xfs: kill XBF_FS_MANAGED buffers
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
48 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
49 static struct shrinker xfs_buf_shake = {
50 .shrink = xfsbufd_wakeup,
51 .seeks = DEFAULT_SEEKS,
52 };
53
54 static struct workqueue_struct *xfslogd_workqueue;
55 struct workqueue_struct *xfsdatad_workqueue;
56 struct workqueue_struct *xfsconvertd_workqueue;
57
58 #ifdef XFS_BUF_LOCK_TRACKING
59 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
60 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
61 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
62 #else
63 # define XB_SET_OWNER(bp) do { } while (0)
64 # define XB_CLEAR_OWNER(bp) do { } while (0)
65 # define XB_GET_OWNER(bp) do { } while (0)
66 #endif
67
68 #define xb_to_gfp(flags) \
69 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
71
72 #define xb_to_km(flags) \
73 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
74
75 #define xfs_buf_allocate(flags) \
76 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77 #define xfs_buf_deallocate(bp) \
78 kmem_zone_free(xfs_buf_zone, (bp));
79
80 static inline int
81 xfs_buf_is_vmapped(
82 struct xfs_buf *bp)
83 {
84 /*
85 * Return true if the buffer is vmapped.
86 *
87 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88 * code is clever enough to know it doesn't have to map a single page,
89 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90 */
91 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92 }
93
94 static inline int
95 xfs_buf_vmap_len(
96 struct xfs_buf *bp)
97 {
98 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99 }
100
101 /*
102 * Page Region interfaces.
103 *
104 * For pages in filesystems where the blocksize is smaller than the
105 * pagesize, we use the page->private field (long) to hold a bitmap
106 * of uptodate regions within the page.
107 *
108 * Each such region is "bytes per page / bits per long" bytes long.
109 *
110 * NBPPR == number-of-bytes-per-page-region
111 * BTOPR == bytes-to-page-region (rounded up)
112 * BTOPRT == bytes-to-page-region-truncated (rounded down)
113 */
114 #if (BITS_PER_LONG == 32)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
116 #elif (BITS_PER_LONG == 64)
117 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
118 #else
119 #error BITS_PER_LONG must be 32 or 64
120 #endif
121 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
122 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
124
125 STATIC unsigned long
126 page_region_mask(
127 size_t offset,
128 size_t length)
129 {
130 unsigned long mask;
131 int first, final;
132
133 first = BTOPR(offset);
134 final = BTOPRT(offset + length - 1);
135 first = min(first, final);
136
137 mask = ~0UL;
138 mask <<= BITS_PER_LONG - (final - first);
139 mask >>= BITS_PER_LONG - (final);
140
141 ASSERT(offset + length <= PAGE_CACHE_SIZE);
142 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144 return mask;
145 }
146
147 STATIC void
148 set_page_region(
149 struct page *page,
150 size_t offset,
151 size_t length)
152 {
153 set_page_private(page,
154 page_private(page) | page_region_mask(offset, length));
155 if (page_private(page) == ~0UL)
156 SetPageUptodate(page);
157 }
158
159 STATIC int
160 test_page_region(
161 struct page *page,
162 size_t offset,
163 size_t length)
164 {
165 unsigned long mask = page_region_mask(offset, length);
166
167 return (mask && (page_private(page) & mask) == mask);
168 }
169
170 /*
171 * Internal xfs_buf_t object manipulation
172 */
173
174 STATIC void
175 _xfs_buf_initialize(
176 xfs_buf_t *bp,
177 xfs_buftarg_t *target,
178 xfs_off_t range_base,
179 size_t range_length,
180 xfs_buf_flags_t flags)
181 {
182 /*
183 * We don't want certain flags to appear in b_flags.
184 */
185 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187 memset(bp, 0, sizeof(xfs_buf_t));
188 atomic_set(&bp->b_hold, 1);
189 init_completion(&bp->b_iowait);
190 INIT_LIST_HEAD(&bp->b_list);
191 INIT_LIST_HEAD(&bp->b_hash_list);
192 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
193 XB_SET_OWNER(bp);
194 bp->b_target = target;
195 bp->b_file_offset = range_base;
196 /*
197 * Set buffer_length and count_desired to the same value initially.
198 * I/O routines should use count_desired, which will be the same in
199 * most cases but may be reset (e.g. XFS recovery).
200 */
201 bp->b_buffer_length = bp->b_count_desired = range_length;
202 bp->b_flags = flags;
203 bp->b_bn = XFS_BUF_DADDR_NULL;
204 atomic_set(&bp->b_pin_count, 0);
205 init_waitqueue_head(&bp->b_waiters);
206
207 XFS_STATS_INC(xb_create);
208
209 trace_xfs_buf_init(bp, _RET_IP_);
210 }
211
212 /*
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
215 */
216 STATIC int
217 _xfs_buf_get_pages(
218 xfs_buf_t *bp,
219 int page_count,
220 xfs_buf_flags_t flags)
221 {
222 /* Make sure that we have a page list */
223 if (bp->b_pages == NULL) {
224 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225 bp->b_page_count = page_count;
226 if (page_count <= XB_PAGES) {
227 bp->b_pages = bp->b_page_array;
228 } else {
229 bp->b_pages = kmem_alloc(sizeof(struct page *) *
230 page_count, xb_to_km(flags));
231 if (bp->b_pages == NULL)
232 return -ENOMEM;
233 }
234 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
235 }
236 return 0;
237 }
238
239 /*
240 * Frees b_pages if it was allocated.
241 */
242 STATIC void
243 _xfs_buf_free_pages(
244 xfs_buf_t *bp)
245 {
246 if (bp->b_pages != bp->b_page_array) {
247 kmem_free(bp->b_pages);
248 bp->b_pages = NULL;
249 }
250 }
251
252 /*
253 * Releases the specified buffer.
254 *
255 * The modification state of any associated pages is left unchanged.
256 * The buffer most not be on any hash - use xfs_buf_rele instead for
257 * hashed and refcounted buffers
258 */
259 void
260 xfs_buf_free(
261 xfs_buf_t *bp)
262 {
263 trace_xfs_buf_free(bp, _RET_IP_);
264
265 ASSERT(list_empty(&bp->b_hash_list));
266
267 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
268 uint i;
269
270 if (xfs_buf_is_vmapped(bp))
271 vm_unmap_ram(bp->b_addr - bp->b_offset,
272 bp->b_page_count);
273
274 for (i = 0; i < bp->b_page_count; i++) {
275 struct page *page = bp->b_pages[i];
276
277 if (bp->b_flags & _XBF_PAGE_CACHE)
278 ASSERT(!PagePrivate(page));
279 page_cache_release(page);
280 }
281 }
282 _xfs_buf_free_pages(bp);
283 xfs_buf_deallocate(bp);
284 }
285
286 /*
287 * Finds all pages for buffer in question and builds it's page list.
288 */
289 STATIC int
290 _xfs_buf_lookup_pages(
291 xfs_buf_t *bp,
292 uint flags)
293 {
294 struct address_space *mapping = bp->b_target->bt_mapping;
295 size_t blocksize = bp->b_target->bt_bsize;
296 size_t size = bp->b_count_desired;
297 size_t nbytes, offset;
298 gfp_t gfp_mask = xb_to_gfp(flags);
299 unsigned short page_count, i;
300 pgoff_t first;
301 xfs_off_t end;
302 int error;
303
304 end = bp->b_file_offset + bp->b_buffer_length;
305 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
306
307 error = _xfs_buf_get_pages(bp, page_count, flags);
308 if (unlikely(error))
309 return error;
310 bp->b_flags |= _XBF_PAGE_CACHE;
311
312 offset = bp->b_offset;
313 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
314
315 for (i = 0; i < bp->b_page_count; i++) {
316 struct page *page;
317 uint retries = 0;
318
319 retry:
320 page = find_or_create_page(mapping, first + i, gfp_mask);
321 if (unlikely(page == NULL)) {
322 if (flags & XBF_READ_AHEAD) {
323 bp->b_page_count = i;
324 for (i = 0; i < bp->b_page_count; i++)
325 unlock_page(bp->b_pages[i]);
326 return -ENOMEM;
327 }
328
329 /*
330 * This could deadlock.
331 *
332 * But until all the XFS lowlevel code is revamped to
333 * handle buffer allocation failures we can't do much.
334 */
335 if (!(++retries % 100))
336 printk(KERN_ERR
337 "XFS: possible memory allocation "
338 "deadlock in %s (mode:0x%x)\n",
339 __func__, gfp_mask);
340
341 XFS_STATS_INC(xb_page_retries);
342 xfsbufd_wakeup(NULL, 0, gfp_mask);
343 congestion_wait(BLK_RW_ASYNC, HZ/50);
344 goto retry;
345 }
346
347 XFS_STATS_INC(xb_page_found);
348
349 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
350 size -= nbytes;
351
352 ASSERT(!PagePrivate(page));
353 if (!PageUptodate(page)) {
354 page_count--;
355 if (blocksize >= PAGE_CACHE_SIZE) {
356 if (flags & XBF_READ)
357 bp->b_flags |= _XBF_PAGE_LOCKED;
358 } else if (!PagePrivate(page)) {
359 if (test_page_region(page, offset, nbytes))
360 page_count++;
361 }
362 }
363
364 bp->b_pages[i] = page;
365 offset = 0;
366 }
367
368 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
369 for (i = 0; i < bp->b_page_count; i++)
370 unlock_page(bp->b_pages[i]);
371 }
372
373 if (page_count == bp->b_page_count)
374 bp->b_flags |= XBF_DONE;
375
376 return error;
377 }
378
379 /*
380 * Map buffer into kernel address-space if nessecary.
381 */
382 STATIC int
383 _xfs_buf_map_pages(
384 xfs_buf_t *bp,
385 uint flags)
386 {
387 /* A single page buffer is always mappable */
388 if (bp->b_page_count == 1) {
389 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390 bp->b_flags |= XBF_MAPPED;
391 } else if (flags & XBF_MAPPED) {
392 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
393 -1, PAGE_KERNEL);
394 if (unlikely(bp->b_addr == NULL))
395 return -ENOMEM;
396 bp->b_addr += bp->b_offset;
397 bp->b_flags |= XBF_MAPPED;
398 }
399
400 return 0;
401 }
402
403 /*
404 * Finding and Reading Buffers
405 */
406
407 /*
408 * Look up, and creates if absent, a lockable buffer for
409 * a given range of an inode. The buffer is returned
410 * locked. If other overlapping buffers exist, they are
411 * released before the new buffer is created and locked,
412 * which may imply that this call will block until those buffers
413 * are unlocked. No I/O is implied by this call.
414 */
415 xfs_buf_t *
416 _xfs_buf_find(
417 xfs_buftarg_t *btp, /* block device target */
418 xfs_off_t ioff, /* starting offset of range */
419 size_t isize, /* length of range */
420 xfs_buf_flags_t flags,
421 xfs_buf_t *new_bp)
422 {
423 xfs_off_t range_base;
424 size_t range_length;
425 xfs_bufhash_t *hash;
426 xfs_buf_t *bp, *n;
427
428 range_base = (ioff << BBSHIFT);
429 range_length = (isize << BBSHIFT);
430
431 /* Check for IOs smaller than the sector size / not sector aligned */
432 ASSERT(!(range_length < (1 << btp->bt_sshift)));
433 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
434
435 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
436
437 spin_lock(&hash->bh_lock);
438
439 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
440 ASSERT(btp == bp->b_target);
441 if (bp->b_file_offset == range_base &&
442 bp->b_buffer_length == range_length) {
443 atomic_inc(&bp->b_hold);
444 goto found;
445 }
446 }
447
448 /* No match found */
449 if (new_bp) {
450 _xfs_buf_initialize(new_bp, btp, range_base,
451 range_length, flags);
452 new_bp->b_hash = hash;
453 list_add(&new_bp->b_hash_list, &hash->bh_list);
454 } else {
455 XFS_STATS_INC(xb_miss_locked);
456 }
457
458 spin_unlock(&hash->bh_lock);
459 return new_bp;
460
461 found:
462 spin_unlock(&hash->bh_lock);
463
464 /* Attempt to get the semaphore without sleeping,
465 * if this does not work then we need to drop the
466 * spinlock and do a hard attempt on the semaphore.
467 */
468 if (down_trylock(&bp->b_sema)) {
469 if (!(flags & XBF_TRYLOCK)) {
470 /* wait for buffer ownership */
471 xfs_buf_lock(bp);
472 XFS_STATS_INC(xb_get_locked_waited);
473 } else {
474 /* We asked for a trylock and failed, no need
475 * to look at file offset and length here, we
476 * know that this buffer at least overlaps our
477 * buffer and is locked, therefore our buffer
478 * either does not exist, or is this buffer.
479 */
480 xfs_buf_rele(bp);
481 XFS_STATS_INC(xb_busy_locked);
482 return NULL;
483 }
484 } else {
485 /* trylock worked */
486 XB_SET_OWNER(bp);
487 }
488
489 if (bp->b_flags & XBF_STALE) {
490 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
491 bp->b_flags &= XBF_MAPPED;
492 }
493
494 trace_xfs_buf_find(bp, flags, _RET_IP_);
495 XFS_STATS_INC(xb_get_locked);
496 return bp;
497 }
498
499 /*
500 * Assembles a buffer covering the specified range.
501 * Storage in memory for all portions of the buffer will be allocated,
502 * although backing storage may not be.
503 */
504 xfs_buf_t *
505 xfs_buf_get(
506 xfs_buftarg_t *target,/* target for buffer */
507 xfs_off_t ioff, /* starting offset of range */
508 size_t isize, /* length of range */
509 xfs_buf_flags_t flags)
510 {
511 xfs_buf_t *bp, *new_bp;
512 int error = 0, i;
513
514 new_bp = xfs_buf_allocate(flags);
515 if (unlikely(!new_bp))
516 return NULL;
517
518 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
519 if (bp == new_bp) {
520 error = _xfs_buf_lookup_pages(bp, flags);
521 if (error)
522 goto no_buffer;
523 } else {
524 xfs_buf_deallocate(new_bp);
525 if (unlikely(bp == NULL))
526 return NULL;
527 }
528
529 for (i = 0; i < bp->b_page_count; i++)
530 mark_page_accessed(bp->b_pages[i]);
531
532 if (!(bp->b_flags & XBF_MAPPED)) {
533 error = _xfs_buf_map_pages(bp, flags);
534 if (unlikely(error)) {
535 printk(KERN_WARNING "%s: failed to map pages\n",
536 __func__);
537 goto no_buffer;
538 }
539 }
540
541 XFS_STATS_INC(xb_get);
542
543 /*
544 * Always fill in the block number now, the mapped cases can do
545 * their own overlay of this later.
546 */
547 bp->b_bn = ioff;
548 bp->b_count_desired = bp->b_buffer_length;
549
550 trace_xfs_buf_get(bp, flags, _RET_IP_);
551 return bp;
552
553 no_buffer:
554 if (flags & (XBF_LOCK | XBF_TRYLOCK))
555 xfs_buf_unlock(bp);
556 xfs_buf_rele(bp);
557 return NULL;
558 }
559
560 STATIC int
561 _xfs_buf_read(
562 xfs_buf_t *bp,
563 xfs_buf_flags_t flags)
564 {
565 int status;
566
567 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
568 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
569
570 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
571 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
572 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
573 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
574
575 status = xfs_buf_iorequest(bp);
576 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
577 return status;
578 return xfs_buf_iowait(bp);
579 }
580
581 xfs_buf_t *
582 xfs_buf_read(
583 xfs_buftarg_t *target,
584 xfs_off_t ioff,
585 size_t isize,
586 xfs_buf_flags_t flags)
587 {
588 xfs_buf_t *bp;
589
590 flags |= XBF_READ;
591
592 bp = xfs_buf_get(target, ioff, isize, flags);
593 if (bp) {
594 trace_xfs_buf_read(bp, flags, _RET_IP_);
595
596 if (!XFS_BUF_ISDONE(bp)) {
597 XFS_STATS_INC(xb_get_read);
598 _xfs_buf_read(bp, flags);
599 } else if (flags & XBF_ASYNC) {
600 /*
601 * Read ahead call which is already satisfied,
602 * drop the buffer
603 */
604 goto no_buffer;
605 } else {
606 /* We do not want read in the flags */
607 bp->b_flags &= ~XBF_READ;
608 }
609 }
610
611 return bp;
612
613 no_buffer:
614 if (flags & (XBF_LOCK | XBF_TRYLOCK))
615 xfs_buf_unlock(bp);
616 xfs_buf_rele(bp);
617 return NULL;
618 }
619
620 /*
621 * If we are not low on memory then do the readahead in a deadlock
622 * safe manner.
623 */
624 void
625 xfs_buf_readahead(
626 xfs_buftarg_t *target,
627 xfs_off_t ioff,
628 size_t isize,
629 xfs_buf_flags_t flags)
630 {
631 struct backing_dev_info *bdi;
632
633 bdi = target->bt_mapping->backing_dev_info;
634 if (bdi_read_congested(bdi))
635 return;
636
637 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
638 xfs_buf_read(target, ioff, isize, flags);
639 }
640
641 /*
642 * Read an uncached buffer from disk. Allocates and returns a locked
643 * buffer containing the disk contents or nothing.
644 */
645 struct xfs_buf *
646 xfs_buf_read_uncached(
647 struct xfs_mount *mp,
648 struct xfs_buftarg *target,
649 xfs_daddr_t daddr,
650 size_t length,
651 int flags)
652 {
653 xfs_buf_t *bp;
654 int error;
655
656 bp = xfs_buf_get_uncached(target, length, flags);
657 if (!bp)
658 return NULL;
659
660 /* set up the buffer for a read IO */
661 xfs_buf_lock(bp);
662 XFS_BUF_SET_ADDR(bp, daddr);
663 XFS_BUF_READ(bp);
664 XFS_BUF_BUSY(bp);
665
666 xfsbdstrat(mp, bp);
667 error = xfs_iowait(bp);
668 if (error || bp->b_error) {
669 xfs_buf_relse(bp);
670 return NULL;
671 }
672 return bp;
673 }
674
675 xfs_buf_t *
676 xfs_buf_get_empty(
677 size_t len,
678 xfs_buftarg_t *target)
679 {
680 xfs_buf_t *bp;
681
682 bp = xfs_buf_allocate(0);
683 if (bp)
684 _xfs_buf_initialize(bp, target, 0, len, 0);
685 return bp;
686 }
687
688 static inline struct page *
689 mem_to_page(
690 void *addr)
691 {
692 if ((!is_vmalloc_addr(addr))) {
693 return virt_to_page(addr);
694 } else {
695 return vmalloc_to_page(addr);
696 }
697 }
698
699 int
700 xfs_buf_associate_memory(
701 xfs_buf_t *bp,
702 void *mem,
703 size_t len)
704 {
705 int rval;
706 int i = 0;
707 unsigned long pageaddr;
708 unsigned long offset;
709 size_t buflen;
710 int page_count;
711
712 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
713 offset = (unsigned long)mem - pageaddr;
714 buflen = PAGE_CACHE_ALIGN(len + offset);
715 page_count = buflen >> PAGE_CACHE_SHIFT;
716
717 /* Free any previous set of page pointers */
718 if (bp->b_pages)
719 _xfs_buf_free_pages(bp);
720
721 bp->b_pages = NULL;
722 bp->b_addr = mem;
723
724 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
725 if (rval)
726 return rval;
727
728 bp->b_offset = offset;
729
730 for (i = 0; i < bp->b_page_count; i++) {
731 bp->b_pages[i] = mem_to_page((void *)pageaddr);
732 pageaddr += PAGE_CACHE_SIZE;
733 }
734
735 bp->b_count_desired = len;
736 bp->b_buffer_length = buflen;
737 bp->b_flags |= XBF_MAPPED;
738 bp->b_flags &= ~_XBF_PAGE_LOCKED;
739
740 return 0;
741 }
742
743 xfs_buf_t *
744 xfs_buf_get_uncached(
745 struct xfs_buftarg *target,
746 size_t len,
747 int flags)
748 {
749 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
750 int error, i;
751 xfs_buf_t *bp;
752
753 bp = xfs_buf_allocate(0);
754 if (unlikely(bp == NULL))
755 goto fail;
756 _xfs_buf_initialize(bp, target, 0, len, 0);
757
758 error = _xfs_buf_get_pages(bp, page_count, 0);
759 if (error)
760 goto fail_free_buf;
761
762 for (i = 0; i < page_count; i++) {
763 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
764 if (!bp->b_pages[i])
765 goto fail_free_mem;
766 }
767 bp->b_flags |= _XBF_PAGES;
768
769 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
770 if (unlikely(error)) {
771 printk(KERN_WARNING "%s: failed to map pages\n",
772 __func__);
773 goto fail_free_mem;
774 }
775
776 xfs_buf_unlock(bp);
777
778 trace_xfs_buf_get_uncached(bp, _RET_IP_);
779 return bp;
780
781 fail_free_mem:
782 while (--i >= 0)
783 __free_page(bp->b_pages[i]);
784 _xfs_buf_free_pages(bp);
785 fail_free_buf:
786 xfs_buf_deallocate(bp);
787 fail:
788 return NULL;
789 }
790
791 /*
792 * Increment reference count on buffer, to hold the buffer concurrently
793 * with another thread which may release (free) the buffer asynchronously.
794 * Must hold the buffer already to call this function.
795 */
796 void
797 xfs_buf_hold(
798 xfs_buf_t *bp)
799 {
800 trace_xfs_buf_hold(bp, _RET_IP_);
801 atomic_inc(&bp->b_hold);
802 }
803
804 /*
805 * Releases a hold on the specified buffer. If the
806 * the hold count is 1, calls xfs_buf_free.
807 */
808 void
809 xfs_buf_rele(
810 xfs_buf_t *bp)
811 {
812 xfs_bufhash_t *hash = bp->b_hash;
813
814 trace_xfs_buf_rele(bp, _RET_IP_);
815
816 if (unlikely(!hash)) {
817 ASSERT(!bp->b_relse);
818 if (atomic_dec_and_test(&bp->b_hold))
819 xfs_buf_free(bp);
820 return;
821 }
822
823 ASSERT(atomic_read(&bp->b_hold) > 0);
824 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
825 if (bp->b_relse) {
826 atomic_inc(&bp->b_hold);
827 spin_unlock(&hash->bh_lock);
828 (*(bp->b_relse)) (bp);
829 } else {
830 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
831 list_del_init(&bp->b_hash_list);
832 spin_unlock(&hash->bh_lock);
833 xfs_buf_free(bp);
834 }
835 }
836 }
837
838
839 /*
840 * Mutual exclusion on buffers. Locking model:
841 *
842 * Buffers associated with inodes for which buffer locking
843 * is not enabled are not protected by semaphores, and are
844 * assumed to be exclusively owned by the caller. There is a
845 * spinlock in the buffer, used by the caller when concurrent
846 * access is possible.
847 */
848
849 /*
850 * Locks a buffer object, if it is not already locked.
851 * Note that this in no way locks the underlying pages, so it is only
852 * useful for synchronizing concurrent use of buffer objects, not for
853 * synchronizing independent access to the underlying pages.
854 */
855 int
856 xfs_buf_cond_lock(
857 xfs_buf_t *bp)
858 {
859 int locked;
860
861 locked = down_trylock(&bp->b_sema) == 0;
862 if (locked)
863 XB_SET_OWNER(bp);
864
865 trace_xfs_buf_cond_lock(bp, _RET_IP_);
866 return locked ? 0 : -EBUSY;
867 }
868
869 int
870 xfs_buf_lock_value(
871 xfs_buf_t *bp)
872 {
873 return bp->b_sema.count;
874 }
875
876 /*
877 * Locks a buffer object.
878 * Note that this in no way locks the underlying pages, so it is only
879 * useful for synchronizing concurrent use of buffer objects, not for
880 * synchronizing independent access to the underlying pages.
881 *
882 * If we come across a stale, pinned, locked buffer, we know that we
883 * are being asked to lock a buffer that has been reallocated. Because
884 * it is pinned, we know that the log has not been pushed to disk and
885 * hence it will still be locked. Rather than sleeping until someone
886 * else pushes the log, push it ourselves before trying to get the lock.
887 */
888 void
889 xfs_buf_lock(
890 xfs_buf_t *bp)
891 {
892 trace_xfs_buf_lock(bp, _RET_IP_);
893
894 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
895 xfs_log_force(bp->b_target->bt_mount, 0);
896 if (atomic_read(&bp->b_io_remaining))
897 blk_run_address_space(bp->b_target->bt_mapping);
898 down(&bp->b_sema);
899 XB_SET_OWNER(bp);
900
901 trace_xfs_buf_lock_done(bp, _RET_IP_);
902 }
903
904 /*
905 * Releases the lock on the buffer object.
906 * If the buffer is marked delwri but is not queued, do so before we
907 * unlock the buffer as we need to set flags correctly. We also need to
908 * take a reference for the delwri queue because the unlocker is going to
909 * drop their's and they don't know we just queued it.
910 */
911 void
912 xfs_buf_unlock(
913 xfs_buf_t *bp)
914 {
915 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
916 atomic_inc(&bp->b_hold);
917 bp->b_flags |= XBF_ASYNC;
918 xfs_buf_delwri_queue(bp, 0);
919 }
920
921 XB_CLEAR_OWNER(bp);
922 up(&bp->b_sema);
923
924 trace_xfs_buf_unlock(bp, _RET_IP_);
925 }
926
927 STATIC void
928 xfs_buf_wait_unpin(
929 xfs_buf_t *bp)
930 {
931 DECLARE_WAITQUEUE (wait, current);
932
933 if (atomic_read(&bp->b_pin_count) == 0)
934 return;
935
936 add_wait_queue(&bp->b_waiters, &wait);
937 for (;;) {
938 set_current_state(TASK_UNINTERRUPTIBLE);
939 if (atomic_read(&bp->b_pin_count) == 0)
940 break;
941 if (atomic_read(&bp->b_io_remaining))
942 blk_run_address_space(bp->b_target->bt_mapping);
943 schedule();
944 }
945 remove_wait_queue(&bp->b_waiters, &wait);
946 set_current_state(TASK_RUNNING);
947 }
948
949 /*
950 * Buffer Utility Routines
951 */
952
953 STATIC void
954 xfs_buf_iodone_work(
955 struct work_struct *work)
956 {
957 xfs_buf_t *bp =
958 container_of(work, xfs_buf_t, b_iodone_work);
959
960 /*
961 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
962 * ordered flag and reissue them. Because we can't tell the higher
963 * layers directly that they should not issue ordered I/O anymore, they
964 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
965 */
966 if ((bp->b_error == EOPNOTSUPP) &&
967 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
968 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
969 bp->b_flags &= ~XBF_ORDERED;
970 bp->b_flags |= _XFS_BARRIER_FAILED;
971 xfs_buf_iorequest(bp);
972 } else if (bp->b_iodone)
973 (*(bp->b_iodone))(bp);
974 else if (bp->b_flags & XBF_ASYNC)
975 xfs_buf_relse(bp);
976 }
977
978 void
979 xfs_buf_ioend(
980 xfs_buf_t *bp,
981 int schedule)
982 {
983 trace_xfs_buf_iodone(bp, _RET_IP_);
984
985 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
986 if (bp->b_error == 0)
987 bp->b_flags |= XBF_DONE;
988
989 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
990 if (schedule) {
991 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
992 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
993 } else {
994 xfs_buf_iodone_work(&bp->b_iodone_work);
995 }
996 } else {
997 complete(&bp->b_iowait);
998 }
999 }
1000
1001 void
1002 xfs_buf_ioerror(
1003 xfs_buf_t *bp,
1004 int error)
1005 {
1006 ASSERT(error >= 0 && error <= 0xffff);
1007 bp->b_error = (unsigned short)error;
1008 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1009 }
1010
1011 int
1012 xfs_bwrite(
1013 struct xfs_mount *mp,
1014 struct xfs_buf *bp)
1015 {
1016 int error;
1017
1018 bp->b_flags |= XBF_WRITE;
1019 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1020
1021 xfs_buf_delwri_dequeue(bp);
1022 xfs_bdstrat_cb(bp);
1023
1024 error = xfs_buf_iowait(bp);
1025 if (error)
1026 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1027 xfs_buf_relse(bp);
1028 return error;
1029 }
1030
1031 void
1032 xfs_bdwrite(
1033 void *mp,
1034 struct xfs_buf *bp)
1035 {
1036 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1037
1038 bp->b_flags &= ~XBF_READ;
1039 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1040
1041 xfs_buf_delwri_queue(bp, 1);
1042 }
1043
1044 /*
1045 * Called when we want to stop a buffer from getting written or read.
1046 * We attach the EIO error, muck with its flags, and call biodone
1047 * so that the proper iodone callbacks get called.
1048 */
1049 STATIC int
1050 xfs_bioerror(
1051 xfs_buf_t *bp)
1052 {
1053 #ifdef XFSERRORDEBUG
1054 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1055 #endif
1056
1057 /*
1058 * No need to wait until the buffer is unpinned, we aren't flushing it.
1059 */
1060 XFS_BUF_ERROR(bp, EIO);
1061
1062 /*
1063 * We're calling biodone, so delete XBF_DONE flag.
1064 */
1065 XFS_BUF_UNREAD(bp);
1066 XFS_BUF_UNDELAYWRITE(bp);
1067 XFS_BUF_UNDONE(bp);
1068 XFS_BUF_STALE(bp);
1069
1070 xfs_biodone(bp);
1071
1072 return EIO;
1073 }
1074
1075 /*
1076 * Same as xfs_bioerror, except that we are releasing the buffer
1077 * here ourselves, and avoiding the biodone call.
1078 * This is meant for userdata errors; metadata bufs come with
1079 * iodone functions attached, so that we can track down errors.
1080 */
1081 STATIC int
1082 xfs_bioerror_relse(
1083 struct xfs_buf *bp)
1084 {
1085 int64_t fl = XFS_BUF_BFLAGS(bp);
1086 /*
1087 * No need to wait until the buffer is unpinned.
1088 * We aren't flushing it.
1089 *
1090 * chunkhold expects B_DONE to be set, whether
1091 * we actually finish the I/O or not. We don't want to
1092 * change that interface.
1093 */
1094 XFS_BUF_UNREAD(bp);
1095 XFS_BUF_UNDELAYWRITE(bp);
1096 XFS_BUF_DONE(bp);
1097 XFS_BUF_STALE(bp);
1098 XFS_BUF_CLR_IODONE_FUNC(bp);
1099 if (!(fl & XBF_ASYNC)) {
1100 /*
1101 * Mark b_error and B_ERROR _both_.
1102 * Lot's of chunkcache code assumes that.
1103 * There's no reason to mark error for
1104 * ASYNC buffers.
1105 */
1106 XFS_BUF_ERROR(bp, EIO);
1107 XFS_BUF_FINISH_IOWAIT(bp);
1108 } else {
1109 xfs_buf_relse(bp);
1110 }
1111
1112 return EIO;
1113 }
1114
1115
1116 /*
1117 * All xfs metadata buffers except log state machine buffers
1118 * get this attached as their b_bdstrat callback function.
1119 * This is so that we can catch a buffer
1120 * after prematurely unpinning it to forcibly shutdown the filesystem.
1121 */
1122 int
1123 xfs_bdstrat_cb(
1124 struct xfs_buf *bp)
1125 {
1126 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1127 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1128 /*
1129 * Metadata write that didn't get logged but
1130 * written delayed anyway. These aren't associated
1131 * with a transaction, and can be ignored.
1132 */
1133 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1134 return xfs_bioerror_relse(bp);
1135 else
1136 return xfs_bioerror(bp);
1137 }
1138
1139 xfs_buf_iorequest(bp);
1140 return 0;
1141 }
1142
1143 /*
1144 * Wrapper around bdstrat so that we can stop data from going to disk in case
1145 * we are shutting down the filesystem. Typically user data goes thru this
1146 * path; one of the exceptions is the superblock.
1147 */
1148 void
1149 xfsbdstrat(
1150 struct xfs_mount *mp,
1151 struct xfs_buf *bp)
1152 {
1153 if (XFS_FORCED_SHUTDOWN(mp)) {
1154 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1155 xfs_bioerror_relse(bp);
1156 return;
1157 }
1158
1159 xfs_buf_iorequest(bp);
1160 }
1161
1162 STATIC void
1163 _xfs_buf_ioend(
1164 xfs_buf_t *bp,
1165 int schedule)
1166 {
1167 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1168 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1169 xfs_buf_ioend(bp, schedule);
1170 }
1171 }
1172
1173 STATIC void
1174 xfs_buf_bio_end_io(
1175 struct bio *bio,
1176 int error)
1177 {
1178 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1179 unsigned int blocksize = bp->b_target->bt_bsize;
1180 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1181
1182 xfs_buf_ioerror(bp, -error);
1183
1184 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1185 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1186
1187 do {
1188 struct page *page = bvec->bv_page;
1189
1190 ASSERT(!PagePrivate(page));
1191 if (unlikely(bp->b_error)) {
1192 if (bp->b_flags & XBF_READ)
1193 ClearPageUptodate(page);
1194 } else if (blocksize >= PAGE_CACHE_SIZE) {
1195 SetPageUptodate(page);
1196 } else if (!PagePrivate(page) &&
1197 (bp->b_flags & _XBF_PAGE_CACHE)) {
1198 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1199 }
1200
1201 if (--bvec >= bio->bi_io_vec)
1202 prefetchw(&bvec->bv_page->flags);
1203
1204 if (bp->b_flags & _XBF_PAGE_LOCKED)
1205 unlock_page(page);
1206 } while (bvec >= bio->bi_io_vec);
1207
1208 _xfs_buf_ioend(bp, 1);
1209 bio_put(bio);
1210 }
1211
1212 STATIC void
1213 _xfs_buf_ioapply(
1214 xfs_buf_t *bp)
1215 {
1216 int rw, map_i, total_nr_pages, nr_pages;
1217 struct bio *bio;
1218 int offset = bp->b_offset;
1219 int size = bp->b_count_desired;
1220 sector_t sector = bp->b_bn;
1221 unsigned int blocksize = bp->b_target->bt_bsize;
1222
1223 total_nr_pages = bp->b_page_count;
1224 map_i = 0;
1225
1226 if (bp->b_flags & XBF_ORDERED) {
1227 ASSERT(!(bp->b_flags & XBF_READ));
1228 rw = WRITE_BARRIER;
1229 } else if (bp->b_flags & XBF_LOG_BUFFER) {
1230 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1231 bp->b_flags &= ~_XBF_RUN_QUEUES;
1232 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1233 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1234 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1235 bp->b_flags &= ~_XBF_RUN_QUEUES;
1236 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1237 } else {
1238 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1239 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1240 }
1241
1242 /* Special code path for reading a sub page size buffer in --
1243 * we populate up the whole page, and hence the other metadata
1244 * in the same page. This optimization is only valid when the
1245 * filesystem block size is not smaller than the page size.
1246 */
1247 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1248 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1249 (XBF_READ|_XBF_PAGE_LOCKED)) &&
1250 (blocksize >= PAGE_CACHE_SIZE)) {
1251 bio = bio_alloc(GFP_NOIO, 1);
1252
1253 bio->bi_bdev = bp->b_target->bt_bdev;
1254 bio->bi_sector = sector - (offset >> BBSHIFT);
1255 bio->bi_end_io = xfs_buf_bio_end_io;
1256 bio->bi_private = bp;
1257
1258 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1259 size = 0;
1260
1261 atomic_inc(&bp->b_io_remaining);
1262
1263 goto submit_io;
1264 }
1265
1266 next_chunk:
1267 atomic_inc(&bp->b_io_remaining);
1268 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1269 if (nr_pages > total_nr_pages)
1270 nr_pages = total_nr_pages;
1271
1272 bio = bio_alloc(GFP_NOIO, nr_pages);
1273 bio->bi_bdev = bp->b_target->bt_bdev;
1274 bio->bi_sector = sector;
1275 bio->bi_end_io = xfs_buf_bio_end_io;
1276 bio->bi_private = bp;
1277
1278 for (; size && nr_pages; nr_pages--, map_i++) {
1279 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1280
1281 if (nbytes > size)
1282 nbytes = size;
1283
1284 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1285 if (rbytes < nbytes)
1286 break;
1287
1288 offset = 0;
1289 sector += nbytes >> BBSHIFT;
1290 size -= nbytes;
1291 total_nr_pages--;
1292 }
1293
1294 submit_io:
1295 if (likely(bio->bi_size)) {
1296 if (xfs_buf_is_vmapped(bp)) {
1297 flush_kernel_vmap_range(bp->b_addr,
1298 xfs_buf_vmap_len(bp));
1299 }
1300 submit_bio(rw, bio);
1301 if (size)
1302 goto next_chunk;
1303 } else {
1304 /*
1305 * if we get here, no pages were added to the bio. However,
1306 * we can't just error out here - if the pages are locked then
1307 * we have to unlock them otherwise we can hang on a later
1308 * access to the page.
1309 */
1310 xfs_buf_ioerror(bp, EIO);
1311 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1312 int i;
1313 for (i = 0; i < bp->b_page_count; i++)
1314 unlock_page(bp->b_pages[i]);
1315 }
1316 bio_put(bio);
1317 }
1318 }
1319
1320 int
1321 xfs_buf_iorequest(
1322 xfs_buf_t *bp)
1323 {
1324 trace_xfs_buf_iorequest(bp, _RET_IP_);
1325
1326 if (bp->b_flags & XBF_DELWRI) {
1327 xfs_buf_delwri_queue(bp, 1);
1328 return 0;
1329 }
1330
1331 if (bp->b_flags & XBF_WRITE) {
1332 xfs_buf_wait_unpin(bp);
1333 }
1334
1335 xfs_buf_hold(bp);
1336
1337 /* Set the count to 1 initially, this will stop an I/O
1338 * completion callout which happens before we have started
1339 * all the I/O from calling xfs_buf_ioend too early.
1340 */
1341 atomic_set(&bp->b_io_remaining, 1);
1342 _xfs_buf_ioapply(bp);
1343 _xfs_buf_ioend(bp, 0);
1344
1345 xfs_buf_rele(bp);
1346 return 0;
1347 }
1348
1349 /*
1350 * Waits for I/O to complete on the buffer supplied.
1351 * It returns immediately if no I/O is pending.
1352 * It returns the I/O error code, if any, or 0 if there was no error.
1353 */
1354 int
1355 xfs_buf_iowait(
1356 xfs_buf_t *bp)
1357 {
1358 trace_xfs_buf_iowait(bp, _RET_IP_);
1359
1360 if (atomic_read(&bp->b_io_remaining))
1361 blk_run_address_space(bp->b_target->bt_mapping);
1362 wait_for_completion(&bp->b_iowait);
1363
1364 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1365 return bp->b_error;
1366 }
1367
1368 xfs_caddr_t
1369 xfs_buf_offset(
1370 xfs_buf_t *bp,
1371 size_t offset)
1372 {
1373 struct page *page;
1374
1375 if (bp->b_flags & XBF_MAPPED)
1376 return XFS_BUF_PTR(bp) + offset;
1377
1378 offset += bp->b_offset;
1379 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1380 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1381 }
1382
1383 /*
1384 * Move data into or out of a buffer.
1385 */
1386 void
1387 xfs_buf_iomove(
1388 xfs_buf_t *bp, /* buffer to process */
1389 size_t boff, /* starting buffer offset */
1390 size_t bsize, /* length to copy */
1391 void *data, /* data address */
1392 xfs_buf_rw_t mode) /* read/write/zero flag */
1393 {
1394 size_t bend, cpoff, csize;
1395 struct page *page;
1396
1397 bend = boff + bsize;
1398 while (boff < bend) {
1399 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1400 cpoff = xfs_buf_poff(boff + bp->b_offset);
1401 csize = min_t(size_t,
1402 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1403
1404 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1405
1406 switch (mode) {
1407 case XBRW_ZERO:
1408 memset(page_address(page) + cpoff, 0, csize);
1409 break;
1410 case XBRW_READ:
1411 memcpy(data, page_address(page) + cpoff, csize);
1412 break;
1413 case XBRW_WRITE:
1414 memcpy(page_address(page) + cpoff, data, csize);
1415 }
1416
1417 boff += csize;
1418 data += csize;
1419 }
1420 }
1421
1422 /*
1423 * Handling of buffer targets (buftargs).
1424 */
1425
1426 /*
1427 * Wait for any bufs with callbacks that have been submitted but
1428 * have not yet returned... walk the hash list for the target.
1429 */
1430 void
1431 xfs_wait_buftarg(
1432 xfs_buftarg_t *btp)
1433 {
1434 xfs_bufhash_t *hash;
1435 uint i;
1436
1437 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1438 hash = &btp->bt_hash[i];
1439 spin_lock(&hash->bh_lock);
1440 while (!list_empty(&hash->bh_list)) {
1441 spin_unlock(&hash->bh_lock);
1442 delay(100);
1443 spin_lock(&hash->bh_lock);
1444 }
1445 spin_unlock(&hash->bh_lock);
1446 }
1447 }
1448
1449 /*
1450 * Allocate buffer hash table for a given target.
1451 * For devices containing metadata (i.e. not the log/realtime devices)
1452 * we need to allocate a much larger hash table.
1453 */
1454 STATIC void
1455 xfs_alloc_bufhash(
1456 xfs_buftarg_t *btp,
1457 int external)
1458 {
1459 unsigned int i;
1460
1461 btp->bt_hashshift = external ? 3 : 12; /* 8 or 4096 buckets */
1462 btp->bt_hash = kmem_zalloc_large((1 << btp->bt_hashshift) *
1463 sizeof(xfs_bufhash_t));
1464 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1465 spin_lock_init(&btp->bt_hash[i].bh_lock);
1466 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1467 }
1468 }
1469
1470 STATIC void
1471 xfs_free_bufhash(
1472 xfs_buftarg_t *btp)
1473 {
1474 kmem_free_large(btp->bt_hash);
1475 btp->bt_hash = NULL;
1476 }
1477
1478 /*
1479 * buftarg list for delwrite queue processing
1480 */
1481 static LIST_HEAD(xfs_buftarg_list);
1482 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1483
1484 STATIC void
1485 xfs_register_buftarg(
1486 xfs_buftarg_t *btp)
1487 {
1488 spin_lock(&xfs_buftarg_lock);
1489 list_add(&btp->bt_list, &xfs_buftarg_list);
1490 spin_unlock(&xfs_buftarg_lock);
1491 }
1492
1493 STATIC void
1494 xfs_unregister_buftarg(
1495 xfs_buftarg_t *btp)
1496 {
1497 spin_lock(&xfs_buftarg_lock);
1498 list_del(&btp->bt_list);
1499 spin_unlock(&xfs_buftarg_lock);
1500 }
1501
1502 void
1503 xfs_free_buftarg(
1504 struct xfs_mount *mp,
1505 struct xfs_buftarg *btp)
1506 {
1507 xfs_flush_buftarg(btp, 1);
1508 if (mp->m_flags & XFS_MOUNT_BARRIER)
1509 xfs_blkdev_issue_flush(btp);
1510 xfs_free_bufhash(btp);
1511 iput(btp->bt_mapping->host);
1512
1513 /* Unregister the buftarg first so that we don't get a
1514 * wakeup finding a non-existent task
1515 */
1516 xfs_unregister_buftarg(btp);
1517 kthread_stop(btp->bt_task);
1518
1519 kmem_free(btp);
1520 }
1521
1522 STATIC int
1523 xfs_setsize_buftarg_flags(
1524 xfs_buftarg_t *btp,
1525 unsigned int blocksize,
1526 unsigned int sectorsize,
1527 int verbose)
1528 {
1529 btp->bt_bsize = blocksize;
1530 btp->bt_sshift = ffs(sectorsize) - 1;
1531 btp->bt_smask = sectorsize - 1;
1532
1533 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1534 printk(KERN_WARNING
1535 "XFS: Cannot set_blocksize to %u on device %s\n",
1536 sectorsize, XFS_BUFTARG_NAME(btp));
1537 return EINVAL;
1538 }
1539
1540 if (verbose &&
1541 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1542 printk(KERN_WARNING
1543 "XFS: %u byte sectors in use on device %s. "
1544 "This is suboptimal; %u or greater is ideal.\n",
1545 sectorsize, XFS_BUFTARG_NAME(btp),
1546 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1547 }
1548
1549 return 0;
1550 }
1551
1552 /*
1553 * When allocating the initial buffer target we have not yet
1554 * read in the superblock, so don't know what sized sectors
1555 * are being used is at this early stage. Play safe.
1556 */
1557 STATIC int
1558 xfs_setsize_buftarg_early(
1559 xfs_buftarg_t *btp,
1560 struct block_device *bdev)
1561 {
1562 return xfs_setsize_buftarg_flags(btp,
1563 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1564 }
1565
1566 int
1567 xfs_setsize_buftarg(
1568 xfs_buftarg_t *btp,
1569 unsigned int blocksize,
1570 unsigned int sectorsize)
1571 {
1572 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1573 }
1574
1575 STATIC int
1576 xfs_mapping_buftarg(
1577 xfs_buftarg_t *btp,
1578 struct block_device *bdev)
1579 {
1580 struct backing_dev_info *bdi;
1581 struct inode *inode;
1582 struct address_space *mapping;
1583 static const struct address_space_operations mapping_aops = {
1584 .sync_page = block_sync_page,
1585 .migratepage = fail_migrate_page,
1586 };
1587
1588 inode = new_inode(bdev->bd_inode->i_sb);
1589 if (!inode) {
1590 printk(KERN_WARNING
1591 "XFS: Cannot allocate mapping inode for device %s\n",
1592 XFS_BUFTARG_NAME(btp));
1593 return ENOMEM;
1594 }
1595 inode->i_mode = S_IFBLK;
1596 inode->i_bdev = bdev;
1597 inode->i_rdev = bdev->bd_dev;
1598 bdi = blk_get_backing_dev_info(bdev);
1599 if (!bdi)
1600 bdi = &default_backing_dev_info;
1601 mapping = &inode->i_data;
1602 mapping->a_ops = &mapping_aops;
1603 mapping->backing_dev_info = bdi;
1604 mapping_set_gfp_mask(mapping, GFP_NOFS);
1605 btp->bt_mapping = mapping;
1606 return 0;
1607 }
1608
1609 STATIC int
1610 xfs_alloc_delwrite_queue(
1611 xfs_buftarg_t *btp,
1612 const char *fsname)
1613 {
1614 int error = 0;
1615
1616 INIT_LIST_HEAD(&btp->bt_list);
1617 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1618 spin_lock_init(&btp->bt_delwrite_lock);
1619 btp->bt_flags = 0;
1620 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1621 if (IS_ERR(btp->bt_task)) {
1622 error = PTR_ERR(btp->bt_task);
1623 goto out_error;
1624 }
1625 xfs_register_buftarg(btp);
1626 out_error:
1627 return error;
1628 }
1629
1630 xfs_buftarg_t *
1631 xfs_alloc_buftarg(
1632 struct xfs_mount *mp,
1633 struct block_device *bdev,
1634 int external,
1635 const char *fsname)
1636 {
1637 xfs_buftarg_t *btp;
1638
1639 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1640
1641 btp->bt_mount = mp;
1642 btp->bt_dev = bdev->bd_dev;
1643 btp->bt_bdev = bdev;
1644 if (xfs_setsize_buftarg_early(btp, bdev))
1645 goto error;
1646 if (xfs_mapping_buftarg(btp, bdev))
1647 goto error;
1648 if (xfs_alloc_delwrite_queue(btp, fsname))
1649 goto error;
1650 xfs_alloc_bufhash(btp, external);
1651 return btp;
1652
1653 error:
1654 kmem_free(btp);
1655 return NULL;
1656 }
1657
1658
1659 /*
1660 * Delayed write buffer handling
1661 */
1662 STATIC void
1663 xfs_buf_delwri_queue(
1664 xfs_buf_t *bp,
1665 int unlock)
1666 {
1667 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1668 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1669
1670 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1671
1672 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1673
1674 spin_lock(dwlk);
1675 /* If already in the queue, dequeue and place at tail */
1676 if (!list_empty(&bp->b_list)) {
1677 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1678 if (unlock)
1679 atomic_dec(&bp->b_hold);
1680 list_del(&bp->b_list);
1681 }
1682
1683 if (list_empty(dwq)) {
1684 /* start xfsbufd as it is about to have something to do */
1685 wake_up_process(bp->b_target->bt_task);
1686 }
1687
1688 bp->b_flags |= _XBF_DELWRI_Q;
1689 list_add_tail(&bp->b_list, dwq);
1690 bp->b_queuetime = jiffies;
1691 spin_unlock(dwlk);
1692
1693 if (unlock)
1694 xfs_buf_unlock(bp);
1695 }
1696
1697 void
1698 xfs_buf_delwri_dequeue(
1699 xfs_buf_t *bp)
1700 {
1701 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1702 int dequeued = 0;
1703
1704 spin_lock(dwlk);
1705 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1706 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1707 list_del_init(&bp->b_list);
1708 dequeued = 1;
1709 }
1710 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1711 spin_unlock(dwlk);
1712
1713 if (dequeued)
1714 xfs_buf_rele(bp);
1715
1716 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1717 }
1718
1719 /*
1720 * If a delwri buffer needs to be pushed before it has aged out, then promote
1721 * it to the head of the delwri queue so that it will be flushed on the next
1722 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1723 * than the age currently needed to flush the buffer. Hence the next time the
1724 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1725 */
1726 void
1727 xfs_buf_delwri_promote(
1728 struct xfs_buf *bp)
1729 {
1730 struct xfs_buftarg *btp = bp->b_target;
1731 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1732
1733 ASSERT(bp->b_flags & XBF_DELWRI);
1734 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1735
1736 /*
1737 * Check the buffer age before locking the delayed write queue as we
1738 * don't need to promote buffers that are already past the flush age.
1739 */
1740 if (bp->b_queuetime < jiffies - age)
1741 return;
1742 bp->b_queuetime = jiffies - age;
1743 spin_lock(&btp->bt_delwrite_lock);
1744 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1745 spin_unlock(&btp->bt_delwrite_lock);
1746 }
1747
1748 STATIC void
1749 xfs_buf_runall_queues(
1750 struct workqueue_struct *queue)
1751 {
1752 flush_workqueue(queue);
1753 }
1754
1755 STATIC int
1756 xfsbufd_wakeup(
1757 struct shrinker *shrink,
1758 int priority,
1759 gfp_t mask)
1760 {
1761 xfs_buftarg_t *btp;
1762
1763 spin_lock(&xfs_buftarg_lock);
1764 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1765 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1766 continue;
1767 if (list_empty(&btp->bt_delwrite_queue))
1768 continue;
1769 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1770 wake_up_process(btp->bt_task);
1771 }
1772 spin_unlock(&xfs_buftarg_lock);
1773 return 0;
1774 }
1775
1776 /*
1777 * Move as many buffers as specified to the supplied list
1778 * idicating if we skipped any buffers to prevent deadlocks.
1779 */
1780 STATIC int
1781 xfs_buf_delwri_split(
1782 xfs_buftarg_t *target,
1783 struct list_head *list,
1784 unsigned long age)
1785 {
1786 xfs_buf_t *bp, *n;
1787 struct list_head *dwq = &target->bt_delwrite_queue;
1788 spinlock_t *dwlk = &target->bt_delwrite_lock;
1789 int skipped = 0;
1790 int force;
1791
1792 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1793 INIT_LIST_HEAD(list);
1794 spin_lock(dwlk);
1795 list_for_each_entry_safe(bp, n, dwq, b_list) {
1796 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1797 ASSERT(bp->b_flags & XBF_DELWRI);
1798
1799 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1800 if (!force &&
1801 time_before(jiffies, bp->b_queuetime + age)) {
1802 xfs_buf_unlock(bp);
1803 break;
1804 }
1805
1806 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1807 _XBF_RUN_QUEUES);
1808 bp->b_flags |= XBF_WRITE;
1809 list_move_tail(&bp->b_list, list);
1810 } else
1811 skipped++;
1812 }
1813 spin_unlock(dwlk);
1814
1815 return skipped;
1816
1817 }
1818
1819 /*
1820 * Compare function is more complex than it needs to be because
1821 * the return value is only 32 bits and we are doing comparisons
1822 * on 64 bit values
1823 */
1824 static int
1825 xfs_buf_cmp(
1826 void *priv,
1827 struct list_head *a,
1828 struct list_head *b)
1829 {
1830 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1831 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1832 xfs_daddr_t diff;
1833
1834 diff = ap->b_bn - bp->b_bn;
1835 if (diff < 0)
1836 return -1;
1837 if (diff > 0)
1838 return 1;
1839 return 0;
1840 }
1841
1842 void
1843 xfs_buf_delwri_sort(
1844 xfs_buftarg_t *target,
1845 struct list_head *list)
1846 {
1847 list_sort(NULL, list, xfs_buf_cmp);
1848 }
1849
1850 STATIC int
1851 xfsbufd(
1852 void *data)
1853 {
1854 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1855
1856 current->flags |= PF_MEMALLOC;
1857
1858 set_freezable();
1859
1860 do {
1861 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1862 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1863 int count = 0;
1864 struct list_head tmp;
1865
1866 if (unlikely(freezing(current))) {
1867 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1868 refrigerator();
1869 } else {
1870 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1871 }
1872
1873 /* sleep for a long time if there is nothing to do. */
1874 if (list_empty(&target->bt_delwrite_queue))
1875 tout = MAX_SCHEDULE_TIMEOUT;
1876 schedule_timeout_interruptible(tout);
1877
1878 xfs_buf_delwri_split(target, &tmp, age);
1879 list_sort(NULL, &tmp, xfs_buf_cmp);
1880 while (!list_empty(&tmp)) {
1881 struct xfs_buf *bp;
1882 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1883 list_del_init(&bp->b_list);
1884 xfs_bdstrat_cb(bp);
1885 count++;
1886 }
1887 if (count)
1888 blk_run_address_space(target->bt_mapping);
1889
1890 } while (!kthread_should_stop());
1891
1892 return 0;
1893 }
1894
1895 /*
1896 * Go through all incore buffers, and release buffers if they belong to
1897 * the given device. This is used in filesystem error handling to
1898 * preserve the consistency of its metadata.
1899 */
1900 int
1901 xfs_flush_buftarg(
1902 xfs_buftarg_t *target,
1903 int wait)
1904 {
1905 xfs_buf_t *bp;
1906 int pincount = 0;
1907 LIST_HEAD(tmp_list);
1908 LIST_HEAD(wait_list);
1909
1910 xfs_buf_runall_queues(xfsconvertd_workqueue);
1911 xfs_buf_runall_queues(xfsdatad_workqueue);
1912 xfs_buf_runall_queues(xfslogd_workqueue);
1913
1914 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1915 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1916
1917 /*
1918 * Dropped the delayed write list lock, now walk the temporary list.
1919 * All I/O is issued async and then if we need to wait for completion
1920 * we do that after issuing all the IO.
1921 */
1922 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1923 while (!list_empty(&tmp_list)) {
1924 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1925 ASSERT(target == bp->b_target);
1926 list_del_init(&bp->b_list);
1927 if (wait) {
1928 bp->b_flags &= ~XBF_ASYNC;
1929 list_add(&bp->b_list, &wait_list);
1930 }
1931 xfs_bdstrat_cb(bp);
1932 }
1933
1934 if (wait) {
1935 /* Expedite and wait for IO to complete. */
1936 blk_run_address_space(target->bt_mapping);
1937 while (!list_empty(&wait_list)) {
1938 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1939
1940 list_del_init(&bp->b_list);
1941 xfs_iowait(bp);
1942 xfs_buf_relse(bp);
1943 }
1944 }
1945
1946 return pincount;
1947 }
1948
1949 int __init
1950 xfs_buf_init(void)
1951 {
1952 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1953 KM_ZONE_HWALIGN, NULL);
1954 if (!xfs_buf_zone)
1955 goto out;
1956
1957 xfslogd_workqueue = alloc_workqueue("xfslogd",
1958 WQ_RESCUER | WQ_HIGHPRI, 1);
1959 if (!xfslogd_workqueue)
1960 goto out_free_buf_zone;
1961
1962 xfsdatad_workqueue = create_workqueue("xfsdatad");
1963 if (!xfsdatad_workqueue)
1964 goto out_destroy_xfslogd_workqueue;
1965
1966 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1967 if (!xfsconvertd_workqueue)
1968 goto out_destroy_xfsdatad_workqueue;
1969
1970 register_shrinker(&xfs_buf_shake);
1971 return 0;
1972
1973 out_destroy_xfsdatad_workqueue:
1974 destroy_workqueue(xfsdatad_workqueue);
1975 out_destroy_xfslogd_workqueue:
1976 destroy_workqueue(xfslogd_workqueue);
1977 out_free_buf_zone:
1978 kmem_zone_destroy(xfs_buf_zone);
1979 out:
1980 return -ENOMEM;
1981 }
1982
1983 void
1984 xfs_buf_terminate(void)
1985 {
1986 unregister_shrinker(&xfs_buf_shake);
1987 destroy_workqueue(xfsconvertd_workqueue);
1988 destroy_workqueue(xfsdatad_workqueue);
1989 destroy_workqueue(xfslogd_workqueue);
1990 kmem_zone_destroy(xfs_buf_zone);
1991 }
1992
1993 #ifdef CONFIG_KDB_MODULES
1994 struct list_head *
1995 xfs_get_buftarg_list(void)
1996 {
1997 return &xfs_buftarg_list;
1998 }
1999 #endif
This page took 0.074069 seconds and 5 git commands to generate.