage = fail_migrate_page,
1507 };
1508
1509 inode = new_inode(bdev->bd_inode->i_sb);
1510 if (!inode) {
1511 printk(KERN_WARNING
1512 "XFS: Cannot allocate mapping inode for device %s\n",
1513 XFS_BUFTARG_NAME(btp));
1514 return ENOMEM;
1515 }
1516 inode->i_mode = S_IFBLK;
1517 inode->i_bdev = bdev;
1518 inode->i_rdev = bdev->bd_dev;
1519 bdi = blk_get_backing_dev_info(bdev);
1520 if (!bdi)
1521 bdi = &default_backing_dev_info;
1522 mapping = &inode->i_data;
1523 mapping->a_ops = &mapping_aops;
1524 mapping->backing_dev_info = bdi;
1525 mapping_set_gfp_mask(mapping, GFP_NOFS);
1526 btp->bt_mapping = mapping;
1527 return 0;
1528 }
1529
1530 STATIC int
1531 xfs_alloc_delwrite_queue(
1532 xfs_buftarg_t *btp)
1533 {
1534 int error = 0;
1535
1536 INIT_LIST_HEAD(&btp->bt_list);
1537 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1538 spin_lock_init(&btp->bt_delwrite_lock);
1539 btp->bt_flags = 0;
1540 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1541 if (IS_ERR(btp->bt_task)) {
1542 error = PTR_ERR(btp->bt_task);
1543 goto out_error;
1544 }
1545 xfs_register_buftarg(btp);
1546 out_error:
1547 return error;
1548 }
1549
1550 xfs_buftarg_t *
1551 xfs_alloc_buftarg(
1552 struct block_device *bdev,
1553 int external)
1554 {
1555 xfs_buftarg_t *btp;
1556
1557 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1558
1559 btp->bt_dev = bdev->bd_dev;
1560 btp->bt_bdev = bdev;
1561 if (xfs_setsize_buftarg_early(btp, bdev))
1562 goto error;
1563 if (xfs_mapping_buftarg(btp, bdev))
1564 goto error;
1565 if (xfs_alloc_delwrite_queue(btp))
1566 goto error;
1567 xfs_alloc_bufhash(btp, external);
1568 return btp;
1569
1570 error:
1571 kmem_free(btp);
1572 return NULL;
1573 }
1574
1575
1576 /*
1577 * Delayed write buffer handling
1578 */
1579 STATIC void
1580 xfs_buf_delwri_queue(
1581 xfs_buf_t *bp,
1582 int unlock)
1583 {
1584 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1585 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1586
1587 XB_TRACE(bp, "delwri_q", (long)unlock);
1588 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1589
1590 spin_lock(dwlk);
1591 /* If already in the queue, dequeue and place at tail */
1592 if (!list_empty(&bp->b_list)) {
1593 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1594 if (unlock)
1595 atomic_dec(&bp->b_hold);
1596 list_del(&bp->b_list);
1597 }
1598
1599 bp->b_flags |= _XBF_DELWRI_Q;
1600 list_add_tail(&bp->b_list, dwq);
1601 bp->b_queuetime = jiffies;
1602 spin_unlock(dwlk);
1603
1604 if (unlock)
1605 xfs_buf_unlock(bp);
1606 }
1607
1608 void
1609 xfs_buf_delwri_dequeue(
1610 xfs_buf_t *bp)
1611 {
1612 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1613 int dequeued = 0;
1614
1615 spin_lock(dwlk);
1616 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1617 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1618 list_del_init(&bp->b_list);
1619 dequeued = 1;
1620 }
1621 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1622 spin_unlock(dwlk);
1623
1624 if (dequeued)
1625 xfs_buf_rele(bp);
1626
1627 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1628 }
1629
1630 STATIC void
1631 xfs_buf_runall_queues(
1632 struct workqueue_struct *queue)
1633 {
1634 flush_workqueue(queue);
1635 }
1636
1637 STATIC int
1638 xfsbufd_wakeup(
1639 int priority,
1640 gfp_t mask)
1641 {
1642 xfs_buftarg_t *btp;
1643
1644 spin_lock(&xfs_buftarg_lock);
1645 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1646 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1647 continue;
1648 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1649 wake_up_process(btp->bt_task);
1650 }
1651 spin_unlock(&xfs_buftarg_lock);
1652 return 0;
1653 }
1654
1655 /*
1656 * Move as many buffers as specified to the supplied list
1657 * idicating if we skipped any buffers to prevent deadlocks.
1658 */
1659 STATIC int
1660 xfs_buf_delwri_split(
1661 xfs_buftarg_t *target,
1662 struct list_head *list,
1663 unsigned long age)
1664 {
1665 xfs_buf_t *bp, *n;
1666 struct list_head *dwq = &target->bt_delwrite_queue;
1667 spinlock_t *dwlk = &target->bt_delwrite_lock;
1668 int skipped = 0;
1669 int force;
1670
1671 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1672 INIT_LIST_HEAD(list);
1673 spin_lock(dwlk);
1674 list_for_each_entry_safe(bp, n, dwq, b_list) {
1675 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1676 ASSERT(bp->b_flags & XBF_DELWRI);
1677
1678 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1679 if (!force &&
1680 time_before(jiffies, bp->b_queuetime + age)) {
1681 xfs_buf_unlock(bp);
1682 break;
1683 }
1684
1685 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1686 _XBF_RUN_QUEUES);
1687 bp->b_flags |= XBF_WRITE;
1688 list_move_tail(&bp->b_list, list);
1689 } else
1690 skipped++;
1691 }
1692 spin_unlock(dwlk);
1693
1694 return skipped;
1695
1696 }
1697
1698 STATIC int
1699 xfsbufd(
1700 void *data)
1701 {
1702 struct list_head tmp;
1703 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1704 int count;
1705 xfs_buf_t *bp;
1706
1707 current->flags |= PF_MEMALLOC;
1708
1709 set_freezable();
1710
1711 do {
1712 if (unlikely(freezing(current))) {
1713 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1714 refrigerator();
1715 } else {
1716 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1717 }
1718
1719 schedule_timeout_interruptible(
1720 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1721
1722 xfs_buf_delwri_split(target, &tmp,
1723 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1724
1725 count = 0;
1726 while (!list_empty(&tmp)) {
1727 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1728 ASSERT(target == bp->b_target);
1729
1730 list_del_init(&bp->b_list);
1731 xfs_buf_iostrategy(bp);
1732 count++;
1733 }
1734
1735 if (as_list_len > 0)
1736 purge_addresses();
1737 if (count)
1738 blk_run_address_space(target->bt_mapping);
1739
1740 } while (!kthread_should_stop());
1741
1742 return 0;
1743 }
1744
1745 /*
1746 * Go through all incore buffers, and release buffers if they belong to
1747 * the given device. This is used in filesystem error handling to
1748 * preserve the consistency of its metadata.
1749 */
1750 int
1751 xfs_flush_buftarg(
1752 xfs_buftarg_t *target,
1753 int wait)
1754 {
1755 struct list_head tmp;
1756 xfs_buf_t *bp, *n;
1757 int pincount = 0;
1758
1759 xfs_buf_runall_queues(xfsdatad_workqueue);
1760 xfs_buf_runall_queues(xfslogd_workqueue);
1761
1762 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1763 pincount = xfs_buf_delwri_split(target, &tmp, 0);
1764
1765 /*
1766 * Dropped the delayed write list lock, now walk the temporary list
1767 */
1768 list_for_each_entry_safe(bp, n, &tmp, b_list) {
1769 ASSERT(target == bp->b_target);
1770 if (wait)
1771 bp->b_flags &= ~XBF_ASYNC;
1772 else
1773 list_del_init(&bp->b_list);
1774
1775 xfs_buf_iostrategy(bp);
1776 }
1777
1778 if (wait)
1779 blk_run_address_space(target->bt_mapping);
1780
1781 /*
1782 * Remaining list items must be flushed before returning
1783 */
1784 while (!list_empty(&tmp)) {
1785 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1786
1787 list_del_init(&bp->b_list);
1788 xfs_iowait(bp);
1789 xfs_buf_relse(bp);
1790 }
1791
1792 return pincount;
1793 }
1794
1795 int __init
1796 xfs_buf_init(void)
1797 {
1798 #ifdef XFS_BUF_TRACE
1799 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_NOFS);
1800 #endif
1801
1802 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1803 KM_ZONE_HWALIGN, NULL);
1804 if (!xfs_buf_zone)
1805 goto out_free_trace_buf;
1806
1807 xfslogd_workqueue = create_workqueue("xfslogd");
1808 if (!xfslogd_workqueue)
1809 goto out_free_buf_zone;
1810
1811 xfsdatad_workqueue = create_workqueue("xfsdatad");
1812 if (!xfsdatad_workqueue)
1813 goto out_destroy_xfslogd_workqueue;
1814
1815 register_shrinker(&xfs_buf_shake);
1816 return 0;
1817
1818 out_destroy_xfslogd_workqueue:
1819 destroy_workqueue(xfslogd_workqueue);
1820 out_free_buf_zone:
1821 kmem_zone_destroy(xfs_buf_zone);
1822 out_free_trace_buf:
1823 #ifdef XFS_BUF_TRACE
1824 ktrace_free(xfs_buf_trace_buf);
1825 #endif
1826 return -ENOMEM;
1827 }
1828
1829 void
1830 xfs_buf_terminate(void)
1831 {
1832 unregister_shrinker(&xfs_buf_shake);
1833 destroy_workqueue(xfsdatad_workqueue);
1834 destroy_workqueue(xfslogd_workqueue);
1835 kmem_zone_destroy(xfs_buf_zone);
1836 #ifdef XFS_BUF_TRACE
1837 ktrace_free(xfs_buf_trace_buf);
1838 #endif
1839 }
1840
1841 #ifdef CONFIG_KDB_MODULES
1842 struct list_head *
1843 xfs_get_buftarg_list(void)
1844 {
1845 return &xfs_buftarg_list;
1846 }
1847 #endif
This page took 0.070861 seconds and 5 git commands to generate.