xfs: convert buffer cache hash to rbtree
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
48 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
49 static struct shrinker xfs_buf_shake = {
50 .shrink = xfsbufd_wakeup,
51 .seeks = DEFAULT_SEEKS,
52 };
53
54 static struct workqueue_struct *xfslogd_workqueue;
55 struct workqueue_struct *xfsdatad_workqueue;
56 struct workqueue_struct *xfsconvertd_workqueue;
57
58 #ifdef XFS_BUF_LOCK_TRACKING
59 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
60 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
61 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
62 #else
63 # define XB_SET_OWNER(bp) do { } while (0)
64 # define XB_CLEAR_OWNER(bp) do { } while (0)
65 # define XB_GET_OWNER(bp) do { } while (0)
66 #endif
67
68 #define xb_to_gfp(flags) \
69 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
71
72 #define xb_to_km(flags) \
73 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
74
75 #define xfs_buf_allocate(flags) \
76 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77 #define xfs_buf_deallocate(bp) \
78 kmem_zone_free(xfs_buf_zone, (bp));
79
80 static inline int
81 xfs_buf_is_vmapped(
82 struct xfs_buf *bp)
83 {
84 /*
85 * Return true if the buffer is vmapped.
86 *
87 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88 * code is clever enough to know it doesn't have to map a single page,
89 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90 */
91 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92 }
93
94 static inline int
95 xfs_buf_vmap_len(
96 struct xfs_buf *bp)
97 {
98 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99 }
100
101 /*
102 * Page Region interfaces.
103 *
104 * For pages in filesystems where the blocksize is smaller than the
105 * pagesize, we use the page->private field (long) to hold a bitmap
106 * of uptodate regions within the page.
107 *
108 * Each such region is "bytes per page / bits per long" bytes long.
109 *
110 * NBPPR == number-of-bytes-per-page-region
111 * BTOPR == bytes-to-page-region (rounded up)
112 * BTOPRT == bytes-to-page-region-truncated (rounded down)
113 */
114 #if (BITS_PER_LONG == 32)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
116 #elif (BITS_PER_LONG == 64)
117 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
118 #else
119 #error BITS_PER_LONG must be 32 or 64
120 #endif
121 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
122 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
124
125 STATIC unsigned long
126 page_region_mask(
127 size_t offset,
128 size_t length)
129 {
130 unsigned long mask;
131 int first, final;
132
133 first = BTOPR(offset);
134 final = BTOPRT(offset + length - 1);
135 first = min(first, final);
136
137 mask = ~0UL;
138 mask <<= BITS_PER_LONG - (final - first);
139 mask >>= BITS_PER_LONG - (final);
140
141 ASSERT(offset + length <= PAGE_CACHE_SIZE);
142 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144 return mask;
145 }
146
147 STATIC void
148 set_page_region(
149 struct page *page,
150 size_t offset,
151 size_t length)
152 {
153 set_page_private(page,
154 page_private(page) | page_region_mask(offset, length));
155 if (page_private(page) == ~0UL)
156 SetPageUptodate(page);
157 }
158
159 STATIC int
160 test_page_region(
161 struct page *page,
162 size_t offset,
163 size_t length)
164 {
165 unsigned long mask = page_region_mask(offset, length);
166
167 return (mask && (page_private(page) & mask) == mask);
168 }
169
170 /*
171 * Internal xfs_buf_t object manipulation
172 */
173
174 STATIC void
175 _xfs_buf_initialize(
176 xfs_buf_t *bp,
177 xfs_buftarg_t *target,
178 xfs_off_t range_base,
179 size_t range_length,
180 xfs_buf_flags_t flags)
181 {
182 /*
183 * We don't want certain flags to appear in b_flags.
184 */
185 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187 memset(bp, 0, sizeof(xfs_buf_t));
188 atomic_set(&bp->b_hold, 1);
189 init_completion(&bp->b_iowait);
190 INIT_LIST_HEAD(&bp->b_list);
191 RB_CLEAR_NODE(&bp->b_rbnode);
192 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
193 XB_SET_OWNER(bp);
194 bp->b_target = target;
195 bp->b_file_offset = range_base;
196 /*
197 * Set buffer_length and count_desired to the same value initially.
198 * I/O routines should use count_desired, which will be the same in
199 * most cases but may be reset (e.g. XFS recovery).
200 */
201 bp->b_buffer_length = bp->b_count_desired = range_length;
202 bp->b_flags = flags;
203 bp->b_bn = XFS_BUF_DADDR_NULL;
204 atomic_set(&bp->b_pin_count, 0);
205 init_waitqueue_head(&bp->b_waiters);
206
207 XFS_STATS_INC(xb_create);
208
209 trace_xfs_buf_init(bp, _RET_IP_);
210 }
211
212 /*
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
215 */
216 STATIC int
217 _xfs_buf_get_pages(
218 xfs_buf_t *bp,
219 int page_count,
220 xfs_buf_flags_t flags)
221 {
222 /* Make sure that we have a page list */
223 if (bp->b_pages == NULL) {
224 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225 bp->b_page_count = page_count;
226 if (page_count <= XB_PAGES) {
227 bp->b_pages = bp->b_page_array;
228 } else {
229 bp->b_pages = kmem_alloc(sizeof(struct page *) *
230 page_count, xb_to_km(flags));
231 if (bp->b_pages == NULL)
232 return -ENOMEM;
233 }
234 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
235 }
236 return 0;
237 }
238
239 /*
240 * Frees b_pages if it was allocated.
241 */
242 STATIC void
243 _xfs_buf_free_pages(
244 xfs_buf_t *bp)
245 {
246 if (bp->b_pages != bp->b_page_array) {
247 kmem_free(bp->b_pages);
248 bp->b_pages = NULL;
249 }
250 }
251
252 /*
253 * Releases the specified buffer.
254 *
255 * The modification state of any associated pages is left unchanged.
256 * The buffer most not be on any hash - use xfs_buf_rele instead for
257 * hashed and refcounted buffers
258 */
259 void
260 xfs_buf_free(
261 xfs_buf_t *bp)
262 {
263 trace_xfs_buf_free(bp, _RET_IP_);
264
265 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
266 uint i;
267
268 if (xfs_buf_is_vmapped(bp))
269 vm_unmap_ram(bp->b_addr - bp->b_offset,
270 bp->b_page_count);
271
272 for (i = 0; i < bp->b_page_count; i++) {
273 struct page *page = bp->b_pages[i];
274
275 if (bp->b_flags & _XBF_PAGE_CACHE)
276 ASSERT(!PagePrivate(page));
277 page_cache_release(page);
278 }
279 }
280 _xfs_buf_free_pages(bp);
281 xfs_buf_deallocate(bp);
282 }
283
284 /*
285 * Finds all pages for buffer in question and builds it's page list.
286 */
287 STATIC int
288 _xfs_buf_lookup_pages(
289 xfs_buf_t *bp,
290 uint flags)
291 {
292 struct address_space *mapping = bp->b_target->bt_mapping;
293 size_t blocksize = bp->b_target->bt_bsize;
294 size_t size = bp->b_count_desired;
295 size_t nbytes, offset;
296 gfp_t gfp_mask = xb_to_gfp(flags);
297 unsigned short page_count, i;
298 pgoff_t first;
299 xfs_off_t end;
300 int error;
301
302 end = bp->b_file_offset + bp->b_buffer_length;
303 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
304
305 error = _xfs_buf_get_pages(bp, page_count, flags);
306 if (unlikely(error))
307 return error;
308 bp->b_flags |= _XBF_PAGE_CACHE;
309
310 offset = bp->b_offset;
311 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
312
313 for (i = 0; i < bp->b_page_count; i++) {
314 struct page *page;
315 uint retries = 0;
316
317 retry:
318 page = find_or_create_page(mapping, first + i, gfp_mask);
319 if (unlikely(page == NULL)) {
320 if (flags & XBF_READ_AHEAD) {
321 bp->b_page_count = i;
322 for (i = 0; i < bp->b_page_count; i++)
323 unlock_page(bp->b_pages[i]);
324 return -ENOMEM;
325 }
326
327 /*
328 * This could deadlock.
329 *
330 * But until all the XFS lowlevel code is revamped to
331 * handle buffer allocation failures we can't do much.
332 */
333 if (!(++retries % 100))
334 printk(KERN_ERR
335 "XFS: possible memory allocation "
336 "deadlock in %s (mode:0x%x)\n",
337 __func__, gfp_mask);
338
339 XFS_STATS_INC(xb_page_retries);
340 xfsbufd_wakeup(NULL, 0, gfp_mask);
341 congestion_wait(BLK_RW_ASYNC, HZ/50);
342 goto retry;
343 }
344
345 XFS_STATS_INC(xb_page_found);
346
347 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
348 size -= nbytes;
349
350 ASSERT(!PagePrivate(page));
351 if (!PageUptodate(page)) {
352 page_count--;
353 if (blocksize >= PAGE_CACHE_SIZE) {
354 if (flags & XBF_READ)
355 bp->b_flags |= _XBF_PAGE_LOCKED;
356 } else if (!PagePrivate(page)) {
357 if (test_page_region(page, offset, nbytes))
358 page_count++;
359 }
360 }
361
362 bp->b_pages[i] = page;
363 offset = 0;
364 }
365
366 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
367 for (i = 0; i < bp->b_page_count; i++)
368 unlock_page(bp->b_pages[i]);
369 }
370
371 if (page_count == bp->b_page_count)
372 bp->b_flags |= XBF_DONE;
373
374 return error;
375 }
376
377 /*
378 * Map buffer into kernel address-space if nessecary.
379 */
380 STATIC int
381 _xfs_buf_map_pages(
382 xfs_buf_t *bp,
383 uint flags)
384 {
385 /* A single page buffer is always mappable */
386 if (bp->b_page_count == 1) {
387 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
388 bp->b_flags |= XBF_MAPPED;
389 } else if (flags & XBF_MAPPED) {
390 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
391 -1, PAGE_KERNEL);
392 if (unlikely(bp->b_addr == NULL))
393 return -ENOMEM;
394 bp->b_addr += bp->b_offset;
395 bp->b_flags |= XBF_MAPPED;
396 }
397
398 return 0;
399 }
400
401 /*
402 * Finding and Reading Buffers
403 */
404
405 /*
406 * Look up, and creates if absent, a lockable buffer for
407 * a given range of an inode. The buffer is returned
408 * locked. If other overlapping buffers exist, they are
409 * released before the new buffer is created and locked,
410 * which may imply that this call will block until those buffers
411 * are unlocked. No I/O is implied by this call.
412 */
413 xfs_buf_t *
414 _xfs_buf_find(
415 xfs_buftarg_t *btp, /* block device target */
416 xfs_off_t ioff, /* starting offset of range */
417 size_t isize, /* length of range */
418 xfs_buf_flags_t flags,
419 xfs_buf_t *new_bp)
420 {
421 xfs_off_t range_base;
422 size_t range_length;
423 struct xfs_perag *pag;
424 struct rb_node **rbp;
425 struct rb_node *parent;
426 xfs_buf_t *bp;
427
428 range_base = (ioff << BBSHIFT);
429 range_length = (isize << BBSHIFT);
430
431 /* Check for IOs smaller than the sector size / not sector aligned */
432 ASSERT(!(range_length < (1 << btp->bt_sshift)));
433 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
434
435 /* get tree root */
436 pag = xfs_perag_get(btp->bt_mount,
437 xfs_daddr_to_agno(btp->bt_mount, ioff));
438
439 /* walk tree */
440 spin_lock(&pag->pag_buf_lock);
441 rbp = &pag->pag_buf_tree.rb_node;
442 parent = NULL;
443 bp = NULL;
444 while (*rbp) {
445 parent = *rbp;
446 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
447
448 if (range_base < bp->b_file_offset)
449 rbp = &(*rbp)->rb_left;
450 else if (range_base > bp->b_file_offset)
451 rbp = &(*rbp)->rb_right;
452 else {
453 /*
454 * found a block offset match. If the range doesn't
455 * match, the only way this is allowed is if the buffer
456 * in the cache is stale and the transaction that made
457 * it stale has not yet committed. i.e. we are
458 * reallocating a busy extent. Skip this buffer and
459 * continue searching to the right for an exact match.
460 */
461 if (bp->b_buffer_length != range_length) {
462 ASSERT(bp->b_flags & XBF_STALE);
463 rbp = &(*rbp)->rb_right;
464 continue;
465 }
466 atomic_inc(&bp->b_hold);
467 goto found;
468 }
469 }
470
471 /* No match found */
472 if (new_bp) {
473 _xfs_buf_initialize(new_bp, btp, range_base,
474 range_length, flags);
475 rb_link_node(&new_bp->b_rbnode, parent, rbp);
476 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
477 /* the buffer keeps the perag reference until it is freed */
478 new_bp->b_pag = pag;
479 spin_unlock(&pag->pag_buf_lock);
480 } else {
481 XFS_STATS_INC(xb_miss_locked);
482 spin_unlock(&pag->pag_buf_lock);
483 xfs_perag_put(pag);
484 }
485 return new_bp;
486
487 found:
488 spin_unlock(&pag->pag_buf_lock);
489 xfs_perag_put(pag);
490
491 /* Attempt to get the semaphore without sleeping,
492 * if this does not work then we need to drop the
493 * spinlock and do a hard attempt on the semaphore.
494 */
495 if (down_trylock(&bp->b_sema)) {
496 if (!(flags & XBF_TRYLOCK)) {
497 /* wait for buffer ownership */
498 xfs_buf_lock(bp);
499 XFS_STATS_INC(xb_get_locked_waited);
500 } else {
501 /* We asked for a trylock and failed, no need
502 * to look at file offset and length here, we
503 * know that this buffer at least overlaps our
504 * buffer and is locked, therefore our buffer
505 * either does not exist, or is this buffer.
506 */
507 xfs_buf_rele(bp);
508 XFS_STATS_INC(xb_busy_locked);
509 return NULL;
510 }
511 } else {
512 /* trylock worked */
513 XB_SET_OWNER(bp);
514 }
515
516 if (bp->b_flags & XBF_STALE) {
517 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
518 bp->b_flags &= XBF_MAPPED;
519 }
520
521 trace_xfs_buf_find(bp, flags, _RET_IP_);
522 XFS_STATS_INC(xb_get_locked);
523 return bp;
524 }
525
526 /*
527 * Assembles a buffer covering the specified range.
528 * Storage in memory for all portions of the buffer will be allocated,
529 * although backing storage may not be.
530 */
531 xfs_buf_t *
532 xfs_buf_get(
533 xfs_buftarg_t *target,/* target for buffer */
534 xfs_off_t ioff, /* starting offset of range */
535 size_t isize, /* length of range */
536 xfs_buf_flags_t flags)
537 {
538 xfs_buf_t *bp, *new_bp;
539 int error = 0, i;
540
541 new_bp = xfs_buf_allocate(flags);
542 if (unlikely(!new_bp))
543 return NULL;
544
545 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
546 if (bp == new_bp) {
547 error = _xfs_buf_lookup_pages(bp, flags);
548 if (error)
549 goto no_buffer;
550 } else {
551 xfs_buf_deallocate(new_bp);
552 if (unlikely(bp == NULL))
553 return NULL;
554 }
555
556 for (i = 0; i < bp->b_page_count; i++)
557 mark_page_accessed(bp->b_pages[i]);
558
559 if (!(bp->b_flags & XBF_MAPPED)) {
560 error = _xfs_buf_map_pages(bp, flags);
561 if (unlikely(error)) {
562 printk(KERN_WARNING "%s: failed to map pages\n",
563 __func__);
564 goto no_buffer;
565 }
566 }
567
568 XFS_STATS_INC(xb_get);
569
570 /*
571 * Always fill in the block number now, the mapped cases can do
572 * their own overlay of this later.
573 */
574 bp->b_bn = ioff;
575 bp->b_count_desired = bp->b_buffer_length;
576
577 trace_xfs_buf_get(bp, flags, _RET_IP_);
578 return bp;
579
580 no_buffer:
581 if (flags & (XBF_LOCK | XBF_TRYLOCK))
582 xfs_buf_unlock(bp);
583 xfs_buf_rele(bp);
584 return NULL;
585 }
586
587 STATIC int
588 _xfs_buf_read(
589 xfs_buf_t *bp,
590 xfs_buf_flags_t flags)
591 {
592 int status;
593
594 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
595 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
596
597 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
598 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
599 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
600 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
601
602 status = xfs_buf_iorequest(bp);
603 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
604 return status;
605 return xfs_buf_iowait(bp);
606 }
607
608 xfs_buf_t *
609 xfs_buf_read(
610 xfs_buftarg_t *target,
611 xfs_off_t ioff,
612 size_t isize,
613 xfs_buf_flags_t flags)
614 {
615 xfs_buf_t *bp;
616
617 flags |= XBF_READ;
618
619 bp = xfs_buf_get(target, ioff, isize, flags);
620 if (bp) {
621 trace_xfs_buf_read(bp, flags, _RET_IP_);
622
623 if (!XFS_BUF_ISDONE(bp)) {
624 XFS_STATS_INC(xb_get_read);
625 _xfs_buf_read(bp, flags);
626 } else if (flags & XBF_ASYNC) {
627 /*
628 * Read ahead call which is already satisfied,
629 * drop the buffer
630 */
631 goto no_buffer;
632 } else {
633 /* We do not want read in the flags */
634 bp->b_flags &= ~XBF_READ;
635 }
636 }
637
638 return bp;
639
640 no_buffer:
641 if (flags & (XBF_LOCK | XBF_TRYLOCK))
642 xfs_buf_unlock(bp);
643 xfs_buf_rele(bp);
644 return NULL;
645 }
646
647 /*
648 * If we are not low on memory then do the readahead in a deadlock
649 * safe manner.
650 */
651 void
652 xfs_buf_readahead(
653 xfs_buftarg_t *target,
654 xfs_off_t ioff,
655 size_t isize,
656 xfs_buf_flags_t flags)
657 {
658 struct backing_dev_info *bdi;
659
660 bdi = target->bt_mapping->backing_dev_info;
661 if (bdi_read_congested(bdi))
662 return;
663
664 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
665 xfs_buf_read(target, ioff, isize, flags);
666 }
667
668 /*
669 * Read an uncached buffer from disk. Allocates and returns a locked
670 * buffer containing the disk contents or nothing.
671 */
672 struct xfs_buf *
673 xfs_buf_read_uncached(
674 struct xfs_mount *mp,
675 struct xfs_buftarg *target,
676 xfs_daddr_t daddr,
677 size_t length,
678 int flags)
679 {
680 xfs_buf_t *bp;
681 int error;
682
683 bp = xfs_buf_get_uncached(target, length, flags);
684 if (!bp)
685 return NULL;
686
687 /* set up the buffer for a read IO */
688 xfs_buf_lock(bp);
689 XFS_BUF_SET_ADDR(bp, daddr);
690 XFS_BUF_READ(bp);
691 XFS_BUF_BUSY(bp);
692
693 xfsbdstrat(mp, bp);
694 error = xfs_iowait(bp);
695 if (error || bp->b_error) {
696 xfs_buf_relse(bp);
697 return NULL;
698 }
699 return bp;
700 }
701
702 xfs_buf_t *
703 xfs_buf_get_empty(
704 size_t len,
705 xfs_buftarg_t *target)
706 {
707 xfs_buf_t *bp;
708
709 bp = xfs_buf_allocate(0);
710 if (bp)
711 _xfs_buf_initialize(bp, target, 0, len, 0);
712 return bp;
713 }
714
715 static inline struct page *
716 mem_to_page(
717 void *addr)
718 {
719 if ((!is_vmalloc_addr(addr))) {
720 return virt_to_page(addr);
721 } else {
722 return vmalloc_to_page(addr);
723 }
724 }
725
726 int
727 xfs_buf_associate_memory(
728 xfs_buf_t *bp,
729 void *mem,
730 size_t len)
731 {
732 int rval;
733 int i = 0;
734 unsigned long pageaddr;
735 unsigned long offset;
736 size_t buflen;
737 int page_count;
738
739 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
740 offset = (unsigned long)mem - pageaddr;
741 buflen = PAGE_CACHE_ALIGN(len + offset);
742 page_count = buflen >> PAGE_CACHE_SHIFT;
743
744 /* Free any previous set of page pointers */
745 if (bp->b_pages)
746 _xfs_buf_free_pages(bp);
747
748 bp->b_pages = NULL;
749 bp->b_addr = mem;
750
751 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
752 if (rval)
753 return rval;
754
755 bp->b_offset = offset;
756
757 for (i = 0; i < bp->b_page_count; i++) {
758 bp->b_pages[i] = mem_to_page((void *)pageaddr);
759 pageaddr += PAGE_CACHE_SIZE;
760 }
761
762 bp->b_count_desired = len;
763 bp->b_buffer_length = buflen;
764 bp->b_flags |= XBF_MAPPED;
765 bp->b_flags &= ~_XBF_PAGE_LOCKED;
766
767 return 0;
768 }
769
770 xfs_buf_t *
771 xfs_buf_get_uncached(
772 struct xfs_buftarg *target,
773 size_t len,
774 int flags)
775 {
776 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
777 int error, i;
778 xfs_buf_t *bp;
779
780 bp = xfs_buf_allocate(0);
781 if (unlikely(bp == NULL))
782 goto fail;
783 _xfs_buf_initialize(bp, target, 0, len, 0);
784
785 error = _xfs_buf_get_pages(bp, page_count, 0);
786 if (error)
787 goto fail_free_buf;
788
789 for (i = 0; i < page_count; i++) {
790 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
791 if (!bp->b_pages[i])
792 goto fail_free_mem;
793 }
794 bp->b_flags |= _XBF_PAGES;
795
796 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
797 if (unlikely(error)) {
798 printk(KERN_WARNING "%s: failed to map pages\n",
799 __func__);
800 goto fail_free_mem;
801 }
802
803 xfs_buf_unlock(bp);
804
805 trace_xfs_buf_get_uncached(bp, _RET_IP_);
806 return bp;
807
808 fail_free_mem:
809 while (--i >= 0)
810 __free_page(bp->b_pages[i]);
811 _xfs_buf_free_pages(bp);
812 fail_free_buf:
813 xfs_buf_deallocate(bp);
814 fail:
815 return NULL;
816 }
817
818 /*
819 * Increment reference count on buffer, to hold the buffer concurrently
820 * with another thread which may release (free) the buffer asynchronously.
821 * Must hold the buffer already to call this function.
822 */
823 void
824 xfs_buf_hold(
825 xfs_buf_t *bp)
826 {
827 trace_xfs_buf_hold(bp, _RET_IP_);
828 atomic_inc(&bp->b_hold);
829 }
830
831 /*
832 * Releases a hold on the specified buffer. If the
833 * the hold count is 1, calls xfs_buf_free.
834 */
835 void
836 xfs_buf_rele(
837 xfs_buf_t *bp)
838 {
839 struct xfs_perag *pag = bp->b_pag;
840
841 trace_xfs_buf_rele(bp, _RET_IP_);
842
843 if (!pag) {
844 ASSERT(!bp->b_relse);
845 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
846 if (atomic_dec_and_test(&bp->b_hold))
847 xfs_buf_free(bp);
848 return;
849 }
850
851 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
852 ASSERT(atomic_read(&bp->b_hold) > 0);
853 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
854 if (bp->b_relse) {
855 atomic_inc(&bp->b_hold);
856 spin_unlock(&pag->pag_buf_lock);
857 bp->b_relse(bp);
858 } else {
859 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
860 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
861 spin_unlock(&pag->pag_buf_lock);
862 xfs_perag_put(pag);
863 xfs_buf_free(bp);
864 }
865 }
866 }
867
868
869 /*
870 * Mutual exclusion on buffers. Locking model:
871 *
872 * Buffers associated with inodes for which buffer locking
873 * is not enabled are not protected by semaphores, and are
874 * assumed to be exclusively owned by the caller. There is a
875 * spinlock in the buffer, used by the caller when concurrent
876 * access is possible.
877 */
878
879 /*
880 * Locks a buffer object, if it is not already locked.
881 * Note that this in no way locks the underlying pages, so it is only
882 * useful for synchronizing concurrent use of buffer objects, not for
883 * synchronizing independent access to the underlying pages.
884 */
885 int
886 xfs_buf_cond_lock(
887 xfs_buf_t *bp)
888 {
889 int locked;
890
891 locked = down_trylock(&bp->b_sema) == 0;
892 if (locked)
893 XB_SET_OWNER(bp);
894
895 trace_xfs_buf_cond_lock(bp, _RET_IP_);
896 return locked ? 0 : -EBUSY;
897 }
898
899 int
900 xfs_buf_lock_value(
901 xfs_buf_t *bp)
902 {
903 return bp->b_sema.count;
904 }
905
906 /*
907 * Locks a buffer object.
908 * Note that this in no way locks the underlying pages, so it is only
909 * useful for synchronizing concurrent use of buffer objects, not for
910 * synchronizing independent access to the underlying pages.
911 *
912 * If we come across a stale, pinned, locked buffer, we know that we
913 * are being asked to lock a buffer that has been reallocated. Because
914 * it is pinned, we know that the log has not been pushed to disk and
915 * hence it will still be locked. Rather than sleeping until someone
916 * else pushes the log, push it ourselves before trying to get the lock.
917 */
918 void
919 xfs_buf_lock(
920 xfs_buf_t *bp)
921 {
922 trace_xfs_buf_lock(bp, _RET_IP_);
923
924 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
925 xfs_log_force(bp->b_target->bt_mount, 0);
926 if (atomic_read(&bp->b_io_remaining))
927 blk_run_address_space(bp->b_target->bt_mapping);
928 down(&bp->b_sema);
929 XB_SET_OWNER(bp);
930
931 trace_xfs_buf_lock_done(bp, _RET_IP_);
932 }
933
934 /*
935 * Releases the lock on the buffer object.
936 * If the buffer is marked delwri but is not queued, do so before we
937 * unlock the buffer as we need to set flags correctly. We also need to
938 * take a reference for the delwri queue because the unlocker is going to
939 * drop their's and they don't know we just queued it.
940 */
941 void
942 xfs_buf_unlock(
943 xfs_buf_t *bp)
944 {
945 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
946 atomic_inc(&bp->b_hold);
947 bp->b_flags |= XBF_ASYNC;
948 xfs_buf_delwri_queue(bp, 0);
949 }
950
951 XB_CLEAR_OWNER(bp);
952 up(&bp->b_sema);
953
954 trace_xfs_buf_unlock(bp, _RET_IP_);
955 }
956
957 STATIC void
958 xfs_buf_wait_unpin(
959 xfs_buf_t *bp)
960 {
961 DECLARE_WAITQUEUE (wait, current);
962
963 if (atomic_read(&bp->b_pin_count) == 0)
964 return;
965
966 add_wait_queue(&bp->b_waiters, &wait);
967 for (;;) {
968 set_current_state(TASK_UNINTERRUPTIBLE);
969 if (atomic_read(&bp->b_pin_count) == 0)
970 break;
971 if (atomic_read(&bp->b_io_remaining))
972 blk_run_address_space(bp->b_target->bt_mapping);
973 schedule();
974 }
975 remove_wait_queue(&bp->b_waiters, &wait);
976 set_current_state(TASK_RUNNING);
977 }
978
979 /*
980 * Buffer Utility Routines
981 */
982
983 STATIC void
984 xfs_buf_iodone_work(
985 struct work_struct *work)
986 {
987 xfs_buf_t *bp =
988 container_of(work, xfs_buf_t, b_iodone_work);
989
990 /*
991 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
992 * ordered flag and reissue them. Because we can't tell the higher
993 * layers directly that they should not issue ordered I/O anymore, they
994 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
995 */
996 if ((bp->b_error == EOPNOTSUPP) &&
997 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
998 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
999 bp->b_flags &= ~XBF_ORDERED;
1000 bp->b_flags |= _XFS_BARRIER_FAILED;
1001 xfs_buf_iorequest(bp);
1002 } else if (bp->b_iodone)
1003 (*(bp->b_iodone))(bp);
1004 else if (bp->b_flags & XBF_ASYNC)
1005 xfs_buf_relse(bp);
1006 }
1007
1008 void
1009 xfs_buf_ioend(
1010 xfs_buf_t *bp,
1011 int schedule)
1012 {
1013 trace_xfs_buf_iodone(bp, _RET_IP_);
1014
1015 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1016 if (bp->b_error == 0)
1017 bp->b_flags |= XBF_DONE;
1018
1019 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1020 if (schedule) {
1021 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1022 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1023 } else {
1024 xfs_buf_iodone_work(&bp->b_iodone_work);
1025 }
1026 } else {
1027 complete(&bp->b_iowait);
1028 }
1029 }
1030
1031 void
1032 xfs_buf_ioerror(
1033 xfs_buf_t *bp,
1034 int error)
1035 {
1036 ASSERT(error >= 0 && error <= 0xffff);
1037 bp->b_error = (unsigned short)error;
1038 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1039 }
1040
1041 int
1042 xfs_bwrite(
1043 struct xfs_mount *mp,
1044 struct xfs_buf *bp)
1045 {
1046 int error;
1047
1048 bp->b_flags |= XBF_WRITE;
1049 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1050
1051 xfs_buf_delwri_dequeue(bp);
1052 xfs_bdstrat_cb(bp);
1053
1054 error = xfs_buf_iowait(bp);
1055 if (error)
1056 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1057 xfs_buf_relse(bp);
1058 return error;
1059 }
1060
1061 void
1062 xfs_bdwrite(
1063 void *mp,
1064 struct xfs_buf *bp)
1065 {
1066 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1067
1068 bp->b_flags &= ~XBF_READ;
1069 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1070
1071 xfs_buf_delwri_queue(bp, 1);
1072 }
1073
1074 /*
1075 * Called when we want to stop a buffer from getting written or read.
1076 * We attach the EIO error, muck with its flags, and call biodone
1077 * so that the proper iodone callbacks get called.
1078 */
1079 STATIC int
1080 xfs_bioerror(
1081 xfs_buf_t *bp)
1082 {
1083 #ifdef XFSERRORDEBUG
1084 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1085 #endif
1086
1087 /*
1088 * No need to wait until the buffer is unpinned, we aren't flushing it.
1089 */
1090 XFS_BUF_ERROR(bp, EIO);
1091
1092 /*
1093 * We're calling biodone, so delete XBF_DONE flag.
1094 */
1095 XFS_BUF_UNREAD(bp);
1096 XFS_BUF_UNDELAYWRITE(bp);
1097 XFS_BUF_UNDONE(bp);
1098 XFS_BUF_STALE(bp);
1099
1100 xfs_biodone(bp);
1101
1102 return EIO;
1103 }
1104
1105 /*
1106 * Same as xfs_bioerror, except that we are releasing the buffer
1107 * here ourselves, and avoiding the biodone call.
1108 * This is meant for userdata errors; metadata bufs come with
1109 * iodone functions attached, so that we can track down errors.
1110 */
1111 STATIC int
1112 xfs_bioerror_relse(
1113 struct xfs_buf *bp)
1114 {
1115 int64_t fl = XFS_BUF_BFLAGS(bp);
1116 /*
1117 * No need to wait until the buffer is unpinned.
1118 * We aren't flushing it.
1119 *
1120 * chunkhold expects B_DONE to be set, whether
1121 * we actually finish the I/O or not. We don't want to
1122 * change that interface.
1123 */
1124 XFS_BUF_UNREAD(bp);
1125 XFS_BUF_UNDELAYWRITE(bp);
1126 XFS_BUF_DONE(bp);
1127 XFS_BUF_STALE(bp);
1128 XFS_BUF_CLR_IODONE_FUNC(bp);
1129 if (!(fl & XBF_ASYNC)) {
1130 /*
1131 * Mark b_error and B_ERROR _both_.
1132 * Lot's of chunkcache code assumes that.
1133 * There's no reason to mark error for
1134 * ASYNC buffers.
1135 */
1136 XFS_BUF_ERROR(bp, EIO);
1137 XFS_BUF_FINISH_IOWAIT(bp);
1138 } else {
1139 xfs_buf_relse(bp);
1140 }
1141
1142 return EIO;
1143 }
1144
1145
1146 /*
1147 * All xfs metadata buffers except log state machine buffers
1148 * get this attached as their b_bdstrat callback function.
1149 * This is so that we can catch a buffer
1150 * after prematurely unpinning it to forcibly shutdown the filesystem.
1151 */
1152 int
1153 xfs_bdstrat_cb(
1154 struct xfs_buf *bp)
1155 {
1156 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1157 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1158 /*
1159 * Metadata write that didn't get logged but
1160 * written delayed anyway. These aren't associated
1161 * with a transaction, and can be ignored.
1162 */
1163 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1164 return xfs_bioerror_relse(bp);
1165 else
1166 return xfs_bioerror(bp);
1167 }
1168
1169 xfs_buf_iorequest(bp);
1170 return 0;
1171 }
1172
1173 /*
1174 * Wrapper around bdstrat so that we can stop data from going to disk in case
1175 * we are shutting down the filesystem. Typically user data goes thru this
1176 * path; one of the exceptions is the superblock.
1177 */
1178 void
1179 xfsbdstrat(
1180 struct xfs_mount *mp,
1181 struct xfs_buf *bp)
1182 {
1183 if (XFS_FORCED_SHUTDOWN(mp)) {
1184 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1185 xfs_bioerror_relse(bp);
1186 return;
1187 }
1188
1189 xfs_buf_iorequest(bp);
1190 }
1191
1192 STATIC void
1193 _xfs_buf_ioend(
1194 xfs_buf_t *bp,
1195 int schedule)
1196 {
1197 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1198 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1199 xfs_buf_ioend(bp, schedule);
1200 }
1201 }
1202
1203 STATIC void
1204 xfs_buf_bio_end_io(
1205 struct bio *bio,
1206 int error)
1207 {
1208 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1209 unsigned int blocksize = bp->b_target->bt_bsize;
1210 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1211
1212 xfs_buf_ioerror(bp, -error);
1213
1214 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1215 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1216
1217 do {
1218 struct page *page = bvec->bv_page;
1219
1220 ASSERT(!PagePrivate(page));
1221 if (unlikely(bp->b_error)) {
1222 if (bp->b_flags & XBF_READ)
1223 ClearPageUptodate(page);
1224 } else if (blocksize >= PAGE_CACHE_SIZE) {
1225 SetPageUptodate(page);
1226 } else if (!PagePrivate(page) &&
1227 (bp->b_flags & _XBF_PAGE_CACHE)) {
1228 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1229 }
1230
1231 if (--bvec >= bio->bi_io_vec)
1232 prefetchw(&bvec->bv_page->flags);
1233
1234 if (bp->b_flags & _XBF_PAGE_LOCKED)
1235 unlock_page(page);
1236 } while (bvec >= bio->bi_io_vec);
1237
1238 _xfs_buf_ioend(bp, 1);
1239 bio_put(bio);
1240 }
1241
1242 STATIC void
1243 _xfs_buf_ioapply(
1244 xfs_buf_t *bp)
1245 {
1246 int rw, map_i, total_nr_pages, nr_pages;
1247 struct bio *bio;
1248 int offset = bp->b_offset;
1249 int size = bp->b_count_desired;
1250 sector_t sector = bp->b_bn;
1251 unsigned int blocksize = bp->b_target->bt_bsize;
1252
1253 total_nr_pages = bp->b_page_count;
1254 map_i = 0;
1255
1256 if (bp->b_flags & XBF_ORDERED) {
1257 ASSERT(!(bp->b_flags & XBF_READ));
1258 rw = WRITE_BARRIER;
1259 } else if (bp->b_flags & XBF_LOG_BUFFER) {
1260 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1261 bp->b_flags &= ~_XBF_RUN_QUEUES;
1262 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1263 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1264 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1265 bp->b_flags &= ~_XBF_RUN_QUEUES;
1266 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1267 } else {
1268 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1269 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1270 }
1271
1272 /* Special code path for reading a sub page size buffer in --
1273 * we populate up the whole page, and hence the other metadata
1274 * in the same page. This optimization is only valid when the
1275 * filesystem block size is not smaller than the page size.
1276 */
1277 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1278 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1279 (XBF_READ|_XBF_PAGE_LOCKED)) &&
1280 (blocksize >= PAGE_CACHE_SIZE)) {
1281 bio = bio_alloc(GFP_NOIO, 1);
1282
1283 bio->bi_bdev = bp->b_target->bt_bdev;
1284 bio->bi_sector = sector - (offset >> BBSHIFT);
1285 bio->bi_end_io = xfs_buf_bio_end_io;
1286 bio->bi_private = bp;
1287
1288 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1289 size = 0;
1290
1291 atomic_inc(&bp->b_io_remaining);
1292
1293 goto submit_io;
1294 }
1295
1296 next_chunk:
1297 atomic_inc(&bp->b_io_remaining);
1298 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1299 if (nr_pages > total_nr_pages)
1300 nr_pages = total_nr_pages;
1301
1302 bio = bio_alloc(GFP_NOIO, nr_pages);
1303 bio->bi_bdev = bp->b_target->bt_bdev;
1304 bio->bi_sector = sector;
1305 bio->bi_end_io = xfs_buf_bio_end_io;
1306 bio->bi_private = bp;
1307
1308 for (; size && nr_pages; nr_pages--, map_i++) {
1309 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1310
1311 if (nbytes > size)
1312 nbytes = size;
1313
1314 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1315 if (rbytes < nbytes)
1316 break;
1317
1318 offset = 0;
1319 sector += nbytes >> BBSHIFT;
1320 size -= nbytes;
1321 total_nr_pages--;
1322 }
1323
1324 submit_io:
1325 if (likely(bio->bi_size)) {
1326 if (xfs_buf_is_vmapped(bp)) {
1327 flush_kernel_vmap_range(bp->b_addr,
1328 xfs_buf_vmap_len(bp));
1329 }
1330 submit_bio(rw, bio);
1331 if (size)
1332 goto next_chunk;
1333 } else {
1334 /*
1335 * if we get here, no pages were added to the bio. However,
1336 * we can't just error out here - if the pages are locked then
1337 * we have to unlock them otherwise we can hang on a later
1338 * access to the page.
1339 */
1340 xfs_buf_ioerror(bp, EIO);
1341 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1342 int i;
1343 for (i = 0; i < bp->b_page_count; i++)
1344 unlock_page(bp->b_pages[i]);
1345 }
1346 bio_put(bio);
1347 }
1348 }
1349
1350 int
1351 xfs_buf_iorequest(
1352 xfs_buf_t *bp)
1353 {
1354 trace_xfs_buf_iorequest(bp, _RET_IP_);
1355
1356 if (bp->b_flags & XBF_DELWRI) {
1357 xfs_buf_delwri_queue(bp, 1);
1358 return 0;
1359 }
1360
1361 if (bp->b_flags & XBF_WRITE) {
1362 xfs_buf_wait_unpin(bp);
1363 }
1364
1365 xfs_buf_hold(bp);
1366
1367 /* Set the count to 1 initially, this will stop an I/O
1368 * completion callout which happens before we have started
1369 * all the I/O from calling xfs_buf_ioend too early.
1370 */
1371 atomic_set(&bp->b_io_remaining, 1);
1372 _xfs_buf_ioapply(bp);
1373 _xfs_buf_ioend(bp, 0);
1374
1375 xfs_buf_rele(bp);
1376 return 0;
1377 }
1378
1379 /*
1380 * Waits for I/O to complete on the buffer supplied.
1381 * It returns immediately if no I/O is pending.
1382 * It returns the I/O error code, if any, or 0 if there was no error.
1383 */
1384 int
1385 xfs_buf_iowait(
1386 xfs_buf_t *bp)
1387 {
1388 trace_xfs_buf_iowait(bp, _RET_IP_);
1389
1390 if (atomic_read(&bp->b_io_remaining))
1391 blk_run_address_space(bp->b_target->bt_mapping);
1392 wait_for_completion(&bp->b_iowait);
1393
1394 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1395 return bp->b_error;
1396 }
1397
1398 xfs_caddr_t
1399 xfs_buf_offset(
1400 xfs_buf_t *bp,
1401 size_t offset)
1402 {
1403 struct page *page;
1404
1405 if (bp->b_flags & XBF_MAPPED)
1406 return XFS_BUF_PTR(bp) + offset;
1407
1408 offset += bp->b_offset;
1409 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1410 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1411 }
1412
1413 /*
1414 * Move data into or out of a buffer.
1415 */
1416 void
1417 xfs_buf_iomove(
1418 xfs_buf_t *bp, /* buffer to process */
1419 size_t boff, /* starting buffer offset */
1420 size_t bsize, /* length to copy */
1421 void *data, /* data address */
1422 xfs_buf_rw_t mode) /* read/write/zero flag */
1423 {
1424 size_t bend, cpoff, csize;
1425 struct page *page;
1426
1427 bend = boff + bsize;
1428 while (boff < bend) {
1429 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1430 cpoff = xfs_buf_poff(boff + bp->b_offset);
1431 csize = min_t(size_t,
1432 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1433
1434 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1435
1436 switch (mode) {
1437 case XBRW_ZERO:
1438 memset(page_address(page) + cpoff, 0, csize);
1439 break;
1440 case XBRW_READ:
1441 memcpy(data, page_address(page) + cpoff, csize);
1442 break;
1443 case XBRW_WRITE:
1444 memcpy(page_address(page) + cpoff, data, csize);
1445 }
1446
1447 boff += csize;
1448 data += csize;
1449 }
1450 }
1451
1452 /*
1453 * Handling of buffer targets (buftargs).
1454 */
1455
1456 /*
1457 * Wait for any bufs with callbacks that have been submitted but
1458 * have not yet returned... walk the hash list for the target.
1459 */
1460 void
1461 xfs_wait_buftarg(
1462 struct xfs_buftarg *btp)
1463 {
1464 struct xfs_perag *pag;
1465 uint i;
1466
1467 for (i = 0; i < btp->bt_mount->m_sb.sb_agcount; i++) {
1468 pag = xfs_perag_get(btp->bt_mount, i);
1469 spin_lock(&pag->pag_buf_lock);
1470 while (rb_first(&pag->pag_buf_tree)) {
1471 spin_unlock(&pag->pag_buf_lock);
1472 delay(100);
1473 spin_lock(&pag->pag_buf_lock);
1474 }
1475 spin_unlock(&pag->pag_buf_lock);
1476 xfs_perag_put(pag);
1477 }
1478 }
1479
1480 /*
1481 * buftarg list for delwrite queue processing
1482 */
1483 static LIST_HEAD(xfs_buftarg_list);
1484 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1485
1486 STATIC void
1487 xfs_register_buftarg(
1488 xfs_buftarg_t *btp)
1489 {
1490 spin_lock(&xfs_buftarg_lock);
1491 list_add(&btp->bt_list, &xfs_buftarg_list);
1492 spin_unlock(&xfs_buftarg_lock);
1493 }
1494
1495 STATIC void
1496 xfs_unregister_buftarg(
1497 xfs_buftarg_t *btp)
1498 {
1499 spin_lock(&xfs_buftarg_lock);
1500 list_del(&btp->bt_list);
1501 spin_unlock(&xfs_buftarg_lock);
1502 }
1503
1504 void
1505 xfs_free_buftarg(
1506 struct xfs_mount *mp,
1507 struct xfs_buftarg *btp)
1508 {
1509 xfs_flush_buftarg(btp, 1);
1510 if (mp->m_flags & XFS_MOUNT_BARRIER)
1511 xfs_blkdev_issue_flush(btp);
1512 iput(btp->bt_mapping->host);
1513
1514 /* Unregister the buftarg first so that we don't get a
1515 * wakeup finding a non-existent task
1516 */
1517 xfs_unregister_buftarg(btp);
1518 kthread_stop(btp->bt_task);
1519
1520 kmem_free(btp);
1521 }
1522
1523 STATIC int
1524 xfs_setsize_buftarg_flags(
1525 xfs_buftarg_t *btp,
1526 unsigned int blocksize,
1527 unsigned int sectorsize,
1528 int verbose)
1529 {
1530 btp->bt_bsize = blocksize;
1531 btp->bt_sshift = ffs(sectorsize) - 1;
1532 btp->bt_smask = sectorsize - 1;
1533
1534 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1535 printk(KERN_WARNING
1536 "XFS: Cannot set_blocksize to %u on device %s\n",
1537 sectorsize, XFS_BUFTARG_NAME(btp));
1538 return EINVAL;
1539 }
1540
1541 if (verbose &&
1542 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1543 printk(KERN_WARNING
1544 "XFS: %u byte sectors in use on device %s. "
1545 "This is suboptimal; %u or greater is ideal.\n",
1546 sectorsize, XFS_BUFTARG_NAME(btp),
1547 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1548 }
1549
1550 return 0;
1551 }
1552
1553 /*
1554 * When allocating the initial buffer target we have not yet
1555 * read in the superblock, so don't know what sized sectors
1556 * are being used is at this early stage. Play safe.
1557 */
1558 STATIC int
1559 xfs_setsize_buftarg_early(
1560 xfs_buftarg_t *btp,
1561 struct block_device *bdev)
1562 {
1563 return xfs_setsize_buftarg_flags(btp,
1564 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1565 }
1566
1567 int
1568 xfs_setsize_buftarg(
1569 xfs_buftarg_t *btp,
1570 unsigned int blocksize,
1571 unsigned int sectorsize)
1572 {
1573 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1574 }
1575
1576 STATIC int
1577 xfs_mapping_buftarg(
1578 xfs_buftarg_t *btp,
1579 struct block_device *bdev)
1580 {
1581 struct backing_dev_info *bdi;
1582 struct inode *inode;
1583 struct address_space *mapping;
1584 static const struct address_space_operations mapping_aops = {
1585 .sync_page = block_sync_page,
1586 .migratepage = fail_migrate_page,
1587 };
1588
1589 inode = new_inode(bdev->bd_inode->i_sb);
1590 if (!inode) {
1591 printk(KERN_WARNING
1592 "XFS: Cannot allocate mapping inode for device %s\n",
1593 XFS_BUFTARG_NAME(btp));
1594 return ENOMEM;
1595 }
1596 inode->i_mode = S_IFBLK;
1597 inode->i_bdev = bdev;
1598 inode->i_rdev = bdev->bd_dev;
1599 bdi = blk_get_backing_dev_info(bdev);
1600 if (!bdi)
1601 bdi = &default_backing_dev_info;
1602 mapping = &inode->i_data;
1603 mapping->a_ops = &mapping_aops;
1604 mapping->backing_dev_info = bdi;
1605 mapping_set_gfp_mask(mapping, GFP_NOFS);
1606 btp->bt_mapping = mapping;
1607 return 0;
1608 }
1609
1610 STATIC int
1611 xfs_alloc_delwrite_queue(
1612 xfs_buftarg_t *btp,
1613 const char *fsname)
1614 {
1615 int error = 0;
1616
1617 INIT_LIST_HEAD(&btp->bt_list);
1618 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1619 spin_lock_init(&btp->bt_delwrite_lock);
1620 btp->bt_flags = 0;
1621 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1622 if (IS_ERR(btp->bt_task)) {
1623 error = PTR_ERR(btp->bt_task);
1624 goto out_error;
1625 }
1626 xfs_register_buftarg(btp);
1627 out_error:
1628 return error;
1629 }
1630
1631 xfs_buftarg_t *
1632 xfs_alloc_buftarg(
1633 struct xfs_mount *mp,
1634 struct block_device *bdev,
1635 int external,
1636 const char *fsname)
1637 {
1638 xfs_buftarg_t *btp;
1639
1640 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1641
1642 btp->bt_mount = mp;
1643 btp->bt_dev = bdev->bd_dev;
1644 btp->bt_bdev = bdev;
1645 if (xfs_setsize_buftarg_early(btp, bdev))
1646 goto error;
1647 if (xfs_mapping_buftarg(btp, bdev))
1648 goto error;
1649 if (xfs_alloc_delwrite_queue(btp, fsname))
1650 goto error;
1651 return btp;
1652
1653 error:
1654 kmem_free(btp);
1655 return NULL;
1656 }
1657
1658
1659 /*
1660 * Delayed write buffer handling
1661 */
1662 STATIC void
1663 xfs_buf_delwri_queue(
1664 xfs_buf_t *bp,
1665 int unlock)
1666 {
1667 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1668 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1669
1670 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1671
1672 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1673
1674 spin_lock(dwlk);
1675 /* If already in the queue, dequeue and place at tail */
1676 if (!list_empty(&bp->b_list)) {
1677 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1678 if (unlock)
1679 atomic_dec(&bp->b_hold);
1680 list_del(&bp->b_list);
1681 }
1682
1683 if (list_empty(dwq)) {
1684 /* start xfsbufd as it is about to have something to do */
1685 wake_up_process(bp->b_target->bt_task);
1686 }
1687
1688 bp->b_flags |= _XBF_DELWRI_Q;
1689 list_add_tail(&bp->b_list, dwq);
1690 bp->b_queuetime = jiffies;
1691 spin_unlock(dwlk);
1692
1693 if (unlock)
1694 xfs_buf_unlock(bp);
1695 }
1696
1697 void
1698 xfs_buf_delwri_dequeue(
1699 xfs_buf_t *bp)
1700 {
1701 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1702 int dequeued = 0;
1703
1704 spin_lock(dwlk);
1705 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1706 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1707 list_del_init(&bp->b_list);
1708 dequeued = 1;
1709 }
1710 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1711 spin_unlock(dwlk);
1712
1713 if (dequeued)
1714 xfs_buf_rele(bp);
1715
1716 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1717 }
1718
1719 /*
1720 * If a delwri buffer needs to be pushed before it has aged out, then promote
1721 * it to the head of the delwri queue so that it will be flushed on the next
1722 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1723 * than the age currently needed to flush the buffer. Hence the next time the
1724 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1725 */
1726 void
1727 xfs_buf_delwri_promote(
1728 struct xfs_buf *bp)
1729 {
1730 struct xfs_buftarg *btp = bp->b_target;
1731 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1732
1733 ASSERT(bp->b_flags & XBF_DELWRI);
1734 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1735
1736 /*
1737 * Check the buffer age before locking the delayed write queue as we
1738 * don't need to promote buffers that are already past the flush age.
1739 */
1740 if (bp->b_queuetime < jiffies - age)
1741 return;
1742 bp->b_queuetime = jiffies - age;
1743 spin_lock(&btp->bt_delwrite_lock);
1744 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1745 spin_unlock(&btp->bt_delwrite_lock);
1746 }
1747
1748 STATIC void
1749 xfs_buf_runall_queues(
1750 struct workqueue_struct *queue)
1751 {
1752 flush_workqueue(queue);
1753 }
1754
1755 STATIC int
1756 xfsbufd_wakeup(
1757 struct shrinker *shrink,
1758 int priority,
1759 gfp_t mask)
1760 {
1761 xfs_buftarg_t *btp;
1762
1763 spin_lock(&xfs_buftarg_lock);
1764 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1765 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1766 continue;
1767 if (list_empty(&btp->bt_delwrite_queue))
1768 continue;
1769 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1770 wake_up_process(btp->bt_task);
1771 }
1772 spin_unlock(&xfs_buftarg_lock);
1773 return 0;
1774 }
1775
1776 /*
1777 * Move as many buffers as specified to the supplied list
1778 * idicating if we skipped any buffers to prevent deadlocks.
1779 */
1780 STATIC int
1781 xfs_buf_delwri_split(
1782 xfs_buftarg_t *target,
1783 struct list_head *list,
1784 unsigned long age)
1785 {
1786 xfs_buf_t *bp, *n;
1787 struct list_head *dwq = &target->bt_delwrite_queue;
1788 spinlock_t *dwlk = &target->bt_delwrite_lock;
1789 int skipped = 0;
1790 int force;
1791
1792 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1793 INIT_LIST_HEAD(list);
1794 spin_lock(dwlk);
1795 list_for_each_entry_safe(bp, n, dwq, b_list) {
1796 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1797 ASSERT(bp->b_flags & XBF_DELWRI);
1798
1799 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1800 if (!force &&
1801 time_before(jiffies, bp->b_queuetime + age)) {
1802 xfs_buf_unlock(bp);
1803 break;
1804 }
1805
1806 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1807 _XBF_RUN_QUEUES);
1808 bp->b_flags |= XBF_WRITE;
1809 list_move_tail(&bp->b_list, list);
1810 } else
1811 skipped++;
1812 }
1813 spin_unlock(dwlk);
1814
1815 return skipped;
1816
1817 }
1818
1819 /*
1820 * Compare function is more complex than it needs to be because
1821 * the return value is only 32 bits and we are doing comparisons
1822 * on 64 bit values
1823 */
1824 static int
1825 xfs_buf_cmp(
1826 void *priv,
1827 struct list_head *a,
1828 struct list_head *b)
1829 {
1830 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1831 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1832 xfs_daddr_t diff;
1833
1834 diff = ap->b_bn - bp->b_bn;
1835 if (diff < 0)
1836 return -1;
1837 if (diff > 0)
1838 return 1;
1839 return 0;
1840 }
1841
1842 void
1843 xfs_buf_delwri_sort(
1844 xfs_buftarg_t *target,
1845 struct list_head *list)
1846 {
1847 list_sort(NULL, list, xfs_buf_cmp);
1848 }
1849
1850 STATIC int
1851 xfsbufd(
1852 void *data)
1853 {
1854 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1855
1856 current->flags |= PF_MEMALLOC;
1857
1858 set_freezable();
1859
1860 do {
1861 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1862 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1863 int count = 0;
1864 struct list_head tmp;
1865
1866 if (unlikely(freezing(current))) {
1867 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1868 refrigerator();
1869 } else {
1870 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1871 }
1872
1873 /* sleep for a long time if there is nothing to do. */
1874 if (list_empty(&target->bt_delwrite_queue))
1875 tout = MAX_SCHEDULE_TIMEOUT;
1876 schedule_timeout_interruptible(tout);
1877
1878 xfs_buf_delwri_split(target, &tmp, age);
1879 list_sort(NULL, &tmp, xfs_buf_cmp);
1880 while (!list_empty(&tmp)) {
1881 struct xfs_buf *bp;
1882 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1883 list_del_init(&bp->b_list);
1884 xfs_bdstrat_cb(bp);
1885 count++;
1886 }
1887 if (count)
1888 blk_run_address_space(target->bt_mapping);
1889
1890 } while (!kthread_should_stop());
1891
1892 return 0;
1893 }
1894
1895 /*
1896 * Go through all incore buffers, and release buffers if they belong to
1897 * the given device. This is used in filesystem error handling to
1898 * preserve the consistency of its metadata.
1899 */
1900 int
1901 xfs_flush_buftarg(
1902 xfs_buftarg_t *target,
1903 int wait)
1904 {
1905 xfs_buf_t *bp;
1906 int pincount = 0;
1907 LIST_HEAD(tmp_list);
1908 LIST_HEAD(wait_list);
1909
1910 xfs_buf_runall_queues(xfsconvertd_workqueue);
1911 xfs_buf_runall_queues(xfsdatad_workqueue);
1912 xfs_buf_runall_queues(xfslogd_workqueue);
1913
1914 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1915 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1916
1917 /*
1918 * Dropped the delayed write list lock, now walk the temporary list.
1919 * All I/O is issued async and then if we need to wait for completion
1920 * we do that after issuing all the IO.
1921 */
1922 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1923 while (!list_empty(&tmp_list)) {
1924 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1925 ASSERT(target == bp->b_target);
1926 list_del_init(&bp->b_list);
1927 if (wait) {
1928 bp->b_flags &= ~XBF_ASYNC;
1929 list_add(&bp->b_list, &wait_list);
1930 }
1931 xfs_bdstrat_cb(bp);
1932 }
1933
1934 if (wait) {
1935 /* Expedite and wait for IO to complete. */
1936 blk_run_address_space(target->bt_mapping);
1937 while (!list_empty(&wait_list)) {
1938 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1939
1940 list_del_init(&bp->b_list);
1941 xfs_iowait(bp);
1942 xfs_buf_relse(bp);
1943 }
1944 }
1945
1946 return pincount;
1947 }
1948
1949 int __init
1950 xfs_buf_init(void)
1951 {
1952 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1953 KM_ZONE_HWALIGN, NULL);
1954 if (!xfs_buf_zone)
1955 goto out;
1956
1957 xfslogd_workqueue = alloc_workqueue("xfslogd",
1958 WQ_RESCUER | WQ_HIGHPRI, 1);
1959 if (!xfslogd_workqueue)
1960 goto out_free_buf_zone;
1961
1962 xfsdatad_workqueue = create_workqueue("xfsdatad");
1963 if (!xfsdatad_workqueue)
1964 goto out_destroy_xfslogd_workqueue;
1965
1966 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1967 if (!xfsconvertd_workqueue)
1968 goto out_destroy_xfsdatad_workqueue;
1969
1970 register_shrinker(&xfs_buf_shake);
1971 return 0;
1972
1973 out_destroy_xfsdatad_workqueue:
1974 destroy_workqueue(xfsdatad_workqueue);
1975 out_destroy_xfslogd_workqueue:
1976 destroy_workqueue(xfslogd_workqueue);
1977 out_free_buf_zone:
1978 kmem_zone_destroy(xfs_buf_zone);
1979 out:
1980 return -ENOMEM;
1981 }
1982
1983 void
1984 xfs_buf_terminate(void)
1985 {
1986 unregister_shrinker(&xfs_buf_shake);
1987 destroy_workqueue(xfsconvertd_workqueue);
1988 destroy_workqueue(xfsdatad_workqueue);
1989 destroy_workqueue(xfslogd_workqueue);
1990 kmem_zone_destroy(xfs_buf_zone);
1991 }
1992
1993 #ifdef CONFIG_KDB_MODULES
1994 struct list_head *
1995 xfs_get_buftarg_list(void)
1996 {
1997 return &xfs_buftarg_list;
1998 }
1999 #endif
This page took 0.098742 seconds and 5 git commands to generate.