xfs: store xfs_mount in the buftarg instead of in the xfs_buf
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
48 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
49 static struct shrinker xfs_buf_shake = {
50 .shrink = xfsbufd_wakeup,
51 .seeks = DEFAULT_SEEKS,
52 };
53
54 static struct workqueue_struct *xfslogd_workqueue;
55 struct workqueue_struct *xfsdatad_workqueue;
56 struct workqueue_struct *xfsconvertd_workqueue;
57
58 #ifdef XFS_BUF_LOCK_TRACKING
59 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
60 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
61 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
62 #else
63 # define XB_SET_OWNER(bp) do { } while (0)
64 # define XB_CLEAR_OWNER(bp) do { } while (0)
65 # define XB_GET_OWNER(bp) do { } while (0)
66 #endif
67
68 #define xb_to_gfp(flags) \
69 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
71
72 #define xb_to_km(flags) \
73 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
74
75 #define xfs_buf_allocate(flags) \
76 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77 #define xfs_buf_deallocate(bp) \
78 kmem_zone_free(xfs_buf_zone, (bp));
79
80 static inline int
81 xfs_buf_is_vmapped(
82 struct xfs_buf *bp)
83 {
84 /*
85 * Return true if the buffer is vmapped.
86 *
87 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88 * code is clever enough to know it doesn't have to map a single page,
89 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90 */
91 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92 }
93
94 static inline int
95 xfs_buf_vmap_len(
96 struct xfs_buf *bp)
97 {
98 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99 }
100
101 /*
102 * Page Region interfaces.
103 *
104 * For pages in filesystems where the blocksize is smaller than the
105 * pagesize, we use the page->private field (long) to hold a bitmap
106 * of uptodate regions within the page.
107 *
108 * Each such region is "bytes per page / bits per long" bytes long.
109 *
110 * NBPPR == number-of-bytes-per-page-region
111 * BTOPR == bytes-to-page-region (rounded up)
112 * BTOPRT == bytes-to-page-region-truncated (rounded down)
113 */
114 #if (BITS_PER_LONG == 32)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
116 #elif (BITS_PER_LONG == 64)
117 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
118 #else
119 #error BITS_PER_LONG must be 32 or 64
120 #endif
121 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
122 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
124
125 STATIC unsigned long
126 page_region_mask(
127 size_t offset,
128 size_t length)
129 {
130 unsigned long mask;
131 int first, final;
132
133 first = BTOPR(offset);
134 final = BTOPRT(offset + length - 1);
135 first = min(first, final);
136
137 mask = ~0UL;
138 mask <<= BITS_PER_LONG - (final - first);
139 mask >>= BITS_PER_LONG - (final);
140
141 ASSERT(offset + length <= PAGE_CACHE_SIZE);
142 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144 return mask;
145 }
146
147 STATIC void
148 set_page_region(
149 struct page *page,
150 size_t offset,
151 size_t length)
152 {
153 set_page_private(page,
154 page_private(page) | page_region_mask(offset, length));
155 if (page_private(page) == ~0UL)
156 SetPageUptodate(page);
157 }
158
159 STATIC int
160 test_page_region(
161 struct page *page,
162 size_t offset,
163 size_t length)
164 {
165 unsigned long mask = page_region_mask(offset, length);
166
167 return (mask && (page_private(page) & mask) == mask);
168 }
169
170 /*
171 * Internal xfs_buf_t object manipulation
172 */
173
174 STATIC void
175 _xfs_buf_initialize(
176 xfs_buf_t *bp,
177 xfs_buftarg_t *target,
178 xfs_off_t range_base,
179 size_t range_length,
180 xfs_buf_flags_t flags)
181 {
182 /*
183 * We don't want certain flags to appear in b_flags.
184 */
185 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187 memset(bp, 0, sizeof(xfs_buf_t));
188 atomic_set(&bp->b_hold, 1);
189 init_completion(&bp->b_iowait);
190 INIT_LIST_HEAD(&bp->b_list);
191 INIT_LIST_HEAD(&bp->b_hash_list);
192 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
193 XB_SET_OWNER(bp);
194 bp->b_target = target;
195 bp->b_file_offset = range_base;
196 /*
197 * Set buffer_length and count_desired to the same value initially.
198 * I/O routines should use count_desired, which will be the same in
199 * most cases but may be reset (e.g. XFS recovery).
200 */
201 bp->b_buffer_length = bp->b_count_desired = range_length;
202 bp->b_flags = flags;
203 bp->b_bn = XFS_BUF_DADDR_NULL;
204 atomic_set(&bp->b_pin_count, 0);
205 init_waitqueue_head(&bp->b_waiters);
206
207 XFS_STATS_INC(xb_create);
208
209 trace_xfs_buf_init(bp, _RET_IP_);
210 }
211
212 /*
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
215 */
216 STATIC int
217 _xfs_buf_get_pages(
218 xfs_buf_t *bp,
219 int page_count,
220 xfs_buf_flags_t flags)
221 {
222 /* Make sure that we have a page list */
223 if (bp->b_pages == NULL) {
224 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225 bp->b_page_count = page_count;
226 if (page_count <= XB_PAGES) {
227 bp->b_pages = bp->b_page_array;
228 } else {
229 bp->b_pages = kmem_alloc(sizeof(struct page *) *
230 page_count, xb_to_km(flags));
231 if (bp->b_pages == NULL)
232 return -ENOMEM;
233 }
234 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
235 }
236 return 0;
237 }
238
239 /*
240 * Frees b_pages if it was allocated.
241 */
242 STATIC void
243 _xfs_buf_free_pages(
244 xfs_buf_t *bp)
245 {
246 if (bp->b_pages != bp->b_page_array) {
247 kmem_free(bp->b_pages);
248 bp->b_pages = NULL;
249 }
250 }
251
252 /*
253 * Releases the specified buffer.
254 *
255 * The modification state of any associated pages is left unchanged.
256 * The buffer most not be on any hash - use xfs_buf_rele instead for
257 * hashed and refcounted buffers
258 */
259 void
260 xfs_buf_free(
261 xfs_buf_t *bp)
262 {
263 trace_xfs_buf_free(bp, _RET_IP_);
264
265 ASSERT(list_empty(&bp->b_hash_list));
266
267 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
268 uint i;
269
270 if (xfs_buf_is_vmapped(bp))
271 vm_unmap_ram(bp->b_addr - bp->b_offset,
272 bp->b_page_count);
273
274 for (i = 0; i < bp->b_page_count; i++) {
275 struct page *page = bp->b_pages[i];
276
277 if (bp->b_flags & _XBF_PAGE_CACHE)
278 ASSERT(!PagePrivate(page));
279 page_cache_release(page);
280 }
281 }
282 _xfs_buf_free_pages(bp);
283 xfs_buf_deallocate(bp);
284 }
285
286 /*
287 * Finds all pages for buffer in question and builds it's page list.
288 */
289 STATIC int
290 _xfs_buf_lookup_pages(
291 xfs_buf_t *bp,
292 uint flags)
293 {
294 struct address_space *mapping = bp->b_target->bt_mapping;
295 size_t blocksize = bp->b_target->bt_bsize;
296 size_t size = bp->b_count_desired;
297 size_t nbytes, offset;
298 gfp_t gfp_mask = xb_to_gfp(flags);
299 unsigned short page_count, i;
300 pgoff_t first;
301 xfs_off_t end;
302 int error;
303
304 end = bp->b_file_offset + bp->b_buffer_length;
305 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
306
307 error = _xfs_buf_get_pages(bp, page_count, flags);
308 if (unlikely(error))
309 return error;
310 bp->b_flags |= _XBF_PAGE_CACHE;
311
312 offset = bp->b_offset;
313 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
314
315 for (i = 0; i < bp->b_page_count; i++) {
316 struct page *page;
317 uint retries = 0;
318
319 retry:
320 page = find_or_create_page(mapping, first + i, gfp_mask);
321 if (unlikely(page == NULL)) {
322 if (flags & XBF_READ_AHEAD) {
323 bp->b_page_count = i;
324 for (i = 0; i < bp->b_page_count; i++)
325 unlock_page(bp->b_pages[i]);
326 return -ENOMEM;
327 }
328
329 /*
330 * This could deadlock.
331 *
332 * But until all the XFS lowlevel code is revamped to
333 * handle buffer allocation failures we can't do much.
334 */
335 if (!(++retries % 100))
336 printk(KERN_ERR
337 "XFS: possible memory allocation "
338 "deadlock in %s (mode:0x%x)\n",
339 __func__, gfp_mask);
340
341 XFS_STATS_INC(xb_page_retries);
342 xfsbufd_wakeup(NULL, 0, gfp_mask);
343 congestion_wait(BLK_RW_ASYNC, HZ/50);
344 goto retry;
345 }
346
347 XFS_STATS_INC(xb_page_found);
348
349 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
350 size -= nbytes;
351
352 ASSERT(!PagePrivate(page));
353 if (!PageUptodate(page)) {
354 page_count--;
355 if (blocksize >= PAGE_CACHE_SIZE) {
356 if (flags & XBF_READ)
357 bp->b_flags |= _XBF_PAGE_LOCKED;
358 } else if (!PagePrivate(page)) {
359 if (test_page_region(page, offset, nbytes))
360 page_count++;
361 }
362 }
363
364 bp->b_pages[i] = page;
365 offset = 0;
366 }
367
368 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
369 for (i = 0; i < bp->b_page_count; i++)
370 unlock_page(bp->b_pages[i]);
371 }
372
373 if (page_count == bp->b_page_count)
374 bp->b_flags |= XBF_DONE;
375
376 return error;
377 }
378
379 /*
380 * Map buffer into kernel address-space if nessecary.
381 */
382 STATIC int
383 _xfs_buf_map_pages(
384 xfs_buf_t *bp,
385 uint flags)
386 {
387 /* A single page buffer is always mappable */
388 if (bp->b_page_count == 1) {
389 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390 bp->b_flags |= XBF_MAPPED;
391 } else if (flags & XBF_MAPPED) {
392 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
393 -1, PAGE_KERNEL);
394 if (unlikely(bp->b_addr == NULL))
395 return -ENOMEM;
396 bp->b_addr += bp->b_offset;
397 bp->b_flags |= XBF_MAPPED;
398 }
399
400 return 0;
401 }
402
403 /*
404 * Finding and Reading Buffers
405 */
406
407 /*
408 * Look up, and creates if absent, a lockable buffer for
409 * a given range of an inode. The buffer is returned
410 * locked. If other overlapping buffers exist, they are
411 * released before the new buffer is created and locked,
412 * which may imply that this call will block until those buffers
413 * are unlocked. No I/O is implied by this call.
414 */
415 xfs_buf_t *
416 _xfs_buf_find(
417 xfs_buftarg_t *btp, /* block device target */
418 xfs_off_t ioff, /* starting offset of range */
419 size_t isize, /* length of range */
420 xfs_buf_flags_t flags,
421 xfs_buf_t *new_bp)
422 {
423 xfs_off_t range_base;
424 size_t range_length;
425 xfs_bufhash_t *hash;
426 xfs_buf_t *bp, *n;
427
428 range_base = (ioff << BBSHIFT);
429 range_length = (isize << BBSHIFT);
430
431 /* Check for IOs smaller than the sector size / not sector aligned */
432 ASSERT(!(range_length < (1 << btp->bt_sshift)));
433 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
434
435 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
436
437 spin_lock(&hash->bh_lock);
438
439 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
440 ASSERT(btp == bp->b_target);
441 if (bp->b_file_offset == range_base &&
442 bp->b_buffer_length == range_length) {
443 atomic_inc(&bp->b_hold);
444 goto found;
445 }
446 }
447
448 /* No match found */
449 if (new_bp) {
450 _xfs_buf_initialize(new_bp, btp, range_base,
451 range_length, flags);
452 new_bp->b_hash = hash;
453 list_add(&new_bp->b_hash_list, &hash->bh_list);
454 } else {
455 XFS_STATS_INC(xb_miss_locked);
456 }
457
458 spin_unlock(&hash->bh_lock);
459 return new_bp;
460
461 found:
462 spin_unlock(&hash->bh_lock);
463
464 /* Attempt to get the semaphore without sleeping,
465 * if this does not work then we need to drop the
466 * spinlock and do a hard attempt on the semaphore.
467 */
468 if (down_trylock(&bp->b_sema)) {
469 if (!(flags & XBF_TRYLOCK)) {
470 /* wait for buffer ownership */
471 xfs_buf_lock(bp);
472 XFS_STATS_INC(xb_get_locked_waited);
473 } else {
474 /* We asked for a trylock and failed, no need
475 * to look at file offset and length here, we
476 * know that this buffer at least overlaps our
477 * buffer and is locked, therefore our buffer
478 * either does not exist, or is this buffer.
479 */
480 xfs_buf_rele(bp);
481 XFS_STATS_INC(xb_busy_locked);
482 return NULL;
483 }
484 } else {
485 /* trylock worked */
486 XB_SET_OWNER(bp);
487 }
488
489 if (bp->b_flags & XBF_STALE) {
490 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
491 bp->b_flags &= XBF_MAPPED;
492 }
493
494 trace_xfs_buf_find(bp, flags, _RET_IP_);
495 XFS_STATS_INC(xb_get_locked);
496 return bp;
497 }
498
499 /*
500 * Assembles a buffer covering the specified range.
501 * Storage in memory for all portions of the buffer will be allocated,
502 * although backing storage may not be.
503 */
504 xfs_buf_t *
505 xfs_buf_get(
506 xfs_buftarg_t *target,/* target for buffer */
507 xfs_off_t ioff, /* starting offset of range */
508 size_t isize, /* length of range */
509 xfs_buf_flags_t flags)
510 {
511 xfs_buf_t *bp, *new_bp;
512 int error = 0, i;
513
514 new_bp = xfs_buf_allocate(flags);
515 if (unlikely(!new_bp))
516 return NULL;
517
518 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
519 if (bp == new_bp) {
520 error = _xfs_buf_lookup_pages(bp, flags);
521 if (error)
522 goto no_buffer;
523 } else {
524 xfs_buf_deallocate(new_bp);
525 if (unlikely(bp == NULL))
526 return NULL;
527 }
528
529 for (i = 0; i < bp->b_page_count; i++)
530 mark_page_accessed(bp->b_pages[i]);
531
532 if (!(bp->b_flags & XBF_MAPPED)) {
533 error = _xfs_buf_map_pages(bp, flags);
534 if (unlikely(error)) {
535 printk(KERN_WARNING "%s: failed to map pages\n",
536 __func__);
537 goto no_buffer;
538 }
539 }
540
541 XFS_STATS_INC(xb_get);
542
543 /*
544 * Always fill in the block number now, the mapped cases can do
545 * their own overlay of this later.
546 */
547 bp->b_bn = ioff;
548 bp->b_count_desired = bp->b_buffer_length;
549
550 trace_xfs_buf_get(bp, flags, _RET_IP_);
551 return bp;
552
553 no_buffer:
554 if (flags & (XBF_LOCK | XBF_TRYLOCK))
555 xfs_buf_unlock(bp);
556 xfs_buf_rele(bp);
557 return NULL;
558 }
559
560 STATIC int
561 _xfs_buf_read(
562 xfs_buf_t *bp,
563 xfs_buf_flags_t flags)
564 {
565 int status;
566
567 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
568 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
569
570 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
571 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
572 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
573 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
574
575 status = xfs_buf_iorequest(bp);
576 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
577 return status;
578 return xfs_buf_iowait(bp);
579 }
580
581 xfs_buf_t *
582 xfs_buf_read(
583 xfs_buftarg_t *target,
584 xfs_off_t ioff,
585 size_t isize,
586 xfs_buf_flags_t flags)
587 {
588 xfs_buf_t *bp;
589
590 flags |= XBF_READ;
591
592 bp = xfs_buf_get(target, ioff, isize, flags);
593 if (bp) {
594 trace_xfs_buf_read(bp, flags, _RET_IP_);
595
596 if (!XFS_BUF_ISDONE(bp)) {
597 XFS_STATS_INC(xb_get_read);
598 _xfs_buf_read(bp, flags);
599 } else if (flags & XBF_ASYNC) {
600 /*
601 * Read ahead call which is already satisfied,
602 * drop the buffer
603 */
604 goto no_buffer;
605 } else {
606 /* We do not want read in the flags */
607 bp->b_flags &= ~XBF_READ;
608 }
609 }
610
611 return bp;
612
613 no_buffer:
614 if (flags & (XBF_LOCK | XBF_TRYLOCK))
615 xfs_buf_unlock(bp);
616 xfs_buf_rele(bp);
617 return NULL;
618 }
619
620 /*
621 * If we are not low on memory then do the readahead in a deadlock
622 * safe manner.
623 */
624 void
625 xfs_buf_readahead(
626 xfs_buftarg_t *target,
627 xfs_off_t ioff,
628 size_t isize,
629 xfs_buf_flags_t flags)
630 {
631 struct backing_dev_info *bdi;
632
633 bdi = target->bt_mapping->backing_dev_info;
634 if (bdi_read_congested(bdi))
635 return;
636
637 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
638 xfs_buf_read(target, ioff, isize, flags);
639 }
640
641 /*
642 * Read an uncached buffer from disk. Allocates and returns a locked
643 * buffer containing the disk contents or nothing.
644 */
645 struct xfs_buf *
646 xfs_buf_read_uncached(
647 struct xfs_mount *mp,
648 struct xfs_buftarg *target,
649 xfs_daddr_t daddr,
650 size_t length,
651 int flags)
652 {
653 xfs_buf_t *bp;
654 int error;
655
656 bp = xfs_buf_get_uncached(target, length, flags);
657 if (!bp)
658 return NULL;
659
660 /* set up the buffer for a read IO */
661 xfs_buf_lock(bp);
662 XFS_BUF_SET_ADDR(bp, daddr);
663 XFS_BUF_READ(bp);
664 XFS_BUF_BUSY(bp);
665
666 xfsbdstrat(mp, bp);
667 error = xfs_iowait(bp);
668 if (error || bp->b_error) {
669 xfs_buf_relse(bp);
670 return NULL;
671 }
672 return bp;
673 }
674
675 xfs_buf_t *
676 xfs_buf_get_empty(
677 size_t len,
678 xfs_buftarg_t *target)
679 {
680 xfs_buf_t *bp;
681
682 bp = xfs_buf_allocate(0);
683 if (bp)
684 _xfs_buf_initialize(bp, target, 0, len, 0);
685 return bp;
686 }
687
688 static inline struct page *
689 mem_to_page(
690 void *addr)
691 {
692 if ((!is_vmalloc_addr(addr))) {
693 return virt_to_page(addr);
694 } else {
695 return vmalloc_to_page(addr);
696 }
697 }
698
699 int
700 xfs_buf_associate_memory(
701 xfs_buf_t *bp,
702 void *mem,
703 size_t len)
704 {
705 int rval;
706 int i = 0;
707 unsigned long pageaddr;
708 unsigned long offset;
709 size_t buflen;
710 int page_count;
711
712 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
713 offset = (unsigned long)mem - pageaddr;
714 buflen = PAGE_CACHE_ALIGN(len + offset);
715 page_count = buflen >> PAGE_CACHE_SHIFT;
716
717 /* Free any previous set of page pointers */
718 if (bp->b_pages)
719 _xfs_buf_free_pages(bp);
720
721 bp->b_pages = NULL;
722 bp->b_addr = mem;
723
724 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
725 if (rval)
726 return rval;
727
728 bp->b_offset = offset;
729
730 for (i = 0; i < bp->b_page_count; i++) {
731 bp->b_pages[i] = mem_to_page((void *)pageaddr);
732 pageaddr += PAGE_CACHE_SIZE;
733 }
734
735 bp->b_count_desired = len;
736 bp->b_buffer_length = buflen;
737 bp->b_flags |= XBF_MAPPED;
738 bp->b_flags &= ~_XBF_PAGE_LOCKED;
739
740 return 0;
741 }
742
743 xfs_buf_t *
744 xfs_buf_get_uncached(
745 struct xfs_buftarg *target,
746 size_t len,
747 int flags)
748 {
749 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
750 int error, i;
751 xfs_buf_t *bp;
752
753 bp = xfs_buf_allocate(0);
754 if (unlikely(bp == NULL))
755 goto fail;
756 _xfs_buf_initialize(bp, target, 0, len, 0);
757
758 error = _xfs_buf_get_pages(bp, page_count, 0);
759 if (error)
760 goto fail_free_buf;
761
762 for (i = 0; i < page_count; i++) {
763 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
764 if (!bp->b_pages[i])
765 goto fail_free_mem;
766 }
767 bp->b_flags |= _XBF_PAGES;
768
769 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
770 if (unlikely(error)) {
771 printk(KERN_WARNING "%s: failed to map pages\n",
772 __func__);
773 goto fail_free_mem;
774 }
775
776 xfs_buf_unlock(bp);
777
778 trace_xfs_buf_get_uncached(bp, _RET_IP_);
779 return bp;
780
781 fail_free_mem:
782 while (--i >= 0)
783 __free_page(bp->b_pages[i]);
784 _xfs_buf_free_pages(bp);
785 fail_free_buf:
786 xfs_buf_deallocate(bp);
787 fail:
788 return NULL;
789 }
790
791 /*
792 * Increment reference count on buffer, to hold the buffer concurrently
793 * with another thread which may release (free) the buffer asynchronously.
794 * Must hold the buffer already to call this function.
795 */
796 void
797 xfs_buf_hold(
798 xfs_buf_t *bp)
799 {
800 trace_xfs_buf_hold(bp, _RET_IP_);
801 atomic_inc(&bp->b_hold);
802 }
803
804 /*
805 * Releases a hold on the specified buffer. If the
806 * the hold count is 1, calls xfs_buf_free.
807 */
808 void
809 xfs_buf_rele(
810 xfs_buf_t *bp)
811 {
812 xfs_bufhash_t *hash = bp->b_hash;
813
814 trace_xfs_buf_rele(bp, _RET_IP_);
815
816 if (unlikely(!hash)) {
817 ASSERT(!bp->b_relse);
818 if (atomic_dec_and_test(&bp->b_hold))
819 xfs_buf_free(bp);
820 return;
821 }
822
823 ASSERT(atomic_read(&bp->b_hold) > 0);
824 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
825 if (bp->b_relse) {
826 atomic_inc(&bp->b_hold);
827 spin_unlock(&hash->bh_lock);
828 (*(bp->b_relse)) (bp);
829 } else if (bp->b_flags & XBF_FS_MANAGED) {
830 spin_unlock(&hash->bh_lock);
831 } else {
832 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
833 list_del_init(&bp->b_hash_list);
834 spin_unlock(&hash->bh_lock);
835 xfs_buf_free(bp);
836 }
837 }
838 }
839
840
841 /*
842 * Mutual exclusion on buffers. Locking model:
843 *
844 * Buffers associated with inodes for which buffer locking
845 * is not enabled are not protected by semaphores, and are
846 * assumed to be exclusively owned by the caller. There is a
847 * spinlock in the buffer, used by the caller when concurrent
848 * access is possible.
849 */
850
851 /*
852 * Locks a buffer object, if it is not already locked.
853 * Note that this in no way locks the underlying pages, so it is only
854 * useful for synchronizing concurrent use of buffer objects, not for
855 * synchronizing independent access to the underlying pages.
856 */
857 int
858 xfs_buf_cond_lock(
859 xfs_buf_t *bp)
860 {
861 int locked;
862
863 locked = down_trylock(&bp->b_sema) == 0;
864 if (locked)
865 XB_SET_OWNER(bp);
866
867 trace_xfs_buf_cond_lock(bp, _RET_IP_);
868 return locked ? 0 : -EBUSY;
869 }
870
871 int
872 xfs_buf_lock_value(
873 xfs_buf_t *bp)
874 {
875 return bp->b_sema.count;
876 }
877
878 /*
879 * Locks a buffer object.
880 * Note that this in no way locks the underlying pages, so it is only
881 * useful for synchronizing concurrent use of buffer objects, not for
882 * synchronizing independent access to the underlying pages.
883 *
884 * If we come across a stale, pinned, locked buffer, we know that we
885 * are being asked to lock a buffer that has been reallocated. Because
886 * it is pinned, we know that the log has not been pushed to disk and
887 * hence it will still be locked. Rather than sleeping until someone
888 * else pushes the log, push it ourselves before trying to get the lock.
889 */
890 void
891 xfs_buf_lock(
892 xfs_buf_t *bp)
893 {
894 trace_xfs_buf_lock(bp, _RET_IP_);
895
896 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
897 xfs_log_force(bp->b_target->bt_mount, 0);
898 if (atomic_read(&bp->b_io_remaining))
899 blk_run_address_space(bp->b_target->bt_mapping);
900 down(&bp->b_sema);
901 XB_SET_OWNER(bp);
902
903 trace_xfs_buf_lock_done(bp, _RET_IP_);
904 }
905
906 /*
907 * Releases the lock on the buffer object.
908 * If the buffer is marked delwri but is not queued, do so before we
909 * unlock the buffer as we need to set flags correctly. We also need to
910 * take a reference for the delwri queue because the unlocker is going to
911 * drop their's and they don't know we just queued it.
912 */
913 void
914 xfs_buf_unlock(
915 xfs_buf_t *bp)
916 {
917 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
918 atomic_inc(&bp->b_hold);
919 bp->b_flags |= XBF_ASYNC;
920 xfs_buf_delwri_queue(bp, 0);
921 }
922
923 XB_CLEAR_OWNER(bp);
924 up(&bp->b_sema);
925
926 trace_xfs_buf_unlock(bp, _RET_IP_);
927 }
928
929 STATIC void
930 xfs_buf_wait_unpin(
931 xfs_buf_t *bp)
932 {
933 DECLARE_WAITQUEUE (wait, current);
934
935 if (atomic_read(&bp->b_pin_count) == 0)
936 return;
937
938 add_wait_queue(&bp->b_waiters, &wait);
939 for (;;) {
940 set_current_state(TASK_UNINTERRUPTIBLE);
941 if (atomic_read(&bp->b_pin_count) == 0)
942 break;
943 if (atomic_read(&bp->b_io_remaining))
944 blk_run_address_space(bp->b_target->bt_mapping);
945 schedule();
946 }
947 remove_wait_queue(&bp->b_waiters, &wait);
948 set_current_state(TASK_RUNNING);
949 }
950
951 /*
952 * Buffer Utility Routines
953 */
954
955 STATIC void
956 xfs_buf_iodone_work(
957 struct work_struct *work)
958 {
959 xfs_buf_t *bp =
960 container_of(work, xfs_buf_t, b_iodone_work);
961
962 /*
963 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
964 * ordered flag and reissue them. Because we can't tell the higher
965 * layers directly that they should not issue ordered I/O anymore, they
966 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
967 */
968 if ((bp->b_error == EOPNOTSUPP) &&
969 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
970 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
971 bp->b_flags &= ~XBF_ORDERED;
972 bp->b_flags |= _XFS_BARRIER_FAILED;
973 xfs_buf_iorequest(bp);
974 } else if (bp->b_iodone)
975 (*(bp->b_iodone))(bp);
976 else if (bp->b_flags & XBF_ASYNC)
977 xfs_buf_relse(bp);
978 }
979
980 void
981 xfs_buf_ioend(
982 xfs_buf_t *bp,
983 int schedule)
984 {
985 trace_xfs_buf_iodone(bp, _RET_IP_);
986
987 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
988 if (bp->b_error == 0)
989 bp->b_flags |= XBF_DONE;
990
991 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
992 if (schedule) {
993 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
994 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
995 } else {
996 xfs_buf_iodone_work(&bp->b_iodone_work);
997 }
998 } else {
999 complete(&bp->b_iowait);
1000 }
1001 }
1002
1003 void
1004 xfs_buf_ioerror(
1005 xfs_buf_t *bp,
1006 int error)
1007 {
1008 ASSERT(error >= 0 && error <= 0xffff);
1009 bp->b_error = (unsigned short)error;
1010 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1011 }
1012
1013 int
1014 xfs_bwrite(
1015 struct xfs_mount *mp,
1016 struct xfs_buf *bp)
1017 {
1018 int error;
1019
1020 bp->b_flags |= XBF_WRITE;
1021 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1022
1023 xfs_buf_delwri_dequeue(bp);
1024 xfs_bdstrat_cb(bp);
1025
1026 error = xfs_buf_iowait(bp);
1027 if (error)
1028 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1029 xfs_buf_relse(bp);
1030 return error;
1031 }
1032
1033 void
1034 xfs_bdwrite(
1035 void *mp,
1036 struct xfs_buf *bp)
1037 {
1038 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1039
1040 bp->b_flags &= ~XBF_READ;
1041 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1042
1043 xfs_buf_delwri_queue(bp, 1);
1044 }
1045
1046 /*
1047 * Called when we want to stop a buffer from getting written or read.
1048 * We attach the EIO error, muck with its flags, and call biodone
1049 * so that the proper iodone callbacks get called.
1050 */
1051 STATIC int
1052 xfs_bioerror(
1053 xfs_buf_t *bp)
1054 {
1055 #ifdef XFSERRORDEBUG
1056 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1057 #endif
1058
1059 /*
1060 * No need to wait until the buffer is unpinned, we aren't flushing it.
1061 */
1062 XFS_BUF_ERROR(bp, EIO);
1063
1064 /*
1065 * We're calling biodone, so delete XBF_DONE flag.
1066 */
1067 XFS_BUF_UNREAD(bp);
1068 XFS_BUF_UNDELAYWRITE(bp);
1069 XFS_BUF_UNDONE(bp);
1070 XFS_BUF_STALE(bp);
1071
1072 xfs_biodone(bp);
1073
1074 return EIO;
1075 }
1076
1077 /*
1078 * Same as xfs_bioerror, except that we are releasing the buffer
1079 * here ourselves, and avoiding the biodone call.
1080 * This is meant for userdata errors; metadata bufs come with
1081 * iodone functions attached, so that we can track down errors.
1082 */
1083 STATIC int
1084 xfs_bioerror_relse(
1085 struct xfs_buf *bp)
1086 {
1087 int64_t fl = XFS_BUF_BFLAGS(bp);
1088 /*
1089 * No need to wait until the buffer is unpinned.
1090 * We aren't flushing it.
1091 *
1092 * chunkhold expects B_DONE to be set, whether
1093 * we actually finish the I/O or not. We don't want to
1094 * change that interface.
1095 */
1096 XFS_BUF_UNREAD(bp);
1097 XFS_BUF_UNDELAYWRITE(bp);
1098 XFS_BUF_DONE(bp);
1099 XFS_BUF_STALE(bp);
1100 XFS_BUF_CLR_IODONE_FUNC(bp);
1101 if (!(fl & XBF_ASYNC)) {
1102 /*
1103 * Mark b_error and B_ERROR _both_.
1104 * Lot's of chunkcache code assumes that.
1105 * There's no reason to mark error for
1106 * ASYNC buffers.
1107 */
1108 XFS_BUF_ERROR(bp, EIO);
1109 XFS_BUF_FINISH_IOWAIT(bp);
1110 } else {
1111 xfs_buf_relse(bp);
1112 }
1113
1114 return EIO;
1115 }
1116
1117
1118 /*
1119 * All xfs metadata buffers except log state machine buffers
1120 * get this attached as their b_bdstrat callback function.
1121 * This is so that we can catch a buffer
1122 * after prematurely unpinning it to forcibly shutdown the filesystem.
1123 */
1124 int
1125 xfs_bdstrat_cb(
1126 struct xfs_buf *bp)
1127 {
1128 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1129 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1130 /*
1131 * Metadata write that didn't get logged but
1132 * written delayed anyway. These aren't associated
1133 * with a transaction, and can be ignored.
1134 */
1135 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1136 return xfs_bioerror_relse(bp);
1137 else
1138 return xfs_bioerror(bp);
1139 }
1140
1141 xfs_buf_iorequest(bp);
1142 return 0;
1143 }
1144
1145 /*
1146 * Wrapper around bdstrat so that we can stop data from going to disk in case
1147 * we are shutting down the filesystem. Typically user data goes thru this
1148 * path; one of the exceptions is the superblock.
1149 */
1150 void
1151 xfsbdstrat(
1152 struct xfs_mount *mp,
1153 struct xfs_buf *bp)
1154 {
1155 if (XFS_FORCED_SHUTDOWN(mp)) {
1156 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1157 xfs_bioerror_relse(bp);
1158 return;
1159 }
1160
1161 xfs_buf_iorequest(bp);
1162 }
1163
1164 STATIC void
1165 _xfs_buf_ioend(
1166 xfs_buf_t *bp,
1167 int schedule)
1168 {
1169 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1170 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1171 xfs_buf_ioend(bp, schedule);
1172 }
1173 }
1174
1175 STATIC void
1176 xfs_buf_bio_end_io(
1177 struct bio *bio,
1178 int error)
1179 {
1180 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1181 unsigned int blocksize = bp->b_target->bt_bsize;
1182 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1183
1184 xfs_buf_ioerror(bp, -error);
1185
1186 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1187 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1188
1189 do {
1190 struct page *page = bvec->bv_page;
1191
1192 ASSERT(!PagePrivate(page));
1193 if (unlikely(bp->b_error)) {
1194 if (bp->b_flags & XBF_READ)
1195 ClearPageUptodate(page);
1196 } else if (blocksize >= PAGE_CACHE_SIZE) {
1197 SetPageUptodate(page);
1198 } else if (!PagePrivate(page) &&
1199 (bp->b_flags & _XBF_PAGE_CACHE)) {
1200 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1201 }
1202
1203 if (--bvec >= bio->bi_io_vec)
1204 prefetchw(&bvec->bv_page->flags);
1205
1206 if (bp->b_flags & _XBF_PAGE_LOCKED)
1207 unlock_page(page);
1208 } while (bvec >= bio->bi_io_vec);
1209
1210 _xfs_buf_ioend(bp, 1);
1211 bio_put(bio);
1212 }
1213
1214 STATIC void
1215 _xfs_buf_ioapply(
1216 xfs_buf_t *bp)
1217 {
1218 int rw, map_i, total_nr_pages, nr_pages;
1219 struct bio *bio;
1220 int offset = bp->b_offset;
1221 int size = bp->b_count_desired;
1222 sector_t sector = bp->b_bn;
1223 unsigned int blocksize = bp->b_target->bt_bsize;
1224
1225 total_nr_pages = bp->b_page_count;
1226 map_i = 0;
1227
1228 if (bp->b_flags & XBF_ORDERED) {
1229 ASSERT(!(bp->b_flags & XBF_READ));
1230 rw = WRITE_BARRIER;
1231 } else if (bp->b_flags & XBF_LOG_BUFFER) {
1232 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1233 bp->b_flags &= ~_XBF_RUN_QUEUES;
1234 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1235 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1236 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1237 bp->b_flags &= ~_XBF_RUN_QUEUES;
1238 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1239 } else {
1240 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1241 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1242 }
1243
1244 /* Special code path for reading a sub page size buffer in --
1245 * we populate up the whole page, and hence the other metadata
1246 * in the same page. This optimization is only valid when the
1247 * filesystem block size is not smaller than the page size.
1248 */
1249 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1250 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1251 (XBF_READ|_XBF_PAGE_LOCKED)) &&
1252 (blocksize >= PAGE_CACHE_SIZE)) {
1253 bio = bio_alloc(GFP_NOIO, 1);
1254
1255 bio->bi_bdev = bp->b_target->bt_bdev;
1256 bio->bi_sector = sector - (offset >> BBSHIFT);
1257 bio->bi_end_io = xfs_buf_bio_end_io;
1258 bio->bi_private = bp;
1259
1260 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1261 size = 0;
1262
1263 atomic_inc(&bp->b_io_remaining);
1264
1265 goto submit_io;
1266 }
1267
1268 next_chunk:
1269 atomic_inc(&bp->b_io_remaining);
1270 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1271 if (nr_pages > total_nr_pages)
1272 nr_pages = total_nr_pages;
1273
1274 bio = bio_alloc(GFP_NOIO, nr_pages);
1275 bio->bi_bdev = bp->b_target->bt_bdev;
1276 bio->bi_sector = sector;
1277 bio->bi_end_io = xfs_buf_bio_end_io;
1278 bio->bi_private = bp;
1279
1280 for (; size && nr_pages; nr_pages--, map_i++) {
1281 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1282
1283 if (nbytes > size)
1284 nbytes = size;
1285
1286 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1287 if (rbytes < nbytes)
1288 break;
1289
1290 offset = 0;
1291 sector += nbytes >> BBSHIFT;
1292 size -= nbytes;
1293 total_nr_pages--;
1294 }
1295
1296 submit_io:
1297 if (likely(bio->bi_size)) {
1298 if (xfs_buf_is_vmapped(bp)) {
1299 flush_kernel_vmap_range(bp->b_addr,
1300 xfs_buf_vmap_len(bp));
1301 }
1302 submit_bio(rw, bio);
1303 if (size)
1304 goto next_chunk;
1305 } else {
1306 /*
1307 * if we get here, no pages were added to the bio. However,
1308 * we can't just error out here - if the pages are locked then
1309 * we have to unlock them otherwise we can hang on a later
1310 * access to the page.
1311 */
1312 xfs_buf_ioerror(bp, EIO);
1313 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1314 int i;
1315 for (i = 0; i < bp->b_page_count; i++)
1316 unlock_page(bp->b_pages[i]);
1317 }
1318 bio_put(bio);
1319 }
1320 }
1321
1322 int
1323 xfs_buf_iorequest(
1324 xfs_buf_t *bp)
1325 {
1326 trace_xfs_buf_iorequest(bp, _RET_IP_);
1327
1328 if (bp->b_flags & XBF_DELWRI) {
1329 xfs_buf_delwri_queue(bp, 1);
1330 return 0;
1331 }
1332
1333 if (bp->b_flags & XBF_WRITE) {
1334 xfs_buf_wait_unpin(bp);
1335 }
1336
1337 xfs_buf_hold(bp);
1338
1339 /* Set the count to 1 initially, this will stop an I/O
1340 * completion callout which happens before we have started
1341 * all the I/O from calling xfs_buf_ioend too early.
1342 */
1343 atomic_set(&bp->b_io_remaining, 1);
1344 _xfs_buf_ioapply(bp);
1345 _xfs_buf_ioend(bp, 0);
1346
1347 xfs_buf_rele(bp);
1348 return 0;
1349 }
1350
1351 /*
1352 * Waits for I/O to complete on the buffer supplied.
1353 * It returns immediately if no I/O is pending.
1354 * It returns the I/O error code, if any, or 0 if there was no error.
1355 */
1356 int
1357 xfs_buf_iowait(
1358 xfs_buf_t *bp)
1359 {
1360 trace_xfs_buf_iowait(bp, _RET_IP_);
1361
1362 if (atomic_read(&bp->b_io_remaining))
1363 blk_run_address_space(bp->b_target->bt_mapping);
1364 wait_for_completion(&bp->b_iowait);
1365
1366 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1367 return bp->b_error;
1368 }
1369
1370 xfs_caddr_t
1371 xfs_buf_offset(
1372 xfs_buf_t *bp,
1373 size_t offset)
1374 {
1375 struct page *page;
1376
1377 if (bp->b_flags & XBF_MAPPED)
1378 return XFS_BUF_PTR(bp) + offset;
1379
1380 offset += bp->b_offset;
1381 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1382 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1383 }
1384
1385 /*
1386 * Move data into or out of a buffer.
1387 */
1388 void
1389 xfs_buf_iomove(
1390 xfs_buf_t *bp, /* buffer to process */
1391 size_t boff, /* starting buffer offset */
1392 size_t bsize, /* length to copy */
1393 void *data, /* data address */
1394 xfs_buf_rw_t mode) /* read/write/zero flag */
1395 {
1396 size_t bend, cpoff, csize;
1397 struct page *page;
1398
1399 bend = boff + bsize;
1400 while (boff < bend) {
1401 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1402 cpoff = xfs_buf_poff(boff + bp->b_offset);
1403 csize = min_t(size_t,
1404 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1405
1406 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1407
1408 switch (mode) {
1409 case XBRW_ZERO:
1410 memset(page_address(page) + cpoff, 0, csize);
1411 break;
1412 case XBRW_READ:
1413 memcpy(data, page_address(page) + cpoff, csize);
1414 break;
1415 case XBRW_WRITE:
1416 memcpy(page_address(page) + cpoff, data, csize);
1417 }
1418
1419 boff += csize;
1420 data += csize;
1421 }
1422 }
1423
1424 /*
1425 * Handling of buffer targets (buftargs).
1426 */
1427
1428 /*
1429 * Wait for any bufs with callbacks that have been submitted but
1430 * have not yet returned... walk the hash list for the target.
1431 */
1432 void
1433 xfs_wait_buftarg(
1434 xfs_buftarg_t *btp)
1435 {
1436 xfs_buf_t *bp, *n;
1437 xfs_bufhash_t *hash;
1438 uint i;
1439
1440 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1441 hash = &btp->bt_hash[i];
1442 again:
1443 spin_lock(&hash->bh_lock);
1444 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1445 ASSERT(btp == bp->b_target);
1446 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1447 spin_unlock(&hash->bh_lock);
1448 /*
1449 * Catch superblock reference count leaks
1450 * immediately
1451 */
1452 BUG_ON(bp->b_bn == 0);
1453 delay(100);
1454 goto again;
1455 }
1456 }
1457 spin_unlock(&hash->bh_lock);
1458 }
1459 }
1460
1461 /*
1462 * Allocate buffer hash table for a given target.
1463 * For devices containing metadata (i.e. not the log/realtime devices)
1464 * we need to allocate a much larger hash table.
1465 */
1466 STATIC void
1467 xfs_alloc_bufhash(
1468 xfs_buftarg_t *btp,
1469 int external)
1470 {
1471 unsigned int i;
1472
1473 btp->bt_hashshift = external ? 3 : 12; /* 8 or 4096 buckets */
1474 btp->bt_hash = kmem_zalloc_large((1 << btp->bt_hashshift) *
1475 sizeof(xfs_bufhash_t));
1476 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1477 spin_lock_init(&btp->bt_hash[i].bh_lock);
1478 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1479 }
1480 }
1481
1482 STATIC void
1483 xfs_free_bufhash(
1484 xfs_buftarg_t *btp)
1485 {
1486 kmem_free_large(btp->bt_hash);
1487 btp->bt_hash = NULL;
1488 }
1489
1490 /*
1491 * buftarg list for delwrite queue processing
1492 */
1493 static LIST_HEAD(xfs_buftarg_list);
1494 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1495
1496 STATIC void
1497 xfs_register_buftarg(
1498 xfs_buftarg_t *btp)
1499 {
1500 spin_lock(&xfs_buftarg_lock);
1501 list_add(&btp->bt_list, &xfs_buftarg_list);
1502 spin_unlock(&xfs_buftarg_lock);
1503 }
1504
1505 STATIC void
1506 xfs_unregister_buftarg(
1507 xfs_buftarg_t *btp)
1508 {
1509 spin_lock(&xfs_buftarg_lock);
1510 list_del(&btp->bt_list);
1511 spin_unlock(&xfs_buftarg_lock);
1512 }
1513
1514 void
1515 xfs_free_buftarg(
1516 struct xfs_mount *mp,
1517 struct xfs_buftarg *btp)
1518 {
1519 xfs_flush_buftarg(btp, 1);
1520 if (mp->m_flags & XFS_MOUNT_BARRIER)
1521 xfs_blkdev_issue_flush(btp);
1522 xfs_free_bufhash(btp);
1523 iput(btp->bt_mapping->host);
1524
1525 /* Unregister the buftarg first so that we don't get a
1526 * wakeup finding a non-existent task
1527 */
1528 xfs_unregister_buftarg(btp);
1529 kthread_stop(btp->bt_task);
1530
1531 kmem_free(btp);
1532 }
1533
1534 STATIC int
1535 xfs_setsize_buftarg_flags(
1536 xfs_buftarg_t *btp,
1537 unsigned int blocksize,
1538 unsigned int sectorsize,
1539 int verbose)
1540 {
1541 btp->bt_bsize = blocksize;
1542 btp->bt_sshift = ffs(sectorsize) - 1;
1543 btp->bt_smask = sectorsize - 1;
1544
1545 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1546 printk(KERN_WARNING
1547 "XFS: Cannot set_blocksize to %u on device %s\n",
1548 sectorsize, XFS_BUFTARG_NAME(btp));
1549 return EINVAL;
1550 }
1551
1552 if (verbose &&
1553 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1554 printk(KERN_WARNING
1555 "XFS: %u byte sectors in use on device %s. "
1556 "This is suboptimal; %u or greater is ideal.\n",
1557 sectorsize, XFS_BUFTARG_NAME(btp),
1558 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1559 }
1560
1561 return 0;
1562 }
1563
1564 /*
1565 * When allocating the initial buffer target we have not yet
1566 * read in the superblock, so don't know what sized sectors
1567 * are being used is at this early stage. Play safe.
1568 */
1569 STATIC int
1570 xfs_setsize_buftarg_early(
1571 xfs_buftarg_t *btp,
1572 struct block_device *bdev)
1573 {
1574 return xfs_setsize_buftarg_flags(btp,
1575 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1576 }
1577
1578 int
1579 xfs_setsize_buftarg(
1580 xfs_buftarg_t *btp,
1581 unsigned int blocksize,
1582 unsigned int sectorsize)
1583 {
1584 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1585 }
1586
1587 STATIC int
1588 xfs_mapping_buftarg(
1589 xfs_buftarg_t *btp,
1590 struct block_device *bdev)
1591 {
1592 struct backing_dev_info *bdi;
1593 struct inode *inode;
1594 struct address_space *mapping;
1595 static const struct address_space_operations mapping_aops = {
1596 .sync_page = block_sync_page,
1597 .migratepage = fail_migrate_page,
1598 };
1599
1600 inode = new_inode(bdev->bd_inode->i_sb);
1601 if (!inode) {
1602 printk(KERN_WARNING
1603 "XFS: Cannot allocate mapping inode for device %s\n",
1604 XFS_BUFTARG_NAME(btp));
1605 return ENOMEM;
1606 }
1607 inode->i_mode = S_IFBLK;
1608 inode->i_bdev = bdev;
1609 inode->i_rdev = bdev->bd_dev;
1610 bdi = blk_get_backing_dev_info(bdev);
1611 if (!bdi)
1612 bdi = &default_backing_dev_info;
1613 mapping = &inode->i_data;
1614 mapping->a_ops = &mapping_aops;
1615 mapping->backing_dev_info = bdi;
1616 mapping_set_gfp_mask(mapping, GFP_NOFS);
1617 btp->bt_mapping = mapping;
1618 return 0;
1619 }
1620
1621 STATIC int
1622 xfs_alloc_delwrite_queue(
1623 xfs_buftarg_t *btp,
1624 const char *fsname)
1625 {
1626 int error = 0;
1627
1628 INIT_LIST_HEAD(&btp->bt_list);
1629 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1630 spin_lock_init(&btp->bt_delwrite_lock);
1631 btp->bt_flags = 0;
1632 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1633 if (IS_ERR(btp->bt_task)) {
1634 error = PTR_ERR(btp->bt_task);
1635 goto out_error;
1636 }
1637 xfs_register_buftarg(btp);
1638 out_error:
1639 return error;
1640 }
1641
1642 xfs_buftarg_t *
1643 xfs_alloc_buftarg(
1644 struct xfs_mount *mp,
1645 struct block_device *bdev,
1646 int external,
1647 const char *fsname)
1648 {
1649 xfs_buftarg_t *btp;
1650
1651 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1652
1653 btp->bt_mount = mp;
1654 btp->bt_dev = bdev->bd_dev;
1655 btp->bt_bdev = bdev;
1656 if (xfs_setsize_buftarg_early(btp, bdev))
1657 goto error;
1658 if (xfs_mapping_buftarg(btp, bdev))
1659 goto error;
1660 if (xfs_alloc_delwrite_queue(btp, fsname))
1661 goto error;
1662 xfs_alloc_bufhash(btp, external);
1663 return btp;
1664
1665 error:
1666 kmem_free(btp);
1667 return NULL;
1668 }
1669
1670
1671 /*
1672 * Delayed write buffer handling
1673 */
1674 STATIC void
1675 xfs_buf_delwri_queue(
1676 xfs_buf_t *bp,
1677 int unlock)
1678 {
1679 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1680 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1681
1682 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1683
1684 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1685
1686 spin_lock(dwlk);
1687 /* If already in the queue, dequeue and place at tail */
1688 if (!list_empty(&bp->b_list)) {
1689 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1690 if (unlock)
1691 atomic_dec(&bp->b_hold);
1692 list_del(&bp->b_list);
1693 }
1694
1695 if (list_empty(dwq)) {
1696 /* start xfsbufd as it is about to have something to do */
1697 wake_up_process(bp->b_target->bt_task);
1698 }
1699
1700 bp->b_flags |= _XBF_DELWRI_Q;
1701 list_add_tail(&bp->b_list, dwq);
1702 bp->b_queuetime = jiffies;
1703 spin_unlock(dwlk);
1704
1705 if (unlock)
1706 xfs_buf_unlock(bp);
1707 }
1708
1709 void
1710 xfs_buf_delwri_dequeue(
1711 xfs_buf_t *bp)
1712 {
1713 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1714 int dequeued = 0;
1715
1716 spin_lock(dwlk);
1717 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1718 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1719 list_del_init(&bp->b_list);
1720 dequeued = 1;
1721 }
1722 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1723 spin_unlock(dwlk);
1724
1725 if (dequeued)
1726 xfs_buf_rele(bp);
1727
1728 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1729 }
1730
1731 /*
1732 * If a delwri buffer needs to be pushed before it has aged out, then promote
1733 * it to the head of the delwri queue so that it will be flushed on the next
1734 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1735 * than the age currently needed to flush the buffer. Hence the next time the
1736 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1737 */
1738 void
1739 xfs_buf_delwri_promote(
1740 struct xfs_buf *bp)
1741 {
1742 struct xfs_buftarg *btp = bp->b_target;
1743 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1744
1745 ASSERT(bp->b_flags & XBF_DELWRI);
1746 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1747
1748 /*
1749 * Check the buffer age before locking the delayed write queue as we
1750 * don't need to promote buffers that are already past the flush age.
1751 */
1752 if (bp->b_queuetime < jiffies - age)
1753 return;
1754 bp->b_queuetime = jiffies - age;
1755 spin_lock(&btp->bt_delwrite_lock);
1756 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1757 spin_unlock(&btp->bt_delwrite_lock);
1758 }
1759
1760 STATIC void
1761 xfs_buf_runall_queues(
1762 struct workqueue_struct *queue)
1763 {
1764 flush_workqueue(queue);
1765 }
1766
1767 STATIC int
1768 xfsbufd_wakeup(
1769 struct shrinker *shrink,
1770 int priority,
1771 gfp_t mask)
1772 {
1773 xfs_buftarg_t *btp;
1774
1775 spin_lock(&xfs_buftarg_lock);
1776 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1777 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1778 continue;
1779 if (list_empty(&btp->bt_delwrite_queue))
1780 continue;
1781 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1782 wake_up_process(btp->bt_task);
1783 }
1784 spin_unlock(&xfs_buftarg_lock);
1785 return 0;
1786 }
1787
1788 /*
1789 * Move as many buffers as specified to the supplied list
1790 * idicating if we skipped any buffers to prevent deadlocks.
1791 */
1792 STATIC int
1793 xfs_buf_delwri_split(
1794 xfs_buftarg_t *target,
1795 struct list_head *list,
1796 unsigned long age)
1797 {
1798 xfs_buf_t *bp, *n;
1799 struct list_head *dwq = &target->bt_delwrite_queue;
1800 spinlock_t *dwlk = &target->bt_delwrite_lock;
1801 int skipped = 0;
1802 int force;
1803
1804 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1805 INIT_LIST_HEAD(list);
1806 spin_lock(dwlk);
1807 list_for_each_entry_safe(bp, n, dwq, b_list) {
1808 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1809 ASSERT(bp->b_flags & XBF_DELWRI);
1810
1811 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1812 if (!force &&
1813 time_before(jiffies, bp->b_queuetime + age)) {
1814 xfs_buf_unlock(bp);
1815 break;
1816 }
1817
1818 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1819 _XBF_RUN_QUEUES);
1820 bp->b_flags |= XBF_WRITE;
1821 list_move_tail(&bp->b_list, list);
1822 } else
1823 skipped++;
1824 }
1825 spin_unlock(dwlk);
1826
1827 return skipped;
1828
1829 }
1830
1831 /*
1832 * Compare function is more complex than it needs to be because
1833 * the return value is only 32 bits and we are doing comparisons
1834 * on 64 bit values
1835 */
1836 static int
1837 xfs_buf_cmp(
1838 void *priv,
1839 struct list_head *a,
1840 struct list_head *b)
1841 {
1842 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1843 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1844 xfs_daddr_t diff;
1845
1846 diff = ap->b_bn - bp->b_bn;
1847 if (diff < 0)
1848 return -1;
1849 if (diff > 0)
1850 return 1;
1851 return 0;
1852 }
1853
1854 void
1855 xfs_buf_delwri_sort(
1856 xfs_buftarg_t *target,
1857 struct list_head *list)
1858 {
1859 list_sort(NULL, list, xfs_buf_cmp);
1860 }
1861
1862 STATIC int
1863 xfsbufd(
1864 void *data)
1865 {
1866 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1867
1868 current->flags |= PF_MEMALLOC;
1869
1870 set_freezable();
1871
1872 do {
1873 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1874 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1875 int count = 0;
1876 struct list_head tmp;
1877
1878 if (unlikely(freezing(current))) {
1879 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1880 refrigerator();
1881 } else {
1882 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1883 }
1884
1885 /* sleep for a long time if there is nothing to do. */
1886 if (list_empty(&target->bt_delwrite_queue))
1887 tout = MAX_SCHEDULE_TIMEOUT;
1888 schedule_timeout_interruptible(tout);
1889
1890 xfs_buf_delwri_split(target, &tmp, age);
1891 list_sort(NULL, &tmp, xfs_buf_cmp);
1892 while (!list_empty(&tmp)) {
1893 struct xfs_buf *bp;
1894 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1895 list_del_init(&bp->b_list);
1896 xfs_bdstrat_cb(bp);
1897 count++;
1898 }
1899 if (count)
1900 blk_run_address_space(target->bt_mapping);
1901
1902 } while (!kthread_should_stop());
1903
1904 return 0;
1905 }
1906
1907 /*
1908 * Go through all incore buffers, and release buffers if they belong to
1909 * the given device. This is used in filesystem error handling to
1910 * preserve the consistency of its metadata.
1911 */
1912 int
1913 xfs_flush_buftarg(
1914 xfs_buftarg_t *target,
1915 int wait)
1916 {
1917 xfs_buf_t *bp;
1918 int pincount = 0;
1919 LIST_HEAD(tmp_list);
1920 LIST_HEAD(wait_list);
1921
1922 xfs_buf_runall_queues(xfsconvertd_workqueue);
1923 xfs_buf_runall_queues(xfsdatad_workqueue);
1924 xfs_buf_runall_queues(xfslogd_workqueue);
1925
1926 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1927 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1928
1929 /*
1930 * Dropped the delayed write list lock, now walk the temporary list.
1931 * All I/O is issued async and then if we need to wait for completion
1932 * we do that after issuing all the IO.
1933 */
1934 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1935 while (!list_empty(&tmp_list)) {
1936 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1937 ASSERT(target == bp->b_target);
1938 list_del_init(&bp->b_list);
1939 if (wait) {
1940 bp->b_flags &= ~XBF_ASYNC;
1941 list_add(&bp->b_list, &wait_list);
1942 }
1943 xfs_bdstrat_cb(bp);
1944 }
1945
1946 if (wait) {
1947 /* Expedite and wait for IO to complete. */
1948 blk_run_address_space(target->bt_mapping);
1949 while (!list_empty(&wait_list)) {
1950 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1951
1952 list_del_init(&bp->b_list);
1953 xfs_iowait(bp);
1954 xfs_buf_relse(bp);
1955 }
1956 }
1957
1958 return pincount;
1959 }
1960
1961 int __init
1962 xfs_buf_init(void)
1963 {
1964 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1965 KM_ZONE_HWALIGN, NULL);
1966 if (!xfs_buf_zone)
1967 goto out;
1968
1969 xfslogd_workqueue = alloc_workqueue("xfslogd",
1970 WQ_RESCUER | WQ_HIGHPRI, 1);
1971 if (!xfslogd_workqueue)
1972 goto out_free_buf_zone;
1973
1974 xfsdatad_workqueue = create_workqueue("xfsdatad");
1975 if (!xfsdatad_workqueue)
1976 goto out_destroy_xfslogd_workqueue;
1977
1978 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1979 if (!xfsconvertd_workqueue)
1980 goto out_destroy_xfsdatad_workqueue;
1981
1982 register_shrinker(&xfs_buf_shake);
1983 return 0;
1984
1985 out_destroy_xfsdatad_workqueue:
1986 destroy_workqueue(xfsdatad_workqueue);
1987 out_destroy_xfslogd_workqueue:
1988 destroy_workqueue(xfslogd_workqueue);
1989 out_free_buf_zone:
1990 kmem_zone_destroy(xfs_buf_zone);
1991 out:
1992 return -ENOMEM;
1993 }
1994
1995 void
1996 xfs_buf_terminate(void)
1997 {
1998 unregister_shrinker(&xfs_buf_shake);
1999 destroy_workqueue(xfsconvertd_workqueue);
2000 destroy_workqueue(xfsdatad_workqueue);
2001 destroy_workqueue(xfslogd_workqueue);
2002 kmem_zone_destroy(xfs_buf_zone);
2003 }
2004
2005 #ifdef CONFIG_KDB_MODULES
2006 struct list_head *
2007 xfs_get_buftarg_list(void)
2008 {
2009 return &xfs_buftarg_list;
2010 }
2011 #endif
This page took 0.103292 seconds and 5 git commands to generate.