[XFS] eagerly remove vmap mappings to avoid upsetting Xen
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 static kmem_zone_t *xfs_buf_zone;
38 STATIC int xfsbufd(void *);
39 STATIC int xfsbufd_wakeup(int, gfp_t);
40 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
41 static struct shrinker xfs_buf_shake = {
42 .shrink = xfsbufd_wakeup,
43 .seeks = DEFAULT_SEEKS,
44 };
45
46 static struct workqueue_struct *xfslogd_workqueue;
47 struct workqueue_struct *xfsdatad_workqueue;
48
49 #ifdef XFS_BUF_TRACE
50 void
51 xfs_buf_trace(
52 xfs_buf_t *bp,
53 char *id,
54 void *data,
55 void *ra)
56 {
57 ktrace_enter(xfs_buf_trace_buf,
58 bp, id,
59 (void *)(unsigned long)bp->b_flags,
60 (void *)(unsigned long)bp->b_hold.counter,
61 (void *)(unsigned long)bp->b_sema.count.counter,
62 (void *)current,
63 data, ra,
64 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
65 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
66 (void *)(unsigned long)bp->b_buffer_length,
67 NULL, NULL, NULL, NULL, NULL);
68 }
69 ktrace_t *xfs_buf_trace_buf;
70 #define XFS_BUF_TRACE_SIZE 4096
71 #define XB_TRACE(bp, id, data) \
72 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
73 #else
74 #define XB_TRACE(bp, id, data) do { } while (0)
75 #endif
76
77 #ifdef XFS_BUF_LOCK_TRACKING
78 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
79 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
80 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
81 #else
82 # define XB_SET_OWNER(bp) do { } while (0)
83 # define XB_CLEAR_OWNER(bp) do { } while (0)
84 # define XB_GET_OWNER(bp) do { } while (0)
85 #endif
86
87 #define xb_to_gfp(flags) \
88 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
89 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
90
91 #define xb_to_km(flags) \
92 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
93
94 #define xfs_buf_allocate(flags) \
95 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
96 #define xfs_buf_deallocate(bp) \
97 kmem_zone_free(xfs_buf_zone, (bp));
98
99 /*
100 * Page Region interfaces.
101 *
102 * For pages in filesystems where the blocksize is smaller than the
103 * pagesize, we use the page->private field (long) to hold a bitmap
104 * of uptodate regions within the page.
105 *
106 * Each such region is "bytes per page / bits per long" bytes long.
107 *
108 * NBPPR == number-of-bytes-per-page-region
109 * BTOPR == bytes-to-page-region (rounded up)
110 * BTOPRT == bytes-to-page-region-truncated (rounded down)
111 */
112 #if (BITS_PER_LONG == 32)
113 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
114 #elif (BITS_PER_LONG == 64)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
116 #else
117 #error BITS_PER_LONG must be 32 or 64
118 #endif
119 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
120 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
121 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
122
123 STATIC unsigned long
124 page_region_mask(
125 size_t offset,
126 size_t length)
127 {
128 unsigned long mask;
129 int first, final;
130
131 first = BTOPR(offset);
132 final = BTOPRT(offset + length - 1);
133 first = min(first, final);
134
135 mask = ~0UL;
136 mask <<= BITS_PER_LONG - (final - first);
137 mask >>= BITS_PER_LONG - (final);
138
139 ASSERT(offset + length <= PAGE_CACHE_SIZE);
140 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
141
142 return mask;
143 }
144
145 STATIC_INLINE void
146 set_page_region(
147 struct page *page,
148 size_t offset,
149 size_t length)
150 {
151 set_page_private(page,
152 page_private(page) | page_region_mask(offset, length));
153 if (page_private(page) == ~0UL)
154 SetPageUptodate(page);
155 }
156
157 STATIC_INLINE int
158 test_page_region(
159 struct page *page,
160 size_t offset,
161 size_t length)
162 {
163 unsigned long mask = page_region_mask(offset, length);
164
165 return (mask && (page_private(page) & mask) == mask);
166 }
167
168 /*
169 * Mapping of multi-page buffers into contiguous virtual space
170 */
171
172 typedef struct a_list {
173 void *vm_addr;
174 struct a_list *next;
175 } a_list_t;
176
177 static a_list_t *as_free_head;
178 static int as_list_len;
179 static DEFINE_SPINLOCK(as_lock);
180
181 /*
182 * Try to batch vunmaps because they are costly.
183 */
184 STATIC void
185 free_address(
186 void *addr)
187 {
188 a_list_t *aentry;
189
190 #ifdef CONFIG_XEN
191 /*
192 * Xen needs to be able to make sure it can get an exclusive
193 * RO mapping of pages it wants to turn into a pagetable. If
194 * a newly allocated page is also still being vmap()ed by xfs,
195 * it will cause pagetable construction to fail. This is a
196 * quick workaround to always eagerly unmap pages so that Xen
197 * is happy.
198 */
199 vunmap(addr);
200 return;
201 #endif
202
203 aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
204 if (likely(aentry)) {
205 spin_lock(&as_lock);
206 aentry->next = as_free_head;
207 aentry->vm_addr = addr;
208 as_free_head = aentry;
209 as_list_len++;
210 spin_unlock(&as_lock);
211 } else {
212 vunmap(addr);
213 }
214 }
215
216 STATIC void
217 purge_addresses(void)
218 {
219 a_list_t *aentry, *old;
220
221 if (as_free_head == NULL)
222 return;
223
224 spin_lock(&as_lock);
225 aentry = as_free_head;
226 as_free_head = NULL;
227 as_list_len = 0;
228 spin_unlock(&as_lock);
229
230 while ((old = aentry) != NULL) {
231 vunmap(aentry->vm_addr);
232 aentry = aentry->next;
233 kfree(old);
234 }
235 }
236
237 /*
238 * Internal xfs_buf_t object manipulation
239 */
240
241 STATIC void
242 _xfs_buf_initialize(
243 xfs_buf_t *bp,
244 xfs_buftarg_t *target,
245 xfs_off_t range_base,
246 size_t range_length,
247 xfs_buf_flags_t flags)
248 {
249 /*
250 * We don't want certain flags to appear in b_flags.
251 */
252 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
253
254 memset(bp, 0, sizeof(xfs_buf_t));
255 atomic_set(&bp->b_hold, 1);
256 init_MUTEX_LOCKED(&bp->b_iodonesema);
257 INIT_LIST_HEAD(&bp->b_list);
258 INIT_LIST_HEAD(&bp->b_hash_list);
259 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
260 XB_SET_OWNER(bp);
261 bp->b_target = target;
262 bp->b_file_offset = range_base;
263 /*
264 * Set buffer_length and count_desired to the same value initially.
265 * I/O routines should use count_desired, which will be the same in
266 * most cases but may be reset (e.g. XFS recovery).
267 */
268 bp->b_buffer_length = bp->b_count_desired = range_length;
269 bp->b_flags = flags;
270 bp->b_bn = XFS_BUF_DADDR_NULL;
271 atomic_set(&bp->b_pin_count, 0);
272 init_waitqueue_head(&bp->b_waiters);
273
274 XFS_STATS_INC(xb_create);
275 XB_TRACE(bp, "initialize", target);
276 }
277
278 /*
279 * Allocate a page array capable of holding a specified number
280 * of pages, and point the page buf at it.
281 */
282 STATIC int
283 _xfs_buf_get_pages(
284 xfs_buf_t *bp,
285 int page_count,
286 xfs_buf_flags_t flags)
287 {
288 /* Make sure that we have a page list */
289 if (bp->b_pages == NULL) {
290 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
291 bp->b_page_count = page_count;
292 if (page_count <= XB_PAGES) {
293 bp->b_pages = bp->b_page_array;
294 } else {
295 bp->b_pages = kmem_alloc(sizeof(struct page *) *
296 page_count, xb_to_km(flags));
297 if (bp->b_pages == NULL)
298 return -ENOMEM;
299 }
300 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
301 }
302 return 0;
303 }
304
305 /*
306 * Frees b_pages if it was allocated.
307 */
308 STATIC void
309 _xfs_buf_free_pages(
310 xfs_buf_t *bp)
311 {
312 if (bp->b_pages != bp->b_page_array) {
313 kmem_free(bp->b_pages,
314 bp->b_page_count * sizeof(struct page *));
315 }
316 }
317
318 /*
319 * Releases the specified buffer.
320 *
321 * The modification state of any associated pages is left unchanged.
322 * The buffer most not be on any hash - use xfs_buf_rele instead for
323 * hashed and refcounted buffers
324 */
325 void
326 xfs_buf_free(
327 xfs_buf_t *bp)
328 {
329 XB_TRACE(bp, "free", 0);
330
331 ASSERT(list_empty(&bp->b_hash_list));
332
333 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
334 uint i;
335
336 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
337 free_address(bp->b_addr - bp->b_offset);
338
339 for (i = 0; i < bp->b_page_count; i++) {
340 struct page *page = bp->b_pages[i];
341
342 if (bp->b_flags & _XBF_PAGE_CACHE)
343 ASSERT(!PagePrivate(page));
344 page_cache_release(page);
345 }
346 _xfs_buf_free_pages(bp);
347 }
348
349 xfs_buf_deallocate(bp);
350 }
351
352 /*
353 * Finds all pages for buffer in question and builds it's page list.
354 */
355 STATIC int
356 _xfs_buf_lookup_pages(
357 xfs_buf_t *bp,
358 uint flags)
359 {
360 struct address_space *mapping = bp->b_target->bt_mapping;
361 size_t blocksize = bp->b_target->bt_bsize;
362 size_t size = bp->b_count_desired;
363 size_t nbytes, offset;
364 gfp_t gfp_mask = xb_to_gfp(flags);
365 unsigned short page_count, i;
366 pgoff_t first;
367 xfs_off_t end;
368 int error;
369
370 end = bp->b_file_offset + bp->b_buffer_length;
371 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
372
373 error = _xfs_buf_get_pages(bp, page_count, flags);
374 if (unlikely(error))
375 return error;
376 bp->b_flags |= _XBF_PAGE_CACHE;
377
378 offset = bp->b_offset;
379 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
380
381 for (i = 0; i < bp->b_page_count; i++) {
382 struct page *page;
383 uint retries = 0;
384
385 retry:
386 page = find_or_create_page(mapping, first + i, gfp_mask);
387 if (unlikely(page == NULL)) {
388 if (flags & XBF_READ_AHEAD) {
389 bp->b_page_count = i;
390 for (i = 0; i < bp->b_page_count; i++)
391 unlock_page(bp->b_pages[i]);
392 return -ENOMEM;
393 }
394
395 /*
396 * This could deadlock.
397 *
398 * But until all the XFS lowlevel code is revamped to
399 * handle buffer allocation failures we can't do much.
400 */
401 if (!(++retries % 100))
402 printk(KERN_ERR
403 "XFS: possible memory allocation "
404 "deadlock in %s (mode:0x%x)\n",
405 __FUNCTION__, gfp_mask);
406
407 XFS_STATS_INC(xb_page_retries);
408 xfsbufd_wakeup(0, gfp_mask);
409 congestion_wait(WRITE, HZ/50);
410 goto retry;
411 }
412
413 XFS_STATS_INC(xb_page_found);
414
415 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
416 size -= nbytes;
417
418 ASSERT(!PagePrivate(page));
419 if (!PageUptodate(page)) {
420 page_count--;
421 if (blocksize >= PAGE_CACHE_SIZE) {
422 if (flags & XBF_READ)
423 bp->b_locked = 1;
424 } else if (!PagePrivate(page)) {
425 if (test_page_region(page, offset, nbytes))
426 page_count++;
427 }
428 }
429
430 bp->b_pages[i] = page;
431 offset = 0;
432 }
433
434 if (!bp->b_locked) {
435 for (i = 0; i < bp->b_page_count; i++)
436 unlock_page(bp->b_pages[i]);
437 }
438
439 if (page_count == bp->b_page_count)
440 bp->b_flags |= XBF_DONE;
441
442 XB_TRACE(bp, "lookup_pages", (long)page_count);
443 return error;
444 }
445
446 /*
447 * Map buffer into kernel address-space if nessecary.
448 */
449 STATIC int
450 _xfs_buf_map_pages(
451 xfs_buf_t *bp,
452 uint flags)
453 {
454 /* A single page buffer is always mappable */
455 if (bp->b_page_count == 1) {
456 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
457 bp->b_flags |= XBF_MAPPED;
458 } else if (flags & XBF_MAPPED) {
459 if (as_list_len > 64)
460 purge_addresses();
461 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
462 VM_MAP, PAGE_KERNEL);
463 if (unlikely(bp->b_addr == NULL))
464 return -ENOMEM;
465 bp->b_addr += bp->b_offset;
466 bp->b_flags |= XBF_MAPPED;
467 }
468
469 return 0;
470 }
471
472 /*
473 * Finding and Reading Buffers
474 */
475
476 /*
477 * Look up, and creates if absent, a lockable buffer for
478 * a given range of an inode. The buffer is returned
479 * locked. If other overlapping buffers exist, they are
480 * released before the new buffer is created and locked,
481 * which may imply that this call will block until those buffers
482 * are unlocked. No I/O is implied by this call.
483 */
484 xfs_buf_t *
485 _xfs_buf_find(
486 xfs_buftarg_t *btp, /* block device target */
487 xfs_off_t ioff, /* starting offset of range */
488 size_t isize, /* length of range */
489 xfs_buf_flags_t flags,
490 xfs_buf_t *new_bp)
491 {
492 xfs_off_t range_base;
493 size_t range_length;
494 xfs_bufhash_t *hash;
495 xfs_buf_t *bp, *n;
496
497 range_base = (ioff << BBSHIFT);
498 range_length = (isize << BBSHIFT);
499
500 /* Check for IOs smaller than the sector size / not sector aligned */
501 ASSERT(!(range_length < (1 << btp->bt_sshift)));
502 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
503
504 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
505
506 spin_lock(&hash->bh_lock);
507
508 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
509 ASSERT(btp == bp->b_target);
510 if (bp->b_file_offset == range_base &&
511 bp->b_buffer_length == range_length) {
512 /*
513 * If we look at something, bring it to the
514 * front of the list for next time.
515 */
516 atomic_inc(&bp->b_hold);
517 list_move(&bp->b_hash_list, &hash->bh_list);
518 goto found;
519 }
520 }
521
522 /* No match found */
523 if (new_bp) {
524 _xfs_buf_initialize(new_bp, btp, range_base,
525 range_length, flags);
526 new_bp->b_hash = hash;
527 list_add(&new_bp->b_hash_list, &hash->bh_list);
528 } else {
529 XFS_STATS_INC(xb_miss_locked);
530 }
531
532 spin_unlock(&hash->bh_lock);
533 return new_bp;
534
535 found:
536 spin_unlock(&hash->bh_lock);
537
538 /* Attempt to get the semaphore without sleeping,
539 * if this does not work then we need to drop the
540 * spinlock and do a hard attempt on the semaphore.
541 */
542 if (down_trylock(&bp->b_sema)) {
543 if (!(flags & XBF_TRYLOCK)) {
544 /* wait for buffer ownership */
545 XB_TRACE(bp, "get_lock", 0);
546 xfs_buf_lock(bp);
547 XFS_STATS_INC(xb_get_locked_waited);
548 } else {
549 /* We asked for a trylock and failed, no need
550 * to look at file offset and length here, we
551 * know that this buffer at least overlaps our
552 * buffer and is locked, therefore our buffer
553 * either does not exist, or is this buffer.
554 */
555 xfs_buf_rele(bp);
556 XFS_STATS_INC(xb_busy_locked);
557 return NULL;
558 }
559 } else {
560 /* trylock worked */
561 XB_SET_OWNER(bp);
562 }
563
564 if (bp->b_flags & XBF_STALE) {
565 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
566 bp->b_flags &= XBF_MAPPED;
567 }
568 XB_TRACE(bp, "got_lock", 0);
569 XFS_STATS_INC(xb_get_locked);
570 return bp;
571 }
572
573 /*
574 * Assembles a buffer covering the specified range.
575 * Storage in memory for all portions of the buffer will be allocated,
576 * although backing storage may not be.
577 */
578 xfs_buf_t *
579 xfs_buf_get_flags(
580 xfs_buftarg_t *target,/* target for buffer */
581 xfs_off_t ioff, /* starting offset of range */
582 size_t isize, /* length of range */
583 xfs_buf_flags_t flags)
584 {
585 xfs_buf_t *bp, *new_bp;
586 int error = 0, i;
587
588 new_bp = xfs_buf_allocate(flags);
589 if (unlikely(!new_bp))
590 return NULL;
591
592 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
593 if (bp == new_bp) {
594 error = _xfs_buf_lookup_pages(bp, flags);
595 if (error)
596 goto no_buffer;
597 } else {
598 xfs_buf_deallocate(new_bp);
599 if (unlikely(bp == NULL))
600 return NULL;
601 }
602
603 for (i = 0; i < bp->b_page_count; i++)
604 mark_page_accessed(bp->b_pages[i]);
605
606 if (!(bp->b_flags & XBF_MAPPED)) {
607 error = _xfs_buf_map_pages(bp, flags);
608 if (unlikely(error)) {
609 printk(KERN_WARNING "%s: failed to map pages\n",
610 __FUNCTION__);
611 goto no_buffer;
612 }
613 }
614
615 XFS_STATS_INC(xb_get);
616
617 /*
618 * Always fill in the block number now, the mapped cases can do
619 * their own overlay of this later.
620 */
621 bp->b_bn = ioff;
622 bp->b_count_desired = bp->b_buffer_length;
623
624 XB_TRACE(bp, "get", (unsigned long)flags);
625 return bp;
626
627 no_buffer:
628 if (flags & (XBF_LOCK | XBF_TRYLOCK))
629 xfs_buf_unlock(bp);
630 xfs_buf_rele(bp);
631 return NULL;
632 }
633
634 xfs_buf_t *
635 xfs_buf_read_flags(
636 xfs_buftarg_t *target,
637 xfs_off_t ioff,
638 size_t isize,
639 xfs_buf_flags_t flags)
640 {
641 xfs_buf_t *bp;
642
643 flags |= XBF_READ;
644
645 bp = xfs_buf_get_flags(target, ioff, isize, flags);
646 if (bp) {
647 if (!XFS_BUF_ISDONE(bp)) {
648 XB_TRACE(bp, "read", (unsigned long)flags);
649 XFS_STATS_INC(xb_get_read);
650 xfs_buf_iostart(bp, flags);
651 } else if (flags & XBF_ASYNC) {
652 XB_TRACE(bp, "read_async", (unsigned long)flags);
653 /*
654 * Read ahead call which is already satisfied,
655 * drop the buffer
656 */
657 goto no_buffer;
658 } else {
659 XB_TRACE(bp, "read_done", (unsigned long)flags);
660 /* We do not want read in the flags */
661 bp->b_flags &= ~XBF_READ;
662 }
663 }
664
665 return bp;
666
667 no_buffer:
668 if (flags & (XBF_LOCK | XBF_TRYLOCK))
669 xfs_buf_unlock(bp);
670 xfs_buf_rele(bp);
671 return NULL;
672 }
673
674 /*
675 * If we are not low on memory then do the readahead in a deadlock
676 * safe manner.
677 */
678 void
679 xfs_buf_readahead(
680 xfs_buftarg_t *target,
681 xfs_off_t ioff,
682 size_t isize,
683 xfs_buf_flags_t flags)
684 {
685 struct backing_dev_info *bdi;
686
687 bdi = target->bt_mapping->backing_dev_info;
688 if (bdi_read_congested(bdi))
689 return;
690
691 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
692 xfs_buf_read_flags(target, ioff, isize, flags);
693 }
694
695 xfs_buf_t *
696 xfs_buf_get_empty(
697 size_t len,
698 xfs_buftarg_t *target)
699 {
700 xfs_buf_t *bp;
701
702 bp = xfs_buf_allocate(0);
703 if (bp)
704 _xfs_buf_initialize(bp, target, 0, len, 0);
705 return bp;
706 }
707
708 static inline struct page *
709 mem_to_page(
710 void *addr)
711 {
712 if (((unsigned long)addr < VMALLOC_START) ||
713 ((unsigned long)addr >= VMALLOC_END)) {
714 return virt_to_page(addr);
715 } else {
716 return vmalloc_to_page(addr);
717 }
718 }
719
720 int
721 xfs_buf_associate_memory(
722 xfs_buf_t *bp,
723 void *mem,
724 size_t len)
725 {
726 int rval;
727 int i = 0;
728 size_t ptr;
729 size_t end, end_cur;
730 off_t offset;
731 int page_count;
732
733 page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
734 offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
735 if (offset && (len > PAGE_CACHE_SIZE))
736 page_count++;
737
738 /* Free any previous set of page pointers */
739 if (bp->b_pages)
740 _xfs_buf_free_pages(bp);
741
742 bp->b_pages = NULL;
743 bp->b_addr = mem;
744
745 rval = _xfs_buf_get_pages(bp, page_count, 0);
746 if (rval)
747 return rval;
748
749 bp->b_offset = offset;
750 ptr = (size_t) mem & PAGE_CACHE_MASK;
751 end = PAGE_CACHE_ALIGN((size_t) mem + len);
752 end_cur = end;
753 /* set up first page */
754 bp->b_pages[0] = mem_to_page(mem);
755
756 ptr += PAGE_CACHE_SIZE;
757 bp->b_page_count = ++i;
758 while (ptr < end) {
759 bp->b_pages[i] = mem_to_page((void *)ptr);
760 bp->b_page_count = ++i;
761 ptr += PAGE_CACHE_SIZE;
762 }
763 bp->b_locked = 0;
764
765 bp->b_count_desired = bp->b_buffer_length = len;
766 bp->b_flags |= XBF_MAPPED;
767
768 return 0;
769 }
770
771 xfs_buf_t *
772 xfs_buf_get_noaddr(
773 size_t len,
774 xfs_buftarg_t *target)
775 {
776 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
777 int error, i;
778 xfs_buf_t *bp;
779
780 bp = xfs_buf_allocate(0);
781 if (unlikely(bp == NULL))
782 goto fail;
783 _xfs_buf_initialize(bp, target, 0, len, 0);
784
785 error = _xfs_buf_get_pages(bp, page_count, 0);
786 if (error)
787 goto fail_free_buf;
788
789 for (i = 0; i < page_count; i++) {
790 bp->b_pages[i] = alloc_page(GFP_KERNEL);
791 if (!bp->b_pages[i])
792 goto fail_free_mem;
793 }
794 bp->b_flags |= _XBF_PAGES;
795
796 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
797 if (unlikely(error)) {
798 printk(KERN_WARNING "%s: failed to map pages\n",
799 __FUNCTION__);
800 goto fail_free_mem;
801 }
802
803 xfs_buf_unlock(bp);
804
805 XB_TRACE(bp, "no_daddr", len);
806 return bp;
807
808 fail_free_mem:
809 while (--i >= 0)
810 __free_page(bp->b_pages[i]);
811 _xfs_buf_free_pages(bp);
812 fail_free_buf:
813 xfs_buf_deallocate(bp);
814 fail:
815 return NULL;
816 }
817
818 /*
819 * Increment reference count on buffer, to hold the buffer concurrently
820 * with another thread which may release (free) the buffer asynchronously.
821 * Must hold the buffer already to call this function.
822 */
823 void
824 xfs_buf_hold(
825 xfs_buf_t *bp)
826 {
827 atomic_inc(&bp->b_hold);
828 XB_TRACE(bp, "hold", 0);
829 }
830
831 /*
832 * Releases a hold on the specified buffer. If the
833 * the hold count is 1, calls xfs_buf_free.
834 */
835 void
836 xfs_buf_rele(
837 xfs_buf_t *bp)
838 {
839 xfs_bufhash_t *hash = bp->b_hash;
840
841 XB_TRACE(bp, "rele", bp->b_relse);
842
843 if (unlikely(!hash)) {
844 ASSERT(!bp->b_relse);
845 if (atomic_dec_and_test(&bp->b_hold))
846 xfs_buf_free(bp);
847 return;
848 }
849
850 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
851 if (bp->b_relse) {
852 atomic_inc(&bp->b_hold);
853 spin_unlock(&hash->bh_lock);
854 (*(bp->b_relse)) (bp);
855 } else if (bp->b_flags & XBF_FS_MANAGED) {
856 spin_unlock(&hash->bh_lock);
857 } else {
858 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
859 list_del_init(&bp->b_hash_list);
860 spin_unlock(&hash->bh_lock);
861 xfs_buf_free(bp);
862 }
863 } else {
864 /*
865 * Catch reference count leaks
866 */
867 ASSERT(atomic_read(&bp->b_hold) >= 0);
868 }
869 }
870
871
872 /*
873 * Mutual exclusion on buffers. Locking model:
874 *
875 * Buffers associated with inodes for which buffer locking
876 * is not enabled are not protected by semaphores, and are
877 * assumed to be exclusively owned by the caller. There is a
878 * spinlock in the buffer, used by the caller when concurrent
879 * access is possible.
880 */
881
882 /*
883 * Locks a buffer object, if it is not already locked.
884 * Note that this in no way locks the underlying pages, so it is only
885 * useful for synchronizing concurrent use of buffer objects, not for
886 * synchronizing independent access to the underlying pages.
887 */
888 int
889 xfs_buf_cond_lock(
890 xfs_buf_t *bp)
891 {
892 int locked;
893
894 locked = down_trylock(&bp->b_sema) == 0;
895 if (locked) {
896 XB_SET_OWNER(bp);
897 }
898 XB_TRACE(bp, "cond_lock", (long)locked);
899 return locked ? 0 : -EBUSY;
900 }
901
902 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
903 int
904 xfs_buf_lock_value(
905 xfs_buf_t *bp)
906 {
907 return atomic_read(&bp->b_sema.count);
908 }
909 #endif
910
911 /*
912 * Locks a buffer object.
913 * Note that this in no way locks the underlying pages, so it is only
914 * useful for synchronizing concurrent use of buffer objects, not for
915 * synchronizing independent access to the underlying pages.
916 */
917 void
918 xfs_buf_lock(
919 xfs_buf_t *bp)
920 {
921 XB_TRACE(bp, "lock", 0);
922 if (atomic_read(&bp->b_io_remaining))
923 blk_run_address_space(bp->b_target->bt_mapping);
924 down(&bp->b_sema);
925 XB_SET_OWNER(bp);
926 XB_TRACE(bp, "locked", 0);
927 }
928
929 /*
930 * Releases the lock on the buffer object.
931 * If the buffer is marked delwri but is not queued, do so before we
932 * unlock the buffer as we need to set flags correctly. We also need to
933 * take a reference for the delwri queue because the unlocker is going to
934 * drop their's and they don't know we just queued it.
935 */
936 void
937 xfs_buf_unlock(
938 xfs_buf_t *bp)
939 {
940 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
941 atomic_inc(&bp->b_hold);
942 bp->b_flags |= XBF_ASYNC;
943 xfs_buf_delwri_queue(bp, 0);
944 }
945
946 XB_CLEAR_OWNER(bp);
947 up(&bp->b_sema);
948 XB_TRACE(bp, "unlock", 0);
949 }
950
951
952 /*
953 * Pinning Buffer Storage in Memory
954 * Ensure that no attempt to force a buffer to disk will succeed.
955 */
956 void
957 xfs_buf_pin(
958 xfs_buf_t *bp)
959 {
960 atomic_inc(&bp->b_pin_count);
961 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
962 }
963
964 void
965 xfs_buf_unpin(
966 xfs_buf_t *bp)
967 {
968 if (atomic_dec_and_test(&bp->b_pin_count))
969 wake_up_all(&bp->b_waiters);
970 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
971 }
972
973 int
974 xfs_buf_ispin(
975 xfs_buf_t *bp)
976 {
977 return atomic_read(&bp->b_pin_count);
978 }
979
980 STATIC void
981 xfs_buf_wait_unpin(
982 xfs_buf_t *bp)
983 {
984 DECLARE_WAITQUEUE (wait, current);
985
986 if (atomic_read(&bp->b_pin_count) == 0)
987 return;
988
989 add_wait_queue(&bp->b_waiters, &wait);
990 for (;;) {
991 set_current_state(TASK_UNINTERRUPTIBLE);
992 if (atomic_read(&bp->b_pin_count) == 0)
993 break;
994 if (atomic_read(&bp->b_io_remaining))
995 blk_run_address_space(bp->b_target->bt_mapping);
996 schedule();
997 }
998 remove_wait_queue(&bp->b_waiters, &wait);
999 set_current_state(TASK_RUNNING);
1000 }
1001
1002 /*
1003 * Buffer Utility Routines
1004 */
1005
1006 STATIC void
1007 xfs_buf_iodone_work(
1008 struct work_struct *work)
1009 {
1010 xfs_buf_t *bp =
1011 container_of(work, xfs_buf_t, b_iodone_work);
1012
1013 /*
1014 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
1015 * ordered flag and reissue them. Because we can't tell the higher
1016 * layers directly that they should not issue ordered I/O anymore, they
1017 * need to check if the ordered flag was cleared during I/O completion.
1018 */
1019 if ((bp->b_error == EOPNOTSUPP) &&
1020 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
1021 XB_TRACE(bp, "ordered_retry", bp->b_iodone);
1022 bp->b_flags &= ~XBF_ORDERED;
1023 xfs_buf_iorequest(bp);
1024 } else if (bp->b_iodone)
1025 (*(bp->b_iodone))(bp);
1026 else if (bp->b_flags & XBF_ASYNC)
1027 xfs_buf_relse(bp);
1028 }
1029
1030 void
1031 xfs_buf_ioend(
1032 xfs_buf_t *bp,
1033 int schedule)
1034 {
1035 bp->b_flags &= ~(XBF_READ | XBF_WRITE);
1036 if (bp->b_error == 0)
1037 bp->b_flags |= XBF_DONE;
1038
1039 XB_TRACE(bp, "iodone", bp->b_iodone);
1040
1041 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1042 if (schedule) {
1043 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1044 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1045 } else {
1046 xfs_buf_iodone_work(&bp->b_iodone_work);
1047 }
1048 } else {
1049 up(&bp->b_iodonesema);
1050 }
1051 }
1052
1053 void
1054 xfs_buf_ioerror(
1055 xfs_buf_t *bp,
1056 int error)
1057 {
1058 ASSERT(error >= 0 && error <= 0xffff);
1059 bp->b_error = (unsigned short)error;
1060 XB_TRACE(bp, "ioerror", (unsigned long)error);
1061 }
1062
1063 /*
1064 * Initiate I/O on a buffer, based on the flags supplied.
1065 * The b_iodone routine in the buffer supplied will only be called
1066 * when all of the subsidiary I/O requests, if any, have been completed.
1067 */
1068 int
1069 xfs_buf_iostart(
1070 xfs_buf_t *bp,
1071 xfs_buf_flags_t flags)
1072 {
1073 int status = 0;
1074
1075 XB_TRACE(bp, "iostart", (unsigned long)flags);
1076
1077 if (flags & XBF_DELWRI) {
1078 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1079 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1080 xfs_buf_delwri_queue(bp, 1);
1081 return status;
1082 }
1083
1084 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1085 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1086 bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1087 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1088
1089 BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1090
1091 /* For writes allow an alternate strategy routine to precede
1092 * the actual I/O request (which may not be issued at all in
1093 * a shutdown situation, for example).
1094 */
1095 status = (flags & XBF_WRITE) ?
1096 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1097
1098 /* Wait for I/O if we are not an async request.
1099 * Note: async I/O request completion will release the buffer,
1100 * and that can already be done by this point. So using the
1101 * buffer pointer from here on, after async I/O, is invalid.
1102 */
1103 if (!status && !(flags & XBF_ASYNC))
1104 status = xfs_buf_iowait(bp);
1105
1106 return status;
1107 }
1108
1109 STATIC_INLINE int
1110 _xfs_buf_iolocked(
1111 xfs_buf_t *bp)
1112 {
1113 ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE));
1114 if (bp->b_flags & XBF_READ)
1115 return bp->b_locked;
1116 return 0;
1117 }
1118
1119 STATIC_INLINE void
1120 _xfs_buf_ioend(
1121 xfs_buf_t *bp,
1122 int schedule)
1123 {
1124 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1125 bp->b_locked = 0;
1126 xfs_buf_ioend(bp, schedule);
1127 }
1128 }
1129
1130 STATIC int
1131 xfs_buf_bio_end_io(
1132 struct bio *bio,
1133 unsigned int bytes_done,
1134 int error)
1135 {
1136 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1137 unsigned int blocksize = bp->b_target->bt_bsize;
1138 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1139
1140 if (bio->bi_size)
1141 return 1;
1142
1143 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1144 bp->b_error = EIO;
1145
1146 do {
1147 struct page *page = bvec->bv_page;
1148
1149 ASSERT(!PagePrivate(page));
1150 if (unlikely(bp->b_error)) {
1151 if (bp->b_flags & XBF_READ)
1152 ClearPageUptodate(page);
1153 } else if (blocksize >= PAGE_CACHE_SIZE) {
1154 SetPageUptodate(page);
1155 } else if (!PagePrivate(page) &&
1156 (bp->b_flags & _XBF_PAGE_CACHE)) {
1157 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1158 }
1159
1160 if (--bvec >= bio->bi_io_vec)
1161 prefetchw(&bvec->bv_page->flags);
1162
1163 if (_xfs_buf_iolocked(bp)) {
1164 unlock_page(page);
1165 }
1166 } while (bvec >= bio->bi_io_vec);
1167
1168 _xfs_buf_ioend(bp, 1);
1169 bio_put(bio);
1170 return 0;
1171 }
1172
1173 STATIC void
1174 _xfs_buf_ioapply(
1175 xfs_buf_t *bp)
1176 {
1177 int i, rw, map_i, total_nr_pages, nr_pages;
1178 struct bio *bio;
1179 int offset = bp->b_offset;
1180 int size = bp->b_count_desired;
1181 sector_t sector = bp->b_bn;
1182 unsigned int blocksize = bp->b_target->bt_bsize;
1183 int locking = _xfs_buf_iolocked(bp);
1184
1185 total_nr_pages = bp->b_page_count;
1186 map_i = 0;
1187
1188 if (bp->b_flags & XBF_ORDERED) {
1189 ASSERT(!(bp->b_flags & XBF_READ));
1190 rw = WRITE_BARRIER;
1191 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1192 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1193 bp->b_flags &= ~_XBF_RUN_QUEUES;
1194 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1195 } else {
1196 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1197 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1198 }
1199
1200 /* Special code path for reading a sub page size buffer in --
1201 * we populate up the whole page, and hence the other metadata
1202 * in the same page. This optimization is only valid when the
1203 * filesystem block size is not smaller than the page size.
1204 */
1205 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1206 (bp->b_flags & XBF_READ) && locking &&
1207 (blocksize >= PAGE_CACHE_SIZE)) {
1208 bio = bio_alloc(GFP_NOIO, 1);
1209
1210 bio->bi_bdev = bp->b_target->bt_bdev;
1211 bio->bi_sector = sector - (offset >> BBSHIFT);
1212 bio->bi_end_io = xfs_buf_bio_end_io;
1213 bio->bi_private = bp;
1214
1215 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1216 size = 0;
1217
1218 atomic_inc(&bp->b_io_remaining);
1219
1220 goto submit_io;
1221 }
1222
1223 /* Lock down the pages which we need to for the request */
1224 if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) {
1225 for (i = 0; size; i++) {
1226 int nbytes = PAGE_CACHE_SIZE - offset;
1227 struct page *page = bp->b_pages[i];
1228
1229 if (nbytes > size)
1230 nbytes = size;
1231
1232 lock_page(page);
1233
1234 size -= nbytes;
1235 offset = 0;
1236 }
1237 offset = bp->b_offset;
1238 size = bp->b_count_desired;
1239 }
1240
1241 next_chunk:
1242 atomic_inc(&bp->b_io_remaining);
1243 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1244 if (nr_pages > total_nr_pages)
1245 nr_pages = total_nr_pages;
1246
1247 bio = bio_alloc(GFP_NOIO, nr_pages);
1248 bio->bi_bdev = bp->b_target->bt_bdev;
1249 bio->bi_sector = sector;
1250 bio->bi_end_io = xfs_buf_bio_end_io;
1251 bio->bi_private = bp;
1252
1253 for (; size && nr_pages; nr_pages--, map_i++) {
1254 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1255
1256 if (nbytes > size)
1257 nbytes = size;
1258
1259 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1260 if (rbytes < nbytes)
1261 break;
1262
1263 offset = 0;
1264 sector += nbytes >> BBSHIFT;
1265 size -= nbytes;
1266 total_nr_pages--;
1267 }
1268
1269 submit_io:
1270 if (likely(bio->bi_size)) {
1271 submit_bio(rw, bio);
1272 if (size)
1273 goto next_chunk;
1274 } else {
1275 bio_put(bio);
1276 xfs_buf_ioerror(bp, EIO);
1277 }
1278 }
1279
1280 int
1281 xfs_buf_iorequest(
1282 xfs_buf_t *bp)
1283 {
1284 XB_TRACE(bp, "iorequest", 0);
1285
1286 if (bp->b_flags & XBF_DELWRI) {
1287 xfs_buf_delwri_queue(bp, 1);
1288 return 0;
1289 }
1290
1291 if (bp->b_flags & XBF_WRITE) {
1292 xfs_buf_wait_unpin(bp);
1293 }
1294
1295 xfs_buf_hold(bp);
1296
1297 /* Set the count to 1 initially, this will stop an I/O
1298 * completion callout which happens before we have started
1299 * all the I/O from calling xfs_buf_ioend too early.
1300 */
1301 atomic_set(&bp->b_io_remaining, 1);
1302 _xfs_buf_ioapply(bp);
1303 _xfs_buf_ioend(bp, 0);
1304
1305 xfs_buf_rele(bp);
1306 return 0;
1307 }
1308
1309 /*
1310 * Waits for I/O to complete on the buffer supplied.
1311 * It returns immediately if no I/O is pending.
1312 * It returns the I/O error code, if any, or 0 if there was no error.
1313 */
1314 int
1315 xfs_buf_iowait(
1316 xfs_buf_t *bp)
1317 {
1318 XB_TRACE(bp, "iowait", 0);
1319 if (atomic_read(&bp->b_io_remaining))
1320 blk_run_address_space(bp->b_target->bt_mapping);
1321 down(&bp->b_iodonesema);
1322 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1323 return bp->b_error;
1324 }
1325
1326 xfs_caddr_t
1327 xfs_buf_offset(
1328 xfs_buf_t *bp,
1329 size_t offset)
1330 {
1331 struct page *page;
1332
1333 if (bp->b_flags & XBF_MAPPED)
1334 return XFS_BUF_PTR(bp) + offset;
1335
1336 offset += bp->b_offset;
1337 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1338 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1339 }
1340
1341 /*
1342 * Move data into or out of a buffer.
1343 */
1344 void
1345 xfs_buf_iomove(
1346 xfs_buf_t *bp, /* buffer to process */
1347 size_t boff, /* starting buffer offset */
1348 size_t bsize, /* length to copy */
1349 caddr_t data, /* data address */
1350 xfs_buf_rw_t mode) /* read/write/zero flag */
1351 {
1352 size_t bend, cpoff, csize;
1353 struct page *page;
1354
1355 bend = boff + bsize;
1356 while (boff < bend) {
1357 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1358 cpoff = xfs_buf_poff(boff + bp->b_offset);
1359 csize = min_t(size_t,
1360 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1361
1362 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1363
1364 switch (mode) {
1365 case XBRW_ZERO:
1366 memset(page_address(page) + cpoff, 0, csize);
1367 break;
1368 case XBRW_READ:
1369 memcpy(data, page_address(page) + cpoff, csize);
1370 break;
1371 case XBRW_WRITE:
1372 memcpy(page_address(page) + cpoff, data, csize);
1373 }
1374
1375 boff += csize;
1376 data += csize;
1377 }
1378 }
1379
1380 /*
1381 * Handling of buffer targets (buftargs).
1382 */
1383
1384 /*
1385 * Wait for any bufs with callbacks that have been submitted but
1386 * have not yet returned... walk the hash list for the target.
1387 */
1388 void
1389 xfs_wait_buftarg(
1390 xfs_buftarg_t *btp)
1391 {
1392 xfs_buf_t *bp, *n;
1393 xfs_bufhash_t *hash;
1394 uint i;
1395
1396 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1397 hash = &btp->bt_hash[i];
1398 again:
1399 spin_lock(&hash->bh_lock);
1400 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1401 ASSERT(btp == bp->b_target);
1402 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1403 spin_unlock(&hash->bh_lock);
1404 /*
1405 * Catch superblock reference count leaks
1406 * immediately
1407 */
1408 BUG_ON(bp->b_bn == 0);
1409 delay(100);
1410 goto again;
1411 }
1412 }
1413 spin_unlock(&hash->bh_lock);
1414 }
1415 }
1416
1417 /*
1418 * Allocate buffer hash table for a given target.
1419 * For devices containing metadata (i.e. not the log/realtime devices)
1420 * we need to allocate a much larger hash table.
1421 */
1422 STATIC void
1423 xfs_alloc_bufhash(
1424 xfs_buftarg_t *btp,
1425 int external)
1426 {
1427 unsigned int i;
1428
1429 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1430 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1431 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1432 sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1433 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1434 spin_lock_init(&btp->bt_hash[i].bh_lock);
1435 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1436 }
1437 }
1438
1439 STATIC void
1440 xfs_free_bufhash(
1441 xfs_buftarg_t *btp)
1442 {
1443 kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1444 btp->bt_hash = NULL;
1445 }
1446
1447 /*
1448 * buftarg list for delwrite queue processing
1449 */
1450 static LIST_HEAD(xfs_buftarg_list);
1451 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1452
1453 STATIC void
1454 xfs_register_buftarg(
1455 xfs_buftarg_t *btp)
1456 {
1457 spin_lock(&xfs_buftarg_lock);
1458 list_add(&btp->bt_list, &xfs_buftarg_list);
1459 spin_unlock(&xfs_buftarg_lock);
1460 }
1461
1462 STATIC void
1463 xfs_unregister_buftarg(
1464 xfs_buftarg_t *btp)
1465 {
1466 spin_lock(&xfs_buftarg_lock);
1467 list_del(&btp->bt_list);
1468 spin_unlock(&xfs_buftarg_lock);
1469 }
1470
1471 void
1472 xfs_free_buftarg(
1473 xfs_buftarg_t *btp,
1474 int external)
1475 {
1476 xfs_flush_buftarg(btp, 1);
1477 xfs_blkdev_issue_flush(btp);
1478 if (external)
1479 xfs_blkdev_put(btp->bt_bdev);
1480 xfs_free_bufhash(btp);
1481 iput(btp->bt_mapping->host);
1482
1483 /* Unregister the buftarg first so that we don't get a
1484 * wakeup finding a non-existent task
1485 */
1486 xfs_unregister_buftarg(btp);
1487 kthread_stop(btp->bt_task);
1488
1489 kmem_free(btp, sizeof(*btp));
1490 }
1491
1492 STATIC int
1493 xfs_setsize_buftarg_flags(
1494 xfs_buftarg_t *btp,
1495 unsigned int blocksize,
1496 unsigned int sectorsize,
1497 int verbose)
1498 {
1499 btp->bt_bsize = blocksize;
1500 btp->bt_sshift = ffs(sectorsize) - 1;
1501 btp->bt_smask = sectorsize - 1;
1502
1503 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1504 printk(KERN_WARNING
1505 "XFS: Cannot set_blocksize to %u on device %s\n",
1506 sectorsize, XFS_BUFTARG_NAME(btp));
1507 return EINVAL;
1508 }
1509
1510 if (verbose &&
1511 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1512 printk(KERN_WARNING
1513 "XFS: %u byte sectors in use on device %s. "
1514 "This is suboptimal; %u or greater is ideal.\n",
1515 sectorsize, XFS_BUFTARG_NAME(btp),
1516 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1517 }
1518
1519 return 0;
1520 }
1521
1522 /*
1523 * When allocating the initial buffer target we have not yet
1524 * read in the superblock, so don't know what sized sectors
1525 * are being used is at this early stage. Play safe.
1526 */
1527 STATIC int
1528 xfs_setsize_buftarg_early(
1529 xfs_buftarg_t *btp,
1530 struct block_device *bdev)
1531 {
1532 return xfs_setsize_buftarg_flags(btp,
1533 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1534 }
1535
1536 int
1537 xfs_setsize_buftarg(
1538 xfs_buftarg_t *btp,
1539 unsigned int blocksize,
1540 unsigned int sectorsize)
1541 {
1542 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1543 }
1544
1545 STATIC int
1546 xfs_mapping_buftarg(
1547 xfs_buftarg_t *btp,
1548 struct block_device *bdev)
1549 {
1550 struct backing_dev_info *bdi;
1551 struct inode *inode;
1552 struct address_space *mapping;
1553 static const struct address_space_operations mapping_aops = {
1554 .sync_page = block_sync_page,
1555 .migratepage = fail_migrate_page,
1556 };
1557
1558 inode = new_inode(bdev->bd_inode->i_sb);
1559 if (!inode) {
1560 printk(KERN_WARNING
1561 "XFS: Cannot allocate mapping inode for device %s\n",
1562 XFS_BUFTARG_NAME(btp));
1563 return ENOMEM;
1564 }
1565 inode->i_mode = S_IFBLK;
1566 inode->i_bdev = bdev;
1567 inode->i_rdev = bdev->bd_dev;
1568 bdi = blk_get_backing_dev_info(bdev);
1569 if (!bdi)
1570 bdi = &default_backing_dev_info;
1571 mapping = &inode->i_data;
1572 mapping->a_ops = &mapping_aops;
1573 mapping->backing_dev_info = bdi;
1574 mapping_set_gfp_mask(mapping, GFP_NOFS);
1575 btp->bt_mapping = mapping;
1576 return 0;
1577 }
1578
1579 STATIC int
1580 xfs_alloc_delwrite_queue(
1581 xfs_buftarg_t *btp)
1582 {
1583 int error = 0;
1584
1585 INIT_LIST_HEAD(&btp->bt_list);
1586 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1587 spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
1588 btp->bt_flags = 0;
1589 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1590 if (IS_ERR(btp->bt_task)) {
1591 error = PTR_ERR(btp->bt_task);
1592 goto out_error;
1593 }
1594 xfs_register_buftarg(btp);
1595 out_error:
1596 return error;
1597 }
1598
1599 xfs_buftarg_t *
1600 xfs_alloc_buftarg(
1601 struct block_device *bdev,
1602 int external)
1603 {
1604 xfs_buftarg_t *btp;
1605
1606 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1607
1608 btp->bt_dev = bdev->bd_dev;
1609 btp->bt_bdev = bdev;
1610 if (xfs_setsize_buftarg_early(btp, bdev))
1611 goto error;
1612 if (xfs_mapping_buftarg(btp, bdev))
1613 goto error;
1614 if (xfs_alloc_delwrite_queue(btp))
1615 goto error;
1616 xfs_alloc_bufhash(btp, external);
1617 return btp;
1618
1619 error:
1620 kmem_free(btp, sizeof(*btp));
1621 return NULL;
1622 }
1623
1624
1625 /*
1626 * Delayed write buffer handling
1627 */
1628 STATIC void
1629 xfs_buf_delwri_queue(
1630 xfs_buf_t *bp,
1631 int unlock)
1632 {
1633 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1634 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1635
1636 XB_TRACE(bp, "delwri_q", (long)unlock);
1637 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1638
1639 spin_lock(dwlk);
1640 /* If already in the queue, dequeue and place at tail */
1641 if (!list_empty(&bp->b_list)) {
1642 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1643 if (unlock)
1644 atomic_dec(&bp->b_hold);
1645 list_del(&bp->b_list);
1646 }
1647
1648 bp->b_flags |= _XBF_DELWRI_Q;
1649 list_add_tail(&bp->b_list, dwq);
1650 bp->b_queuetime = jiffies;
1651 spin_unlock(dwlk);
1652
1653 if (unlock)
1654 xfs_buf_unlock(bp);
1655 }
1656
1657 void
1658 xfs_buf_delwri_dequeue(
1659 xfs_buf_t *bp)
1660 {
1661 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1662 int dequeued = 0;
1663
1664 spin_lock(dwlk);
1665 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1666 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1667 list_del_init(&bp->b_list);
1668 dequeued = 1;
1669 }
1670 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1671 spin_unlock(dwlk);
1672
1673 if (dequeued)
1674 xfs_buf_rele(bp);
1675
1676 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1677 }
1678
1679 STATIC void
1680 xfs_buf_runall_queues(
1681 struct workqueue_struct *queue)
1682 {
1683 flush_workqueue(queue);
1684 }
1685
1686 STATIC int
1687 xfsbufd_wakeup(
1688 int priority,
1689 gfp_t mask)
1690 {
1691 xfs_buftarg_t *btp;
1692
1693 spin_lock(&xfs_buftarg_lock);
1694 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1695 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1696 continue;
1697 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1698 wake_up_process(btp->bt_task);
1699 }
1700 spin_unlock(&xfs_buftarg_lock);
1701 return 0;
1702 }
1703
1704 /*
1705 * Move as many buffers as specified to the supplied list
1706 * idicating if we skipped any buffers to prevent deadlocks.
1707 */
1708 STATIC int
1709 xfs_buf_delwri_split(
1710 xfs_buftarg_t *target,
1711 struct list_head *list,
1712 unsigned long age)
1713 {
1714 xfs_buf_t *bp, *n;
1715 struct list_head *dwq = &target->bt_delwrite_queue;
1716 spinlock_t *dwlk = &target->bt_delwrite_lock;
1717 int skipped = 0;
1718 int force;
1719
1720 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1721 INIT_LIST_HEAD(list);
1722 spin_lock(dwlk);
1723 list_for_each_entry_safe(bp, n, dwq, b_list) {
1724 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1725 ASSERT(bp->b_flags & XBF_DELWRI);
1726
1727 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1728 if (!force &&
1729 time_before(jiffies, bp->b_queuetime + age)) {
1730 xfs_buf_unlock(bp);
1731 break;
1732 }
1733
1734 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1735 _XBF_RUN_QUEUES);
1736 bp->b_flags |= XBF_WRITE;
1737 list_move_tail(&bp->b_list, list);
1738 } else
1739 skipped++;
1740 }
1741 spin_unlock(dwlk);
1742
1743 return skipped;
1744
1745 }
1746
1747 STATIC int
1748 xfsbufd(
1749 void *data)
1750 {
1751 struct list_head tmp;
1752 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1753 int count;
1754 xfs_buf_t *bp;
1755
1756 current->flags |= PF_MEMALLOC;
1757
1758 do {
1759 if (unlikely(freezing(current))) {
1760 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1761 refrigerator();
1762 } else {
1763 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1764 }
1765
1766 schedule_timeout_interruptible(
1767 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1768
1769 xfs_buf_delwri_split(target, &tmp,
1770 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1771
1772 count = 0;
1773 while (!list_empty(&tmp)) {
1774 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1775 ASSERT(target == bp->b_target);
1776
1777 list_del_init(&bp->b_list);
1778 xfs_buf_iostrategy(bp);
1779 count++;
1780 }
1781
1782 if (as_list_len > 0)
1783 purge_addresses();
1784 if (count)
1785 blk_run_address_space(target->bt_mapping);
1786
1787 } while (!kthread_should_stop());
1788
1789 return 0;
1790 }
1791
1792 /*
1793 * Go through all incore buffers, and release buffers if they belong to
1794 * the given device. This is used in filesystem error handling to
1795 * preserve the consistency of its metadata.
1796 */
1797 int
1798 xfs_flush_buftarg(
1799 xfs_buftarg_t *target,
1800 int wait)
1801 {
1802 struct list_head tmp;
1803 xfs_buf_t *bp, *n;
1804 int pincount = 0;
1805
1806 xfs_buf_runall_queues(xfsdatad_workqueue);
1807 xfs_buf_runall_queues(xfslogd_workqueue);
1808
1809 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1810 pincount = xfs_buf_delwri_split(target, &tmp, 0);
1811
1812 /*
1813 * Dropped the delayed write list lock, now walk the temporary list
1814 */
1815 list_for_each_entry_safe(bp, n, &tmp, b_list) {
1816 ASSERT(target == bp->b_target);
1817 if (wait)
1818 bp->b_flags &= ~XBF_ASYNC;
1819 else
1820 list_del_init(&bp->b_list);
1821
1822 xfs_buf_iostrategy(bp);
1823 }
1824
1825 if (wait)
1826 blk_run_address_space(target->bt_mapping);
1827
1828 /*
1829 * Remaining list items must be flushed before returning
1830 */
1831 while (!list_empty(&tmp)) {
1832 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1833
1834 list_del_init(&bp->b_list);
1835 xfs_iowait(bp);
1836 xfs_buf_relse(bp);
1837 }
1838
1839 return pincount;
1840 }
1841
1842 int __init
1843 xfs_buf_init(void)
1844 {
1845 #ifdef XFS_BUF_TRACE
1846 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1847 #endif
1848
1849 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1850 KM_ZONE_HWALIGN, NULL);
1851 if (!xfs_buf_zone)
1852 goto out_free_trace_buf;
1853
1854 xfslogd_workqueue = create_workqueue("xfslogd");
1855 if (!xfslogd_workqueue)
1856 goto out_free_buf_zone;
1857
1858 xfsdatad_workqueue = create_workqueue("xfsdatad");
1859 if (!xfsdatad_workqueue)
1860 goto out_destroy_xfslogd_workqueue;
1861
1862 register_shrinker(&xfs_buf_shake);
1863 return 0;
1864
1865 out_destroy_xfslogd_workqueue:
1866 destroy_workqueue(xfslogd_workqueue);
1867 out_free_buf_zone:
1868 kmem_zone_destroy(xfs_buf_zone);
1869 out_free_trace_buf:
1870 #ifdef XFS_BUF_TRACE
1871 ktrace_free(xfs_buf_trace_buf);
1872 #endif
1873 return -ENOMEM;
1874 }
1875
1876 void
1877 xfs_buf_terminate(void)
1878 {
1879 unregister_shrinker(&xfs_buf_shake);
1880 destroy_workqueue(xfsdatad_workqueue);
1881 destroy_workqueue(xfslogd_workqueue);
1882 kmem_zone_destroy(xfs_buf_zone);
1883 #ifdef XFS_BUF_TRACE
1884 ktrace_free(xfs_buf_trace_buf);
1885 #endif
1886 }
1887
1888 #ifdef CONFIG_KDB_MODULES
1889 struct list_head *
1890 xfs_get_buftarg_list(void)
1891 {
1892 return &xfs_buftarg_list;
1893 }
1894 #endif
This page took 0.090549 seconds and 5 git commands to generate.