6fe21d2b884705d05b741cec4ee3e2cee1f03857
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include <linux/stddef.h>
19 #include <linux/errno.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/sysctl.h>
26 #include <linux/proc_fs.h>
27 #include <linux/workqueue.h>
28 #include <linux/percpu.h>
29 #include <linux/blkdev.h>
30 #include <linux/hash.h>
31 #include <linux/kthread.h>
32 #include "xfs_linux.h"
33
34 STATIC kmem_cache_t *pagebuf_zone;
35 STATIC kmem_shaker_t pagebuf_shake;
36 STATIC int xfsbufd_wakeup(int, gfp_t);
37 STATIC void pagebuf_delwri_queue(xfs_buf_t *, int);
38
39 STATIC struct workqueue_struct *xfslogd_workqueue;
40 struct workqueue_struct *xfsdatad_workqueue;
41
42 #ifdef PAGEBUF_TRACE
43 void
44 pagebuf_trace(
45 xfs_buf_t *pb,
46 char *id,
47 void *data,
48 void *ra)
49 {
50 ktrace_enter(pagebuf_trace_buf,
51 pb, id,
52 (void *)(unsigned long)pb->pb_flags,
53 (void *)(unsigned long)pb->pb_hold.counter,
54 (void *)(unsigned long)pb->pb_sema.count.counter,
55 (void *)current,
56 data, ra,
57 (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff),
58 (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff),
59 (void *)(unsigned long)pb->pb_buffer_length,
60 NULL, NULL, NULL, NULL, NULL);
61 }
62 ktrace_t *pagebuf_trace_buf;
63 #define PAGEBUF_TRACE_SIZE 4096
64 #define PB_TRACE(pb, id, data) \
65 pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0))
66 #else
67 #define PB_TRACE(pb, id, data) do { } while (0)
68 #endif
69
70 #ifdef PAGEBUF_LOCK_TRACKING
71 # define PB_SET_OWNER(pb) ((pb)->pb_last_holder = current->pid)
72 # define PB_CLEAR_OWNER(pb) ((pb)->pb_last_holder = -1)
73 # define PB_GET_OWNER(pb) ((pb)->pb_last_holder)
74 #else
75 # define PB_SET_OWNER(pb) do { } while (0)
76 # define PB_CLEAR_OWNER(pb) do { } while (0)
77 # define PB_GET_OWNER(pb) do { } while (0)
78 #endif
79
80 #define pb_to_gfp(flags) \
81 ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \
82 ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
83
84 #define pb_to_km(flags) \
85 (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
86
87 #define pagebuf_allocate(flags) \
88 kmem_zone_alloc(pagebuf_zone, pb_to_km(flags))
89 #define pagebuf_deallocate(pb) \
90 kmem_zone_free(pagebuf_zone, (pb));
91
92 /*
93 * Page Region interfaces.
94 *
95 * For pages in filesystems where the blocksize is smaller than the
96 * pagesize, we use the page->private field (long) to hold a bitmap
97 * of uptodate regions within the page.
98 *
99 * Each such region is "bytes per page / bits per long" bytes long.
100 *
101 * NBPPR == number-of-bytes-per-page-region
102 * BTOPR == bytes-to-page-region (rounded up)
103 * BTOPRT == bytes-to-page-region-truncated (rounded down)
104 */
105 #if (BITS_PER_LONG == 32)
106 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
107 #elif (BITS_PER_LONG == 64)
108 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
109 #else
110 #error BITS_PER_LONG must be 32 or 64
111 #endif
112 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
113 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
114 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
115
116 STATIC unsigned long
117 page_region_mask(
118 size_t offset,
119 size_t length)
120 {
121 unsigned long mask;
122 int first, final;
123
124 first = BTOPR(offset);
125 final = BTOPRT(offset + length - 1);
126 first = min(first, final);
127
128 mask = ~0UL;
129 mask <<= BITS_PER_LONG - (final - first);
130 mask >>= BITS_PER_LONG - (final);
131
132 ASSERT(offset + length <= PAGE_CACHE_SIZE);
133 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
134
135 return mask;
136 }
137
138 STATIC inline void
139 set_page_region(
140 struct page *page,
141 size_t offset,
142 size_t length)
143 {
144 set_page_private(page,
145 page_private(page) | page_region_mask(offset, length));
146 if (page_private(page) == ~0UL)
147 SetPageUptodate(page);
148 }
149
150 STATIC inline int
151 test_page_region(
152 struct page *page,
153 size_t offset,
154 size_t length)
155 {
156 unsigned long mask = page_region_mask(offset, length);
157
158 return (mask && (page_private(page) & mask) == mask);
159 }
160
161 /*
162 * Mapping of multi-page buffers into contiguous virtual space
163 */
164
165 typedef struct a_list {
166 void *vm_addr;
167 struct a_list *next;
168 } a_list_t;
169
170 STATIC a_list_t *as_free_head;
171 STATIC int as_list_len;
172 STATIC DEFINE_SPINLOCK(as_lock);
173
174 /*
175 * Try to batch vunmaps because they are costly.
176 */
177 STATIC void
178 free_address(
179 void *addr)
180 {
181 a_list_t *aentry;
182
183 aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
184 if (likely(aentry)) {
185 spin_lock(&as_lock);
186 aentry->next = as_free_head;
187 aentry->vm_addr = addr;
188 as_free_head = aentry;
189 as_list_len++;
190 spin_unlock(&as_lock);
191 } else {
192 vunmap(addr);
193 }
194 }
195
196 STATIC void
197 purge_addresses(void)
198 {
199 a_list_t *aentry, *old;
200
201 if (as_free_head == NULL)
202 return;
203
204 spin_lock(&as_lock);
205 aentry = as_free_head;
206 as_free_head = NULL;
207 as_list_len = 0;
208 spin_unlock(&as_lock);
209
210 while ((old = aentry) != NULL) {
211 vunmap(aentry->vm_addr);
212 aentry = aentry->next;
213 kfree(old);
214 }
215 }
216
217 /*
218 * Internal pagebuf object manipulation
219 */
220
221 STATIC void
222 _pagebuf_initialize(
223 xfs_buf_t *pb,
224 xfs_buftarg_t *target,
225 loff_t range_base,
226 size_t range_length,
227 page_buf_flags_t flags)
228 {
229 /*
230 * We don't want certain flags to appear in pb->pb_flags.
231 */
232 flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD);
233
234 memset(pb, 0, sizeof(xfs_buf_t));
235 atomic_set(&pb->pb_hold, 1);
236 init_MUTEX_LOCKED(&pb->pb_iodonesema);
237 INIT_LIST_HEAD(&pb->pb_list);
238 INIT_LIST_HEAD(&pb->pb_hash_list);
239 init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */
240 PB_SET_OWNER(pb);
241 pb->pb_target = target;
242 pb->pb_file_offset = range_base;
243 /*
244 * Set buffer_length and count_desired to the same value initially.
245 * I/O routines should use count_desired, which will be the same in
246 * most cases but may be reset (e.g. XFS recovery).
247 */
248 pb->pb_buffer_length = pb->pb_count_desired = range_length;
249 pb->pb_flags = flags;
250 pb->pb_bn = XFS_BUF_DADDR_NULL;
251 atomic_set(&pb->pb_pin_count, 0);
252 init_waitqueue_head(&pb->pb_waiters);
253
254 XFS_STATS_INC(pb_create);
255 PB_TRACE(pb, "initialize", target);
256 }
257
258 /*
259 * Allocate a page array capable of holding a specified number
260 * of pages, and point the page buf at it.
261 */
262 STATIC int
263 _pagebuf_get_pages(
264 xfs_buf_t *pb,
265 int page_count,
266 page_buf_flags_t flags)
267 {
268 /* Make sure that we have a page list */
269 if (pb->pb_pages == NULL) {
270 pb->pb_offset = page_buf_poff(pb->pb_file_offset);
271 pb->pb_page_count = page_count;
272 if (page_count <= PB_PAGES) {
273 pb->pb_pages = pb->pb_page_array;
274 } else {
275 pb->pb_pages = kmem_alloc(sizeof(struct page *) *
276 page_count, pb_to_km(flags));
277 if (pb->pb_pages == NULL)
278 return -ENOMEM;
279 }
280 memset(pb->pb_pages, 0, sizeof(struct page *) * page_count);
281 }
282 return 0;
283 }
284
285 /*
286 * Frees pb_pages if it was malloced.
287 */
288 STATIC void
289 _pagebuf_free_pages(
290 xfs_buf_t *bp)
291 {
292 if (bp->pb_pages != bp->pb_page_array) {
293 kmem_free(bp->pb_pages,
294 bp->pb_page_count * sizeof(struct page *));
295 }
296 }
297
298 /*
299 * Releases the specified buffer.
300 *
301 * The modification state of any associated pages is left unchanged.
302 * The buffer most not be on any hash - use pagebuf_rele instead for
303 * hashed and refcounted buffers
304 */
305 void
306 pagebuf_free(
307 xfs_buf_t *bp)
308 {
309 PB_TRACE(bp, "free", 0);
310
311 ASSERT(list_empty(&bp->pb_hash_list));
312
313 if (bp->pb_flags & _PBF_PAGE_CACHE) {
314 uint i;
315
316 if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1))
317 free_address(bp->pb_addr - bp->pb_offset);
318
319 for (i = 0; i < bp->pb_page_count; i++)
320 page_cache_release(bp->pb_pages[i]);
321 _pagebuf_free_pages(bp);
322 } else if (bp->pb_flags & _PBF_KMEM_ALLOC) {
323 /*
324 * XXX(hch): bp->pb_count_desired might be incorrect (see
325 * pagebuf_associate_memory for details), but fortunately
326 * the Linux version of kmem_free ignores the len argument..
327 */
328 kmem_free(bp->pb_addr, bp->pb_count_desired);
329 _pagebuf_free_pages(bp);
330 }
331
332 pagebuf_deallocate(bp);
333 }
334
335 /*
336 * Finds all pages for buffer in question and builds it's page list.
337 */
338 STATIC int
339 _pagebuf_lookup_pages(
340 xfs_buf_t *bp,
341 uint flags)
342 {
343 struct address_space *mapping = bp->pb_target->pbr_mapping;
344 size_t blocksize = bp->pb_target->pbr_bsize;
345 size_t size = bp->pb_count_desired;
346 size_t nbytes, offset;
347 gfp_t gfp_mask = pb_to_gfp(flags);
348 unsigned short page_count, i;
349 pgoff_t first;
350 loff_t end;
351 int error;
352
353 end = bp->pb_file_offset + bp->pb_buffer_length;
354 page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset);
355
356 error = _pagebuf_get_pages(bp, page_count, flags);
357 if (unlikely(error))
358 return error;
359 bp->pb_flags |= _PBF_PAGE_CACHE;
360
361 offset = bp->pb_offset;
362 first = bp->pb_file_offset >> PAGE_CACHE_SHIFT;
363
364 for (i = 0; i < bp->pb_page_count; i++) {
365 struct page *page;
366 uint retries = 0;
367
368 retry:
369 page = find_or_create_page(mapping, first + i, gfp_mask);
370 if (unlikely(page == NULL)) {
371 if (flags & PBF_READ_AHEAD) {
372 bp->pb_page_count = i;
373 for (i = 0; i < bp->pb_page_count; i++)
374 unlock_page(bp->pb_pages[i]);
375 return -ENOMEM;
376 }
377
378 /*
379 * This could deadlock.
380 *
381 * But until all the XFS lowlevel code is revamped to
382 * handle buffer allocation failures we can't do much.
383 */
384 if (!(++retries % 100))
385 printk(KERN_ERR
386 "XFS: possible memory allocation "
387 "deadlock in %s (mode:0x%x)\n",
388 __FUNCTION__, gfp_mask);
389
390 XFS_STATS_INC(pb_page_retries);
391 xfsbufd_wakeup(0, gfp_mask);
392 blk_congestion_wait(WRITE, HZ/50);
393 goto retry;
394 }
395
396 XFS_STATS_INC(pb_page_found);
397
398 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
399 size -= nbytes;
400
401 if (!PageUptodate(page)) {
402 page_count--;
403 if (blocksize >= PAGE_CACHE_SIZE) {
404 if (flags & PBF_READ)
405 bp->pb_locked = 1;
406 } else if (!PagePrivate(page)) {
407 if (test_page_region(page, offset, nbytes))
408 page_count++;
409 }
410 }
411
412 bp->pb_pages[i] = page;
413 offset = 0;
414 }
415
416 if (!bp->pb_locked) {
417 for (i = 0; i < bp->pb_page_count; i++)
418 unlock_page(bp->pb_pages[i]);
419 }
420
421 if (page_count == bp->pb_page_count)
422 bp->pb_flags |= PBF_DONE;
423
424 PB_TRACE(bp, "lookup_pages", (long)page_count);
425 return error;
426 }
427
428 /*
429 * Map buffer into kernel address-space if nessecary.
430 */
431 STATIC int
432 _pagebuf_map_pages(
433 xfs_buf_t *bp,
434 uint flags)
435 {
436 /* A single page buffer is always mappable */
437 if (bp->pb_page_count == 1) {
438 bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset;
439 bp->pb_flags |= PBF_MAPPED;
440 } else if (flags & PBF_MAPPED) {
441 if (as_list_len > 64)
442 purge_addresses();
443 bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count,
444 VM_MAP, PAGE_KERNEL);
445 if (unlikely(bp->pb_addr == NULL))
446 return -ENOMEM;
447 bp->pb_addr += bp->pb_offset;
448 bp->pb_flags |= PBF_MAPPED;
449 }
450
451 return 0;
452 }
453
454 /*
455 * Finding and Reading Buffers
456 */
457
458 /*
459 * _pagebuf_find
460 *
461 * Looks up, and creates if absent, a lockable buffer for
462 * a given range of an inode. The buffer is returned
463 * locked. If other overlapping buffers exist, they are
464 * released before the new buffer is created and locked,
465 * which may imply that this call will block until those buffers
466 * are unlocked. No I/O is implied by this call.
467 */
468 xfs_buf_t *
469 _pagebuf_find(
470 xfs_buftarg_t *btp, /* block device target */
471 loff_t ioff, /* starting offset of range */
472 size_t isize, /* length of range */
473 page_buf_flags_t flags, /* PBF_TRYLOCK */
474 xfs_buf_t *new_pb)/* newly allocated buffer */
475 {
476 loff_t range_base;
477 size_t range_length;
478 xfs_bufhash_t *hash;
479 xfs_buf_t *pb, *n;
480
481 range_base = (ioff << BBSHIFT);
482 range_length = (isize << BBSHIFT);
483
484 /* Check for IOs smaller than the sector size / not sector aligned */
485 ASSERT(!(range_length < (1 << btp->pbr_sshift)));
486 ASSERT(!(range_base & (loff_t)btp->pbr_smask));
487
488 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
489
490 spin_lock(&hash->bh_lock);
491
492 list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) {
493 ASSERT(btp == pb->pb_target);
494 if (pb->pb_file_offset == range_base &&
495 pb->pb_buffer_length == range_length) {
496 /*
497 * If we look at something bring it to the
498 * front of the list for next time.
499 */
500 atomic_inc(&pb->pb_hold);
501 list_move(&pb->pb_hash_list, &hash->bh_list);
502 goto found;
503 }
504 }
505
506 /* No match found */
507 if (new_pb) {
508 _pagebuf_initialize(new_pb, btp, range_base,
509 range_length, flags);
510 new_pb->pb_hash = hash;
511 list_add(&new_pb->pb_hash_list, &hash->bh_list);
512 } else {
513 XFS_STATS_INC(pb_miss_locked);
514 }
515
516 spin_unlock(&hash->bh_lock);
517 return new_pb;
518
519 found:
520 spin_unlock(&hash->bh_lock);
521
522 /* Attempt to get the semaphore without sleeping,
523 * if this does not work then we need to drop the
524 * spinlock and do a hard attempt on the semaphore.
525 */
526 if (down_trylock(&pb->pb_sema)) {
527 if (!(flags & PBF_TRYLOCK)) {
528 /* wait for buffer ownership */
529 PB_TRACE(pb, "get_lock", 0);
530 pagebuf_lock(pb);
531 XFS_STATS_INC(pb_get_locked_waited);
532 } else {
533 /* We asked for a trylock and failed, no need
534 * to look at file offset and length here, we
535 * know that this pagebuf at least overlaps our
536 * pagebuf and is locked, therefore our buffer
537 * either does not exist, or is this buffer
538 */
539
540 pagebuf_rele(pb);
541 XFS_STATS_INC(pb_busy_locked);
542 return (NULL);
543 }
544 } else {
545 /* trylock worked */
546 PB_SET_OWNER(pb);
547 }
548
549 if (pb->pb_flags & PBF_STALE) {
550 ASSERT((pb->pb_flags & _PBF_DELWRI_Q) == 0);
551 pb->pb_flags &= PBF_MAPPED;
552 }
553 PB_TRACE(pb, "got_lock", 0);
554 XFS_STATS_INC(pb_get_locked);
555 return (pb);
556 }
557
558 /*
559 * xfs_buf_get_flags assembles a buffer covering the specified range.
560 *
561 * Storage in memory for all portions of the buffer will be allocated,
562 * although backing storage may not be.
563 */
564 xfs_buf_t *
565 xfs_buf_get_flags( /* allocate a buffer */
566 xfs_buftarg_t *target,/* target for buffer */
567 loff_t ioff, /* starting offset of range */
568 size_t isize, /* length of range */
569 page_buf_flags_t flags) /* PBF_TRYLOCK */
570 {
571 xfs_buf_t *pb, *new_pb;
572 int error = 0, i;
573
574 new_pb = pagebuf_allocate(flags);
575 if (unlikely(!new_pb))
576 return NULL;
577
578 pb = _pagebuf_find(target, ioff, isize, flags, new_pb);
579 if (pb == new_pb) {
580 error = _pagebuf_lookup_pages(pb, flags);
581 if (error)
582 goto no_buffer;
583 } else {
584 pagebuf_deallocate(new_pb);
585 if (unlikely(pb == NULL))
586 return NULL;
587 }
588
589 for (i = 0; i < pb->pb_page_count; i++)
590 mark_page_accessed(pb->pb_pages[i]);
591
592 if (!(pb->pb_flags & PBF_MAPPED)) {
593 error = _pagebuf_map_pages(pb, flags);
594 if (unlikely(error)) {
595 printk(KERN_WARNING "%s: failed to map pages\n",
596 __FUNCTION__);
597 goto no_buffer;
598 }
599 }
600
601 XFS_STATS_INC(pb_get);
602
603 /*
604 * Always fill in the block number now, the mapped cases can do
605 * their own overlay of this later.
606 */
607 pb->pb_bn = ioff;
608 pb->pb_count_desired = pb->pb_buffer_length;
609
610 PB_TRACE(pb, "get", (unsigned long)flags);
611 return pb;
612
613 no_buffer:
614 if (flags & (PBF_LOCK | PBF_TRYLOCK))
615 pagebuf_unlock(pb);
616 pagebuf_rele(pb);
617 return NULL;
618 }
619
620 xfs_buf_t *
621 xfs_buf_read_flags(
622 xfs_buftarg_t *target,
623 loff_t ioff,
624 size_t isize,
625 page_buf_flags_t flags)
626 {
627 xfs_buf_t *pb;
628
629 flags |= PBF_READ;
630
631 pb = xfs_buf_get_flags(target, ioff, isize, flags);
632 if (pb) {
633 if (!XFS_BUF_ISDONE(pb)) {
634 PB_TRACE(pb, "read", (unsigned long)flags);
635 XFS_STATS_INC(pb_get_read);
636 pagebuf_iostart(pb, flags);
637 } else if (flags & PBF_ASYNC) {
638 PB_TRACE(pb, "read_async", (unsigned long)flags);
639 /*
640 * Read ahead call which is already satisfied,
641 * drop the buffer
642 */
643 goto no_buffer;
644 } else {
645 PB_TRACE(pb, "read_done", (unsigned long)flags);
646 /* We do not want read in the flags */
647 pb->pb_flags &= ~PBF_READ;
648 }
649 }
650
651 return pb;
652
653 no_buffer:
654 if (flags & (PBF_LOCK | PBF_TRYLOCK))
655 pagebuf_unlock(pb);
656 pagebuf_rele(pb);
657 return NULL;
658 }
659
660 /*
661 * If we are not low on memory then do the readahead in a deadlock
662 * safe manner.
663 */
664 void
665 pagebuf_readahead(
666 xfs_buftarg_t *target,
667 loff_t ioff,
668 size_t isize,
669 page_buf_flags_t flags)
670 {
671 struct backing_dev_info *bdi;
672
673 bdi = target->pbr_mapping->backing_dev_info;
674 if (bdi_read_congested(bdi))
675 return;
676
677 flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD);
678 xfs_buf_read_flags(target, ioff, isize, flags);
679 }
680
681 xfs_buf_t *
682 pagebuf_get_empty(
683 size_t len,
684 xfs_buftarg_t *target)
685 {
686 xfs_buf_t *pb;
687
688 pb = pagebuf_allocate(0);
689 if (pb)
690 _pagebuf_initialize(pb, target, 0, len, 0);
691 return pb;
692 }
693
694 static inline struct page *
695 mem_to_page(
696 void *addr)
697 {
698 if (((unsigned long)addr < VMALLOC_START) ||
699 ((unsigned long)addr >= VMALLOC_END)) {
700 return virt_to_page(addr);
701 } else {
702 return vmalloc_to_page(addr);
703 }
704 }
705
706 int
707 pagebuf_associate_memory(
708 xfs_buf_t *pb,
709 void *mem,
710 size_t len)
711 {
712 int rval;
713 int i = 0;
714 size_t ptr;
715 size_t end, end_cur;
716 off_t offset;
717 int page_count;
718
719 page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
720 offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
721 if (offset && (len > PAGE_CACHE_SIZE))
722 page_count++;
723
724 /* Free any previous set of page pointers */
725 if (pb->pb_pages)
726 _pagebuf_free_pages(pb);
727
728 pb->pb_pages = NULL;
729 pb->pb_addr = mem;
730
731 rval = _pagebuf_get_pages(pb, page_count, 0);
732 if (rval)
733 return rval;
734
735 pb->pb_offset = offset;
736 ptr = (size_t) mem & PAGE_CACHE_MASK;
737 end = PAGE_CACHE_ALIGN((size_t) mem + len);
738 end_cur = end;
739 /* set up first page */
740 pb->pb_pages[0] = mem_to_page(mem);
741
742 ptr += PAGE_CACHE_SIZE;
743 pb->pb_page_count = ++i;
744 while (ptr < end) {
745 pb->pb_pages[i] = mem_to_page((void *)ptr);
746 pb->pb_page_count = ++i;
747 ptr += PAGE_CACHE_SIZE;
748 }
749 pb->pb_locked = 0;
750
751 pb->pb_count_desired = pb->pb_buffer_length = len;
752 pb->pb_flags |= PBF_MAPPED;
753
754 return 0;
755 }
756
757 xfs_buf_t *
758 pagebuf_get_no_daddr(
759 size_t len,
760 xfs_buftarg_t *target)
761 {
762 size_t malloc_len = len;
763 xfs_buf_t *bp;
764 void *data;
765 int error;
766
767 bp = pagebuf_allocate(0);
768 if (unlikely(bp == NULL))
769 goto fail;
770 _pagebuf_initialize(bp, target, 0, len, 0);
771
772 try_again:
773 data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
774 if (unlikely(data == NULL))
775 goto fail_free_buf;
776
777 /* check whether alignment matches.. */
778 if ((__psunsigned_t)data !=
779 ((__psunsigned_t)data & ~target->pbr_smask)) {
780 /* .. else double the size and try again */
781 kmem_free(data, malloc_len);
782 malloc_len <<= 1;
783 goto try_again;
784 }
785
786 error = pagebuf_associate_memory(bp, data, len);
787 if (error)
788 goto fail_free_mem;
789 bp->pb_flags |= _PBF_KMEM_ALLOC;
790
791 pagebuf_unlock(bp);
792
793 PB_TRACE(bp, "no_daddr", data);
794 return bp;
795 fail_free_mem:
796 kmem_free(data, malloc_len);
797 fail_free_buf:
798 pagebuf_free(bp);
799 fail:
800 return NULL;
801 }
802
803 /*
804 * pagebuf_hold
805 *
806 * Increment reference count on buffer, to hold the buffer concurrently
807 * with another thread which may release (free) the buffer asynchronously.
808 *
809 * Must hold the buffer already to call this function.
810 */
811 void
812 pagebuf_hold(
813 xfs_buf_t *pb)
814 {
815 atomic_inc(&pb->pb_hold);
816 PB_TRACE(pb, "hold", 0);
817 }
818
819 /*
820 * pagebuf_rele
821 *
822 * pagebuf_rele releases a hold on the specified buffer. If the
823 * the hold count is 1, pagebuf_rele calls pagebuf_free.
824 */
825 void
826 pagebuf_rele(
827 xfs_buf_t *pb)
828 {
829 xfs_bufhash_t *hash = pb->pb_hash;
830
831 PB_TRACE(pb, "rele", pb->pb_relse);
832
833 if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) {
834 if (pb->pb_relse) {
835 atomic_inc(&pb->pb_hold);
836 spin_unlock(&hash->bh_lock);
837 (*(pb->pb_relse)) (pb);
838 } else if (pb->pb_flags & PBF_FS_MANAGED) {
839 spin_unlock(&hash->bh_lock);
840 } else {
841 ASSERT(!(pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)));
842 list_del_init(&pb->pb_hash_list);
843 spin_unlock(&hash->bh_lock);
844 pagebuf_free(pb);
845 }
846 } else {
847 /*
848 * Catch reference count leaks
849 */
850 ASSERT(atomic_read(&pb->pb_hold) >= 0);
851 }
852 }
853
854
855 /*
856 * Mutual exclusion on buffers. Locking model:
857 *
858 * Buffers associated with inodes for which buffer locking
859 * is not enabled are not protected by semaphores, and are
860 * assumed to be exclusively owned by the caller. There is a
861 * spinlock in the buffer, used by the caller when concurrent
862 * access is possible.
863 */
864
865 /*
866 * pagebuf_cond_lock
867 *
868 * pagebuf_cond_lock locks a buffer object, if it is not already locked.
869 * Note that this in no way
870 * locks the underlying pages, so it is only useful for synchronizing
871 * concurrent use of page buffer objects, not for synchronizing independent
872 * access to the underlying pages.
873 */
874 int
875 pagebuf_cond_lock( /* lock buffer, if not locked */
876 /* returns -EBUSY if locked) */
877 xfs_buf_t *pb)
878 {
879 int locked;
880
881 locked = down_trylock(&pb->pb_sema) == 0;
882 if (locked) {
883 PB_SET_OWNER(pb);
884 }
885 PB_TRACE(pb, "cond_lock", (long)locked);
886 return(locked ? 0 : -EBUSY);
887 }
888
889 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
890 /*
891 * pagebuf_lock_value
892 *
893 * Return lock value for a pagebuf
894 */
895 int
896 pagebuf_lock_value(
897 xfs_buf_t *pb)
898 {
899 return(atomic_read(&pb->pb_sema.count));
900 }
901 #endif
902
903 /*
904 * pagebuf_lock
905 *
906 * pagebuf_lock locks a buffer object. Note that this in no way
907 * locks the underlying pages, so it is only useful for synchronizing
908 * concurrent use of page buffer objects, not for synchronizing independent
909 * access to the underlying pages.
910 */
911 int
912 pagebuf_lock(
913 xfs_buf_t *pb)
914 {
915 PB_TRACE(pb, "lock", 0);
916 if (atomic_read(&pb->pb_io_remaining))
917 blk_run_address_space(pb->pb_target->pbr_mapping);
918 down(&pb->pb_sema);
919 PB_SET_OWNER(pb);
920 PB_TRACE(pb, "locked", 0);
921 return 0;
922 }
923
924 /*
925 * pagebuf_unlock
926 *
927 * pagebuf_unlock releases the lock on the buffer object created by
928 * pagebuf_lock or pagebuf_cond_lock (not any pinning of underlying pages
929 * created by pagebuf_pin).
930 *
931 * If the buffer is marked delwri but is not queued, do so before we
932 * unlock the buffer as we need to set flags correctly. We also need to
933 * take a reference for the delwri queue because the unlocker is going to
934 * drop their's and they don't know we just queued it.
935 */
936 void
937 pagebuf_unlock( /* unlock buffer */
938 xfs_buf_t *pb) /* buffer to unlock */
939 {
940 if ((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == PBF_DELWRI) {
941 atomic_inc(&pb->pb_hold);
942 pb->pb_flags |= PBF_ASYNC;
943 pagebuf_delwri_queue(pb, 0);
944 }
945
946 PB_CLEAR_OWNER(pb);
947 up(&pb->pb_sema);
948 PB_TRACE(pb, "unlock", 0);
949 }
950
951
952 /*
953 * Pinning Buffer Storage in Memory
954 */
955
956 /*
957 * pagebuf_pin
958 *
959 * pagebuf_pin locks all of the memory represented by a buffer in
960 * memory. Multiple calls to pagebuf_pin and pagebuf_unpin, for
961 * the same or different buffers affecting a given page, will
962 * properly count the number of outstanding "pin" requests. The
963 * buffer may be released after the pagebuf_pin and a different
964 * buffer used when calling pagebuf_unpin, if desired.
965 * pagebuf_pin should be used by the file system when it wants be
966 * assured that no attempt will be made to force the affected
967 * memory to disk. It does not assure that a given logical page
968 * will not be moved to a different physical page.
969 */
970 void
971 pagebuf_pin(
972 xfs_buf_t *pb)
973 {
974 atomic_inc(&pb->pb_pin_count);
975 PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter);
976 }
977
978 /*
979 * pagebuf_unpin
980 *
981 * pagebuf_unpin reverses the locking of memory performed by
982 * pagebuf_pin. Note that both functions affected the logical
983 * pages associated with the buffer, not the buffer itself.
984 */
985 void
986 pagebuf_unpin(
987 xfs_buf_t *pb)
988 {
989 if (atomic_dec_and_test(&pb->pb_pin_count)) {
990 wake_up_all(&pb->pb_waiters);
991 }
992 PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter);
993 }
994
995 int
996 pagebuf_ispin(
997 xfs_buf_t *pb)
998 {
999 return atomic_read(&pb->pb_pin_count);
1000 }
1001
1002 /*
1003 * pagebuf_wait_unpin
1004 *
1005 * pagebuf_wait_unpin waits until all of the memory associated
1006 * with the buffer is not longer locked in memory. It returns
1007 * immediately if none of the affected pages are locked.
1008 */
1009 static inline void
1010 _pagebuf_wait_unpin(
1011 xfs_buf_t *pb)
1012 {
1013 DECLARE_WAITQUEUE (wait, current);
1014
1015 if (atomic_read(&pb->pb_pin_count) == 0)
1016 return;
1017
1018 add_wait_queue(&pb->pb_waiters, &wait);
1019 for (;;) {
1020 set_current_state(TASK_UNINTERRUPTIBLE);
1021 if (atomic_read(&pb->pb_pin_count) == 0)
1022 break;
1023 if (atomic_read(&pb->pb_io_remaining))
1024 blk_run_address_space(pb->pb_target->pbr_mapping);
1025 schedule();
1026 }
1027 remove_wait_queue(&pb->pb_waiters, &wait);
1028 set_current_state(TASK_RUNNING);
1029 }
1030
1031 /*
1032 * Buffer Utility Routines
1033 */
1034
1035 /*
1036 * pagebuf_iodone
1037 *
1038 * pagebuf_iodone marks a buffer for which I/O is in progress
1039 * done with respect to that I/O. The pb_iodone routine, if
1040 * present, will be called as a side-effect.
1041 */
1042 STATIC void
1043 pagebuf_iodone_work(
1044 void *v)
1045 {
1046 xfs_buf_t *bp = (xfs_buf_t *)v;
1047
1048 if (bp->pb_iodone)
1049 (*(bp->pb_iodone))(bp);
1050 else if (bp->pb_flags & PBF_ASYNC)
1051 xfs_buf_relse(bp);
1052 }
1053
1054 void
1055 pagebuf_iodone(
1056 xfs_buf_t *pb,
1057 int schedule)
1058 {
1059 pb->pb_flags &= ~(PBF_READ | PBF_WRITE);
1060 if (pb->pb_error == 0)
1061 pb->pb_flags |= PBF_DONE;
1062
1063 PB_TRACE(pb, "iodone", pb->pb_iodone);
1064
1065 if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) {
1066 if (schedule) {
1067 INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb);
1068 queue_work(xfslogd_workqueue, &pb->pb_iodone_work);
1069 } else {
1070 pagebuf_iodone_work(pb);
1071 }
1072 } else {
1073 up(&pb->pb_iodonesema);
1074 }
1075 }
1076
1077 /*
1078 * pagebuf_ioerror
1079 *
1080 * pagebuf_ioerror sets the error code for a buffer.
1081 */
1082 void
1083 pagebuf_ioerror( /* mark/clear buffer error flag */
1084 xfs_buf_t *pb, /* buffer to mark */
1085 int error) /* error to store (0 if none) */
1086 {
1087 ASSERT(error >= 0 && error <= 0xffff);
1088 pb->pb_error = (unsigned short)error;
1089 PB_TRACE(pb, "ioerror", (unsigned long)error);
1090 }
1091
1092 /*
1093 * pagebuf_iostart
1094 *
1095 * pagebuf_iostart initiates I/O on a buffer, based on the flags supplied.
1096 * If necessary, it will arrange for any disk space allocation required,
1097 * and it will break up the request if the block mappings require it.
1098 * The pb_iodone routine in the buffer supplied will only be called
1099 * when all of the subsidiary I/O requests, if any, have been completed.
1100 * pagebuf_iostart calls the pagebuf_ioinitiate routine or
1101 * pagebuf_iorequest, if the former routine is not defined, to start
1102 * the I/O on a given low-level request.
1103 */
1104 int
1105 pagebuf_iostart( /* start I/O on a buffer */
1106 xfs_buf_t *pb, /* buffer to start */
1107 page_buf_flags_t flags) /* PBF_LOCK, PBF_ASYNC, PBF_READ, */
1108 /* PBF_WRITE, PBF_DELWRI, */
1109 /* PBF_DONT_BLOCK */
1110 {
1111 int status = 0;
1112
1113 PB_TRACE(pb, "iostart", (unsigned long)flags);
1114
1115 if (flags & PBF_DELWRI) {
1116 pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC);
1117 pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC);
1118 pagebuf_delwri_queue(pb, 1);
1119 return status;
1120 }
1121
1122 pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \
1123 PBF_READ_AHEAD | _PBF_RUN_QUEUES);
1124 pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \
1125 PBF_READ_AHEAD | _PBF_RUN_QUEUES);
1126
1127 BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL);
1128
1129 /* For writes allow an alternate strategy routine to precede
1130 * the actual I/O request (which may not be issued at all in
1131 * a shutdown situation, for example).
1132 */
1133 status = (flags & PBF_WRITE) ?
1134 pagebuf_iostrategy(pb) : pagebuf_iorequest(pb);
1135
1136 /* Wait for I/O if we are not an async request.
1137 * Note: async I/O request completion will release the buffer,
1138 * and that can already be done by this point. So using the
1139 * buffer pointer from here on, after async I/O, is invalid.
1140 */
1141 if (!status && !(flags & PBF_ASYNC))
1142 status = pagebuf_iowait(pb);
1143
1144 return status;
1145 }
1146
1147 /*
1148 * Helper routine for pagebuf_iorequest
1149 */
1150
1151 STATIC __inline__ int
1152 _pagebuf_iolocked(
1153 xfs_buf_t *pb)
1154 {
1155 ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE));
1156 if (pb->pb_flags & PBF_READ)
1157 return pb->pb_locked;
1158 return 0;
1159 }
1160
1161 STATIC __inline__ void
1162 _pagebuf_iodone(
1163 xfs_buf_t *pb,
1164 int schedule)
1165 {
1166 if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
1167 pb->pb_locked = 0;
1168 pagebuf_iodone(pb, schedule);
1169 }
1170 }
1171
1172 STATIC int
1173 bio_end_io_pagebuf(
1174 struct bio *bio,
1175 unsigned int bytes_done,
1176 int error)
1177 {
1178 xfs_buf_t *pb = (xfs_buf_t *)bio->bi_private;
1179 unsigned int blocksize = pb->pb_target->pbr_bsize;
1180 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1181
1182 if (bio->bi_size)
1183 return 1;
1184
1185 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1186 pb->pb_error = EIO;
1187
1188 do {
1189 struct page *page = bvec->bv_page;
1190
1191 if (unlikely(pb->pb_error)) {
1192 if (pb->pb_flags & PBF_READ)
1193 ClearPageUptodate(page);
1194 SetPageError(page);
1195 } else if (blocksize == PAGE_CACHE_SIZE) {
1196 SetPageUptodate(page);
1197 } else if (!PagePrivate(page) &&
1198 (pb->pb_flags & _PBF_PAGE_CACHE)) {
1199 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1200 }
1201
1202 if (--bvec >= bio->bi_io_vec)
1203 prefetchw(&bvec->bv_page->flags);
1204
1205 if (_pagebuf_iolocked(pb)) {
1206 unlock_page(page);
1207 }
1208 } while (bvec >= bio->bi_io_vec);
1209
1210 _pagebuf_iodone(pb, 1);
1211 bio_put(bio);
1212 return 0;
1213 }
1214
1215 STATIC void
1216 _pagebuf_ioapply(
1217 xfs_buf_t *pb)
1218 {
1219 int i, rw, map_i, total_nr_pages, nr_pages;
1220 struct bio *bio;
1221 int offset = pb->pb_offset;
1222 int size = pb->pb_count_desired;
1223 sector_t sector = pb->pb_bn;
1224 unsigned int blocksize = pb->pb_target->pbr_bsize;
1225 int locking = _pagebuf_iolocked(pb);
1226
1227 total_nr_pages = pb->pb_page_count;
1228 map_i = 0;
1229
1230 if (pb->pb_flags & _PBF_RUN_QUEUES) {
1231 pb->pb_flags &= ~_PBF_RUN_QUEUES;
1232 rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC;
1233 } else {
1234 rw = (pb->pb_flags & PBF_READ) ? READ : WRITE;
1235 }
1236
1237 if (pb->pb_flags & PBF_ORDERED) {
1238 ASSERT(!(pb->pb_flags & PBF_READ));
1239 rw = WRITE_BARRIER;
1240 }
1241
1242 /* Special code path for reading a sub page size pagebuf in --
1243 * we populate up the whole page, and hence the other metadata
1244 * in the same page. This optimization is only valid when the
1245 * filesystem block size and the page size are equal.
1246 */
1247 if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) &&
1248 (pb->pb_flags & PBF_READ) && locking &&
1249 (blocksize == PAGE_CACHE_SIZE)) {
1250 bio = bio_alloc(GFP_NOIO, 1);
1251
1252 bio->bi_bdev = pb->pb_target->pbr_bdev;
1253 bio->bi_sector = sector - (offset >> BBSHIFT);
1254 bio->bi_end_io = bio_end_io_pagebuf;
1255 bio->bi_private = pb;
1256
1257 bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0);
1258 size = 0;
1259
1260 atomic_inc(&pb->pb_io_remaining);
1261
1262 goto submit_io;
1263 }
1264
1265 /* Lock down the pages which we need to for the request */
1266 if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) {
1267 for (i = 0; size; i++) {
1268 int nbytes = PAGE_CACHE_SIZE - offset;
1269 struct page *page = pb->pb_pages[i];
1270
1271 if (nbytes > size)
1272 nbytes = size;
1273
1274 lock_page(page);
1275
1276 size -= nbytes;
1277 offset = 0;
1278 }
1279 offset = pb->pb_offset;
1280 size = pb->pb_count_desired;
1281 }
1282
1283 next_chunk:
1284 atomic_inc(&pb->pb_io_remaining);
1285 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1286 if (nr_pages > total_nr_pages)
1287 nr_pages = total_nr_pages;
1288
1289 bio = bio_alloc(GFP_NOIO, nr_pages);
1290 bio->bi_bdev = pb->pb_target->pbr_bdev;
1291 bio->bi_sector = sector;
1292 bio->bi_end_io = bio_end_io_pagebuf;
1293 bio->bi_private = pb;
1294
1295 for (; size && nr_pages; nr_pages--, map_i++) {
1296 int nbytes = PAGE_CACHE_SIZE - offset;
1297
1298 if (nbytes > size)
1299 nbytes = size;
1300
1301 if (bio_add_page(bio, pb->pb_pages[map_i],
1302 nbytes, offset) < nbytes)
1303 break;
1304
1305 offset = 0;
1306 sector += nbytes >> BBSHIFT;
1307 size -= nbytes;
1308 total_nr_pages--;
1309 }
1310
1311 submit_io:
1312 if (likely(bio->bi_size)) {
1313 submit_bio(rw, bio);
1314 if (size)
1315 goto next_chunk;
1316 } else {
1317 bio_put(bio);
1318 pagebuf_ioerror(pb, EIO);
1319 }
1320 }
1321
1322 /*
1323 * pagebuf_iorequest -- the core I/O request routine.
1324 */
1325 int
1326 pagebuf_iorequest( /* start real I/O */
1327 xfs_buf_t *pb) /* buffer to convey to device */
1328 {
1329 PB_TRACE(pb, "iorequest", 0);
1330
1331 if (pb->pb_flags & PBF_DELWRI) {
1332 pagebuf_delwri_queue(pb, 1);
1333 return 0;
1334 }
1335
1336 if (pb->pb_flags & PBF_WRITE) {
1337 _pagebuf_wait_unpin(pb);
1338 }
1339
1340 pagebuf_hold(pb);
1341
1342 /* Set the count to 1 initially, this will stop an I/O
1343 * completion callout which happens before we have started
1344 * all the I/O from calling pagebuf_iodone too early.
1345 */
1346 atomic_set(&pb->pb_io_remaining, 1);
1347 _pagebuf_ioapply(pb);
1348 _pagebuf_iodone(pb, 0);
1349
1350 pagebuf_rele(pb);
1351 return 0;
1352 }
1353
1354 /*
1355 * pagebuf_iowait
1356 *
1357 * pagebuf_iowait waits for I/O to complete on the buffer supplied.
1358 * It returns immediately if no I/O is pending. In any case, it returns
1359 * the error code, if any, or 0 if there is no error.
1360 */
1361 int
1362 pagebuf_iowait(
1363 xfs_buf_t *pb)
1364 {
1365 PB_TRACE(pb, "iowait", 0);
1366 if (atomic_read(&pb->pb_io_remaining))
1367 blk_run_address_space(pb->pb_target->pbr_mapping);
1368 down(&pb->pb_iodonesema);
1369 PB_TRACE(pb, "iowaited", (long)pb->pb_error);
1370 return pb->pb_error;
1371 }
1372
1373 caddr_t
1374 pagebuf_offset(
1375 xfs_buf_t *pb,
1376 size_t offset)
1377 {
1378 struct page *page;
1379
1380 offset += pb->pb_offset;
1381
1382 page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT];
1383 return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1));
1384 }
1385
1386 /*
1387 * pagebuf_iomove
1388 *
1389 * Move data into or out of a buffer.
1390 */
1391 void
1392 pagebuf_iomove(
1393 xfs_buf_t *pb, /* buffer to process */
1394 size_t boff, /* starting buffer offset */
1395 size_t bsize, /* length to copy */
1396 caddr_t data, /* data address */
1397 page_buf_rw_t mode) /* read/write flag */
1398 {
1399 size_t bend, cpoff, csize;
1400 struct page *page;
1401
1402 bend = boff + bsize;
1403 while (boff < bend) {
1404 page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)];
1405 cpoff = page_buf_poff(boff + pb->pb_offset);
1406 csize = min_t(size_t,
1407 PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff);
1408
1409 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1410
1411 switch (mode) {
1412 case PBRW_ZERO:
1413 memset(page_address(page) + cpoff, 0, csize);
1414 break;
1415 case PBRW_READ:
1416 memcpy(data, page_address(page) + cpoff, csize);
1417 break;
1418 case PBRW_WRITE:
1419 memcpy(page_address(page) + cpoff, data, csize);
1420 }
1421
1422 boff += csize;
1423 data += csize;
1424 }
1425 }
1426
1427 /*
1428 * Handling of buftargs.
1429 */
1430
1431 /*
1432 * Wait for any bufs with callbacks that have been submitted but
1433 * have not yet returned... walk the hash list for the target.
1434 */
1435 void
1436 xfs_wait_buftarg(
1437 xfs_buftarg_t *btp)
1438 {
1439 xfs_buf_t *bp, *n;
1440 xfs_bufhash_t *hash;
1441 uint i;
1442
1443 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1444 hash = &btp->bt_hash[i];
1445 again:
1446 spin_lock(&hash->bh_lock);
1447 list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) {
1448 ASSERT(btp == bp->pb_target);
1449 if (!(bp->pb_flags & PBF_FS_MANAGED)) {
1450 spin_unlock(&hash->bh_lock);
1451 /*
1452 * Catch superblock reference count leaks
1453 * immediately
1454 */
1455 BUG_ON(bp->pb_bn == 0);
1456 delay(100);
1457 goto again;
1458 }
1459 }
1460 spin_unlock(&hash->bh_lock);
1461 }
1462 }
1463
1464 /*
1465 * Allocate buffer hash table for a given target.
1466 * For devices containing metadata (i.e. not the log/realtime devices)
1467 * we need to allocate a much larger hash table.
1468 */
1469 STATIC void
1470 xfs_alloc_bufhash(
1471 xfs_buftarg_t *btp,
1472 int external)
1473 {
1474 unsigned int i;
1475
1476 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1477 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1478 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1479 sizeof(xfs_bufhash_t), KM_SLEEP);
1480 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1481 spin_lock_init(&btp->bt_hash[i].bh_lock);
1482 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1483 }
1484 }
1485
1486 STATIC void
1487 xfs_free_bufhash(
1488 xfs_buftarg_t *btp)
1489 {
1490 kmem_free(btp->bt_hash,
1491 (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1492 btp->bt_hash = NULL;
1493 }
1494
1495 void
1496 xfs_free_buftarg(
1497 xfs_buftarg_t *btp,
1498 int external)
1499 {
1500 xfs_flush_buftarg(btp, 1);
1501 if (external)
1502 xfs_blkdev_put(btp->pbr_bdev);
1503 xfs_free_bufhash(btp);
1504 iput(btp->pbr_mapping->host);
1505 kmem_free(btp, sizeof(*btp));
1506 }
1507
1508 STATIC int
1509 xfs_setsize_buftarg_flags(
1510 xfs_buftarg_t *btp,
1511 unsigned int blocksize,
1512 unsigned int sectorsize,
1513 int verbose)
1514 {
1515 btp->pbr_bsize = blocksize;
1516 btp->pbr_sshift = ffs(sectorsize) - 1;
1517 btp->pbr_smask = sectorsize - 1;
1518
1519 if (set_blocksize(btp->pbr_bdev, sectorsize)) {
1520 printk(KERN_WARNING
1521 "XFS: Cannot set_blocksize to %u on device %s\n",
1522 sectorsize, XFS_BUFTARG_NAME(btp));
1523 return EINVAL;
1524 }
1525
1526 if (verbose &&
1527 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1528 printk(KERN_WARNING
1529 "XFS: %u byte sectors in use on device %s. "
1530 "This is suboptimal; %u or greater is ideal.\n",
1531 sectorsize, XFS_BUFTARG_NAME(btp),
1532 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1533 }
1534
1535 return 0;
1536 }
1537
1538 /*
1539 * When allocating the initial buffer target we have not yet
1540 * read in the superblock, so don't know what sized sectors
1541 * are being used is at this early stage. Play safe.
1542 */
1543 STATIC int
1544 xfs_setsize_buftarg_early(
1545 xfs_buftarg_t *btp,
1546 struct block_device *bdev)
1547 {
1548 return xfs_setsize_buftarg_flags(btp,
1549 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1550 }
1551
1552 int
1553 xfs_setsize_buftarg(
1554 xfs_buftarg_t *btp,
1555 unsigned int blocksize,
1556 unsigned int sectorsize)
1557 {
1558 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1559 }
1560
1561 STATIC int
1562 xfs_mapping_buftarg(
1563 xfs_buftarg_t *btp,
1564 struct block_device *bdev)
1565 {
1566 struct backing_dev_info *bdi;
1567 struct inode *inode;
1568 struct address_space *mapping;
1569 static struct address_space_operations mapping_aops = {
1570 .sync_page = block_sync_page,
1571 };
1572
1573 inode = new_inode(bdev->bd_inode->i_sb);
1574 if (!inode) {
1575 printk(KERN_WARNING
1576 "XFS: Cannot allocate mapping inode for device %s\n",
1577 XFS_BUFTARG_NAME(btp));
1578 return ENOMEM;
1579 }
1580 inode->i_mode = S_IFBLK;
1581 inode->i_bdev = bdev;
1582 inode->i_rdev = bdev->bd_dev;
1583 bdi = blk_get_backing_dev_info(bdev);
1584 if (!bdi)
1585 bdi = &default_backing_dev_info;
1586 mapping = &inode->i_data;
1587 mapping->a_ops = &mapping_aops;
1588 mapping->backing_dev_info = bdi;
1589 mapping_set_gfp_mask(mapping, GFP_NOFS);
1590 btp->pbr_mapping = mapping;
1591 return 0;
1592 }
1593
1594 xfs_buftarg_t *
1595 xfs_alloc_buftarg(
1596 struct block_device *bdev,
1597 int external)
1598 {
1599 xfs_buftarg_t *btp;
1600
1601 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1602
1603 btp->pbr_dev = bdev->bd_dev;
1604 btp->pbr_bdev = bdev;
1605 if (xfs_setsize_buftarg_early(btp, bdev))
1606 goto error;
1607 if (xfs_mapping_buftarg(btp, bdev))
1608 goto error;
1609 xfs_alloc_bufhash(btp, external);
1610 return btp;
1611
1612 error:
1613 kmem_free(btp, sizeof(*btp));
1614 return NULL;
1615 }
1616
1617
1618 /*
1619 * Pagebuf delayed write buffer handling
1620 */
1621
1622 STATIC LIST_HEAD(pbd_delwrite_queue);
1623 STATIC DEFINE_SPINLOCK(pbd_delwrite_lock);
1624
1625 STATIC void
1626 pagebuf_delwri_queue(
1627 xfs_buf_t *pb,
1628 int unlock)
1629 {
1630 PB_TRACE(pb, "delwri_q", (long)unlock);
1631 ASSERT((pb->pb_flags & (PBF_DELWRI|PBF_ASYNC)) ==
1632 (PBF_DELWRI|PBF_ASYNC));
1633
1634 spin_lock(&pbd_delwrite_lock);
1635 /* If already in the queue, dequeue and place at tail */
1636 if (!list_empty(&pb->pb_list)) {
1637 ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
1638 if (unlock) {
1639 atomic_dec(&pb->pb_hold);
1640 }
1641 list_del(&pb->pb_list);
1642 }
1643
1644 pb->pb_flags |= _PBF_DELWRI_Q;
1645 list_add_tail(&pb->pb_list, &pbd_delwrite_queue);
1646 pb->pb_queuetime = jiffies;
1647 spin_unlock(&pbd_delwrite_lock);
1648
1649 if (unlock)
1650 pagebuf_unlock(pb);
1651 }
1652
1653 void
1654 pagebuf_delwri_dequeue(
1655 xfs_buf_t *pb)
1656 {
1657 int dequeued = 0;
1658
1659 spin_lock(&pbd_delwrite_lock);
1660 if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) {
1661 ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
1662 list_del_init(&pb->pb_list);
1663 dequeued = 1;
1664 }
1665 pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
1666 spin_unlock(&pbd_delwrite_lock);
1667
1668 if (dequeued)
1669 pagebuf_rele(pb);
1670
1671 PB_TRACE(pb, "delwri_dq", (long)dequeued);
1672 }
1673
1674 STATIC void
1675 pagebuf_runall_queues(
1676 struct workqueue_struct *queue)
1677 {
1678 flush_workqueue(queue);
1679 }
1680
1681 /* Defines for pagebuf daemon */
1682 STATIC struct task_struct *xfsbufd_task;
1683 STATIC int xfsbufd_force_flush;
1684 STATIC int xfsbufd_force_sleep;
1685
1686 STATIC int
1687 xfsbufd_wakeup(
1688 int priority,
1689 gfp_t mask)
1690 {
1691 if (xfsbufd_force_sleep)
1692 return 0;
1693 xfsbufd_force_flush = 1;
1694 barrier();
1695 wake_up_process(xfsbufd_task);
1696 return 0;
1697 }
1698
1699 STATIC int
1700 xfsbufd(
1701 void *data)
1702 {
1703 struct list_head tmp;
1704 unsigned long age;
1705 xfs_buftarg_t *target;
1706 xfs_buf_t *pb, *n;
1707
1708 current->flags |= PF_MEMALLOC;
1709
1710 INIT_LIST_HEAD(&tmp);
1711 do {
1712 if (unlikely(freezing(current))) {
1713 xfsbufd_force_sleep = 1;
1714 refrigerator();
1715 } else {
1716 xfsbufd_force_sleep = 0;
1717 }
1718
1719 schedule_timeout_interruptible(
1720 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1721
1722 age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1723 spin_lock(&pbd_delwrite_lock);
1724 list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
1725 PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb));
1726 ASSERT(pb->pb_flags & PBF_DELWRI);
1727
1728 if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) {
1729 if (!xfsbufd_force_flush &&
1730 time_before(jiffies,
1731 pb->pb_queuetime + age)) {
1732 pagebuf_unlock(pb);
1733 break;
1734 }
1735
1736 pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
1737 pb->pb_flags |= PBF_WRITE;
1738 list_move(&pb->pb_list, &tmp);
1739 }
1740 }
1741 spin_unlock(&pbd_delwrite_lock);
1742
1743 while (!list_empty(&tmp)) {
1744 pb = list_entry(tmp.next, xfs_buf_t, pb_list);
1745 target = pb->pb_target;
1746
1747 list_del_init(&pb->pb_list);
1748 pagebuf_iostrategy(pb);
1749
1750 blk_run_address_space(target->pbr_mapping);
1751 }
1752
1753 if (as_list_len > 0)
1754 purge_addresses();
1755
1756 xfsbufd_force_flush = 0;
1757 } while (!kthread_should_stop());
1758
1759 return 0;
1760 }
1761
1762 /*
1763 * Go through all incore buffers, and release buffers if they belong to
1764 * the given device. This is used in filesystem error handling to
1765 * preserve the consistency of its metadata.
1766 */
1767 int
1768 xfs_flush_buftarg(
1769 xfs_buftarg_t *target,
1770 int wait)
1771 {
1772 struct list_head tmp;
1773 xfs_buf_t *pb, *n;
1774 int pincount = 0;
1775
1776 pagebuf_runall_queues(xfsdatad_workqueue);
1777 pagebuf_runall_queues(xfslogd_workqueue);
1778
1779 INIT_LIST_HEAD(&tmp);
1780 spin_lock(&pbd_delwrite_lock);
1781 list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
1782
1783 if (pb->pb_target != target)
1784 continue;
1785
1786 ASSERT(pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q));
1787 PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb));
1788 if (pagebuf_ispin(pb)) {
1789 pincount++;
1790 continue;
1791 }
1792
1793 list_move(&pb->pb_list, &tmp);
1794 }
1795 spin_unlock(&pbd_delwrite_lock);
1796
1797 /*
1798 * Dropped the delayed write list lock, now walk the temporary list
1799 */
1800 list_for_each_entry_safe(pb, n, &tmp, pb_list) {
1801 pagebuf_lock(pb);
1802 pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
1803 pb->pb_flags |= PBF_WRITE;
1804 if (wait)
1805 pb->pb_flags &= ~PBF_ASYNC;
1806 else
1807 list_del_init(&pb->pb_list);
1808
1809 pagebuf_iostrategy(pb);
1810 }
1811
1812 /*
1813 * Remaining list items must be flushed before returning
1814 */
1815 while (!list_empty(&tmp)) {
1816 pb = list_entry(tmp.next, xfs_buf_t, pb_list);
1817
1818 list_del_init(&pb->pb_list);
1819 xfs_iowait(pb);
1820 xfs_buf_relse(pb);
1821 }
1822
1823 if (wait)
1824 blk_run_address_space(target->pbr_mapping);
1825
1826 return pincount;
1827 }
1828
1829 int __init
1830 pagebuf_init(void)
1831 {
1832 int error = -ENOMEM;
1833
1834 #ifdef PAGEBUF_TRACE
1835 pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP);
1836 #endif
1837
1838 pagebuf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf");
1839 if (!pagebuf_zone)
1840 goto out_free_trace_buf;
1841
1842 xfslogd_workqueue = create_workqueue("xfslogd");
1843 if (!xfslogd_workqueue)
1844 goto out_free_buf_zone;
1845
1846 xfsdatad_workqueue = create_workqueue("xfsdatad");
1847 if (!xfsdatad_workqueue)
1848 goto out_destroy_xfslogd_workqueue;
1849
1850 xfsbufd_task = kthread_run(xfsbufd, NULL, "xfsbufd");
1851 if (IS_ERR(xfsbufd_task)) {
1852 error = PTR_ERR(xfsbufd_task);
1853 goto out_destroy_xfsdatad_workqueue;
1854 }
1855
1856 pagebuf_shake = kmem_shake_register(xfsbufd_wakeup);
1857 if (!pagebuf_shake)
1858 goto out_stop_xfsbufd;
1859
1860 return 0;
1861
1862 out_stop_xfsbufd:
1863 kthread_stop(xfsbufd_task);
1864 out_destroy_xfsdatad_workqueue:
1865 destroy_workqueue(xfsdatad_workqueue);
1866 out_destroy_xfslogd_workqueue:
1867 destroy_workqueue(xfslogd_workqueue);
1868 out_free_buf_zone:
1869 kmem_zone_destroy(pagebuf_zone);
1870 out_free_trace_buf:
1871 #ifdef PAGEBUF_TRACE
1872 ktrace_free(pagebuf_trace_buf);
1873 #endif
1874 return error;
1875 }
1876
1877 void
1878 pagebuf_terminate(void)
1879 {
1880 kmem_shake_deregister(pagebuf_shake);
1881 kthread_stop(xfsbufd_task);
1882 destroy_workqueue(xfsdatad_workqueue);
1883 destroy_workqueue(xfslogd_workqueue);
1884 kmem_zone_destroy(pagebuf_zone);
1885 #ifdef PAGEBUF_TRACE
1886 ktrace_free(pagebuf_trace_buf);
1887 #endif
1888 }
This page took 0.104119 seconds and 5 git commands to generate.