[XFS] Fix memory corruption with small buffer reads
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 static kmem_zone_t *xfs_buf_zone;
38 STATIC int xfsbufd(void *);
39 STATIC int xfsbufd_wakeup(int, gfp_t);
40 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
41 static struct shrinker xfs_buf_shake = {
42 .shrink = xfsbufd_wakeup,
43 .seeks = DEFAULT_SEEKS,
44 };
45
46 static struct workqueue_struct *xfslogd_workqueue;
47 struct workqueue_struct *xfsdatad_workqueue;
48
49 #ifdef XFS_BUF_TRACE
50 void
51 xfs_buf_trace(
52 xfs_buf_t *bp,
53 char *id,
54 void *data,
55 void *ra)
56 {
57 ktrace_enter(xfs_buf_trace_buf,
58 bp, id,
59 (void *)(unsigned long)bp->b_flags,
60 (void *)(unsigned long)bp->b_hold.counter,
61 (void *)(unsigned long)bp->b_sema.count.counter,
62 (void *)current,
63 data, ra,
64 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
65 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
66 (void *)(unsigned long)bp->b_buffer_length,
67 NULL, NULL, NULL, NULL, NULL);
68 }
69 ktrace_t *xfs_buf_trace_buf;
70 #define XFS_BUF_TRACE_SIZE 4096
71 #define XB_TRACE(bp, id, data) \
72 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
73 #else
74 #define XB_TRACE(bp, id, data) do { } while (0)
75 #endif
76
77 #ifdef XFS_BUF_LOCK_TRACKING
78 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
79 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
80 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
81 #else
82 # define XB_SET_OWNER(bp) do { } while (0)
83 # define XB_CLEAR_OWNER(bp) do { } while (0)
84 # define XB_GET_OWNER(bp) do { } while (0)
85 #endif
86
87 #define xb_to_gfp(flags) \
88 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
89 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
90
91 #define xb_to_km(flags) \
92 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
93
94 #define xfs_buf_allocate(flags) \
95 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
96 #define xfs_buf_deallocate(bp) \
97 kmem_zone_free(xfs_buf_zone, (bp));
98
99 /*
100 * Page Region interfaces.
101 *
102 * For pages in filesystems where the blocksize is smaller than the
103 * pagesize, we use the page->private field (long) to hold a bitmap
104 * of uptodate regions within the page.
105 *
106 * Each such region is "bytes per page / bits per long" bytes long.
107 *
108 * NBPPR == number-of-bytes-per-page-region
109 * BTOPR == bytes-to-page-region (rounded up)
110 * BTOPRT == bytes-to-page-region-truncated (rounded down)
111 */
112 #if (BITS_PER_LONG == 32)
113 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
114 #elif (BITS_PER_LONG == 64)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
116 #else
117 #error BITS_PER_LONG must be 32 or 64
118 #endif
119 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
120 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
121 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
122
123 STATIC unsigned long
124 page_region_mask(
125 size_t offset,
126 size_t length)
127 {
128 unsigned long mask;
129 int first, final;
130
131 first = BTOPR(offset);
132 final = BTOPRT(offset + length - 1);
133 first = min(first, final);
134
135 mask = ~0UL;
136 mask <<= BITS_PER_LONG - (final - first);
137 mask >>= BITS_PER_LONG - (final);
138
139 ASSERT(offset + length <= PAGE_CACHE_SIZE);
140 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
141
142 return mask;
143 }
144
145 STATIC_INLINE void
146 set_page_region(
147 struct page *page,
148 size_t offset,
149 size_t length)
150 {
151 set_page_private(page,
152 page_private(page) | page_region_mask(offset, length));
153 if (page_private(page) == ~0UL)
154 SetPageUptodate(page);
155 }
156
157 STATIC_INLINE int
158 test_page_region(
159 struct page *page,
160 size_t offset,
161 size_t length)
162 {
163 unsigned long mask = page_region_mask(offset, length);
164
165 return (mask && (page_private(page) & mask) == mask);
166 }
167
168 /*
169 * Mapping of multi-page buffers into contiguous virtual space
170 */
171
172 typedef struct a_list {
173 void *vm_addr;
174 struct a_list *next;
175 } a_list_t;
176
177 static a_list_t *as_free_head;
178 static int as_list_len;
179 static DEFINE_SPINLOCK(as_lock);
180
181 /*
182 * Try to batch vunmaps because they are costly.
183 */
184 STATIC void
185 free_address(
186 void *addr)
187 {
188 a_list_t *aentry;
189
190 #ifdef CONFIG_XEN
191 /*
192 * Xen needs to be able to make sure it can get an exclusive
193 * RO mapping of pages it wants to turn into a pagetable. If
194 * a newly allocated page is also still being vmap()ed by xfs,
195 * it will cause pagetable construction to fail. This is a
196 * quick workaround to always eagerly unmap pages so that Xen
197 * is happy.
198 */
199 vunmap(addr);
200 return;
201 #endif
202
203 aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
204 if (likely(aentry)) {
205 spin_lock(&as_lock);
206 aentry->next = as_free_head;
207 aentry->vm_addr = addr;
208 as_free_head = aentry;
209 as_list_len++;
210 spin_unlock(&as_lock);
211 } else {
212 vunmap(addr);
213 }
214 }
215
216 STATIC void
217 purge_addresses(void)
218 {
219 a_list_t *aentry, *old;
220
221 if (as_free_head == NULL)
222 return;
223
224 spin_lock(&as_lock);
225 aentry = as_free_head;
226 as_free_head = NULL;
227 as_list_len = 0;
228 spin_unlock(&as_lock);
229
230 while ((old = aentry) != NULL) {
231 vunmap(aentry->vm_addr);
232 aentry = aentry->next;
233 kfree(old);
234 }
235 }
236
237 /*
238 * Internal xfs_buf_t object manipulation
239 */
240
241 STATIC void
242 _xfs_buf_initialize(
243 xfs_buf_t *bp,
244 xfs_buftarg_t *target,
245 xfs_off_t range_base,
246 size_t range_length,
247 xfs_buf_flags_t flags)
248 {
249 /*
250 * We don't want certain flags to appear in b_flags.
251 */
252 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
253
254 memset(bp, 0, sizeof(xfs_buf_t));
255 atomic_set(&bp->b_hold, 1);
256 init_MUTEX_LOCKED(&bp->b_iodonesema);
257 INIT_LIST_HEAD(&bp->b_list);
258 INIT_LIST_HEAD(&bp->b_hash_list);
259 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
260 XB_SET_OWNER(bp);
261 bp->b_target = target;
262 bp->b_file_offset = range_base;
263 /*
264 * Set buffer_length and count_desired to the same value initially.
265 * I/O routines should use count_desired, which will be the same in
266 * most cases but may be reset (e.g. XFS recovery).
267 */
268 bp->b_buffer_length = bp->b_count_desired = range_length;
269 bp->b_flags = flags;
270 bp->b_bn = XFS_BUF_DADDR_NULL;
271 atomic_set(&bp->b_pin_count, 0);
272 init_waitqueue_head(&bp->b_waiters);
273
274 XFS_STATS_INC(xb_create);
275 XB_TRACE(bp, "initialize", target);
276 }
277
278 /*
279 * Allocate a page array capable of holding a specified number
280 * of pages, and point the page buf at it.
281 */
282 STATIC int
283 _xfs_buf_get_pages(
284 xfs_buf_t *bp,
285 int page_count,
286 xfs_buf_flags_t flags)
287 {
288 /* Make sure that we have a page list */
289 if (bp->b_pages == NULL) {
290 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
291 bp->b_page_count = page_count;
292 if (page_count <= XB_PAGES) {
293 bp->b_pages = bp->b_page_array;
294 } else {
295 bp->b_pages = kmem_alloc(sizeof(struct page *) *
296 page_count, xb_to_km(flags));
297 if (bp->b_pages == NULL)
298 return -ENOMEM;
299 }
300 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
301 }
302 return 0;
303 }
304
305 /*
306 * Frees b_pages if it was allocated.
307 */
308 STATIC void
309 _xfs_buf_free_pages(
310 xfs_buf_t *bp)
311 {
312 if (bp->b_pages != bp->b_page_array) {
313 kmem_free(bp->b_pages,
314 bp->b_page_count * sizeof(struct page *));
315 }
316 }
317
318 /*
319 * Releases the specified buffer.
320 *
321 * The modification state of any associated pages is left unchanged.
322 * The buffer most not be on any hash - use xfs_buf_rele instead for
323 * hashed and refcounted buffers
324 */
325 void
326 xfs_buf_free(
327 xfs_buf_t *bp)
328 {
329 XB_TRACE(bp, "free", 0);
330
331 ASSERT(list_empty(&bp->b_hash_list));
332
333 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
334 uint i;
335
336 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
337 free_address(bp->b_addr - bp->b_offset);
338
339 for (i = 0; i < bp->b_page_count; i++) {
340 struct page *page = bp->b_pages[i];
341
342 if (bp->b_flags & _XBF_PAGE_CACHE)
343 ASSERT(!PagePrivate(page));
344 page_cache_release(page);
345 }
346 _xfs_buf_free_pages(bp);
347 }
348
349 xfs_buf_deallocate(bp);
350 }
351
352 /*
353 * Finds all pages for buffer in question and builds it's page list.
354 */
355 STATIC int
356 _xfs_buf_lookup_pages(
357 xfs_buf_t *bp,
358 uint flags)
359 {
360 struct address_space *mapping = bp->b_target->bt_mapping;
361 size_t blocksize = bp->b_target->bt_bsize;
362 size_t size = bp->b_count_desired;
363 size_t nbytes, offset;
364 gfp_t gfp_mask = xb_to_gfp(flags);
365 unsigned short page_count, i;
366 pgoff_t first;
367 xfs_off_t end;
368 int error;
369
370 end = bp->b_file_offset + bp->b_buffer_length;
371 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
372
373 error = _xfs_buf_get_pages(bp, page_count, flags);
374 if (unlikely(error))
375 return error;
376 bp->b_flags |= _XBF_PAGE_CACHE;
377
378 offset = bp->b_offset;
379 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
380
381 for (i = 0; i < bp->b_page_count; i++) {
382 struct page *page;
383 uint retries = 0;
384
385 retry:
386 page = find_or_create_page(mapping, first + i, gfp_mask);
387 if (unlikely(page == NULL)) {
388 if (flags & XBF_READ_AHEAD) {
389 bp->b_page_count = i;
390 for (i = 0; i < bp->b_page_count; i++)
391 unlock_page(bp->b_pages[i]);
392 return -ENOMEM;
393 }
394
395 /*
396 * This could deadlock.
397 *
398 * But until all the XFS lowlevel code is revamped to
399 * handle buffer allocation failures we can't do much.
400 */
401 if (!(++retries % 100))
402 printk(KERN_ERR
403 "XFS: possible memory allocation "
404 "deadlock in %s (mode:0x%x)\n",
405 __func__, gfp_mask);
406
407 XFS_STATS_INC(xb_page_retries);
408 xfsbufd_wakeup(0, gfp_mask);
409 congestion_wait(WRITE, HZ/50);
410 goto retry;
411 }
412
413 XFS_STATS_INC(xb_page_found);
414
415 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
416 size -= nbytes;
417
418 ASSERT(!PagePrivate(page));
419 if (!PageUptodate(page)) {
420 page_count--;
421 if (blocksize >= PAGE_CACHE_SIZE) {
422 if (flags & XBF_READ)
423 bp->b_flags |= _XBF_PAGE_LOCKED;
424 } else if (!PagePrivate(page)) {
425 if (test_page_region(page, offset, nbytes))
426 page_count++;
427 }
428 }
429
430 bp->b_pages[i] = page;
431 offset = 0;
432 }
433
434 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
435 for (i = 0; i < bp->b_page_count; i++)
436 unlock_page(bp->b_pages[i]);
437 }
438
439 if (page_count == bp->b_page_count)
440 bp->b_flags |= XBF_DONE;
441
442 XB_TRACE(bp, "lookup_pages", (long)page_count);
443 return error;
444 }
445
446 /*
447 * Map buffer into kernel address-space if nessecary.
448 */
449 STATIC int
450 _xfs_buf_map_pages(
451 xfs_buf_t *bp,
452 uint flags)
453 {
454 /* A single page buffer is always mappable */
455 if (bp->b_page_count == 1) {
456 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
457 bp->b_flags |= XBF_MAPPED;
458 } else if (flags & XBF_MAPPED) {
459 if (as_list_len > 64)
460 purge_addresses();
461 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
462 VM_MAP, PAGE_KERNEL);
463 if (unlikely(bp->b_addr == NULL))
464 return -ENOMEM;
465 bp->b_addr += bp->b_offset;
466 bp->b_flags |= XBF_MAPPED;
467 }
468
469 return 0;
470 }
471
472 /*
473 * Finding and Reading Buffers
474 */
475
476 /*
477 * Look up, and creates if absent, a lockable buffer for
478 * a given range of an inode. The buffer is returned
479 * locked. If other overlapping buffers exist, they are
480 * released before the new buffer is created and locked,
481 * which may imply that this call will block until those buffers
482 * are unlocked. No I/O is implied by this call.
483 */
484 xfs_buf_t *
485 _xfs_buf_find(
486 xfs_buftarg_t *btp, /* block device target */
487 xfs_off_t ioff, /* starting offset of range */
488 size_t isize, /* length of range */
489 xfs_buf_flags_t flags,
490 xfs_buf_t *new_bp)
491 {
492 xfs_off_t range_base;
493 size_t range_length;
494 xfs_bufhash_t *hash;
495 xfs_buf_t *bp, *n;
496
497 range_base = (ioff << BBSHIFT);
498 range_length = (isize << BBSHIFT);
499
500 /* Check for IOs smaller than the sector size / not sector aligned */
501 ASSERT(!(range_length < (1 << btp->bt_sshift)));
502 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
503
504 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
505
506 spin_lock(&hash->bh_lock);
507
508 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
509 ASSERT(btp == bp->b_target);
510 if (bp->b_file_offset == range_base &&
511 bp->b_buffer_length == range_length) {
512 /*
513 * If we look at something, bring it to the
514 * front of the list for next time.
515 */
516 atomic_inc(&bp->b_hold);
517 list_move(&bp->b_hash_list, &hash->bh_list);
518 goto found;
519 }
520 }
521
522 /* No match found */
523 if (new_bp) {
524 _xfs_buf_initialize(new_bp, btp, range_base,
525 range_length, flags);
526 new_bp->b_hash = hash;
527 list_add(&new_bp->b_hash_list, &hash->bh_list);
528 } else {
529 XFS_STATS_INC(xb_miss_locked);
530 }
531
532 spin_unlock(&hash->bh_lock);
533 return new_bp;
534
535 found:
536 spin_unlock(&hash->bh_lock);
537
538 /* Attempt to get the semaphore without sleeping,
539 * if this does not work then we need to drop the
540 * spinlock and do a hard attempt on the semaphore.
541 */
542 if (down_trylock(&bp->b_sema)) {
543 if (!(flags & XBF_TRYLOCK)) {
544 /* wait for buffer ownership */
545 XB_TRACE(bp, "get_lock", 0);
546 xfs_buf_lock(bp);
547 XFS_STATS_INC(xb_get_locked_waited);
548 } else {
549 /* We asked for a trylock and failed, no need
550 * to look at file offset and length here, we
551 * know that this buffer at least overlaps our
552 * buffer and is locked, therefore our buffer
553 * either does not exist, or is this buffer.
554 */
555 xfs_buf_rele(bp);
556 XFS_STATS_INC(xb_busy_locked);
557 return NULL;
558 }
559 } else {
560 /* trylock worked */
561 XB_SET_OWNER(bp);
562 }
563
564 if (bp->b_flags & XBF_STALE) {
565 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
566 bp->b_flags &= XBF_MAPPED;
567 }
568 XB_TRACE(bp, "got_lock", 0);
569 XFS_STATS_INC(xb_get_locked);
570 return bp;
571 }
572
573 /*
574 * Assembles a buffer covering the specified range.
575 * Storage in memory for all portions of the buffer will be allocated,
576 * although backing storage may not be.
577 */
578 xfs_buf_t *
579 xfs_buf_get_flags(
580 xfs_buftarg_t *target,/* target for buffer */
581 xfs_off_t ioff, /* starting offset of range */
582 size_t isize, /* length of range */
583 xfs_buf_flags_t flags)
584 {
585 xfs_buf_t *bp, *new_bp;
586 int error = 0, i;
587
588 new_bp = xfs_buf_allocate(flags);
589 if (unlikely(!new_bp))
590 return NULL;
591
592 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
593 if (bp == new_bp) {
594 error = _xfs_buf_lookup_pages(bp, flags);
595 if (error)
596 goto no_buffer;
597 } else {
598 xfs_buf_deallocate(new_bp);
599 if (unlikely(bp == NULL))
600 return NULL;
601 }
602
603 for (i = 0; i < bp->b_page_count; i++)
604 mark_page_accessed(bp->b_pages[i]);
605
606 if (!(bp->b_flags & XBF_MAPPED)) {
607 error = _xfs_buf_map_pages(bp, flags);
608 if (unlikely(error)) {
609 printk(KERN_WARNING "%s: failed to map pages\n",
610 __func__);
611 goto no_buffer;
612 }
613 }
614
615 XFS_STATS_INC(xb_get);
616
617 /*
618 * Always fill in the block number now, the mapped cases can do
619 * their own overlay of this later.
620 */
621 bp->b_bn = ioff;
622 bp->b_count_desired = bp->b_buffer_length;
623
624 XB_TRACE(bp, "get", (unsigned long)flags);
625 return bp;
626
627 no_buffer:
628 if (flags & (XBF_LOCK | XBF_TRYLOCK))
629 xfs_buf_unlock(bp);
630 xfs_buf_rele(bp);
631 return NULL;
632 }
633
634 xfs_buf_t *
635 xfs_buf_read_flags(
636 xfs_buftarg_t *target,
637 xfs_off_t ioff,
638 size_t isize,
639 xfs_buf_flags_t flags)
640 {
641 xfs_buf_t *bp;
642
643 flags |= XBF_READ;
644
645 bp = xfs_buf_get_flags(target, ioff, isize, flags);
646 if (bp) {
647 if (!XFS_BUF_ISDONE(bp)) {
648 XB_TRACE(bp, "read", (unsigned long)flags);
649 XFS_STATS_INC(xb_get_read);
650 xfs_buf_iostart(bp, flags);
651 } else if (flags & XBF_ASYNC) {
652 XB_TRACE(bp, "read_async", (unsigned long)flags);
653 /*
654 * Read ahead call which is already satisfied,
655 * drop the buffer
656 */
657 goto no_buffer;
658 } else {
659 XB_TRACE(bp, "read_done", (unsigned long)flags);
660 /* We do not want read in the flags */
661 bp->b_flags &= ~XBF_READ;
662 }
663 }
664
665 return bp;
666
667 no_buffer:
668 if (flags & (XBF_LOCK | XBF_TRYLOCK))
669 xfs_buf_unlock(bp);
670 xfs_buf_rele(bp);
671 return NULL;
672 }
673
674 /*
675 * If we are not low on memory then do the readahead in a deadlock
676 * safe manner.
677 */
678 void
679 xfs_buf_readahead(
680 xfs_buftarg_t *target,
681 xfs_off_t ioff,
682 size_t isize,
683 xfs_buf_flags_t flags)
684 {
685 struct backing_dev_info *bdi;
686
687 bdi = target->bt_mapping->backing_dev_info;
688 if (bdi_read_congested(bdi))
689 return;
690
691 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
692 xfs_buf_read_flags(target, ioff, isize, flags);
693 }
694
695 xfs_buf_t *
696 xfs_buf_get_empty(
697 size_t len,
698 xfs_buftarg_t *target)
699 {
700 xfs_buf_t *bp;
701
702 bp = xfs_buf_allocate(0);
703 if (bp)
704 _xfs_buf_initialize(bp, target, 0, len, 0);
705 return bp;
706 }
707
708 static inline struct page *
709 mem_to_page(
710 void *addr)
711 {
712 if ((!is_vmalloc_addr(addr))) {
713 return virt_to_page(addr);
714 } else {
715 return vmalloc_to_page(addr);
716 }
717 }
718
719 int
720 xfs_buf_associate_memory(
721 xfs_buf_t *bp,
722 void *mem,
723 size_t len)
724 {
725 int rval;
726 int i = 0;
727 unsigned long pageaddr;
728 unsigned long offset;
729 size_t buflen;
730 int page_count;
731
732 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
733 offset = (unsigned long)mem - pageaddr;
734 buflen = PAGE_CACHE_ALIGN(len + offset);
735 page_count = buflen >> PAGE_CACHE_SHIFT;
736
737 /* Free any previous set of page pointers */
738 if (bp->b_pages)
739 _xfs_buf_free_pages(bp);
740
741 bp->b_pages = NULL;
742 bp->b_addr = mem;
743
744 rval = _xfs_buf_get_pages(bp, page_count, 0);
745 if (rval)
746 return rval;
747
748 bp->b_offset = offset;
749
750 for (i = 0; i < bp->b_page_count; i++) {
751 bp->b_pages[i] = mem_to_page((void *)pageaddr);
752 pageaddr += PAGE_CACHE_SIZE;
753 }
754
755 bp->b_count_desired = len;
756 bp->b_buffer_length = buflen;
757 bp->b_flags |= XBF_MAPPED;
758 bp->b_flags &= ~_XBF_PAGE_LOCKED;
759
760 return 0;
761 }
762
763 xfs_buf_t *
764 xfs_buf_get_noaddr(
765 size_t len,
766 xfs_buftarg_t *target)
767 {
768 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
769 int error, i;
770 xfs_buf_t *bp;
771
772 bp = xfs_buf_allocate(0);
773 if (unlikely(bp == NULL))
774 goto fail;
775 _xfs_buf_initialize(bp, target, 0, len, 0);
776
777 error = _xfs_buf_get_pages(bp, page_count, 0);
778 if (error)
779 goto fail_free_buf;
780
781 for (i = 0; i < page_count; i++) {
782 bp->b_pages[i] = alloc_page(GFP_KERNEL);
783 if (!bp->b_pages[i])
784 goto fail_free_mem;
785 }
786 bp->b_flags |= _XBF_PAGES;
787
788 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
789 if (unlikely(error)) {
790 printk(KERN_WARNING "%s: failed to map pages\n",
791 __func__);
792 goto fail_free_mem;
793 }
794
795 xfs_buf_unlock(bp);
796
797 XB_TRACE(bp, "no_daddr", len);
798 return bp;
799
800 fail_free_mem:
801 while (--i >= 0)
802 __free_page(bp->b_pages[i]);
803 _xfs_buf_free_pages(bp);
804 fail_free_buf:
805 xfs_buf_deallocate(bp);
806 fail:
807 return NULL;
808 }
809
810 /*
811 * Increment reference count on buffer, to hold the buffer concurrently
812 * with another thread which may release (free) the buffer asynchronously.
813 * Must hold the buffer already to call this function.
814 */
815 void
816 xfs_buf_hold(
817 xfs_buf_t *bp)
818 {
819 atomic_inc(&bp->b_hold);
820 XB_TRACE(bp, "hold", 0);
821 }
822
823 /*
824 * Releases a hold on the specified buffer. If the
825 * the hold count is 1, calls xfs_buf_free.
826 */
827 void
828 xfs_buf_rele(
829 xfs_buf_t *bp)
830 {
831 xfs_bufhash_t *hash = bp->b_hash;
832
833 XB_TRACE(bp, "rele", bp->b_relse);
834
835 if (unlikely(!hash)) {
836 ASSERT(!bp->b_relse);
837 if (atomic_dec_and_test(&bp->b_hold))
838 xfs_buf_free(bp);
839 return;
840 }
841
842 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
843 if (bp->b_relse) {
844 atomic_inc(&bp->b_hold);
845 spin_unlock(&hash->bh_lock);
846 (*(bp->b_relse)) (bp);
847 } else if (bp->b_flags & XBF_FS_MANAGED) {
848 spin_unlock(&hash->bh_lock);
849 } else {
850 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
851 list_del_init(&bp->b_hash_list);
852 spin_unlock(&hash->bh_lock);
853 xfs_buf_free(bp);
854 }
855 } else {
856 /*
857 * Catch reference count leaks
858 */
859 ASSERT(atomic_read(&bp->b_hold) >= 0);
860 }
861 }
862
863
864 /*
865 * Mutual exclusion on buffers. Locking model:
866 *
867 * Buffers associated with inodes for which buffer locking
868 * is not enabled are not protected by semaphores, and are
869 * assumed to be exclusively owned by the caller. There is a
870 * spinlock in the buffer, used by the caller when concurrent
871 * access is possible.
872 */
873
874 /*
875 * Locks a buffer object, if it is not already locked.
876 * Note that this in no way locks the underlying pages, so it is only
877 * useful for synchronizing concurrent use of buffer objects, not for
878 * synchronizing independent access to the underlying pages.
879 */
880 int
881 xfs_buf_cond_lock(
882 xfs_buf_t *bp)
883 {
884 int locked;
885
886 locked = down_trylock(&bp->b_sema) == 0;
887 if (locked) {
888 XB_SET_OWNER(bp);
889 }
890 XB_TRACE(bp, "cond_lock", (long)locked);
891 return locked ? 0 : -EBUSY;
892 }
893
894 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
895 int
896 xfs_buf_lock_value(
897 xfs_buf_t *bp)
898 {
899 return bp->b_sema.count;
900 }
901 #endif
902
903 /*
904 * Locks a buffer object.
905 * Note that this in no way locks the underlying pages, so it is only
906 * useful for synchronizing concurrent use of buffer objects, not for
907 * synchronizing independent access to the underlying pages.
908 */
909 void
910 xfs_buf_lock(
911 xfs_buf_t *bp)
912 {
913 XB_TRACE(bp, "lock", 0);
914 if (atomic_read(&bp->b_io_remaining))
915 blk_run_address_space(bp->b_target->bt_mapping);
916 down(&bp->b_sema);
917 XB_SET_OWNER(bp);
918 XB_TRACE(bp, "locked", 0);
919 }
920
921 /*
922 * Releases the lock on the buffer object.
923 * If the buffer is marked delwri but is not queued, do so before we
924 * unlock the buffer as we need to set flags correctly. We also need to
925 * take a reference for the delwri queue because the unlocker is going to
926 * drop their's and they don't know we just queued it.
927 */
928 void
929 xfs_buf_unlock(
930 xfs_buf_t *bp)
931 {
932 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
933 atomic_inc(&bp->b_hold);
934 bp->b_flags |= XBF_ASYNC;
935 xfs_buf_delwri_queue(bp, 0);
936 }
937
938 XB_CLEAR_OWNER(bp);
939 up(&bp->b_sema);
940 XB_TRACE(bp, "unlock", 0);
941 }
942
943
944 /*
945 * Pinning Buffer Storage in Memory
946 * Ensure that no attempt to force a buffer to disk will succeed.
947 */
948 void
949 xfs_buf_pin(
950 xfs_buf_t *bp)
951 {
952 atomic_inc(&bp->b_pin_count);
953 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
954 }
955
956 void
957 xfs_buf_unpin(
958 xfs_buf_t *bp)
959 {
960 if (atomic_dec_and_test(&bp->b_pin_count))
961 wake_up_all(&bp->b_waiters);
962 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
963 }
964
965 int
966 xfs_buf_ispin(
967 xfs_buf_t *bp)
968 {
969 return atomic_read(&bp->b_pin_count);
970 }
971
972 STATIC void
973 xfs_buf_wait_unpin(
974 xfs_buf_t *bp)
975 {
976 DECLARE_WAITQUEUE (wait, current);
977
978 if (atomic_read(&bp->b_pin_count) == 0)
979 return;
980
981 add_wait_queue(&bp->b_waiters, &wait);
982 for (;;) {
983 set_current_state(TASK_UNINTERRUPTIBLE);
984 if (atomic_read(&bp->b_pin_count) == 0)
985 break;
986 if (atomic_read(&bp->b_io_remaining))
987 blk_run_address_space(bp->b_target->bt_mapping);
988 schedule();
989 }
990 remove_wait_queue(&bp->b_waiters, &wait);
991 set_current_state(TASK_RUNNING);
992 }
993
994 /*
995 * Buffer Utility Routines
996 */
997
998 STATIC void
999 xfs_buf_iodone_work(
1000 struct work_struct *work)
1001 {
1002 xfs_buf_t *bp =
1003 container_of(work, xfs_buf_t, b_iodone_work);
1004
1005 /*
1006 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
1007 * ordered flag and reissue them. Because we can't tell the higher
1008 * layers directly that they should not issue ordered I/O anymore, they
1009 * need to check if the ordered flag was cleared during I/O completion.
1010 */
1011 if ((bp->b_error == EOPNOTSUPP) &&
1012 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
1013 XB_TRACE(bp, "ordered_retry", bp->b_iodone);
1014 bp->b_flags &= ~XBF_ORDERED;
1015 xfs_buf_iorequest(bp);
1016 } else if (bp->b_iodone)
1017 (*(bp->b_iodone))(bp);
1018 else if (bp->b_flags & XBF_ASYNC)
1019 xfs_buf_relse(bp);
1020 }
1021
1022 void
1023 xfs_buf_ioend(
1024 xfs_buf_t *bp,
1025 int schedule)
1026 {
1027 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1028 if (bp->b_error == 0)
1029 bp->b_flags |= XBF_DONE;
1030
1031 XB_TRACE(bp, "iodone", bp->b_iodone);
1032
1033 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1034 if (schedule) {
1035 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1036 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1037 } else {
1038 xfs_buf_iodone_work(&bp->b_iodone_work);
1039 }
1040 } else {
1041 up(&bp->b_iodonesema);
1042 }
1043 }
1044
1045 void
1046 xfs_buf_ioerror(
1047 xfs_buf_t *bp,
1048 int error)
1049 {
1050 ASSERT(error >= 0 && error <= 0xffff);
1051 bp->b_error = (unsigned short)error;
1052 XB_TRACE(bp, "ioerror", (unsigned long)error);
1053 }
1054
1055 /*
1056 * Initiate I/O on a buffer, based on the flags supplied.
1057 * The b_iodone routine in the buffer supplied will only be called
1058 * when all of the subsidiary I/O requests, if any, have been completed.
1059 */
1060 int
1061 xfs_buf_iostart(
1062 xfs_buf_t *bp,
1063 xfs_buf_flags_t flags)
1064 {
1065 int status = 0;
1066
1067 XB_TRACE(bp, "iostart", (unsigned long)flags);
1068
1069 if (flags & XBF_DELWRI) {
1070 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1071 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1072 xfs_buf_delwri_queue(bp, 1);
1073 return 0;
1074 }
1075
1076 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1077 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1078 bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1079 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1080
1081 BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1082
1083 /* For writes allow an alternate strategy routine to precede
1084 * the actual I/O request (which may not be issued at all in
1085 * a shutdown situation, for example).
1086 */
1087 status = (flags & XBF_WRITE) ?
1088 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1089
1090 /* Wait for I/O if we are not an async request.
1091 * Note: async I/O request completion will release the buffer,
1092 * and that can already be done by this point. So using the
1093 * buffer pointer from here on, after async I/O, is invalid.
1094 */
1095 if (!status && !(flags & XBF_ASYNC))
1096 status = xfs_buf_iowait(bp);
1097
1098 return status;
1099 }
1100
1101 STATIC_INLINE void
1102 _xfs_buf_ioend(
1103 xfs_buf_t *bp,
1104 int schedule)
1105 {
1106 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1107 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1108 xfs_buf_ioend(bp, schedule);
1109 }
1110 }
1111
1112 STATIC void
1113 xfs_buf_bio_end_io(
1114 struct bio *bio,
1115 int error)
1116 {
1117 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1118 unsigned int blocksize = bp->b_target->bt_bsize;
1119 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1120
1121 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1122 bp->b_error = EIO;
1123
1124 do {
1125 struct page *page = bvec->bv_page;
1126
1127 ASSERT(!PagePrivate(page));
1128 if (unlikely(bp->b_error)) {
1129 if (bp->b_flags & XBF_READ)
1130 ClearPageUptodate(page);
1131 } else if (blocksize >= PAGE_CACHE_SIZE) {
1132 SetPageUptodate(page);
1133 } else if (!PagePrivate(page) &&
1134 (bp->b_flags & _XBF_PAGE_CACHE)) {
1135 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1136 }
1137
1138 if (--bvec >= bio->bi_io_vec)
1139 prefetchw(&bvec->bv_page->flags);
1140
1141 if (bp->b_flags & _XBF_PAGE_LOCKED)
1142 unlock_page(page);
1143 } while (bvec >= bio->bi_io_vec);
1144
1145 _xfs_buf_ioend(bp, 1);
1146 bio_put(bio);
1147 }
1148
1149 STATIC void
1150 _xfs_buf_ioapply(
1151 xfs_buf_t *bp)
1152 {
1153 int rw, map_i, total_nr_pages, nr_pages;
1154 struct bio *bio;
1155 int offset = bp->b_offset;
1156 int size = bp->b_count_desired;
1157 sector_t sector = bp->b_bn;
1158 unsigned int blocksize = bp->b_target->bt_bsize;
1159
1160 total_nr_pages = bp->b_page_count;
1161 map_i = 0;
1162
1163 if (bp->b_flags & XBF_ORDERED) {
1164 ASSERT(!(bp->b_flags & XBF_READ));
1165 rw = WRITE_BARRIER;
1166 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1167 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1168 bp->b_flags &= ~_XBF_RUN_QUEUES;
1169 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1170 } else {
1171 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1172 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1173 }
1174
1175 /* Special code path for reading a sub page size buffer in --
1176 * we populate up the whole page, and hence the other metadata
1177 * in the same page. This optimization is only valid when the
1178 * filesystem block size is not smaller than the page size.
1179 */
1180 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1181 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1182 (XBF_READ|_XBF_PAGE_LOCKED)) &&
1183 (blocksize >= PAGE_CACHE_SIZE)) {
1184 bio = bio_alloc(GFP_NOIO, 1);
1185
1186 bio->bi_bdev = bp->b_target->bt_bdev;
1187 bio->bi_sector = sector - (offset >> BBSHIFT);
1188 bio->bi_end_io = xfs_buf_bio_end_io;
1189 bio->bi_private = bp;
1190
1191 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1192 size = 0;
1193
1194 atomic_inc(&bp->b_io_remaining);
1195
1196 goto submit_io;
1197 }
1198
1199 next_chunk:
1200 atomic_inc(&bp->b_io_remaining);
1201 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1202 if (nr_pages > total_nr_pages)
1203 nr_pages = total_nr_pages;
1204
1205 bio = bio_alloc(GFP_NOIO, nr_pages);
1206 bio->bi_bdev = bp->b_target->bt_bdev;
1207 bio->bi_sector = sector;
1208 bio->bi_end_io = xfs_buf_bio_end_io;
1209 bio->bi_private = bp;
1210
1211 for (; size && nr_pages; nr_pages--, map_i++) {
1212 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1213
1214 if (nbytes > size)
1215 nbytes = size;
1216
1217 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1218 if (rbytes < nbytes)
1219 break;
1220
1221 offset = 0;
1222 sector += nbytes >> BBSHIFT;
1223 size -= nbytes;
1224 total_nr_pages--;
1225 }
1226
1227 submit_io:
1228 if (likely(bio->bi_size)) {
1229 submit_bio(rw, bio);
1230 if (size)
1231 goto next_chunk;
1232 } else {
1233 bio_put(bio);
1234 xfs_buf_ioerror(bp, EIO);
1235 }
1236 }
1237
1238 int
1239 xfs_buf_iorequest(
1240 xfs_buf_t *bp)
1241 {
1242 XB_TRACE(bp, "iorequest", 0);
1243
1244 if (bp->b_flags & XBF_DELWRI) {
1245 xfs_buf_delwri_queue(bp, 1);
1246 return 0;
1247 }
1248
1249 if (bp->b_flags & XBF_WRITE) {
1250 xfs_buf_wait_unpin(bp);
1251 }
1252
1253 xfs_buf_hold(bp);
1254
1255 /* Set the count to 1 initially, this will stop an I/O
1256 * completion callout which happens before we have started
1257 * all the I/O from calling xfs_buf_ioend too early.
1258 */
1259 atomic_set(&bp->b_io_remaining, 1);
1260 _xfs_buf_ioapply(bp);
1261 _xfs_buf_ioend(bp, 0);
1262
1263 xfs_buf_rele(bp);
1264 return 0;
1265 }
1266
1267 /*
1268 * Waits for I/O to complete on the buffer supplied.
1269 * It returns immediately if no I/O is pending.
1270 * It returns the I/O error code, if any, or 0 if there was no error.
1271 */
1272 int
1273 xfs_buf_iowait(
1274 xfs_buf_t *bp)
1275 {
1276 XB_TRACE(bp, "iowait", 0);
1277 if (atomic_read(&bp->b_io_remaining))
1278 blk_run_address_space(bp->b_target->bt_mapping);
1279 down(&bp->b_iodonesema);
1280 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1281 return bp->b_error;
1282 }
1283
1284 xfs_caddr_t
1285 xfs_buf_offset(
1286 xfs_buf_t *bp,
1287 size_t offset)
1288 {
1289 struct page *page;
1290
1291 if (bp->b_flags & XBF_MAPPED)
1292 return XFS_BUF_PTR(bp) + offset;
1293
1294 offset += bp->b_offset;
1295 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1296 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1297 }
1298
1299 /*
1300 * Move data into or out of a buffer.
1301 */
1302 void
1303 xfs_buf_iomove(
1304 xfs_buf_t *bp, /* buffer to process */
1305 size_t boff, /* starting buffer offset */
1306 size_t bsize, /* length to copy */
1307 caddr_t data, /* data address */
1308 xfs_buf_rw_t mode) /* read/write/zero flag */
1309 {
1310 size_t bend, cpoff, csize;
1311 struct page *page;
1312
1313 bend = boff + bsize;
1314 while (boff < bend) {
1315 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1316 cpoff = xfs_buf_poff(boff + bp->b_offset);
1317 csize = min_t(size_t,
1318 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1319
1320 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1321
1322 switch (mode) {
1323 case XBRW_ZERO:
1324 memset(page_address(page) + cpoff, 0, csize);
1325 break;
1326 case XBRW_READ:
1327 memcpy(data, page_address(page) + cpoff, csize);
1328 break;
1329 case XBRW_WRITE:
1330 memcpy(page_address(page) + cpoff, data, csize);
1331 }
1332
1333 boff += csize;
1334 data += csize;
1335 }
1336 }
1337
1338 /*
1339 * Handling of buffer targets (buftargs).
1340 */
1341
1342 /*
1343 * Wait for any bufs with callbacks that have been submitted but
1344 * have not yet returned... walk the hash list for the target.
1345 */
1346 void
1347 xfs_wait_buftarg(
1348 xfs_buftarg_t *btp)
1349 {
1350 xfs_buf_t *bp, *n;
1351 xfs_bufhash_t *hash;
1352 uint i;
1353
1354 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1355 hash = &btp->bt_hash[i];
1356 again:
1357 spin_lock(&hash->bh_lock);
1358 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1359 ASSERT(btp == bp->b_target);
1360 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1361 spin_unlock(&hash->bh_lock);
1362 /*
1363 * Catch superblock reference count leaks
1364 * immediately
1365 */
1366 BUG_ON(bp->b_bn == 0);
1367 delay(100);
1368 goto again;
1369 }
1370 }
1371 spin_unlock(&hash->bh_lock);
1372 }
1373 }
1374
1375 /*
1376 * Allocate buffer hash table for a given target.
1377 * For devices containing metadata (i.e. not the log/realtime devices)
1378 * we need to allocate a much larger hash table.
1379 */
1380 STATIC void
1381 xfs_alloc_bufhash(
1382 xfs_buftarg_t *btp,
1383 int external)
1384 {
1385 unsigned int i;
1386
1387 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1388 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1389 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1390 sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1391 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1392 spin_lock_init(&btp->bt_hash[i].bh_lock);
1393 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1394 }
1395 }
1396
1397 STATIC void
1398 xfs_free_bufhash(
1399 xfs_buftarg_t *btp)
1400 {
1401 kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1402 btp->bt_hash = NULL;
1403 }
1404
1405 /*
1406 * buftarg list for delwrite queue processing
1407 */
1408 static LIST_HEAD(xfs_buftarg_list);
1409 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1410
1411 STATIC void
1412 xfs_register_buftarg(
1413 xfs_buftarg_t *btp)
1414 {
1415 spin_lock(&xfs_buftarg_lock);
1416 list_add(&btp->bt_list, &xfs_buftarg_list);
1417 spin_unlock(&xfs_buftarg_lock);
1418 }
1419
1420 STATIC void
1421 xfs_unregister_buftarg(
1422 xfs_buftarg_t *btp)
1423 {
1424 spin_lock(&xfs_buftarg_lock);
1425 list_del(&btp->bt_list);
1426 spin_unlock(&xfs_buftarg_lock);
1427 }
1428
1429 void
1430 xfs_free_buftarg(
1431 xfs_buftarg_t *btp,
1432 int external)
1433 {
1434 xfs_flush_buftarg(btp, 1);
1435 xfs_blkdev_issue_flush(btp);
1436 if (external)
1437 xfs_blkdev_put(btp->bt_bdev);
1438 xfs_free_bufhash(btp);
1439 iput(btp->bt_mapping->host);
1440
1441 /* Unregister the buftarg first so that we don't get a
1442 * wakeup finding a non-existent task
1443 */
1444 xfs_unregister_buftarg(btp);
1445 kthread_stop(btp->bt_task);
1446
1447 kmem_free(btp, sizeof(*btp));
1448 }
1449
1450 STATIC int
1451 xfs_setsize_buftarg_flags(
1452 xfs_buftarg_t *btp,
1453 unsigned int blocksize,
1454 unsigned int sectorsize,
1455 int verbose)
1456 {
1457 btp->bt_bsize = blocksize;
1458 btp->bt_sshift = ffs(sectorsize) - 1;
1459 btp->bt_smask = sectorsize - 1;
1460
1461 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1462 printk(KERN_WARNING
1463 "XFS: Cannot set_blocksize to %u on device %s\n",
1464 sectorsize, XFS_BUFTARG_NAME(btp));
1465 return EINVAL;
1466 }
1467
1468 if (verbose &&
1469 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1470 printk(KERN_WARNING
1471 "XFS: %u byte sectors in use on device %s. "
1472 "This is suboptimal; %u or greater is ideal.\n",
1473 sectorsize, XFS_BUFTARG_NAME(btp),
1474 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1475 }
1476
1477 return 0;
1478 }
1479
1480 /*
1481 * When allocating the initial buffer target we have not yet
1482 * read in the superblock, so don't know what sized sectors
1483 * are being used is at this early stage. Play safe.
1484 */
1485 STATIC int
1486 xfs_setsize_buftarg_early(
1487 xfs_buftarg_t *btp,
1488 struct block_device *bdev)
1489 {
1490 return xfs_setsize_buftarg_flags(btp,
1491 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1492 }
1493
1494 int
1495 xfs_setsize_buftarg(
1496 xfs_buftarg_t *btp,
1497 unsigned int blocksize,
1498 unsigned int sectorsize)
1499 {
1500 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1501 }
1502
1503 STATIC int
1504 xfs_mapping_buftarg(
1505 xfs_buftarg_t *btp,
1506 struct block_device *bdev)
1507 {
1508 struct backing_dev_info *bdi;
1509 struct inode *inode;
1510 struct address_space *mapping;
1511 static const struct address_space_operations mapping_aops = {
1512 .sync_page = block_sync_page,
1513 .migratepage = fail_migrate_page,
1514 };
1515
1516 inode = new_inode(bdev->bd_inode->i_sb);
1517 if (!inode) {
1518 printk(KERN_WARNING
1519 "XFS: Cannot allocate mapping inode for device %s\n",
1520 XFS_BUFTARG_NAME(btp));
1521 return ENOMEM;
1522 }
1523 inode->i_mode = S_IFBLK;
1524 inode->i_bdev = bdev;
1525 inode->i_rdev = bdev->bd_dev;
1526 bdi = blk_get_backing_dev_info(bdev);
1527 if (!bdi)
1528 bdi = &default_backing_dev_info;
1529 mapping = &inode->i_data;
1530 mapping->a_ops = &mapping_aops;
1531 mapping->backing_dev_info = bdi;
1532 mapping_set_gfp_mask(mapping, GFP_NOFS);
1533 btp->bt_mapping = mapping;
1534 return 0;
1535 }
1536
1537 STATIC int
1538 xfs_alloc_delwrite_queue(
1539 xfs_buftarg_t *btp)
1540 {
1541 int error = 0;
1542
1543 INIT_LIST_HEAD(&btp->bt_list);
1544 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1545 spin_lock_init(&btp->bt_delwrite_lock);
1546 btp->bt_flags = 0;
1547 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1548 if (IS_ERR(btp->bt_task)) {
1549 error = PTR_ERR(btp->bt_task);
1550 goto out_error;
1551 }
1552 xfs_register_buftarg(btp);
1553 out_error:
1554 return error;
1555 }
1556
1557 xfs_buftarg_t *
1558 xfs_alloc_buftarg(
1559 struct block_device *bdev,
1560 int external)
1561 {
1562 xfs_buftarg_t *btp;
1563
1564 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1565
1566 btp->bt_dev = bdev->bd_dev;
1567 btp->bt_bdev = bdev;
1568 if (xfs_setsize_buftarg_early(btp, bdev))
1569 goto error;
1570 if (xfs_mapping_buftarg(btp, bdev))
1571 goto error;
1572 if (xfs_alloc_delwrite_queue(btp))
1573 goto error;
1574 xfs_alloc_bufhash(btp, external);
1575 return btp;
1576
1577 error:
1578 kmem_free(btp, sizeof(*btp));
1579 return NULL;
1580 }
1581
1582
1583 /*
1584 * Delayed write buffer handling
1585 */
1586 STATIC void
1587 xfs_buf_delwri_queue(
1588 xfs_buf_t *bp,
1589 int unlock)
1590 {
1591 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1592 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1593
1594 XB_TRACE(bp, "delwri_q", (long)unlock);
1595 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1596
1597 spin_lock(dwlk);
1598 /* If already in the queue, dequeue and place at tail */
1599 if (!list_empty(&bp->b_list)) {
1600 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1601 if (unlock)
1602 atomic_dec(&bp->b_hold);
1603 list_del(&bp->b_list);
1604 }
1605
1606 bp->b_flags |= _XBF_DELWRI_Q;
1607 list_add_tail(&bp->b_list, dwq);
1608 bp->b_queuetime = jiffies;
1609 spin_unlock(dwlk);
1610
1611 if (unlock)
1612 xfs_buf_unlock(bp);
1613 }
1614
1615 void
1616 xfs_buf_delwri_dequeue(
1617 xfs_buf_t *bp)
1618 {
1619 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1620 int dequeued = 0;
1621
1622 spin_lock(dwlk);
1623 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1624 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1625 list_del_init(&bp->b_list);
1626 dequeued = 1;
1627 }
1628 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1629 spin_unlock(dwlk);
1630
1631 if (dequeued)
1632 xfs_buf_rele(bp);
1633
1634 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1635 }
1636
1637 STATIC void
1638 xfs_buf_runall_queues(
1639 struct workqueue_struct *queue)
1640 {
1641 flush_workqueue(queue);
1642 }
1643
1644 STATIC int
1645 xfsbufd_wakeup(
1646 int priority,
1647 gfp_t mask)
1648 {
1649 xfs_buftarg_t *btp;
1650
1651 spin_lock(&xfs_buftarg_lock);
1652 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1653 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1654 continue;
1655 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1656 wake_up_process(btp->bt_task);
1657 }
1658 spin_unlock(&xfs_buftarg_lock);
1659 return 0;
1660 }
1661
1662 /*
1663 * Move as many buffers as specified to the supplied list
1664 * idicating if we skipped any buffers to prevent deadlocks.
1665 */
1666 STATIC int
1667 xfs_buf_delwri_split(
1668 xfs_buftarg_t *target,
1669 struct list_head *list,
1670 unsigned long age)
1671 {
1672 xfs_buf_t *bp, *n;
1673 struct list_head *dwq = &target->bt_delwrite_queue;
1674 spinlock_t *dwlk = &target->bt_delwrite_lock;
1675 int skipped = 0;
1676 int force;
1677
1678 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1679 INIT_LIST_HEAD(list);
1680 spin_lock(dwlk);
1681 list_for_each_entry_safe(bp, n, dwq, b_list) {
1682 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1683 ASSERT(bp->b_flags & XBF_DELWRI);
1684
1685 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1686 if (!force &&
1687 time_before(jiffies, bp->b_queuetime + age)) {
1688 xfs_buf_unlock(bp);
1689 break;
1690 }
1691
1692 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1693 _XBF_RUN_QUEUES);
1694 bp->b_flags |= XBF_WRITE;
1695 list_move_tail(&bp->b_list, list);
1696 } else
1697 skipped++;
1698 }
1699 spin_unlock(dwlk);
1700
1701 return skipped;
1702
1703 }
1704
1705 STATIC int
1706 xfsbufd(
1707 void *data)
1708 {
1709 struct list_head tmp;
1710 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1711 int count;
1712 xfs_buf_t *bp;
1713
1714 current->flags |= PF_MEMALLOC;
1715
1716 set_freezable();
1717
1718 do {
1719 if (unlikely(freezing(current))) {
1720 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1721 refrigerator();
1722 } else {
1723 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1724 }
1725
1726 schedule_timeout_interruptible(
1727 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1728
1729 xfs_buf_delwri_split(target, &tmp,
1730 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1731
1732 count = 0;
1733 while (!list_empty(&tmp)) {
1734 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1735 ASSERT(target == bp->b_target);
1736
1737 list_del_init(&bp->b_list);
1738 xfs_buf_iostrategy(bp);
1739 count++;
1740 }
1741
1742 if (as_list_len > 0)
1743 purge_addresses();
1744 if (count)
1745 blk_run_address_space(target->bt_mapping);
1746
1747 } while (!kthread_should_stop());
1748
1749 return 0;
1750 }
1751
1752 /*
1753 * Go through all incore buffers, and release buffers if they belong to
1754 * the given device. This is used in filesystem error handling to
1755 * preserve the consistency of its metadata.
1756 */
1757 int
1758 xfs_flush_buftarg(
1759 xfs_buftarg_t *target,
1760 int wait)
1761 {
1762 struct list_head tmp;
1763 xfs_buf_t *bp, *n;
1764 int pincount = 0;
1765
1766 xfs_buf_runall_queues(xfsdatad_workqueue);
1767 xfs_buf_runall_queues(xfslogd_workqueue);
1768
1769 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1770 pincount = xfs_buf_delwri_split(target, &tmp, 0);
1771
1772 /*
1773 * Dropped the delayed write list lock, now walk the temporary list
1774 */
1775 list_for_each_entry_safe(bp, n, &tmp, b_list) {
1776 ASSERT(target == bp->b_target);
1777 if (wait)
1778 bp->b_flags &= ~XBF_ASYNC;
1779 else
1780 list_del_init(&bp->b_list);
1781
1782 xfs_buf_iostrategy(bp);
1783 }
1784
1785 if (wait)
1786 blk_run_address_space(target->bt_mapping);
1787
1788 /*
1789 * Remaining list items must be flushed before returning
1790 */
1791 while (!list_empty(&tmp)) {
1792 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1793
1794 list_del_init(&bp->b_list);
1795 xfs_iowait(bp);
1796 xfs_buf_relse(bp);
1797 }
1798
1799 return pincount;
1800 }
1801
1802 int __init
1803 xfs_buf_init(void)
1804 {
1805 #ifdef XFS_BUF_TRACE
1806 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1807 #endif
1808
1809 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1810 KM_ZONE_HWALIGN, NULL);
1811 if (!xfs_buf_zone)
1812 goto out_free_trace_buf;
1813
1814 xfslogd_workqueue = create_workqueue("xfslogd");
1815 if (!xfslogd_workqueue)
1816 goto out_free_buf_zone;
1817
1818 xfsdatad_workqueue = create_workqueue("xfsdatad");
1819 if (!xfsdatad_workqueue)
1820 goto out_destroy_xfslogd_workqueue;
1821
1822 register_shrinker(&xfs_buf_shake);
1823 return 0;
1824
1825 out_destroy_xfslogd_workqueue:
1826 destroy_workqueue(xfslogd_workqueue);
1827 out_free_buf_zone:
1828 kmem_zone_destroy(xfs_buf_zone);
1829 out_free_trace_buf:
1830 #ifdef XFS_BUF_TRACE
1831 ktrace_free(xfs_buf_trace_buf);
1832 #endif
1833 return -ENOMEM;
1834 }
1835
1836 void
1837 xfs_buf_terminate(void)
1838 {
1839 unregister_shrinker(&xfs_buf_shake);
1840 destroy_workqueue(xfsdatad_workqueue);
1841 destroy_workqueue(xfslogd_workqueue);
1842 kmem_zone_destroy(xfs_buf_zone);
1843 #ifdef XFS_BUF_TRACE
1844 ktrace_free(xfs_buf_trace_buf);
1845 #endif
1846 }
1847
1848 #ifdef CONFIG_KDB_MODULES
1849 struct list_head *
1850 xfs_get_buftarg_list(void)
1851 {
1852 return &xfs_buftarg_list;
1853 }
1854 #endif
This page took 0.092756 seconds and 5 git commands to generate.