Drop 'size' argument from bio_endio and bi_end_io
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 static kmem_zone_t *xfs_buf_zone;
38 STATIC int xfsbufd(void *);
39 STATIC int xfsbufd_wakeup(int, gfp_t);
40 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
41 static struct shrinker xfs_buf_shake = {
42 .shrink = xfsbufd_wakeup,
43 .seeks = DEFAULT_SEEKS,
44 };
45
46 static struct workqueue_struct *xfslogd_workqueue;
47 struct workqueue_struct *xfsdatad_workqueue;
48
49 #ifdef XFS_BUF_TRACE
50 void
51 xfs_buf_trace(
52 xfs_buf_t *bp,
53 char *id,
54 void *data,
55 void *ra)
56 {
57 ktrace_enter(xfs_buf_trace_buf,
58 bp, id,
59 (void *)(unsigned long)bp->b_flags,
60 (void *)(unsigned long)bp->b_hold.counter,
61 (void *)(unsigned long)bp->b_sema.count.counter,
62 (void *)current,
63 data, ra,
64 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
65 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
66 (void *)(unsigned long)bp->b_buffer_length,
67 NULL, NULL, NULL, NULL, NULL);
68 }
69 ktrace_t *xfs_buf_trace_buf;
70 #define XFS_BUF_TRACE_SIZE 4096
71 #define XB_TRACE(bp, id, data) \
72 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
73 #else
74 #define XB_TRACE(bp, id, data) do { } while (0)
75 #endif
76
77 #ifdef XFS_BUF_LOCK_TRACKING
78 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
79 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
80 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
81 #else
82 # define XB_SET_OWNER(bp) do { } while (0)
83 # define XB_CLEAR_OWNER(bp) do { } while (0)
84 # define XB_GET_OWNER(bp) do { } while (0)
85 #endif
86
87 #define xb_to_gfp(flags) \
88 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
89 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
90
91 #define xb_to_km(flags) \
92 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
93
94 #define xfs_buf_allocate(flags) \
95 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
96 #define xfs_buf_deallocate(bp) \
97 kmem_zone_free(xfs_buf_zone, (bp));
98
99 /*
100 * Page Region interfaces.
101 *
102 * For pages in filesystems where the blocksize is smaller than the
103 * pagesize, we use the page->private field (long) to hold a bitmap
104 * of uptodate regions within the page.
105 *
106 * Each such region is "bytes per page / bits per long" bytes long.
107 *
108 * NBPPR == number-of-bytes-per-page-region
109 * BTOPR == bytes-to-page-region (rounded up)
110 * BTOPRT == bytes-to-page-region-truncated (rounded down)
111 */
112 #if (BITS_PER_LONG == 32)
113 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
114 #elif (BITS_PER_LONG == 64)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
116 #else
117 #error BITS_PER_LONG must be 32 or 64
118 #endif
119 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
120 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
121 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
122
123 STATIC unsigned long
124 page_region_mask(
125 size_t offset,
126 size_t length)
127 {
128 unsigned long mask;
129 int first, final;
130
131 first = BTOPR(offset);
132 final = BTOPRT(offset + length - 1);
133 first = min(first, final);
134
135 mask = ~0UL;
136 mask <<= BITS_PER_LONG - (final - first);
137 mask >>= BITS_PER_LONG - (final);
138
139 ASSERT(offset + length <= PAGE_CACHE_SIZE);
140 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
141
142 return mask;
143 }
144
145 STATIC_INLINE void
146 set_page_region(
147 struct page *page,
148 size_t offset,
149 size_t length)
150 {
151 set_page_private(page,
152 page_private(page) | page_region_mask(offset, length));
153 if (page_private(page) == ~0UL)
154 SetPageUptodate(page);
155 }
156
157 STATIC_INLINE int
158 test_page_region(
159 struct page *page,
160 size_t offset,
161 size_t length)
162 {
163 unsigned long mask = page_region_mask(offset, length);
164
165 return (mask && (page_private(page) & mask) == mask);
166 }
167
168 /*
169 * Mapping of multi-page buffers into contiguous virtual space
170 */
171
172 typedef struct a_list {
173 void *vm_addr;
174 struct a_list *next;
175 } a_list_t;
176
177 static a_list_t *as_free_head;
178 static int as_list_len;
179 static DEFINE_SPINLOCK(as_lock);
180
181 /*
182 * Try to batch vunmaps because they are costly.
183 */
184 STATIC void
185 free_address(
186 void *addr)
187 {
188 a_list_t *aentry;
189
190 aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
191 if (likely(aentry)) {
192 spin_lock(&as_lock);
193 aentry->next = as_free_head;
194 aentry->vm_addr = addr;
195 as_free_head = aentry;
196 as_list_len++;
197 spin_unlock(&as_lock);
198 } else {
199 vunmap(addr);
200 }
201 }
202
203 STATIC void
204 purge_addresses(void)
205 {
206 a_list_t *aentry, *old;
207
208 if (as_free_head == NULL)
209 return;
210
211 spin_lock(&as_lock);
212 aentry = as_free_head;
213 as_free_head = NULL;
214 as_list_len = 0;
215 spin_unlock(&as_lock);
216
217 while ((old = aentry) != NULL) {
218 vunmap(aentry->vm_addr);
219 aentry = aentry->next;
220 kfree(old);
221 }
222 }
223
224 /*
225 * Internal xfs_buf_t object manipulation
226 */
227
228 STATIC void
229 _xfs_buf_initialize(
230 xfs_buf_t *bp,
231 xfs_buftarg_t *target,
232 xfs_off_t range_base,
233 size_t range_length,
234 xfs_buf_flags_t flags)
235 {
236 /*
237 * We don't want certain flags to appear in b_flags.
238 */
239 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
240
241 memset(bp, 0, sizeof(xfs_buf_t));
242 atomic_set(&bp->b_hold, 1);
243 init_MUTEX_LOCKED(&bp->b_iodonesema);
244 INIT_LIST_HEAD(&bp->b_list);
245 INIT_LIST_HEAD(&bp->b_hash_list);
246 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
247 XB_SET_OWNER(bp);
248 bp->b_target = target;
249 bp->b_file_offset = range_base;
250 /*
251 * Set buffer_length and count_desired to the same value initially.
252 * I/O routines should use count_desired, which will be the same in
253 * most cases but may be reset (e.g. XFS recovery).
254 */
255 bp->b_buffer_length = bp->b_count_desired = range_length;
256 bp->b_flags = flags;
257 bp->b_bn = XFS_BUF_DADDR_NULL;
258 atomic_set(&bp->b_pin_count, 0);
259 init_waitqueue_head(&bp->b_waiters);
260
261 XFS_STATS_INC(xb_create);
262 XB_TRACE(bp, "initialize", target);
263 }
264
265 /*
266 * Allocate a page array capable of holding a specified number
267 * of pages, and point the page buf at it.
268 */
269 STATIC int
270 _xfs_buf_get_pages(
271 xfs_buf_t *bp,
272 int page_count,
273 xfs_buf_flags_t flags)
274 {
275 /* Make sure that we have a page list */
276 if (bp->b_pages == NULL) {
277 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
278 bp->b_page_count = page_count;
279 if (page_count <= XB_PAGES) {
280 bp->b_pages = bp->b_page_array;
281 } else {
282 bp->b_pages = kmem_alloc(sizeof(struct page *) *
283 page_count, xb_to_km(flags));
284 if (bp->b_pages == NULL)
285 return -ENOMEM;
286 }
287 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
288 }
289 return 0;
290 }
291
292 /*
293 * Frees b_pages if it was allocated.
294 */
295 STATIC void
296 _xfs_buf_free_pages(
297 xfs_buf_t *bp)
298 {
299 if (bp->b_pages != bp->b_page_array) {
300 kmem_free(bp->b_pages,
301 bp->b_page_count * sizeof(struct page *));
302 }
303 }
304
305 /*
306 * Releases the specified buffer.
307 *
308 * The modification state of any associated pages is left unchanged.
309 * The buffer most not be on any hash - use xfs_buf_rele instead for
310 * hashed and refcounted buffers
311 */
312 void
313 xfs_buf_free(
314 xfs_buf_t *bp)
315 {
316 XB_TRACE(bp, "free", 0);
317
318 ASSERT(list_empty(&bp->b_hash_list));
319
320 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
321 uint i;
322
323 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
324 free_address(bp->b_addr - bp->b_offset);
325
326 for (i = 0; i < bp->b_page_count; i++) {
327 struct page *page = bp->b_pages[i];
328
329 if (bp->b_flags & _XBF_PAGE_CACHE)
330 ASSERT(!PagePrivate(page));
331 page_cache_release(page);
332 }
333 _xfs_buf_free_pages(bp);
334 }
335
336 xfs_buf_deallocate(bp);
337 }
338
339 /*
340 * Finds all pages for buffer in question and builds it's page list.
341 */
342 STATIC int
343 _xfs_buf_lookup_pages(
344 xfs_buf_t *bp,
345 uint flags)
346 {
347 struct address_space *mapping = bp->b_target->bt_mapping;
348 size_t blocksize = bp->b_target->bt_bsize;
349 size_t size = bp->b_count_desired;
350 size_t nbytes, offset;
351 gfp_t gfp_mask = xb_to_gfp(flags);
352 unsigned short page_count, i;
353 pgoff_t first;
354 xfs_off_t end;
355 int error;
356
357 end = bp->b_file_offset + bp->b_buffer_length;
358 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
359
360 error = _xfs_buf_get_pages(bp, page_count, flags);
361 if (unlikely(error))
362 return error;
363 bp->b_flags |= _XBF_PAGE_CACHE;
364
365 offset = bp->b_offset;
366 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
367
368 for (i = 0; i < bp->b_page_count; i++) {
369 struct page *page;
370 uint retries = 0;
371
372 retry:
373 page = find_or_create_page(mapping, first + i, gfp_mask);
374 if (unlikely(page == NULL)) {
375 if (flags & XBF_READ_AHEAD) {
376 bp->b_page_count = i;
377 for (i = 0; i < bp->b_page_count; i++)
378 unlock_page(bp->b_pages[i]);
379 return -ENOMEM;
380 }
381
382 /*
383 * This could deadlock.
384 *
385 * But until all the XFS lowlevel code is revamped to
386 * handle buffer allocation failures we can't do much.
387 */
388 if (!(++retries % 100))
389 printk(KERN_ERR
390 "XFS: possible memory allocation "
391 "deadlock in %s (mode:0x%x)\n",
392 __FUNCTION__, gfp_mask);
393
394 XFS_STATS_INC(xb_page_retries);
395 xfsbufd_wakeup(0, gfp_mask);
396 congestion_wait(WRITE, HZ/50);
397 goto retry;
398 }
399
400 XFS_STATS_INC(xb_page_found);
401
402 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
403 size -= nbytes;
404
405 ASSERT(!PagePrivate(page));
406 if (!PageUptodate(page)) {
407 page_count--;
408 if (blocksize >= PAGE_CACHE_SIZE) {
409 if (flags & XBF_READ)
410 bp->b_locked = 1;
411 } else if (!PagePrivate(page)) {
412 if (test_page_region(page, offset, nbytes))
413 page_count++;
414 }
415 }
416
417 bp->b_pages[i] = page;
418 offset = 0;
419 }
420
421 if (!bp->b_locked) {
422 for (i = 0; i < bp->b_page_count; i++)
423 unlock_page(bp->b_pages[i]);
424 }
425
426 if (page_count == bp->b_page_count)
427 bp->b_flags |= XBF_DONE;
428
429 XB_TRACE(bp, "lookup_pages", (long)page_count);
430 return error;
431 }
432
433 /*
434 * Map buffer into kernel address-space if nessecary.
435 */
436 STATIC int
437 _xfs_buf_map_pages(
438 xfs_buf_t *bp,
439 uint flags)
440 {
441 /* A single page buffer is always mappable */
442 if (bp->b_page_count == 1) {
443 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
444 bp->b_flags |= XBF_MAPPED;
445 } else if (flags & XBF_MAPPED) {
446 if (as_list_len > 64)
447 purge_addresses();
448 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
449 VM_MAP, PAGE_KERNEL);
450 if (unlikely(bp->b_addr == NULL))
451 return -ENOMEM;
452 bp->b_addr += bp->b_offset;
453 bp->b_flags |= XBF_MAPPED;
454 }
455
456 return 0;
457 }
458
459 /*
460 * Finding and Reading Buffers
461 */
462
463 /*
464 * Look up, and creates if absent, a lockable buffer for
465 * a given range of an inode. The buffer is returned
466 * locked. If other overlapping buffers exist, they are
467 * released before the new buffer is created and locked,
468 * which may imply that this call will block until those buffers
469 * are unlocked. No I/O is implied by this call.
470 */
471 xfs_buf_t *
472 _xfs_buf_find(
473 xfs_buftarg_t *btp, /* block device target */
474 xfs_off_t ioff, /* starting offset of range */
475 size_t isize, /* length of range */
476 xfs_buf_flags_t flags,
477 xfs_buf_t *new_bp)
478 {
479 xfs_off_t range_base;
480 size_t range_length;
481 xfs_bufhash_t *hash;
482 xfs_buf_t *bp, *n;
483
484 range_base = (ioff << BBSHIFT);
485 range_length = (isize << BBSHIFT);
486
487 /* Check for IOs smaller than the sector size / not sector aligned */
488 ASSERT(!(range_length < (1 << btp->bt_sshift)));
489 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
490
491 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
492
493 spin_lock(&hash->bh_lock);
494
495 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
496 ASSERT(btp == bp->b_target);
497 if (bp->b_file_offset == range_base &&
498 bp->b_buffer_length == range_length) {
499 /*
500 * If we look at something, bring it to the
501 * front of the list for next time.
502 */
503 atomic_inc(&bp->b_hold);
504 list_move(&bp->b_hash_list, &hash->bh_list);
505 goto found;
506 }
507 }
508
509 /* No match found */
510 if (new_bp) {
511 _xfs_buf_initialize(new_bp, btp, range_base,
512 range_length, flags);
513 new_bp->b_hash = hash;
514 list_add(&new_bp->b_hash_list, &hash->bh_list);
515 } else {
516 XFS_STATS_INC(xb_miss_locked);
517 }
518
519 spin_unlock(&hash->bh_lock);
520 return new_bp;
521
522 found:
523 spin_unlock(&hash->bh_lock);
524
525 /* Attempt to get the semaphore without sleeping,
526 * if this does not work then we need to drop the
527 * spinlock and do a hard attempt on the semaphore.
528 */
529 if (down_trylock(&bp->b_sema)) {
530 if (!(flags & XBF_TRYLOCK)) {
531 /* wait for buffer ownership */
532 XB_TRACE(bp, "get_lock", 0);
533 xfs_buf_lock(bp);
534 XFS_STATS_INC(xb_get_locked_waited);
535 } else {
536 /* We asked for a trylock and failed, no need
537 * to look at file offset and length here, we
538 * know that this buffer at least overlaps our
539 * buffer and is locked, therefore our buffer
540 * either does not exist, or is this buffer.
541 */
542 xfs_buf_rele(bp);
543 XFS_STATS_INC(xb_busy_locked);
544 return NULL;
545 }
546 } else {
547 /* trylock worked */
548 XB_SET_OWNER(bp);
549 }
550
551 if (bp->b_flags & XBF_STALE) {
552 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
553 bp->b_flags &= XBF_MAPPED;
554 }
555 XB_TRACE(bp, "got_lock", 0);
556 XFS_STATS_INC(xb_get_locked);
557 return bp;
558 }
559
560 /*
561 * Assembles a buffer covering the specified range.
562 * Storage in memory for all portions of the buffer will be allocated,
563 * although backing storage may not be.
564 */
565 xfs_buf_t *
566 xfs_buf_get_flags(
567 xfs_buftarg_t *target,/* target for buffer */
568 xfs_off_t ioff, /* starting offset of range */
569 size_t isize, /* length of range */
570 xfs_buf_flags_t flags)
571 {
572 xfs_buf_t *bp, *new_bp;
573 int error = 0, i;
574
575 new_bp = xfs_buf_allocate(flags);
576 if (unlikely(!new_bp))
577 return NULL;
578
579 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
580 if (bp == new_bp) {
581 error = _xfs_buf_lookup_pages(bp, flags);
582 if (error)
583 goto no_buffer;
584 } else {
585 xfs_buf_deallocate(new_bp);
586 if (unlikely(bp == NULL))
587 return NULL;
588 }
589
590 for (i = 0; i < bp->b_page_count; i++)
591 mark_page_accessed(bp->b_pages[i]);
592
593 if (!(bp->b_flags & XBF_MAPPED)) {
594 error = _xfs_buf_map_pages(bp, flags);
595 if (unlikely(error)) {
596 printk(KERN_WARNING "%s: failed to map pages\n",
597 __FUNCTION__);
598 goto no_buffer;
599 }
600 }
601
602 XFS_STATS_INC(xb_get);
603
604 /*
605 * Always fill in the block number now, the mapped cases can do
606 * their own overlay of this later.
607 */
608 bp->b_bn = ioff;
609 bp->b_count_desired = bp->b_buffer_length;
610
611 XB_TRACE(bp, "get", (unsigned long)flags);
612 return bp;
613
614 no_buffer:
615 if (flags & (XBF_LOCK | XBF_TRYLOCK))
616 xfs_buf_unlock(bp);
617 xfs_buf_rele(bp);
618 return NULL;
619 }
620
621 xfs_buf_t *
622 xfs_buf_read_flags(
623 xfs_buftarg_t *target,
624 xfs_off_t ioff,
625 size_t isize,
626 xfs_buf_flags_t flags)
627 {
628 xfs_buf_t *bp;
629
630 flags |= XBF_READ;
631
632 bp = xfs_buf_get_flags(target, ioff, isize, flags);
633 if (bp) {
634 if (!XFS_BUF_ISDONE(bp)) {
635 XB_TRACE(bp, "read", (unsigned long)flags);
636 XFS_STATS_INC(xb_get_read);
637 xfs_buf_iostart(bp, flags);
638 } else if (flags & XBF_ASYNC) {
639 XB_TRACE(bp, "read_async", (unsigned long)flags);
640 /*
641 * Read ahead call which is already satisfied,
642 * drop the buffer
643 */
644 goto no_buffer;
645 } else {
646 XB_TRACE(bp, "read_done", (unsigned long)flags);
647 /* We do not want read in the flags */
648 bp->b_flags &= ~XBF_READ;
649 }
650 }
651
652 return bp;
653
654 no_buffer:
655 if (flags & (XBF_LOCK | XBF_TRYLOCK))
656 xfs_buf_unlock(bp);
657 xfs_buf_rele(bp);
658 return NULL;
659 }
660
661 /*
662 * If we are not low on memory then do the readahead in a deadlock
663 * safe manner.
664 */
665 void
666 xfs_buf_readahead(
667 xfs_buftarg_t *target,
668 xfs_off_t ioff,
669 size_t isize,
670 xfs_buf_flags_t flags)
671 {
672 struct backing_dev_info *bdi;
673
674 bdi = target->bt_mapping->backing_dev_info;
675 if (bdi_read_congested(bdi))
676 return;
677
678 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
679 xfs_buf_read_flags(target, ioff, isize, flags);
680 }
681
682 xfs_buf_t *
683 xfs_buf_get_empty(
684 size_t len,
685 xfs_buftarg_t *target)
686 {
687 xfs_buf_t *bp;
688
689 bp = xfs_buf_allocate(0);
690 if (bp)
691 _xfs_buf_initialize(bp, target, 0, len, 0);
692 return bp;
693 }
694
695 static inline struct page *
696 mem_to_page(
697 void *addr)
698 {
699 if (((unsigned long)addr < VMALLOC_START) ||
700 ((unsigned long)addr >= VMALLOC_END)) {
701 return virt_to_page(addr);
702 } else {
703 return vmalloc_to_page(addr);
704 }
705 }
706
707 int
708 xfs_buf_associate_memory(
709 xfs_buf_t *bp,
710 void *mem,
711 size_t len)
712 {
713 int rval;
714 int i = 0;
715 size_t ptr;
716 size_t end, end_cur;
717 off_t offset;
718 int page_count;
719
720 page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
721 offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
722 if (offset && (len > PAGE_CACHE_SIZE))
723 page_count++;
724
725 /* Free any previous set of page pointers */
726 if (bp->b_pages)
727 _xfs_buf_free_pages(bp);
728
729 bp->b_pages = NULL;
730 bp->b_addr = mem;
731
732 rval = _xfs_buf_get_pages(bp, page_count, 0);
733 if (rval)
734 return rval;
735
736 bp->b_offset = offset;
737 ptr = (size_t) mem & PAGE_CACHE_MASK;
738 end = PAGE_CACHE_ALIGN((size_t) mem + len);
739 end_cur = end;
740 /* set up first page */
741 bp->b_pages[0] = mem_to_page(mem);
742
743 ptr += PAGE_CACHE_SIZE;
744 bp->b_page_count = ++i;
745 while (ptr < end) {
746 bp->b_pages[i] = mem_to_page((void *)ptr);
747 bp->b_page_count = ++i;
748 ptr += PAGE_CACHE_SIZE;
749 }
750 bp->b_locked = 0;
751
752 bp->b_count_desired = bp->b_buffer_length = len;
753 bp->b_flags |= XBF_MAPPED;
754
755 return 0;
756 }
757
758 xfs_buf_t *
759 xfs_buf_get_noaddr(
760 size_t len,
761 xfs_buftarg_t *target)
762 {
763 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
764 int error, i;
765 xfs_buf_t *bp;
766
767 bp = xfs_buf_allocate(0);
768 if (unlikely(bp == NULL))
769 goto fail;
770 _xfs_buf_initialize(bp, target, 0, len, 0);
771
772 error = _xfs_buf_get_pages(bp, page_count, 0);
773 if (error)
774 goto fail_free_buf;
775
776 for (i = 0; i < page_count; i++) {
777 bp->b_pages[i] = alloc_page(GFP_KERNEL);
778 if (!bp->b_pages[i])
779 goto fail_free_mem;
780 }
781 bp->b_flags |= _XBF_PAGES;
782
783 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
784 if (unlikely(error)) {
785 printk(KERN_WARNING "%s: failed to map pages\n",
786 __FUNCTION__);
787 goto fail_free_mem;
788 }
789
790 xfs_buf_unlock(bp);
791
792 XB_TRACE(bp, "no_daddr", len);
793 return bp;
794
795 fail_free_mem:
796 while (--i >= 0)
797 __free_page(bp->b_pages[i]);
798 _xfs_buf_free_pages(bp);
799 fail_free_buf:
800 xfs_buf_deallocate(bp);
801 fail:
802 return NULL;
803 }
804
805 /*
806 * Increment reference count on buffer, to hold the buffer concurrently
807 * with another thread which may release (free) the buffer asynchronously.
808 * Must hold the buffer already to call this function.
809 */
810 void
811 xfs_buf_hold(
812 xfs_buf_t *bp)
813 {
814 atomic_inc(&bp->b_hold);
815 XB_TRACE(bp, "hold", 0);
816 }
817
818 /*
819 * Releases a hold on the specified buffer. If the
820 * the hold count is 1, calls xfs_buf_free.
821 */
822 void
823 xfs_buf_rele(
824 xfs_buf_t *bp)
825 {
826 xfs_bufhash_t *hash = bp->b_hash;
827
828 XB_TRACE(bp, "rele", bp->b_relse);
829
830 if (unlikely(!hash)) {
831 ASSERT(!bp->b_relse);
832 if (atomic_dec_and_test(&bp->b_hold))
833 xfs_buf_free(bp);
834 return;
835 }
836
837 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
838 if (bp->b_relse) {
839 atomic_inc(&bp->b_hold);
840 spin_unlock(&hash->bh_lock);
841 (*(bp->b_relse)) (bp);
842 } else if (bp->b_flags & XBF_FS_MANAGED) {
843 spin_unlock(&hash->bh_lock);
844 } else {
845 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
846 list_del_init(&bp->b_hash_list);
847 spin_unlock(&hash->bh_lock);
848 xfs_buf_free(bp);
849 }
850 } else {
851 /*
852 * Catch reference count leaks
853 */
854 ASSERT(atomic_read(&bp->b_hold) >= 0);
855 }
856 }
857
858
859 /*
860 * Mutual exclusion on buffers. Locking model:
861 *
862 * Buffers associated with inodes for which buffer locking
863 * is not enabled are not protected by semaphores, and are
864 * assumed to be exclusively owned by the caller. There is a
865 * spinlock in the buffer, used by the caller when concurrent
866 * access is possible.
867 */
868
869 /*
870 * Locks a buffer object, if it is not already locked.
871 * Note that this in no way locks the underlying pages, so it is only
872 * useful for synchronizing concurrent use of buffer objects, not for
873 * synchronizing independent access to the underlying pages.
874 */
875 int
876 xfs_buf_cond_lock(
877 xfs_buf_t *bp)
878 {
879 int locked;
880
881 locked = down_trylock(&bp->b_sema) == 0;
882 if (locked) {
883 XB_SET_OWNER(bp);
884 }
885 XB_TRACE(bp, "cond_lock", (long)locked);
886 return locked ? 0 : -EBUSY;
887 }
888
889 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
890 int
891 xfs_buf_lock_value(
892 xfs_buf_t *bp)
893 {
894 return atomic_read(&bp->b_sema.count);
895 }
896 #endif
897
898 /*
899 * Locks a buffer object.
900 * Note that this in no way locks the underlying pages, so it is only
901 * useful for synchronizing concurrent use of buffer objects, not for
902 * synchronizing independent access to the underlying pages.
903 */
904 void
905 xfs_buf_lock(
906 xfs_buf_t *bp)
907 {
908 XB_TRACE(bp, "lock", 0);
909 if (atomic_read(&bp->b_io_remaining))
910 blk_run_address_space(bp->b_target->bt_mapping);
911 down(&bp->b_sema);
912 XB_SET_OWNER(bp);
913 XB_TRACE(bp, "locked", 0);
914 }
915
916 /*
917 * Releases the lock on the buffer object.
918 * If the buffer is marked delwri but is not queued, do so before we
919 * unlock the buffer as we need to set flags correctly. We also need to
920 * take a reference for the delwri queue because the unlocker is going to
921 * drop their's and they don't know we just queued it.
922 */
923 void
924 xfs_buf_unlock(
925 xfs_buf_t *bp)
926 {
927 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
928 atomic_inc(&bp->b_hold);
929 bp->b_flags |= XBF_ASYNC;
930 xfs_buf_delwri_queue(bp, 0);
931 }
932
933 XB_CLEAR_OWNER(bp);
934 up(&bp->b_sema);
935 XB_TRACE(bp, "unlock", 0);
936 }
937
938
939 /*
940 * Pinning Buffer Storage in Memory
941 * Ensure that no attempt to force a buffer to disk will succeed.
942 */
943 void
944 xfs_buf_pin(
945 xfs_buf_t *bp)
946 {
947 atomic_inc(&bp->b_pin_count);
948 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
949 }
950
951 void
952 xfs_buf_unpin(
953 xfs_buf_t *bp)
954 {
955 if (atomic_dec_and_test(&bp->b_pin_count))
956 wake_up_all(&bp->b_waiters);
957 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
958 }
959
960 int
961 xfs_buf_ispin(
962 xfs_buf_t *bp)
963 {
964 return atomic_read(&bp->b_pin_count);
965 }
966
967 STATIC void
968 xfs_buf_wait_unpin(
969 xfs_buf_t *bp)
970 {
971 DECLARE_WAITQUEUE (wait, current);
972
973 if (atomic_read(&bp->b_pin_count) == 0)
974 return;
975
976 add_wait_queue(&bp->b_waiters, &wait);
977 for (;;) {
978 set_current_state(TASK_UNINTERRUPTIBLE);
979 if (atomic_read(&bp->b_pin_count) == 0)
980 break;
981 if (atomic_read(&bp->b_io_remaining))
982 blk_run_address_space(bp->b_target->bt_mapping);
983 schedule();
984 }
985 remove_wait_queue(&bp->b_waiters, &wait);
986 set_current_state(TASK_RUNNING);
987 }
988
989 /*
990 * Buffer Utility Routines
991 */
992
993 STATIC void
994 xfs_buf_iodone_work(
995 struct work_struct *work)
996 {
997 xfs_buf_t *bp =
998 container_of(work, xfs_buf_t, b_iodone_work);
999
1000 if (bp->b_iodone)
1001 (*(bp->b_iodone))(bp);
1002 else if (bp->b_flags & XBF_ASYNC)
1003 xfs_buf_relse(bp);
1004 }
1005
1006 void
1007 xfs_buf_ioend(
1008 xfs_buf_t *bp,
1009 int schedule)
1010 {
1011 bp->b_flags &= ~(XBF_READ | XBF_WRITE);
1012 if (bp->b_error == 0)
1013 bp->b_flags |= XBF_DONE;
1014
1015 XB_TRACE(bp, "iodone", bp->b_iodone);
1016
1017 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1018 if (schedule) {
1019 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1020 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1021 } else {
1022 xfs_buf_iodone_work(&bp->b_iodone_work);
1023 }
1024 } else {
1025 up(&bp->b_iodonesema);
1026 }
1027 }
1028
1029 void
1030 xfs_buf_ioerror(
1031 xfs_buf_t *bp,
1032 int error)
1033 {
1034 ASSERT(error >= 0 && error <= 0xffff);
1035 bp->b_error = (unsigned short)error;
1036 XB_TRACE(bp, "ioerror", (unsigned long)error);
1037 }
1038
1039 /*
1040 * Initiate I/O on a buffer, based on the flags supplied.
1041 * The b_iodone routine in the buffer supplied will only be called
1042 * when all of the subsidiary I/O requests, if any, have been completed.
1043 */
1044 int
1045 xfs_buf_iostart(
1046 xfs_buf_t *bp,
1047 xfs_buf_flags_t flags)
1048 {
1049 int status = 0;
1050
1051 XB_TRACE(bp, "iostart", (unsigned long)flags);
1052
1053 if (flags & XBF_DELWRI) {
1054 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1055 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1056 xfs_buf_delwri_queue(bp, 1);
1057 return status;
1058 }
1059
1060 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1061 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1062 bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1063 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1064
1065 BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1066
1067 /* For writes allow an alternate strategy routine to precede
1068 * the actual I/O request (which may not be issued at all in
1069 * a shutdown situation, for example).
1070 */
1071 status = (flags & XBF_WRITE) ?
1072 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1073
1074 /* Wait for I/O if we are not an async request.
1075 * Note: async I/O request completion will release the buffer,
1076 * and that can already be done by this point. So using the
1077 * buffer pointer from here on, after async I/O, is invalid.
1078 */
1079 if (!status && !(flags & XBF_ASYNC))
1080 status = xfs_buf_iowait(bp);
1081
1082 return status;
1083 }
1084
1085 STATIC_INLINE int
1086 _xfs_buf_iolocked(
1087 xfs_buf_t *bp)
1088 {
1089 ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE));
1090 if (bp->b_flags & XBF_READ)
1091 return bp->b_locked;
1092 return 0;
1093 }
1094
1095 STATIC_INLINE void
1096 _xfs_buf_ioend(
1097 xfs_buf_t *bp,
1098 int schedule)
1099 {
1100 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1101 bp->b_locked = 0;
1102 xfs_buf_ioend(bp, schedule);
1103 }
1104 }
1105
1106 STATIC int
1107 xfs_buf_bio_end_io(
1108 struct bio *bio,
1109 int error)
1110 {
1111 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1112 unsigned int blocksize = bp->b_target->bt_bsize;
1113 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1114
1115 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1116 bp->b_error = EIO;
1117
1118 do {
1119 struct page *page = bvec->bv_page;
1120
1121 ASSERT(!PagePrivate(page));
1122 if (unlikely(bp->b_error)) {
1123 if (bp->b_flags & XBF_READ)
1124 ClearPageUptodate(page);
1125 } else if (blocksize >= PAGE_CACHE_SIZE) {
1126 SetPageUptodate(page);
1127 } else if (!PagePrivate(page) &&
1128 (bp->b_flags & _XBF_PAGE_CACHE)) {
1129 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1130 }
1131
1132 if (--bvec >= bio->bi_io_vec)
1133 prefetchw(&bvec->bv_page->flags);
1134
1135 if (_xfs_buf_iolocked(bp)) {
1136 unlock_page(page);
1137 }
1138 } while (bvec >= bio->bi_io_vec);
1139
1140 _xfs_buf_ioend(bp, 1);
1141 bio_put(bio);
1142 return 0;
1143 }
1144
1145 STATIC void
1146 _xfs_buf_ioapply(
1147 xfs_buf_t *bp)
1148 {
1149 int i, rw, map_i, total_nr_pages, nr_pages;
1150 struct bio *bio;
1151 int offset = bp->b_offset;
1152 int size = bp->b_count_desired;
1153 sector_t sector = bp->b_bn;
1154 unsigned int blocksize = bp->b_target->bt_bsize;
1155 int locking = _xfs_buf_iolocked(bp);
1156
1157 total_nr_pages = bp->b_page_count;
1158 map_i = 0;
1159
1160 if (bp->b_flags & XBF_ORDERED) {
1161 ASSERT(!(bp->b_flags & XBF_READ));
1162 rw = WRITE_BARRIER;
1163 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1164 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1165 bp->b_flags &= ~_XBF_RUN_QUEUES;
1166 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1167 } else {
1168 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1169 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1170 }
1171
1172 /* Special code path for reading a sub page size buffer in --
1173 * we populate up the whole page, and hence the other metadata
1174 * in the same page. This optimization is only valid when the
1175 * filesystem block size is not smaller than the page size.
1176 */
1177 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1178 (bp->b_flags & XBF_READ) && locking &&
1179 (blocksize >= PAGE_CACHE_SIZE)) {
1180 bio = bio_alloc(GFP_NOIO, 1);
1181
1182 bio->bi_bdev = bp->b_target->bt_bdev;
1183 bio->bi_sector = sector - (offset >> BBSHIFT);
1184 bio->bi_end_io = xfs_buf_bio_end_io;
1185 bio->bi_private = bp;
1186
1187 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1188 size = 0;
1189
1190 atomic_inc(&bp->b_io_remaining);
1191
1192 goto submit_io;
1193 }
1194
1195 /* Lock down the pages which we need to for the request */
1196 if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) {
1197 for (i = 0; size; i++) {
1198 int nbytes = PAGE_CACHE_SIZE - offset;
1199 struct page *page = bp->b_pages[i];
1200
1201 if (nbytes > size)
1202 nbytes = size;
1203
1204 lock_page(page);
1205
1206 size -= nbytes;
1207 offset = 0;
1208 }
1209 offset = bp->b_offset;
1210 size = bp->b_count_desired;
1211 }
1212
1213 next_chunk:
1214 atomic_inc(&bp->b_io_remaining);
1215 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1216 if (nr_pages > total_nr_pages)
1217 nr_pages = total_nr_pages;
1218
1219 bio = bio_alloc(GFP_NOIO, nr_pages);
1220 bio->bi_bdev = bp->b_target->bt_bdev;
1221 bio->bi_sector = sector;
1222 bio->bi_end_io = xfs_buf_bio_end_io;
1223 bio->bi_private = bp;
1224
1225 for (; size && nr_pages; nr_pages--, map_i++) {
1226 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1227
1228 if (nbytes > size)
1229 nbytes = size;
1230
1231 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1232 if (rbytes < nbytes)
1233 break;
1234
1235 offset = 0;
1236 sector += nbytes >> BBSHIFT;
1237 size -= nbytes;
1238 total_nr_pages--;
1239 }
1240
1241 submit_io:
1242 if (likely(bio->bi_size)) {
1243 submit_bio(rw, bio);
1244 if (size)
1245 goto next_chunk;
1246 } else {
1247 bio_put(bio);
1248 xfs_buf_ioerror(bp, EIO);
1249 }
1250 }
1251
1252 int
1253 xfs_buf_iorequest(
1254 xfs_buf_t *bp)
1255 {
1256 XB_TRACE(bp, "iorequest", 0);
1257
1258 if (bp->b_flags & XBF_DELWRI) {
1259 xfs_buf_delwri_queue(bp, 1);
1260 return 0;
1261 }
1262
1263 if (bp->b_flags & XBF_WRITE) {
1264 xfs_buf_wait_unpin(bp);
1265 }
1266
1267 xfs_buf_hold(bp);
1268
1269 /* Set the count to 1 initially, this will stop an I/O
1270 * completion callout which happens before we have started
1271 * all the I/O from calling xfs_buf_ioend too early.
1272 */
1273 atomic_set(&bp->b_io_remaining, 1);
1274 _xfs_buf_ioapply(bp);
1275 _xfs_buf_ioend(bp, 0);
1276
1277 xfs_buf_rele(bp);
1278 return 0;
1279 }
1280
1281 /*
1282 * Waits for I/O to complete on the buffer supplied.
1283 * It returns immediately if no I/O is pending.
1284 * It returns the I/O error code, if any, or 0 if there was no error.
1285 */
1286 int
1287 xfs_buf_iowait(
1288 xfs_buf_t *bp)
1289 {
1290 XB_TRACE(bp, "iowait", 0);
1291 if (atomic_read(&bp->b_io_remaining))
1292 blk_run_address_space(bp->b_target->bt_mapping);
1293 down(&bp->b_iodonesema);
1294 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1295 return bp->b_error;
1296 }
1297
1298 xfs_caddr_t
1299 xfs_buf_offset(
1300 xfs_buf_t *bp,
1301 size_t offset)
1302 {
1303 struct page *page;
1304
1305 if (bp->b_flags & XBF_MAPPED)
1306 return XFS_BUF_PTR(bp) + offset;
1307
1308 offset += bp->b_offset;
1309 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1310 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1311 }
1312
1313 /*
1314 * Move data into or out of a buffer.
1315 */
1316 void
1317 xfs_buf_iomove(
1318 xfs_buf_t *bp, /* buffer to process */
1319 size_t boff, /* starting buffer offset */
1320 size_t bsize, /* length to copy */
1321 caddr_t data, /* data address */
1322 xfs_buf_rw_t mode) /* read/write/zero flag */
1323 {
1324 size_t bend, cpoff, csize;
1325 struct page *page;
1326
1327 bend = boff + bsize;
1328 while (boff < bend) {
1329 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1330 cpoff = xfs_buf_poff(boff + bp->b_offset);
1331 csize = min_t(size_t,
1332 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1333
1334 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1335
1336 switch (mode) {
1337 case XBRW_ZERO:
1338 memset(page_address(page) + cpoff, 0, csize);
1339 break;
1340 case XBRW_READ:
1341 memcpy(data, page_address(page) + cpoff, csize);
1342 break;
1343 case XBRW_WRITE:
1344 memcpy(page_address(page) + cpoff, data, csize);
1345 }
1346
1347 boff += csize;
1348 data += csize;
1349 }
1350 }
1351
1352 /*
1353 * Handling of buffer targets (buftargs).
1354 */
1355
1356 /*
1357 * Wait for any bufs with callbacks that have been submitted but
1358 * have not yet returned... walk the hash list for the target.
1359 */
1360 void
1361 xfs_wait_buftarg(
1362 xfs_buftarg_t *btp)
1363 {
1364 xfs_buf_t *bp, *n;
1365 xfs_bufhash_t *hash;
1366 uint i;
1367
1368 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1369 hash = &btp->bt_hash[i];
1370 again:
1371 spin_lock(&hash->bh_lock);
1372 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1373 ASSERT(btp == bp->b_target);
1374 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1375 spin_unlock(&hash->bh_lock);
1376 /*
1377 * Catch superblock reference count leaks
1378 * immediately
1379 */
1380 BUG_ON(bp->b_bn == 0);
1381 delay(100);
1382 goto again;
1383 }
1384 }
1385 spin_unlock(&hash->bh_lock);
1386 }
1387 }
1388
1389 /*
1390 * Allocate buffer hash table for a given target.
1391 * For devices containing metadata (i.e. not the log/realtime devices)
1392 * we need to allocate a much larger hash table.
1393 */
1394 STATIC void
1395 xfs_alloc_bufhash(
1396 xfs_buftarg_t *btp,
1397 int external)
1398 {
1399 unsigned int i;
1400
1401 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1402 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1403 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1404 sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1405 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1406 spin_lock_init(&btp->bt_hash[i].bh_lock);
1407 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1408 }
1409 }
1410
1411 STATIC void
1412 xfs_free_bufhash(
1413 xfs_buftarg_t *btp)
1414 {
1415 kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1416 btp->bt_hash = NULL;
1417 }
1418
1419 /*
1420 * buftarg list for delwrite queue processing
1421 */
1422 static LIST_HEAD(xfs_buftarg_list);
1423 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1424
1425 STATIC void
1426 xfs_register_buftarg(
1427 xfs_buftarg_t *btp)
1428 {
1429 spin_lock(&xfs_buftarg_lock);
1430 list_add(&btp->bt_list, &xfs_buftarg_list);
1431 spin_unlock(&xfs_buftarg_lock);
1432 }
1433
1434 STATIC void
1435 xfs_unregister_buftarg(
1436 xfs_buftarg_t *btp)
1437 {
1438 spin_lock(&xfs_buftarg_lock);
1439 list_del(&btp->bt_list);
1440 spin_unlock(&xfs_buftarg_lock);
1441 }
1442
1443 void
1444 xfs_free_buftarg(
1445 xfs_buftarg_t *btp,
1446 int external)
1447 {
1448 xfs_flush_buftarg(btp, 1);
1449 xfs_blkdev_issue_flush(btp);
1450 if (external)
1451 xfs_blkdev_put(btp->bt_bdev);
1452 xfs_free_bufhash(btp);
1453 iput(btp->bt_mapping->host);
1454
1455 /* Unregister the buftarg first so that we don't get a
1456 * wakeup finding a non-existent task
1457 */
1458 xfs_unregister_buftarg(btp);
1459 kthread_stop(btp->bt_task);
1460
1461 kmem_free(btp, sizeof(*btp));
1462 }
1463
1464 STATIC int
1465 xfs_setsize_buftarg_flags(
1466 xfs_buftarg_t *btp,
1467 unsigned int blocksize,
1468 unsigned int sectorsize,
1469 int verbose)
1470 {
1471 btp->bt_bsize = blocksize;
1472 btp->bt_sshift = ffs(sectorsize) - 1;
1473 btp->bt_smask = sectorsize - 1;
1474
1475 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1476 printk(KERN_WARNING
1477 "XFS: Cannot set_blocksize to %u on device %s\n",
1478 sectorsize, XFS_BUFTARG_NAME(btp));
1479 return EINVAL;
1480 }
1481
1482 if (verbose &&
1483 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1484 printk(KERN_WARNING
1485 "XFS: %u byte sectors in use on device %s. "
1486 "This is suboptimal; %u or greater is ideal.\n",
1487 sectorsize, XFS_BUFTARG_NAME(btp),
1488 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1489 }
1490
1491 return 0;
1492 }
1493
1494 /*
1495 * When allocating the initial buffer target we have not yet
1496 * read in the superblock, so don't know what sized sectors
1497 * are being used is at this early stage. Play safe.
1498 */
1499 STATIC int
1500 xfs_setsize_buftarg_early(
1501 xfs_buftarg_t *btp,
1502 struct block_device *bdev)
1503 {
1504 return xfs_setsize_buftarg_flags(btp,
1505 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1506 }
1507
1508 int
1509 xfs_setsize_buftarg(
1510 xfs_buftarg_t *btp,
1511 unsigned int blocksize,
1512 unsigned int sectorsize)
1513 {
1514 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1515 }
1516
1517 STATIC int
1518 xfs_mapping_buftarg(
1519 xfs_buftarg_t *btp,
1520 struct block_device *bdev)
1521 {
1522 struct backing_dev_info *bdi;
1523 struct inode *inode;
1524 struct address_space *mapping;
1525 static const struct address_space_operations mapping_aops = {
1526 .sync_page = block_sync_page,
1527 .migratepage = fail_migrate_page,
1528 };
1529
1530 inode = new_inode(bdev->bd_inode->i_sb);
1531 if (!inode) {
1532 printk(KERN_WARNING
1533 "XFS: Cannot allocate mapping inode for device %s\n",
1534 XFS_BUFTARG_NAME(btp));
1535 return ENOMEM;
1536 }
1537 inode->i_mode = S_IFBLK;
1538 inode->i_bdev = bdev;
1539 inode->i_rdev = bdev->bd_dev;
1540 bdi = blk_get_backing_dev_info(bdev);
1541 if (!bdi)
1542 bdi = &default_backing_dev_info;
1543 mapping = &inode->i_data;
1544 mapping->a_ops = &mapping_aops;
1545 mapping->backing_dev_info = bdi;
1546 mapping_set_gfp_mask(mapping, GFP_NOFS);
1547 btp->bt_mapping = mapping;
1548 return 0;
1549 }
1550
1551 STATIC int
1552 xfs_alloc_delwrite_queue(
1553 xfs_buftarg_t *btp)
1554 {
1555 int error = 0;
1556
1557 INIT_LIST_HEAD(&btp->bt_list);
1558 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1559 spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
1560 btp->bt_flags = 0;
1561 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1562 if (IS_ERR(btp->bt_task)) {
1563 error = PTR_ERR(btp->bt_task);
1564 goto out_error;
1565 }
1566 xfs_register_buftarg(btp);
1567 out_error:
1568 return error;
1569 }
1570
1571 xfs_buftarg_t *
1572 xfs_alloc_buftarg(
1573 struct block_device *bdev,
1574 int external)
1575 {
1576 xfs_buftarg_t *btp;
1577
1578 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1579
1580 btp->bt_dev = bdev->bd_dev;
1581 btp->bt_bdev = bdev;
1582 if (xfs_setsize_buftarg_early(btp, bdev))
1583 goto error;
1584 if (xfs_mapping_buftarg(btp, bdev))
1585 goto error;
1586 if (xfs_alloc_delwrite_queue(btp))
1587 goto error;
1588 xfs_alloc_bufhash(btp, external);
1589 return btp;
1590
1591 error:
1592 kmem_free(btp, sizeof(*btp));
1593 return NULL;
1594 }
1595
1596
1597 /*
1598 * Delayed write buffer handling
1599 */
1600 STATIC void
1601 xfs_buf_delwri_queue(
1602 xfs_buf_t *bp,
1603 int unlock)
1604 {
1605 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1606 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1607
1608 XB_TRACE(bp, "delwri_q", (long)unlock);
1609 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1610
1611 spin_lock(dwlk);
1612 /* If already in the queue, dequeue and place at tail */
1613 if (!list_empty(&bp->b_list)) {
1614 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1615 if (unlock)
1616 atomic_dec(&bp->b_hold);
1617 list_del(&bp->b_list);
1618 }
1619
1620 bp->b_flags |= _XBF_DELWRI_Q;
1621 list_add_tail(&bp->b_list, dwq);
1622 bp->b_queuetime = jiffies;
1623 spin_unlock(dwlk);
1624
1625 if (unlock)
1626 xfs_buf_unlock(bp);
1627 }
1628
1629 void
1630 xfs_buf_delwri_dequeue(
1631 xfs_buf_t *bp)
1632 {
1633 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1634 int dequeued = 0;
1635
1636 spin_lock(dwlk);
1637 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1638 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1639 list_del_init(&bp->b_list);
1640 dequeued = 1;
1641 }
1642 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1643 spin_unlock(dwlk);
1644
1645 if (dequeued)
1646 xfs_buf_rele(bp);
1647
1648 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1649 }
1650
1651 STATIC void
1652 xfs_buf_runall_queues(
1653 struct workqueue_struct *queue)
1654 {
1655 flush_workqueue(queue);
1656 }
1657
1658 STATIC int
1659 xfsbufd_wakeup(
1660 int priority,
1661 gfp_t mask)
1662 {
1663 xfs_buftarg_t *btp;
1664
1665 spin_lock(&xfs_buftarg_lock);
1666 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1667 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1668 continue;
1669 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1670 wake_up_process(btp->bt_task);
1671 }
1672 spin_unlock(&xfs_buftarg_lock);
1673 return 0;
1674 }
1675
1676 /*
1677 * Move as many buffers as specified to the supplied list
1678 * idicating if we skipped any buffers to prevent deadlocks.
1679 */
1680 STATIC int
1681 xfs_buf_delwri_split(
1682 xfs_buftarg_t *target,
1683 struct list_head *list,
1684 unsigned long age)
1685 {
1686 xfs_buf_t *bp, *n;
1687 struct list_head *dwq = &target->bt_delwrite_queue;
1688 spinlock_t *dwlk = &target->bt_delwrite_lock;
1689 int skipped = 0;
1690 int force;
1691
1692 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1693 INIT_LIST_HEAD(list);
1694 spin_lock(dwlk);
1695 list_for_each_entry_safe(bp, n, dwq, b_list) {
1696 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1697 ASSERT(bp->b_flags & XBF_DELWRI);
1698
1699 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1700 if (!force &&
1701 time_before(jiffies, bp->b_queuetime + age)) {
1702 xfs_buf_unlock(bp);
1703 break;
1704 }
1705
1706 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1707 _XBF_RUN_QUEUES);
1708 bp->b_flags |= XBF_WRITE;
1709 list_move_tail(&bp->b_list, list);
1710 } else
1711 skipped++;
1712 }
1713 spin_unlock(dwlk);
1714
1715 return skipped;
1716
1717 }
1718
1719 STATIC int
1720 xfsbufd(
1721 void *data)
1722 {
1723 struct list_head tmp;
1724 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1725 int count;
1726 xfs_buf_t *bp;
1727
1728 current->flags |= PF_MEMALLOC;
1729
1730 do {
1731 if (unlikely(freezing(current))) {
1732 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1733 refrigerator();
1734 } else {
1735 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1736 }
1737
1738 schedule_timeout_interruptible(
1739 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1740
1741 xfs_buf_delwri_split(target, &tmp,
1742 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1743
1744 count = 0;
1745 while (!list_empty(&tmp)) {
1746 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1747 ASSERT(target == bp->b_target);
1748
1749 list_del_init(&bp->b_list);
1750 xfs_buf_iostrategy(bp);
1751 count++;
1752 }
1753
1754 if (as_list_len > 0)
1755 purge_addresses();
1756 if (count)
1757 blk_run_address_space(target->bt_mapping);
1758
1759 } while (!kthread_should_stop());
1760
1761 return 0;
1762 }
1763
1764 /*
1765 * Go through all incore buffers, and release buffers if they belong to
1766 * the given device. This is used in filesystem error handling to
1767 * preserve the consistency of its metadata.
1768 */
1769 int
1770 xfs_flush_buftarg(
1771 xfs_buftarg_t *target,
1772 int wait)
1773 {
1774 struct list_head tmp;
1775 xfs_buf_t *bp, *n;
1776 int pincount = 0;
1777
1778 xfs_buf_runall_queues(xfsdatad_workqueue);
1779 xfs_buf_runall_queues(xfslogd_workqueue);
1780
1781 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1782 pincount = xfs_buf_delwri_split(target, &tmp, 0);
1783
1784 /*
1785 * Dropped the delayed write list lock, now walk the temporary list
1786 */
1787 list_for_each_entry_safe(bp, n, &tmp, b_list) {
1788 ASSERT(target == bp->b_target);
1789 if (wait)
1790 bp->b_flags &= ~XBF_ASYNC;
1791 else
1792 list_del_init(&bp->b_list);
1793
1794 xfs_buf_iostrategy(bp);
1795 }
1796
1797 if (wait)
1798 blk_run_address_space(target->bt_mapping);
1799
1800 /*
1801 * Remaining list items must be flushed before returning
1802 */
1803 while (!list_empty(&tmp)) {
1804 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1805
1806 list_del_init(&bp->b_list);
1807 xfs_iowait(bp);
1808 xfs_buf_relse(bp);
1809 }
1810
1811 return pincount;
1812 }
1813
1814 int __init
1815 xfs_buf_init(void)
1816 {
1817 #ifdef XFS_BUF_TRACE
1818 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1819 #endif
1820
1821 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1822 KM_ZONE_HWALIGN, NULL);
1823 if (!xfs_buf_zone)
1824 goto out_free_trace_buf;
1825
1826 xfslogd_workqueue = create_workqueue("xfslogd");
1827 if (!xfslogd_workqueue)
1828 goto out_free_buf_zone;
1829
1830 xfsdatad_workqueue = create_workqueue("xfsdatad");
1831 if (!xfsdatad_workqueue)
1832 goto out_destroy_xfslogd_workqueue;
1833
1834 register_shrinker(&xfs_buf_shake);
1835 return 0;
1836
1837 out_destroy_xfslogd_workqueue:
1838 destroy_workqueue(xfslogd_workqueue);
1839 out_free_buf_zone:
1840 kmem_zone_destroy(xfs_buf_zone);
1841 out_free_trace_buf:
1842 #ifdef XFS_BUF_TRACE
1843 ktrace_free(xfs_buf_trace_buf);
1844 #endif
1845 return -ENOMEM;
1846 }
1847
1848 void
1849 xfs_buf_terminate(void)
1850 {
1851 unregister_shrinker(&xfs_buf_shake);
1852 destroy_workqueue(xfsdatad_workqueue);
1853 destroy_workqueue(xfslogd_workqueue);
1854 kmem_zone_destroy(xfs_buf_zone);
1855 #ifdef XFS_BUF_TRACE
1856 ktrace_free(xfs_buf_trace_buf);
1857 #endif
1858 }
1859
1860 #ifdef CONFIG_KDB_MODULES
1861 struct list_head *
1862 xfs_get_buftarg_list(void)
1863 {
1864 return &xfs_buftarg_list;
1865 }
1866 #endif
This page took 0.095316 seconds and 5 git commands to generate.