xfs: kill the b_strat callback in xfs_buf
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
48 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
49 static struct shrinker xfs_buf_shake = {
50 .shrink = xfsbufd_wakeup,
51 .seeks = DEFAULT_SEEKS,
52 };
53
54 static struct workqueue_struct *xfslogd_workqueue;
55 struct workqueue_struct *xfsdatad_workqueue;
56 struct workqueue_struct *xfsconvertd_workqueue;
57
58 #ifdef XFS_BUF_LOCK_TRACKING
59 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
60 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
61 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
62 #else
63 # define XB_SET_OWNER(bp) do { } while (0)
64 # define XB_CLEAR_OWNER(bp) do { } while (0)
65 # define XB_GET_OWNER(bp) do { } while (0)
66 #endif
67
68 #define xb_to_gfp(flags) \
69 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
71
72 #define xb_to_km(flags) \
73 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
74
75 #define xfs_buf_allocate(flags) \
76 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77 #define xfs_buf_deallocate(bp) \
78 kmem_zone_free(xfs_buf_zone, (bp));
79
80 static inline int
81 xfs_buf_is_vmapped(
82 struct xfs_buf *bp)
83 {
84 /*
85 * Return true if the buffer is vmapped.
86 *
87 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88 * code is clever enough to know it doesn't have to map a single page,
89 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90 */
91 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92 }
93
94 static inline int
95 xfs_buf_vmap_len(
96 struct xfs_buf *bp)
97 {
98 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99 }
100
101 /*
102 * Page Region interfaces.
103 *
104 * For pages in filesystems where the blocksize is smaller than the
105 * pagesize, we use the page->private field (long) to hold a bitmap
106 * of uptodate regions within the page.
107 *
108 * Each such region is "bytes per page / bits per long" bytes long.
109 *
110 * NBPPR == number-of-bytes-per-page-region
111 * BTOPR == bytes-to-page-region (rounded up)
112 * BTOPRT == bytes-to-page-region-truncated (rounded down)
113 */
114 #if (BITS_PER_LONG == 32)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
116 #elif (BITS_PER_LONG == 64)
117 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
118 #else
119 #error BITS_PER_LONG must be 32 or 64
120 #endif
121 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
122 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
124
125 STATIC unsigned long
126 page_region_mask(
127 size_t offset,
128 size_t length)
129 {
130 unsigned long mask;
131 int first, final;
132
133 first = BTOPR(offset);
134 final = BTOPRT(offset + length - 1);
135 first = min(first, final);
136
137 mask = ~0UL;
138 mask <<= BITS_PER_LONG - (final - first);
139 mask >>= BITS_PER_LONG - (final);
140
141 ASSERT(offset + length <= PAGE_CACHE_SIZE);
142 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144 return mask;
145 }
146
147 STATIC void
148 set_page_region(
149 struct page *page,
150 size_t offset,
151 size_t length)
152 {
153 set_page_private(page,
154 page_private(page) | page_region_mask(offset, length));
155 if (page_private(page) == ~0UL)
156 SetPageUptodate(page);
157 }
158
159 STATIC int
160 test_page_region(
161 struct page *page,
162 size_t offset,
163 size_t length)
164 {
165 unsigned long mask = page_region_mask(offset, length);
166
167 return (mask && (page_private(page) & mask) == mask);
168 }
169
170 /*
171 * Internal xfs_buf_t object manipulation
172 */
173
174 STATIC void
175 _xfs_buf_initialize(
176 xfs_buf_t *bp,
177 xfs_buftarg_t *target,
178 xfs_off_t range_base,
179 size_t range_length,
180 xfs_buf_flags_t flags)
181 {
182 /*
183 * We don't want certain flags to appear in b_flags.
184 */
185 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187 memset(bp, 0, sizeof(xfs_buf_t));
188 atomic_set(&bp->b_hold, 1);
189 init_completion(&bp->b_iowait);
190 INIT_LIST_HEAD(&bp->b_list);
191 INIT_LIST_HEAD(&bp->b_hash_list);
192 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
193 XB_SET_OWNER(bp);
194 bp->b_target = target;
195 bp->b_file_offset = range_base;
196 /*
197 * Set buffer_length and count_desired to the same value initially.
198 * I/O routines should use count_desired, which will be the same in
199 * most cases but may be reset (e.g. XFS recovery).
200 */
201 bp->b_buffer_length = bp->b_count_desired = range_length;
202 bp->b_flags = flags;
203 bp->b_bn = XFS_BUF_DADDR_NULL;
204 atomic_set(&bp->b_pin_count, 0);
205 init_waitqueue_head(&bp->b_waiters);
206
207 XFS_STATS_INC(xb_create);
208
209 trace_xfs_buf_init(bp, _RET_IP_);
210 }
211
212 /*
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
215 */
216 STATIC int
217 _xfs_buf_get_pages(
218 xfs_buf_t *bp,
219 int page_count,
220 xfs_buf_flags_t flags)
221 {
222 /* Make sure that we have a page list */
223 if (bp->b_pages == NULL) {
224 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225 bp->b_page_count = page_count;
226 if (page_count <= XB_PAGES) {
227 bp->b_pages = bp->b_page_array;
228 } else {
229 bp->b_pages = kmem_alloc(sizeof(struct page *) *
230 page_count, xb_to_km(flags));
231 if (bp->b_pages == NULL)
232 return -ENOMEM;
233 }
234 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
235 }
236 return 0;
237 }
238
239 /*
240 * Frees b_pages if it was allocated.
241 */
242 STATIC void
243 _xfs_buf_free_pages(
244 xfs_buf_t *bp)
245 {
246 if (bp->b_pages != bp->b_page_array) {
247 kmem_free(bp->b_pages);
248 bp->b_pages = NULL;
249 }
250 }
251
252 /*
253 * Releases the specified buffer.
254 *
255 * The modification state of any associated pages is left unchanged.
256 * The buffer most not be on any hash - use xfs_buf_rele instead for
257 * hashed and refcounted buffers
258 */
259 void
260 xfs_buf_free(
261 xfs_buf_t *bp)
262 {
263 trace_xfs_buf_free(bp, _RET_IP_);
264
265 ASSERT(list_empty(&bp->b_hash_list));
266
267 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
268 uint i;
269
270 if (xfs_buf_is_vmapped(bp))
271 vm_unmap_ram(bp->b_addr - bp->b_offset,
272 bp->b_page_count);
273
274 for (i = 0; i < bp->b_page_count; i++) {
275 struct page *page = bp->b_pages[i];
276
277 if (bp->b_flags & _XBF_PAGE_CACHE)
278 ASSERT(!PagePrivate(page));
279 page_cache_release(page);
280 }
281 }
282 _xfs_buf_free_pages(bp);
283 xfs_buf_deallocate(bp);
284 }
285
286 /*
287 * Finds all pages for buffer in question and builds it's page list.
288 */
289 STATIC int
290 _xfs_buf_lookup_pages(
291 xfs_buf_t *bp,
292 uint flags)
293 {
294 struct address_space *mapping = bp->b_target->bt_mapping;
295 size_t blocksize = bp->b_target->bt_bsize;
296 size_t size = bp->b_count_desired;
297 size_t nbytes, offset;
298 gfp_t gfp_mask = xb_to_gfp(flags);
299 unsigned short page_count, i;
300 pgoff_t first;
301 xfs_off_t end;
302 int error;
303
304 end = bp->b_file_offset + bp->b_buffer_length;
305 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
306
307 error = _xfs_buf_get_pages(bp, page_count, flags);
308 if (unlikely(error))
309 return error;
310 bp->b_flags |= _XBF_PAGE_CACHE;
311
312 offset = bp->b_offset;
313 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
314
315 for (i = 0; i < bp->b_page_count; i++) {
316 struct page *page;
317 uint retries = 0;
318
319 retry:
320 page = find_or_create_page(mapping, first + i, gfp_mask);
321 if (unlikely(page == NULL)) {
322 if (flags & XBF_READ_AHEAD) {
323 bp->b_page_count = i;
324 for (i = 0; i < bp->b_page_count; i++)
325 unlock_page(bp->b_pages[i]);
326 return -ENOMEM;
327 }
328
329 /*
330 * This could deadlock.
331 *
332 * But until all the XFS lowlevel code is revamped to
333 * handle buffer allocation failures we can't do much.
334 */
335 if (!(++retries % 100))
336 printk(KERN_ERR
337 "XFS: possible memory allocation "
338 "deadlock in %s (mode:0x%x)\n",
339 __func__, gfp_mask);
340
341 XFS_STATS_INC(xb_page_retries);
342 xfsbufd_wakeup(NULL, 0, gfp_mask);
343 congestion_wait(BLK_RW_ASYNC, HZ/50);
344 goto retry;
345 }
346
347 XFS_STATS_INC(xb_page_found);
348
349 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
350 size -= nbytes;
351
352 ASSERT(!PagePrivate(page));
353 if (!PageUptodate(page)) {
354 page_count--;
355 if (blocksize >= PAGE_CACHE_SIZE) {
356 if (flags & XBF_READ)
357 bp->b_flags |= _XBF_PAGE_LOCKED;
358 } else if (!PagePrivate(page)) {
359 if (test_page_region(page, offset, nbytes))
360 page_count++;
361 }
362 }
363
364 bp->b_pages[i] = page;
365 offset = 0;
366 }
367
368 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
369 for (i = 0; i < bp->b_page_count; i++)
370 unlock_page(bp->b_pages[i]);
371 }
372
373 if (page_count == bp->b_page_count)
374 bp->b_flags |= XBF_DONE;
375
376 return error;
377 }
378
379 /*
380 * Map buffer into kernel address-space if nessecary.
381 */
382 STATIC int
383 _xfs_buf_map_pages(
384 xfs_buf_t *bp,
385 uint flags)
386 {
387 /* A single page buffer is always mappable */
388 if (bp->b_page_count == 1) {
389 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390 bp->b_flags |= XBF_MAPPED;
391 } else if (flags & XBF_MAPPED) {
392 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
393 -1, PAGE_KERNEL);
394 if (unlikely(bp->b_addr == NULL))
395 return -ENOMEM;
396 bp->b_addr += bp->b_offset;
397 bp->b_flags |= XBF_MAPPED;
398 }
399
400 return 0;
401 }
402
403 /*
404 * Finding and Reading Buffers
405 */
406
407 /*
408 * Look up, and creates if absent, a lockable buffer for
409 * a given range of an inode. The buffer is returned
410 * locked. If other overlapping buffers exist, they are
411 * released before the new buffer is created and locked,
412 * which may imply that this call will block until those buffers
413 * are unlocked. No I/O is implied by this call.
414 */
415 xfs_buf_t *
416 _xfs_buf_find(
417 xfs_buftarg_t *btp, /* block device target */
418 xfs_off_t ioff, /* starting offset of range */
419 size_t isize, /* length of range */
420 xfs_buf_flags_t flags,
421 xfs_buf_t *new_bp)
422 {
423 xfs_off_t range_base;
424 size_t range_length;
425 xfs_bufhash_t *hash;
426 xfs_buf_t *bp, *n;
427
428 range_base = (ioff << BBSHIFT);
429 range_length = (isize << BBSHIFT);
430
431 /* Check for IOs smaller than the sector size / not sector aligned */
432 ASSERT(!(range_length < (1 << btp->bt_sshift)));
433 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
434
435 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
436
437 spin_lock(&hash->bh_lock);
438
439 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
440 ASSERT(btp == bp->b_target);
441 if (bp->b_file_offset == range_base &&
442 bp->b_buffer_length == range_length) {
443 /*
444 * If we look at something, bring it to the
445 * front of the list for next time.
446 */
447 atomic_inc(&bp->b_hold);
448 list_move(&bp->b_hash_list, &hash->bh_list);
449 goto found;
450 }
451 }
452
453 /* No match found */
454 if (new_bp) {
455 _xfs_buf_initialize(new_bp, btp, range_base,
456 range_length, flags);
457 new_bp->b_hash = hash;
458 list_add(&new_bp->b_hash_list, &hash->bh_list);
459 } else {
460 XFS_STATS_INC(xb_miss_locked);
461 }
462
463 spin_unlock(&hash->bh_lock);
464 return new_bp;
465
466 found:
467 spin_unlock(&hash->bh_lock);
468
469 /* Attempt to get the semaphore without sleeping,
470 * if this does not work then we need to drop the
471 * spinlock and do a hard attempt on the semaphore.
472 */
473 if (down_trylock(&bp->b_sema)) {
474 if (!(flags & XBF_TRYLOCK)) {
475 /* wait for buffer ownership */
476 xfs_buf_lock(bp);
477 XFS_STATS_INC(xb_get_locked_waited);
478 } else {
479 /* We asked for a trylock and failed, no need
480 * to look at file offset and length here, we
481 * know that this buffer at least overlaps our
482 * buffer and is locked, therefore our buffer
483 * either does not exist, or is this buffer.
484 */
485 xfs_buf_rele(bp);
486 XFS_STATS_INC(xb_busy_locked);
487 return NULL;
488 }
489 } else {
490 /* trylock worked */
491 XB_SET_OWNER(bp);
492 }
493
494 if (bp->b_flags & XBF_STALE) {
495 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
496 bp->b_flags &= XBF_MAPPED;
497 }
498
499 trace_xfs_buf_find(bp, flags, _RET_IP_);
500 XFS_STATS_INC(xb_get_locked);
501 return bp;
502 }
503
504 /*
505 * Assembles a buffer covering the specified range.
506 * Storage in memory for all portions of the buffer will be allocated,
507 * although backing storage may not be.
508 */
509 xfs_buf_t *
510 xfs_buf_get(
511 xfs_buftarg_t *target,/* target for buffer */
512 xfs_off_t ioff, /* starting offset of range */
513 size_t isize, /* length of range */
514 xfs_buf_flags_t flags)
515 {
516 xfs_buf_t *bp, *new_bp;
517 int error = 0, i;
518
519 new_bp = xfs_buf_allocate(flags);
520 if (unlikely(!new_bp))
521 return NULL;
522
523 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
524 if (bp == new_bp) {
525 error = _xfs_buf_lookup_pages(bp, flags);
526 if (error)
527 goto no_buffer;
528 } else {
529 xfs_buf_deallocate(new_bp);
530 if (unlikely(bp == NULL))
531 return NULL;
532 }
533
534 for (i = 0; i < bp->b_page_count; i++)
535 mark_page_accessed(bp->b_pages[i]);
536
537 if (!(bp->b_flags & XBF_MAPPED)) {
538 error = _xfs_buf_map_pages(bp, flags);
539 if (unlikely(error)) {
540 printk(KERN_WARNING "%s: failed to map pages\n",
541 __func__);
542 goto no_buffer;
543 }
544 }
545
546 XFS_STATS_INC(xb_get);
547
548 /*
549 * Always fill in the block number now, the mapped cases can do
550 * their own overlay of this later.
551 */
552 bp->b_bn = ioff;
553 bp->b_count_desired = bp->b_buffer_length;
554
555 trace_xfs_buf_get(bp, flags, _RET_IP_);
556 return bp;
557
558 no_buffer:
559 if (flags & (XBF_LOCK | XBF_TRYLOCK))
560 xfs_buf_unlock(bp);
561 xfs_buf_rele(bp);
562 return NULL;
563 }
564
565 STATIC int
566 _xfs_buf_read(
567 xfs_buf_t *bp,
568 xfs_buf_flags_t flags)
569 {
570 int status;
571
572 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
573 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
574
575 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
576 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
577 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
578 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
579
580 status = xfs_buf_iorequest(bp);
581 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
582 return status;
583 return xfs_buf_iowait(bp);
584 }
585
586 xfs_buf_t *
587 xfs_buf_read(
588 xfs_buftarg_t *target,
589 xfs_off_t ioff,
590 size_t isize,
591 xfs_buf_flags_t flags)
592 {
593 xfs_buf_t *bp;
594
595 flags |= XBF_READ;
596
597 bp = xfs_buf_get(target, ioff, isize, flags);
598 if (bp) {
599 trace_xfs_buf_read(bp, flags, _RET_IP_);
600
601 if (!XFS_BUF_ISDONE(bp)) {
602 XFS_STATS_INC(xb_get_read);
603 _xfs_buf_read(bp, flags);
604 } else if (flags & XBF_ASYNC) {
605 /*
606 * Read ahead call which is already satisfied,
607 * drop the buffer
608 */
609 goto no_buffer;
610 } else {
611 /* We do not want read in the flags */
612 bp->b_flags &= ~XBF_READ;
613 }
614 }
615
616 return bp;
617
618 no_buffer:
619 if (flags & (XBF_LOCK | XBF_TRYLOCK))
620 xfs_buf_unlock(bp);
621 xfs_buf_rele(bp);
622 return NULL;
623 }
624
625 /*
626 * If we are not low on memory then do the readahead in a deadlock
627 * safe manner.
628 */
629 void
630 xfs_buf_readahead(
631 xfs_buftarg_t *target,
632 xfs_off_t ioff,
633 size_t isize,
634 xfs_buf_flags_t flags)
635 {
636 struct backing_dev_info *bdi;
637
638 bdi = target->bt_mapping->backing_dev_info;
639 if (bdi_read_congested(bdi))
640 return;
641
642 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
643 xfs_buf_read(target, ioff, isize, flags);
644 }
645
646 xfs_buf_t *
647 xfs_buf_get_empty(
648 size_t len,
649 xfs_buftarg_t *target)
650 {
651 xfs_buf_t *bp;
652
653 bp = xfs_buf_allocate(0);
654 if (bp)
655 _xfs_buf_initialize(bp, target, 0, len, 0);
656 return bp;
657 }
658
659 static inline struct page *
660 mem_to_page(
661 void *addr)
662 {
663 if ((!is_vmalloc_addr(addr))) {
664 return virt_to_page(addr);
665 } else {
666 return vmalloc_to_page(addr);
667 }
668 }
669
670 int
671 xfs_buf_associate_memory(
672 xfs_buf_t *bp,
673 void *mem,
674 size_t len)
675 {
676 int rval;
677 int i = 0;
678 unsigned long pageaddr;
679 unsigned long offset;
680 size_t buflen;
681 int page_count;
682
683 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
684 offset = (unsigned long)mem - pageaddr;
685 buflen = PAGE_CACHE_ALIGN(len + offset);
686 page_count = buflen >> PAGE_CACHE_SHIFT;
687
688 /* Free any previous set of page pointers */
689 if (bp->b_pages)
690 _xfs_buf_free_pages(bp);
691
692 bp->b_pages = NULL;
693 bp->b_addr = mem;
694
695 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
696 if (rval)
697 return rval;
698
699 bp->b_offset = offset;
700
701 for (i = 0; i < bp->b_page_count; i++) {
702 bp->b_pages[i] = mem_to_page((void *)pageaddr);
703 pageaddr += PAGE_CACHE_SIZE;
704 }
705
706 bp->b_count_desired = len;
707 bp->b_buffer_length = buflen;
708 bp->b_flags |= XBF_MAPPED;
709 bp->b_flags &= ~_XBF_PAGE_LOCKED;
710
711 return 0;
712 }
713
714 xfs_buf_t *
715 xfs_buf_get_noaddr(
716 size_t len,
717 xfs_buftarg_t *target)
718 {
719 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
720 int error, i;
721 xfs_buf_t *bp;
722
723 bp = xfs_buf_allocate(0);
724 if (unlikely(bp == NULL))
725 goto fail;
726 _xfs_buf_initialize(bp, target, 0, len, 0);
727
728 error = _xfs_buf_get_pages(bp, page_count, 0);
729 if (error)
730 goto fail_free_buf;
731
732 for (i = 0; i < page_count; i++) {
733 bp->b_pages[i] = alloc_page(GFP_KERNEL);
734 if (!bp->b_pages[i])
735 goto fail_free_mem;
736 }
737 bp->b_flags |= _XBF_PAGES;
738
739 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
740 if (unlikely(error)) {
741 printk(KERN_WARNING "%s: failed to map pages\n",
742 __func__);
743 goto fail_free_mem;
744 }
745
746 xfs_buf_unlock(bp);
747
748 trace_xfs_buf_get_noaddr(bp, _RET_IP_);
749 return bp;
750
751 fail_free_mem:
752 while (--i >= 0)
753 __free_page(bp->b_pages[i]);
754 _xfs_buf_free_pages(bp);
755 fail_free_buf:
756 xfs_buf_deallocate(bp);
757 fail:
758 return NULL;
759 }
760
761 /*
762 * Increment reference count on buffer, to hold the buffer concurrently
763 * with another thread which may release (free) the buffer asynchronously.
764 * Must hold the buffer already to call this function.
765 */
766 void
767 xfs_buf_hold(
768 xfs_buf_t *bp)
769 {
770 trace_xfs_buf_hold(bp, _RET_IP_);
771 atomic_inc(&bp->b_hold);
772 }
773
774 /*
775 * Releases a hold on the specified buffer. If the
776 * the hold count is 1, calls xfs_buf_free.
777 */
778 void
779 xfs_buf_rele(
780 xfs_buf_t *bp)
781 {
782 xfs_bufhash_t *hash = bp->b_hash;
783
784 trace_xfs_buf_rele(bp, _RET_IP_);
785
786 if (unlikely(!hash)) {
787 ASSERT(!bp->b_relse);
788 if (atomic_dec_and_test(&bp->b_hold))
789 xfs_buf_free(bp);
790 return;
791 }
792
793 ASSERT(atomic_read(&bp->b_hold) > 0);
794 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
795 if (bp->b_relse) {
796 atomic_inc(&bp->b_hold);
797 spin_unlock(&hash->bh_lock);
798 (*(bp->b_relse)) (bp);
799 } else if (bp->b_flags & XBF_FS_MANAGED) {
800 spin_unlock(&hash->bh_lock);
801 } else {
802 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
803 list_del_init(&bp->b_hash_list);
804 spin_unlock(&hash->bh_lock);
805 xfs_buf_free(bp);
806 }
807 }
808 }
809
810
811 /*
812 * Mutual exclusion on buffers. Locking model:
813 *
814 * Buffers associated with inodes for which buffer locking
815 * is not enabled are not protected by semaphores, and are
816 * assumed to be exclusively owned by the caller. There is a
817 * spinlock in the buffer, used by the caller when concurrent
818 * access is possible.
819 */
820
821 /*
822 * Locks a buffer object, if it is not already locked.
823 * Note that this in no way locks the underlying pages, so it is only
824 * useful for synchronizing concurrent use of buffer objects, not for
825 * synchronizing independent access to the underlying pages.
826 */
827 int
828 xfs_buf_cond_lock(
829 xfs_buf_t *bp)
830 {
831 int locked;
832
833 locked = down_trylock(&bp->b_sema) == 0;
834 if (locked)
835 XB_SET_OWNER(bp);
836
837 trace_xfs_buf_cond_lock(bp, _RET_IP_);
838 return locked ? 0 : -EBUSY;
839 }
840
841 int
842 xfs_buf_lock_value(
843 xfs_buf_t *bp)
844 {
845 return bp->b_sema.count;
846 }
847
848 /*
849 * Locks a buffer object.
850 * Note that this in no way locks the underlying pages, so it is only
851 * useful for synchronizing concurrent use of buffer objects, not for
852 * synchronizing independent access to the underlying pages.
853 *
854 * If we come across a stale, pinned, locked buffer, we know that we
855 * are being asked to lock a buffer that has been reallocated. Because
856 * it is pinned, we know that the log has not been pushed to disk and
857 * hence it will still be locked. Rather than sleeping until someone
858 * else pushes the log, push it ourselves before trying to get the lock.
859 */
860 void
861 xfs_buf_lock(
862 xfs_buf_t *bp)
863 {
864 trace_xfs_buf_lock(bp, _RET_IP_);
865
866 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
867 xfs_log_force(bp->b_mount, 0);
868 if (atomic_read(&bp->b_io_remaining))
869 blk_run_address_space(bp->b_target->bt_mapping);
870 down(&bp->b_sema);
871 XB_SET_OWNER(bp);
872
873 trace_xfs_buf_lock_done(bp, _RET_IP_);
874 }
875
876 /*
877 * Releases the lock on the buffer object.
878 * If the buffer is marked delwri but is not queued, do so before we
879 * unlock the buffer as we need to set flags correctly. We also need to
880 * take a reference for the delwri queue because the unlocker is going to
881 * drop their's and they don't know we just queued it.
882 */
883 void
884 xfs_buf_unlock(
885 xfs_buf_t *bp)
886 {
887 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
888 atomic_inc(&bp->b_hold);
889 bp->b_flags |= XBF_ASYNC;
890 xfs_buf_delwri_queue(bp, 0);
891 }
892
893 XB_CLEAR_OWNER(bp);
894 up(&bp->b_sema);
895
896 trace_xfs_buf_unlock(bp, _RET_IP_);
897 }
898
899 STATIC void
900 xfs_buf_wait_unpin(
901 xfs_buf_t *bp)
902 {
903 DECLARE_WAITQUEUE (wait, current);
904
905 if (atomic_read(&bp->b_pin_count) == 0)
906 return;
907
908 add_wait_queue(&bp->b_waiters, &wait);
909 for (;;) {
910 set_current_state(TASK_UNINTERRUPTIBLE);
911 if (atomic_read(&bp->b_pin_count) == 0)
912 break;
913 if (atomic_read(&bp->b_io_remaining))
914 blk_run_address_space(bp->b_target->bt_mapping);
915 schedule();
916 }
917 remove_wait_queue(&bp->b_waiters, &wait);
918 set_current_state(TASK_RUNNING);
919 }
920
921 /*
922 * Buffer Utility Routines
923 */
924
925 STATIC void
926 xfs_buf_iodone_work(
927 struct work_struct *work)
928 {
929 xfs_buf_t *bp =
930 container_of(work, xfs_buf_t, b_iodone_work);
931
932 /*
933 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
934 * ordered flag and reissue them. Because we can't tell the higher
935 * layers directly that they should not issue ordered I/O anymore, they
936 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
937 */
938 if ((bp->b_error == EOPNOTSUPP) &&
939 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
940 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
941 bp->b_flags &= ~XBF_ORDERED;
942 bp->b_flags |= _XFS_BARRIER_FAILED;
943 xfs_buf_iorequest(bp);
944 } else if (bp->b_iodone)
945 (*(bp->b_iodone))(bp);
946 else if (bp->b_flags & XBF_ASYNC)
947 xfs_buf_relse(bp);
948 }
949
950 void
951 xfs_buf_ioend(
952 xfs_buf_t *bp,
953 int schedule)
954 {
955 trace_xfs_buf_iodone(bp, _RET_IP_);
956
957 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
958 if (bp->b_error == 0)
959 bp->b_flags |= XBF_DONE;
960
961 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
962 if (schedule) {
963 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
964 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
965 } else {
966 xfs_buf_iodone_work(&bp->b_iodone_work);
967 }
968 } else {
969 complete(&bp->b_iowait);
970 }
971 }
972
973 void
974 xfs_buf_ioerror(
975 xfs_buf_t *bp,
976 int error)
977 {
978 ASSERT(error >= 0 && error <= 0xffff);
979 bp->b_error = (unsigned short)error;
980 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
981 }
982
983 int
984 xfs_bwrite(
985 struct xfs_mount *mp,
986 struct xfs_buf *bp)
987 {
988 int error;
989
990 bp->b_mount = mp;
991 bp->b_flags |= XBF_WRITE;
992 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
993
994 xfs_buf_delwri_dequeue(bp);
995 xfs_bdstrat_cb(bp);
996
997 error = xfs_buf_iowait(bp);
998 if (error)
999 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1000 xfs_buf_relse(bp);
1001 return error;
1002 }
1003
1004 void
1005 xfs_bdwrite(
1006 void *mp,
1007 struct xfs_buf *bp)
1008 {
1009 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1010
1011 bp->b_mount = mp;
1012
1013 bp->b_flags &= ~XBF_READ;
1014 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1015
1016 xfs_buf_delwri_queue(bp, 1);
1017 }
1018
1019 /*
1020 * Called when we want to stop a buffer from getting written or read.
1021 * We attach the EIO error, muck with its flags, and call biodone
1022 * so that the proper iodone callbacks get called.
1023 */
1024 STATIC int
1025 xfs_bioerror(
1026 xfs_buf_t *bp)
1027 {
1028 #ifdef XFSERRORDEBUG
1029 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1030 #endif
1031
1032 /*
1033 * No need to wait until the buffer is unpinned, we aren't flushing it.
1034 */
1035 XFS_BUF_ERROR(bp, EIO);
1036
1037 /*
1038 * We're calling biodone, so delete XBF_DONE flag.
1039 */
1040 XFS_BUF_UNREAD(bp);
1041 XFS_BUF_UNDELAYWRITE(bp);
1042 XFS_BUF_UNDONE(bp);
1043 XFS_BUF_STALE(bp);
1044
1045 xfs_biodone(bp);
1046
1047 return EIO;
1048 }
1049
1050 /*
1051 * Same as xfs_bioerror, except that we are releasing the buffer
1052 * here ourselves, and avoiding the biodone call.
1053 * This is meant for userdata errors; metadata bufs come with
1054 * iodone functions attached, so that we can track down errors.
1055 */
1056 STATIC int
1057 xfs_bioerror_relse(
1058 struct xfs_buf *bp)
1059 {
1060 int64_t fl = XFS_BUF_BFLAGS(bp);
1061 /*
1062 * No need to wait until the buffer is unpinned.
1063 * We aren't flushing it.
1064 *
1065 * chunkhold expects B_DONE to be set, whether
1066 * we actually finish the I/O or not. We don't want to
1067 * change that interface.
1068 */
1069 XFS_BUF_UNREAD(bp);
1070 XFS_BUF_UNDELAYWRITE(bp);
1071 XFS_BUF_DONE(bp);
1072 XFS_BUF_STALE(bp);
1073 XFS_BUF_CLR_IODONE_FUNC(bp);
1074 if (!(fl & XBF_ASYNC)) {
1075 /*
1076 * Mark b_error and B_ERROR _both_.
1077 * Lot's of chunkcache code assumes that.
1078 * There's no reason to mark error for
1079 * ASYNC buffers.
1080 */
1081 XFS_BUF_ERROR(bp, EIO);
1082 XFS_BUF_FINISH_IOWAIT(bp);
1083 } else {
1084 xfs_buf_relse(bp);
1085 }
1086
1087 return EIO;
1088 }
1089
1090
1091 /*
1092 * All xfs metadata buffers except log state machine buffers
1093 * get this attached as their b_bdstrat callback function.
1094 * This is so that we can catch a buffer
1095 * after prematurely unpinning it to forcibly shutdown the filesystem.
1096 */
1097 int
1098 xfs_bdstrat_cb(
1099 struct xfs_buf *bp)
1100 {
1101 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1102 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1103 /*
1104 * Metadata write that didn't get logged but
1105 * written delayed anyway. These aren't associated
1106 * with a transaction, and can be ignored.
1107 */
1108 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1109 return xfs_bioerror_relse(bp);
1110 else
1111 return xfs_bioerror(bp);
1112 }
1113
1114 xfs_buf_iorequest(bp);
1115 return 0;
1116 }
1117
1118 /*
1119 * Wrapper around bdstrat so that we can stop data from going to disk in case
1120 * we are shutting down the filesystem. Typically user data goes thru this
1121 * path; one of the exceptions is the superblock.
1122 */
1123 void
1124 xfsbdstrat(
1125 struct xfs_mount *mp,
1126 struct xfs_buf *bp)
1127 {
1128 if (XFS_FORCED_SHUTDOWN(mp)) {
1129 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1130 xfs_bioerror_relse(bp);
1131 return;
1132 }
1133
1134 xfs_buf_iorequest(bp);
1135 }
1136
1137 STATIC void
1138 _xfs_buf_ioend(
1139 xfs_buf_t *bp,
1140 int schedule)
1141 {
1142 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1143 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1144 xfs_buf_ioend(bp, schedule);
1145 }
1146 }
1147
1148 STATIC void
1149 xfs_buf_bio_end_io(
1150 struct bio *bio,
1151 int error)
1152 {
1153 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1154 unsigned int blocksize = bp->b_target->bt_bsize;
1155 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1156
1157 xfs_buf_ioerror(bp, -error);
1158
1159 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1160 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1161
1162 do {
1163 struct page *page = bvec->bv_page;
1164
1165 ASSERT(!PagePrivate(page));
1166 if (unlikely(bp->b_error)) {
1167 if (bp->b_flags & XBF_READ)
1168 ClearPageUptodate(page);
1169 } else if (blocksize >= PAGE_CACHE_SIZE) {
1170 SetPageUptodate(page);
1171 } else if (!PagePrivate(page) &&
1172 (bp->b_flags & _XBF_PAGE_CACHE)) {
1173 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1174 }
1175
1176 if (--bvec >= bio->bi_io_vec)
1177 prefetchw(&bvec->bv_page->flags);
1178
1179 if (bp->b_flags & _XBF_PAGE_LOCKED)
1180 unlock_page(page);
1181 } while (bvec >= bio->bi_io_vec);
1182
1183 _xfs_buf_ioend(bp, 1);
1184 bio_put(bio);
1185 }
1186
1187 STATIC void
1188 _xfs_buf_ioapply(
1189 xfs_buf_t *bp)
1190 {
1191 int rw, map_i, total_nr_pages, nr_pages;
1192 struct bio *bio;
1193 int offset = bp->b_offset;
1194 int size = bp->b_count_desired;
1195 sector_t sector = bp->b_bn;
1196 unsigned int blocksize = bp->b_target->bt_bsize;
1197
1198 total_nr_pages = bp->b_page_count;
1199 map_i = 0;
1200
1201 if (bp->b_flags & XBF_ORDERED) {
1202 ASSERT(!(bp->b_flags & XBF_READ));
1203 rw = WRITE_BARRIER;
1204 } else if (bp->b_flags & XBF_LOG_BUFFER) {
1205 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1206 bp->b_flags &= ~_XBF_RUN_QUEUES;
1207 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1208 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1209 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1210 bp->b_flags &= ~_XBF_RUN_QUEUES;
1211 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1212 } else {
1213 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1214 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1215 }
1216
1217 /* Special code path for reading a sub page size buffer in --
1218 * we populate up the whole page, and hence the other metadata
1219 * in the same page. This optimization is only valid when the
1220 * filesystem block size is not smaller than the page size.
1221 */
1222 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1223 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1224 (XBF_READ|_XBF_PAGE_LOCKED)) &&
1225 (blocksize >= PAGE_CACHE_SIZE)) {
1226 bio = bio_alloc(GFP_NOIO, 1);
1227
1228 bio->bi_bdev = bp->b_target->bt_bdev;
1229 bio->bi_sector = sector - (offset >> BBSHIFT);
1230 bio->bi_end_io = xfs_buf_bio_end_io;
1231 bio->bi_private = bp;
1232
1233 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1234 size = 0;
1235
1236 atomic_inc(&bp->b_io_remaining);
1237
1238 goto submit_io;
1239 }
1240
1241 next_chunk:
1242 atomic_inc(&bp->b_io_remaining);
1243 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1244 if (nr_pages > total_nr_pages)
1245 nr_pages = total_nr_pages;
1246
1247 bio = bio_alloc(GFP_NOIO, nr_pages);
1248 bio->bi_bdev = bp->b_target->bt_bdev;
1249 bio->bi_sector = sector;
1250 bio->bi_end_io = xfs_buf_bio_end_io;
1251 bio->bi_private = bp;
1252
1253 for (; size && nr_pages; nr_pages--, map_i++) {
1254 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1255
1256 if (nbytes > size)
1257 nbytes = size;
1258
1259 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1260 if (rbytes < nbytes)
1261 break;
1262
1263 offset = 0;
1264 sector += nbytes >> BBSHIFT;
1265 size -= nbytes;
1266 total_nr_pages--;
1267 }
1268
1269 submit_io:
1270 if (likely(bio->bi_size)) {
1271 if (xfs_buf_is_vmapped(bp)) {
1272 flush_kernel_vmap_range(bp->b_addr,
1273 xfs_buf_vmap_len(bp));
1274 }
1275 submit_bio(rw, bio);
1276 if (size)
1277 goto next_chunk;
1278 } else {
1279 /*
1280 * if we get here, no pages were added to the bio. However,
1281 * we can't just error out here - if the pages are locked then
1282 * we have to unlock them otherwise we can hang on a later
1283 * access to the page.
1284 */
1285 xfs_buf_ioerror(bp, EIO);
1286 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1287 int i;
1288 for (i = 0; i < bp->b_page_count; i++)
1289 unlock_page(bp->b_pages[i]);
1290 }
1291 bio_put(bio);
1292 }
1293 }
1294
1295 int
1296 xfs_buf_iorequest(
1297 xfs_buf_t *bp)
1298 {
1299 trace_xfs_buf_iorequest(bp, _RET_IP_);
1300
1301 if (bp->b_flags & XBF_DELWRI) {
1302 xfs_buf_delwri_queue(bp, 1);
1303 return 0;
1304 }
1305
1306 if (bp->b_flags & XBF_WRITE) {
1307 xfs_buf_wait_unpin(bp);
1308 }
1309
1310 xfs_buf_hold(bp);
1311
1312 /* Set the count to 1 initially, this will stop an I/O
1313 * completion callout which happens before we have started
1314 * all the I/O from calling xfs_buf_ioend too early.
1315 */
1316 atomic_set(&bp->b_io_remaining, 1);
1317 _xfs_buf_ioapply(bp);
1318 _xfs_buf_ioend(bp, 0);
1319
1320 xfs_buf_rele(bp);
1321 return 0;
1322 }
1323
1324 /*
1325 * Waits for I/O to complete on the buffer supplied.
1326 * It returns immediately if no I/O is pending.
1327 * It returns the I/O error code, if any, or 0 if there was no error.
1328 */
1329 int
1330 xfs_buf_iowait(
1331 xfs_buf_t *bp)
1332 {
1333 trace_xfs_buf_iowait(bp, _RET_IP_);
1334
1335 if (atomic_read(&bp->b_io_remaining))
1336 blk_run_address_space(bp->b_target->bt_mapping);
1337 wait_for_completion(&bp->b_iowait);
1338
1339 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1340 return bp->b_error;
1341 }
1342
1343 xfs_caddr_t
1344 xfs_buf_offset(
1345 xfs_buf_t *bp,
1346 size_t offset)
1347 {
1348 struct page *page;
1349
1350 if (bp->b_flags & XBF_MAPPED)
1351 return XFS_BUF_PTR(bp) + offset;
1352
1353 offset += bp->b_offset;
1354 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1355 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1356 }
1357
1358 /*
1359 * Move data into or out of a buffer.
1360 */
1361 void
1362 xfs_buf_iomove(
1363 xfs_buf_t *bp, /* buffer to process */
1364 size_t boff, /* starting buffer offset */
1365 size_t bsize, /* length to copy */
1366 void *data, /* data address */
1367 xfs_buf_rw_t mode) /* read/write/zero flag */
1368 {
1369 size_t bend, cpoff, csize;
1370 struct page *page;
1371
1372 bend = boff + bsize;
1373 while (boff < bend) {
1374 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1375 cpoff = xfs_buf_poff(boff + bp->b_offset);
1376 csize = min_t(size_t,
1377 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1378
1379 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1380
1381 switch (mode) {
1382 case XBRW_ZERO:
1383 memset(page_address(page) + cpoff, 0, csize);
1384 break;
1385 case XBRW_READ:
1386 memcpy(data, page_address(page) + cpoff, csize);
1387 break;
1388 case XBRW_WRITE:
1389 memcpy(page_address(page) + cpoff, data, csize);
1390 }
1391
1392 boff += csize;
1393 data += csize;
1394 }
1395 }
1396
1397 /*
1398 * Handling of buffer targets (buftargs).
1399 */
1400
1401 /*
1402 * Wait for any bufs with callbacks that have been submitted but
1403 * have not yet returned... walk the hash list for the target.
1404 */
1405 void
1406 xfs_wait_buftarg(
1407 xfs_buftarg_t *btp)
1408 {
1409 xfs_buf_t *bp, *n;
1410 xfs_bufhash_t *hash;
1411 uint i;
1412
1413 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1414 hash = &btp->bt_hash[i];
1415 again:
1416 spin_lock(&hash->bh_lock);
1417 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1418 ASSERT(btp == bp->b_target);
1419 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1420 spin_unlock(&hash->bh_lock);
1421 /*
1422 * Catch superblock reference count leaks
1423 * immediately
1424 */
1425 BUG_ON(bp->b_bn == 0);
1426 delay(100);
1427 goto again;
1428 }
1429 }
1430 spin_unlock(&hash->bh_lock);
1431 }
1432 }
1433
1434 /*
1435 * Allocate buffer hash table for a given target.
1436 * For devices containing metadata (i.e. not the log/realtime devices)
1437 * we need to allocate a much larger hash table.
1438 */
1439 STATIC void
1440 xfs_alloc_bufhash(
1441 xfs_buftarg_t *btp,
1442 int external)
1443 {
1444 unsigned int i;
1445
1446 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1447 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1448 btp->bt_hash = kmem_zalloc_large((1 << btp->bt_hashshift) *
1449 sizeof(xfs_bufhash_t));
1450 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1451 spin_lock_init(&btp->bt_hash[i].bh_lock);
1452 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1453 }
1454 }
1455
1456 STATIC void
1457 xfs_free_bufhash(
1458 xfs_buftarg_t *btp)
1459 {
1460 kmem_free_large(btp->bt_hash);
1461 btp->bt_hash = NULL;
1462 }
1463
1464 /*
1465 * buftarg list for delwrite queue processing
1466 */
1467 static LIST_HEAD(xfs_buftarg_list);
1468 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1469
1470 STATIC void
1471 xfs_register_buftarg(
1472 xfs_buftarg_t *btp)
1473 {
1474 spin_lock(&xfs_buftarg_lock);
1475 list_add(&btp->bt_list, &xfs_buftarg_list);
1476 spin_unlock(&xfs_buftarg_lock);
1477 }
1478
1479 STATIC void
1480 xfs_unregister_buftarg(
1481 xfs_buftarg_t *btp)
1482 {
1483 spin_lock(&xfs_buftarg_lock);
1484 list_del(&btp->bt_list);
1485 spin_unlock(&xfs_buftarg_lock);
1486 }
1487
1488 void
1489 xfs_free_buftarg(
1490 struct xfs_mount *mp,
1491 struct xfs_buftarg *btp)
1492 {
1493 xfs_flush_buftarg(btp, 1);
1494 if (mp->m_flags & XFS_MOUNT_BARRIER)
1495 xfs_blkdev_issue_flush(btp);
1496 xfs_free_bufhash(btp);
1497 iput(btp->bt_mapping->host);
1498
1499 /* Unregister the buftarg first so that we don't get a
1500 * wakeup finding a non-existent task
1501 */
1502 xfs_unregister_buftarg(btp);
1503 kthread_stop(btp->bt_task);
1504
1505 kmem_free(btp);
1506 }
1507
1508 STATIC int
1509 xfs_setsize_buftarg_flags(
1510 xfs_buftarg_t *btp,
1511 unsigned int blocksize,
1512 unsigned int sectorsize,
1513 int verbose)
1514 {
1515 btp->bt_bsize = blocksize;
1516 btp->bt_sshift = ffs(sectorsize) - 1;
1517 btp->bt_smask = sectorsize - 1;
1518
1519 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1520 printk(KERN_WARNING
1521 "XFS: Cannot set_blocksize to %u on device %s\n",
1522 sectorsize, XFS_BUFTARG_NAME(btp));
1523 return EINVAL;
1524 }
1525
1526 if (verbose &&
1527 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1528 printk(KERN_WARNING
1529 "XFS: %u byte sectors in use on device %s. "
1530 "This is suboptimal; %u or greater is ideal.\n",
1531 sectorsize, XFS_BUFTARG_NAME(btp),
1532 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1533 }
1534
1535 return 0;
1536 }
1537
1538 /*
1539 * When allocating the initial buffer target we have not yet
1540 * read in the superblock, so don't know what sized sectors
1541 * are being used is at this early stage. Play safe.
1542 */
1543 STATIC int
1544 xfs_setsize_buftarg_early(
1545 xfs_buftarg_t *btp,
1546 struct block_device *bdev)
1547 {
1548 return xfs_setsize_buftarg_flags(btp,
1549 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1550 }
1551
1552 int
1553 xfs_setsize_buftarg(
1554 xfs_buftarg_t *btp,
1555 unsigned int blocksize,
1556 unsigned int sectorsize)
1557 {
1558 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1559 }
1560
1561 STATIC int
1562 xfs_mapping_buftarg(
1563 xfs_buftarg_t *btp,
1564 struct block_device *bdev)
1565 {
1566 struct backing_dev_info *bdi;
1567 struct inode *inode;
1568 struct address_space *mapping;
1569 static const struct address_space_operations mapping_aops = {
1570 .sync_page = block_sync_page,
1571 .migratepage = fail_migrate_page,
1572 };
1573
1574 inode = new_inode(bdev->bd_inode->i_sb);
1575 if (!inode) {
1576 printk(KERN_WARNING
1577 "XFS: Cannot allocate mapping inode for device %s\n",
1578 XFS_BUFTARG_NAME(btp));
1579 return ENOMEM;
1580 }
1581 inode->i_mode = S_IFBLK;
1582 inode->i_bdev = bdev;
1583 inode->i_rdev = bdev->bd_dev;
1584 bdi = blk_get_backing_dev_info(bdev);
1585 if (!bdi)
1586 bdi = &default_backing_dev_info;
1587 mapping = &inode->i_data;
1588 mapping->a_ops = &mapping_aops;
1589 mapping->backing_dev_info = bdi;
1590 mapping_set_gfp_mask(mapping, GFP_NOFS);
1591 btp->bt_mapping = mapping;
1592 return 0;
1593 }
1594
1595 STATIC int
1596 xfs_alloc_delwrite_queue(
1597 xfs_buftarg_t *btp,
1598 const char *fsname)
1599 {
1600 int error = 0;
1601
1602 INIT_LIST_HEAD(&btp->bt_list);
1603 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1604 spin_lock_init(&btp->bt_delwrite_lock);
1605 btp->bt_flags = 0;
1606 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1607 if (IS_ERR(btp->bt_task)) {
1608 error = PTR_ERR(btp->bt_task);
1609 goto out_error;
1610 }
1611 xfs_register_buftarg(btp);
1612 out_error:
1613 return error;
1614 }
1615
1616 xfs_buftarg_t *
1617 xfs_alloc_buftarg(
1618 struct block_device *bdev,
1619 int external,
1620 const char *fsname)
1621 {
1622 xfs_buftarg_t *btp;
1623
1624 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1625
1626 btp->bt_dev = bdev->bd_dev;
1627 btp->bt_bdev = bdev;
1628 if (xfs_setsize_buftarg_early(btp, bdev))
1629 goto error;
1630 if (xfs_mapping_buftarg(btp, bdev))
1631 goto error;
1632 if (xfs_alloc_delwrite_queue(btp, fsname))
1633 goto error;
1634 xfs_alloc_bufhash(btp, external);
1635 return btp;
1636
1637 error:
1638 kmem_free(btp);
1639 return NULL;
1640 }
1641
1642
1643 /*
1644 * Delayed write buffer handling
1645 */
1646 STATIC void
1647 xfs_buf_delwri_queue(
1648 xfs_buf_t *bp,
1649 int unlock)
1650 {
1651 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1652 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1653
1654 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1655
1656 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1657
1658 spin_lock(dwlk);
1659 /* If already in the queue, dequeue and place at tail */
1660 if (!list_empty(&bp->b_list)) {
1661 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1662 if (unlock)
1663 atomic_dec(&bp->b_hold);
1664 list_del(&bp->b_list);
1665 }
1666
1667 if (list_empty(dwq)) {
1668 /* start xfsbufd as it is about to have something to do */
1669 wake_up_process(bp->b_target->bt_task);
1670 }
1671
1672 bp->b_flags |= _XBF_DELWRI_Q;
1673 list_add_tail(&bp->b_list, dwq);
1674 bp->b_queuetime = jiffies;
1675 spin_unlock(dwlk);
1676
1677 if (unlock)
1678 xfs_buf_unlock(bp);
1679 }
1680
1681 void
1682 xfs_buf_delwri_dequeue(
1683 xfs_buf_t *bp)
1684 {
1685 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1686 int dequeued = 0;
1687
1688 spin_lock(dwlk);
1689 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1690 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1691 list_del_init(&bp->b_list);
1692 dequeued = 1;
1693 }
1694 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1695 spin_unlock(dwlk);
1696
1697 if (dequeued)
1698 xfs_buf_rele(bp);
1699
1700 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1701 }
1702
1703 /*
1704 * If a delwri buffer needs to be pushed before it has aged out, then promote
1705 * it to the head of the delwri queue so that it will be flushed on the next
1706 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1707 * than the age currently needed to flush the buffer. Hence the next time the
1708 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1709 */
1710 void
1711 xfs_buf_delwri_promote(
1712 struct xfs_buf *bp)
1713 {
1714 struct xfs_buftarg *btp = bp->b_target;
1715 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1716
1717 ASSERT(bp->b_flags & XBF_DELWRI);
1718 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1719
1720 /*
1721 * Check the buffer age before locking the delayed write queue as we
1722 * don't need to promote buffers that are already past the flush age.
1723 */
1724 if (bp->b_queuetime < jiffies - age)
1725 return;
1726 bp->b_queuetime = jiffies - age;
1727 spin_lock(&btp->bt_delwrite_lock);
1728 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1729 spin_unlock(&btp->bt_delwrite_lock);
1730 }
1731
1732 STATIC void
1733 xfs_buf_runall_queues(
1734 struct workqueue_struct *queue)
1735 {
1736 flush_workqueue(queue);
1737 }
1738
1739 STATIC int
1740 xfsbufd_wakeup(
1741 struct shrinker *shrink,
1742 int priority,
1743 gfp_t mask)
1744 {
1745 xfs_buftarg_t *btp;
1746
1747 spin_lock(&xfs_buftarg_lock);
1748 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1749 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1750 continue;
1751 if (list_empty(&btp->bt_delwrite_queue))
1752 continue;
1753 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1754 wake_up_process(btp->bt_task);
1755 }
1756 spin_unlock(&xfs_buftarg_lock);
1757 return 0;
1758 }
1759
1760 /*
1761 * Move as many buffers as specified to the supplied list
1762 * idicating if we skipped any buffers to prevent deadlocks.
1763 */
1764 STATIC int
1765 xfs_buf_delwri_split(
1766 xfs_buftarg_t *target,
1767 struct list_head *list,
1768 unsigned long age)
1769 {
1770 xfs_buf_t *bp, *n;
1771 struct list_head *dwq = &target->bt_delwrite_queue;
1772 spinlock_t *dwlk = &target->bt_delwrite_lock;
1773 int skipped = 0;
1774 int force;
1775
1776 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1777 INIT_LIST_HEAD(list);
1778 spin_lock(dwlk);
1779 list_for_each_entry_safe(bp, n, dwq, b_list) {
1780 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1781 ASSERT(bp->b_flags & XBF_DELWRI);
1782
1783 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1784 if (!force &&
1785 time_before(jiffies, bp->b_queuetime + age)) {
1786 xfs_buf_unlock(bp);
1787 break;
1788 }
1789
1790 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1791 _XBF_RUN_QUEUES);
1792 bp->b_flags |= XBF_WRITE;
1793 list_move_tail(&bp->b_list, list);
1794 } else
1795 skipped++;
1796 }
1797 spin_unlock(dwlk);
1798
1799 return skipped;
1800
1801 }
1802
1803 /*
1804 * Compare function is more complex than it needs to be because
1805 * the return value is only 32 bits and we are doing comparisons
1806 * on 64 bit values
1807 */
1808 static int
1809 xfs_buf_cmp(
1810 void *priv,
1811 struct list_head *a,
1812 struct list_head *b)
1813 {
1814 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1815 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1816 xfs_daddr_t diff;
1817
1818 diff = ap->b_bn - bp->b_bn;
1819 if (diff < 0)
1820 return -1;
1821 if (diff > 0)
1822 return 1;
1823 return 0;
1824 }
1825
1826 void
1827 xfs_buf_delwri_sort(
1828 xfs_buftarg_t *target,
1829 struct list_head *list)
1830 {
1831 list_sort(NULL, list, xfs_buf_cmp);
1832 }
1833
1834 STATIC int
1835 xfsbufd(
1836 void *data)
1837 {
1838 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1839
1840 current->flags |= PF_MEMALLOC;
1841
1842 set_freezable();
1843
1844 do {
1845 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1846 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1847 int count = 0;
1848 struct list_head tmp;
1849
1850 if (unlikely(freezing(current))) {
1851 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1852 refrigerator();
1853 } else {
1854 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1855 }
1856
1857 /* sleep for a long time if there is nothing to do. */
1858 if (list_empty(&target->bt_delwrite_queue))
1859 tout = MAX_SCHEDULE_TIMEOUT;
1860 schedule_timeout_interruptible(tout);
1861
1862 xfs_buf_delwri_split(target, &tmp, age);
1863 list_sort(NULL, &tmp, xfs_buf_cmp);
1864 while (!list_empty(&tmp)) {
1865 struct xfs_buf *bp;
1866 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1867 list_del_init(&bp->b_list);
1868 xfs_bdstrat_cb(bp);
1869 count++;
1870 }
1871 if (count)
1872 blk_run_address_space(target->bt_mapping);
1873
1874 } while (!kthread_should_stop());
1875
1876 return 0;
1877 }
1878
1879 /*
1880 * Go through all incore buffers, and release buffers if they belong to
1881 * the given device. This is used in filesystem error handling to
1882 * preserve the consistency of its metadata.
1883 */
1884 int
1885 xfs_flush_buftarg(
1886 xfs_buftarg_t *target,
1887 int wait)
1888 {
1889 xfs_buf_t *bp;
1890 int pincount = 0;
1891 LIST_HEAD(tmp_list);
1892 LIST_HEAD(wait_list);
1893
1894 xfs_buf_runall_queues(xfsconvertd_workqueue);
1895 xfs_buf_runall_queues(xfsdatad_workqueue);
1896 xfs_buf_runall_queues(xfslogd_workqueue);
1897
1898 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1899 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1900
1901 /*
1902 * Dropped the delayed write list lock, now walk the temporary list.
1903 * All I/O is issued async and then if we need to wait for completion
1904 * we do that after issuing all the IO.
1905 */
1906 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1907 while (!list_empty(&tmp_list)) {
1908 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1909 ASSERT(target == bp->b_target);
1910 list_del_init(&bp->b_list);
1911 if (wait) {
1912 bp->b_flags &= ~XBF_ASYNC;
1913 list_add(&bp->b_list, &wait_list);
1914 }
1915 xfs_bdstrat_cb(bp);
1916 }
1917
1918 if (wait) {
1919 /* Expedite and wait for IO to complete. */
1920 blk_run_address_space(target->bt_mapping);
1921 while (!list_empty(&wait_list)) {
1922 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1923
1924 list_del_init(&bp->b_list);
1925 xfs_iowait(bp);
1926 xfs_buf_relse(bp);
1927 }
1928 }
1929
1930 return pincount;
1931 }
1932
1933 int __init
1934 xfs_buf_init(void)
1935 {
1936 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1937 KM_ZONE_HWALIGN, NULL);
1938 if (!xfs_buf_zone)
1939 goto out;
1940
1941 xfslogd_workqueue = create_workqueue("xfslogd");
1942 if (!xfslogd_workqueue)
1943 goto out_free_buf_zone;
1944
1945 xfsdatad_workqueue = create_workqueue("xfsdatad");
1946 if (!xfsdatad_workqueue)
1947 goto out_destroy_xfslogd_workqueue;
1948
1949 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1950 if (!xfsconvertd_workqueue)
1951 goto out_destroy_xfsdatad_workqueue;
1952
1953 register_shrinker(&xfs_buf_shake);
1954 return 0;
1955
1956 out_destroy_xfsdatad_workqueue:
1957 destroy_workqueue(xfsdatad_workqueue);
1958 out_destroy_xfslogd_workqueue:
1959 destroy_workqueue(xfslogd_workqueue);
1960 out_free_buf_zone:
1961 kmem_zone_destroy(xfs_buf_zone);
1962 out:
1963 return -ENOMEM;
1964 }
1965
1966 void
1967 xfs_buf_terminate(void)
1968 {
1969 unregister_shrinker(&xfs_buf_shake);
1970 destroy_workqueue(xfsconvertd_workqueue);
1971 destroy_workqueue(xfsdatad_workqueue);
1972 destroy_workqueue(xfslogd_workqueue);
1973 kmem_zone_destroy(xfs_buf_zone);
1974 }
1975
1976 #ifdef CONFIG_KDB_MODULES
1977 struct list_head *
1978 xfs_get_buftarg_list(void)
1979 {
1980 return &xfs_buftarg_list;
1981 }
1982 #endif
This page took 0.092307 seconds and 5 git commands to generate.