xfs: rename xfs_buf_get_nodaddr to be more appropriate
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
48 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
49 static struct shrinker xfs_buf_shake = {
50 .shrink = xfsbufd_wakeup,
51 .seeks = DEFAULT_SEEKS,
52 };
53
54 static struct workqueue_struct *xfslogd_workqueue;
55 struct workqueue_struct *xfsdatad_workqueue;
56 struct workqueue_struct *xfsconvertd_workqueue;
57
58 #ifdef XFS_BUF_LOCK_TRACKING
59 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
60 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
61 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
62 #else
63 # define XB_SET_OWNER(bp) do { } while (0)
64 # define XB_CLEAR_OWNER(bp) do { } while (0)
65 # define XB_GET_OWNER(bp) do { } while (0)
66 #endif
67
68 #define xb_to_gfp(flags) \
69 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
71
72 #define xb_to_km(flags) \
73 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
74
75 #define xfs_buf_allocate(flags) \
76 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77 #define xfs_buf_deallocate(bp) \
78 kmem_zone_free(xfs_buf_zone, (bp));
79
80 static inline int
81 xfs_buf_is_vmapped(
82 struct xfs_buf *bp)
83 {
84 /*
85 * Return true if the buffer is vmapped.
86 *
87 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88 * code is clever enough to know it doesn't have to map a single page,
89 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90 */
91 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92 }
93
94 static inline int
95 xfs_buf_vmap_len(
96 struct xfs_buf *bp)
97 {
98 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99 }
100
101 /*
102 * Page Region interfaces.
103 *
104 * For pages in filesystems where the blocksize is smaller than the
105 * pagesize, we use the page->private field (long) to hold a bitmap
106 * of uptodate regions within the page.
107 *
108 * Each such region is "bytes per page / bits per long" bytes long.
109 *
110 * NBPPR == number-of-bytes-per-page-region
111 * BTOPR == bytes-to-page-region (rounded up)
112 * BTOPRT == bytes-to-page-region-truncated (rounded down)
113 */
114 #if (BITS_PER_LONG == 32)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
116 #elif (BITS_PER_LONG == 64)
117 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
118 #else
119 #error BITS_PER_LONG must be 32 or 64
120 #endif
121 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
122 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
124
125 STATIC unsigned long
126 page_region_mask(
127 size_t offset,
128 size_t length)
129 {
130 unsigned long mask;
131 int first, final;
132
133 first = BTOPR(offset);
134 final = BTOPRT(offset + length - 1);
135 first = min(first, final);
136
137 mask = ~0UL;
138 mask <<= BITS_PER_LONG - (final - first);
139 mask >>= BITS_PER_LONG - (final);
140
141 ASSERT(offset + length <= PAGE_CACHE_SIZE);
142 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144 return mask;
145 }
146
147 STATIC void
148 set_page_region(
149 struct page *page,
150 size_t offset,
151 size_t length)
152 {
153 set_page_private(page,
154 page_private(page) | page_region_mask(offset, length));
155 if (page_private(page) == ~0UL)
156 SetPageUptodate(page);
157 }
158
159 STATIC int
160 test_page_region(
161 struct page *page,
162 size_t offset,
163 size_t length)
164 {
165 unsigned long mask = page_region_mask(offset, length);
166
167 return (mask && (page_private(page) & mask) == mask);
168 }
169
170 /*
171 * Internal xfs_buf_t object manipulation
172 */
173
174 STATIC void
175 _xfs_buf_initialize(
176 xfs_buf_t *bp,
177 xfs_buftarg_t *target,
178 xfs_off_t range_base,
179 size_t range_length,
180 xfs_buf_flags_t flags)
181 {
182 /*
183 * We don't want certain flags to appear in b_flags.
184 */
185 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187 memset(bp, 0, sizeof(xfs_buf_t));
188 atomic_set(&bp->b_hold, 1);
189 init_completion(&bp->b_iowait);
190 INIT_LIST_HEAD(&bp->b_list);
191 INIT_LIST_HEAD(&bp->b_hash_list);
192 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
193 XB_SET_OWNER(bp);
194 bp->b_target = target;
195 bp->b_file_offset = range_base;
196 /*
197 * Set buffer_length and count_desired to the same value initially.
198 * I/O routines should use count_desired, which will be the same in
199 * most cases but may be reset (e.g. XFS recovery).
200 */
201 bp->b_buffer_length = bp->b_count_desired = range_length;
202 bp->b_flags = flags;
203 bp->b_bn = XFS_BUF_DADDR_NULL;
204 atomic_set(&bp->b_pin_count, 0);
205 init_waitqueue_head(&bp->b_waiters);
206
207 XFS_STATS_INC(xb_create);
208
209 trace_xfs_buf_init(bp, _RET_IP_);
210 }
211
212 /*
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
215 */
216 STATIC int
217 _xfs_buf_get_pages(
218 xfs_buf_t *bp,
219 int page_count,
220 xfs_buf_flags_t flags)
221 {
222 /* Make sure that we have a page list */
223 if (bp->b_pages == NULL) {
224 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225 bp->b_page_count = page_count;
226 if (page_count <= XB_PAGES) {
227 bp->b_pages = bp->b_page_array;
228 } else {
229 bp->b_pages = kmem_alloc(sizeof(struct page *) *
230 page_count, xb_to_km(flags));
231 if (bp->b_pages == NULL)
232 return -ENOMEM;
233 }
234 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
235 }
236 return 0;
237 }
238
239 /*
240 * Frees b_pages if it was allocated.
241 */
242 STATIC void
243 _xfs_buf_free_pages(
244 xfs_buf_t *bp)
245 {
246 if (bp->b_pages != bp->b_page_array) {
247 kmem_free(bp->b_pages);
248 bp->b_pages = NULL;
249 }
250 }
251
252 /*
253 * Releases the specified buffer.
254 *
255 * The modification state of any associated pages is left unchanged.
256 * The buffer most not be on any hash - use xfs_buf_rele instead for
257 * hashed and refcounted buffers
258 */
259 void
260 xfs_buf_free(
261 xfs_buf_t *bp)
262 {
263 trace_xfs_buf_free(bp, _RET_IP_);
264
265 ASSERT(list_empty(&bp->b_hash_list));
266
267 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
268 uint i;
269
270 if (xfs_buf_is_vmapped(bp))
271 vm_unmap_ram(bp->b_addr - bp->b_offset,
272 bp->b_page_count);
273
274 for (i = 0; i < bp->b_page_count; i++) {
275 struct page *page = bp->b_pages[i];
276
277 if (bp->b_flags & _XBF_PAGE_CACHE)
278 ASSERT(!PagePrivate(page));
279 page_cache_release(page);
280 }
281 }
282 _xfs_buf_free_pages(bp);
283 xfs_buf_deallocate(bp);
284 }
285
286 /*
287 * Finds all pages for buffer in question and builds it's page list.
288 */
289 STATIC int
290 _xfs_buf_lookup_pages(
291 xfs_buf_t *bp,
292 uint flags)
293 {
294 struct address_space *mapping = bp->b_target->bt_mapping;
295 size_t blocksize = bp->b_target->bt_bsize;
296 size_t size = bp->b_count_desired;
297 size_t nbytes, offset;
298 gfp_t gfp_mask = xb_to_gfp(flags);
299 unsigned short page_count, i;
300 pgoff_t first;
301 xfs_off_t end;
302 int error;
303
304 end = bp->b_file_offset + bp->b_buffer_length;
305 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
306
307 error = _xfs_buf_get_pages(bp, page_count, flags);
308 if (unlikely(error))
309 return error;
310 bp->b_flags |= _XBF_PAGE_CACHE;
311
312 offset = bp->b_offset;
313 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
314
315 for (i = 0; i < bp->b_page_count; i++) {
316 struct page *page;
317 uint retries = 0;
318
319 retry:
320 page = find_or_create_page(mapping, first + i, gfp_mask);
321 if (unlikely(page == NULL)) {
322 if (flags & XBF_READ_AHEAD) {
323 bp->b_page_count = i;
324 for (i = 0; i < bp->b_page_count; i++)
325 unlock_page(bp->b_pages[i]);
326 return -ENOMEM;
327 }
328
329 /*
330 * This could deadlock.
331 *
332 * But until all the XFS lowlevel code is revamped to
333 * handle buffer allocation failures we can't do much.
334 */
335 if (!(++retries % 100))
336 printk(KERN_ERR
337 "XFS: possible memory allocation "
338 "deadlock in %s (mode:0x%x)\n",
339 __func__, gfp_mask);
340
341 XFS_STATS_INC(xb_page_retries);
342 xfsbufd_wakeup(NULL, 0, gfp_mask);
343 congestion_wait(BLK_RW_ASYNC, HZ/50);
344 goto retry;
345 }
346
347 XFS_STATS_INC(xb_page_found);
348
349 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
350 size -= nbytes;
351
352 ASSERT(!PagePrivate(page));
353 if (!PageUptodate(page)) {
354 page_count--;
355 if (blocksize >= PAGE_CACHE_SIZE) {
356 if (flags & XBF_READ)
357 bp->b_flags |= _XBF_PAGE_LOCKED;
358 } else if (!PagePrivate(page)) {
359 if (test_page_region(page, offset, nbytes))
360 page_count++;
361 }
362 }
363
364 bp->b_pages[i] = page;
365 offset = 0;
366 }
367
368 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
369 for (i = 0; i < bp->b_page_count; i++)
370 unlock_page(bp->b_pages[i]);
371 }
372
373 if (page_count == bp->b_page_count)
374 bp->b_flags |= XBF_DONE;
375
376 return error;
377 }
378
379 /*
380 * Map buffer into kernel address-space if nessecary.
381 */
382 STATIC int
383 _xfs_buf_map_pages(
384 xfs_buf_t *bp,
385 uint flags)
386 {
387 /* A single page buffer is always mappable */
388 if (bp->b_page_count == 1) {
389 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390 bp->b_flags |= XBF_MAPPED;
391 } else if (flags & XBF_MAPPED) {
392 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
393 -1, PAGE_KERNEL);
394 if (unlikely(bp->b_addr == NULL))
395 return -ENOMEM;
396 bp->b_addr += bp->b_offset;
397 bp->b_flags |= XBF_MAPPED;
398 }
399
400 return 0;
401 }
402
403 /*
404 * Finding and Reading Buffers
405 */
406
407 /*
408 * Look up, and creates if absent, a lockable buffer for
409 * a given range of an inode. The buffer is returned
410 * locked. If other overlapping buffers exist, they are
411 * released before the new buffer is created and locked,
412 * which may imply that this call will block until those buffers
413 * are unlocked. No I/O is implied by this call.
414 */
415 xfs_buf_t *
416 _xfs_buf_find(
417 xfs_buftarg_t *btp, /* block device target */
418 xfs_off_t ioff, /* starting offset of range */
419 size_t isize, /* length of range */
420 xfs_buf_flags_t flags,
421 xfs_buf_t *new_bp)
422 {
423 xfs_off_t range_base;
424 size_t range_length;
425 xfs_bufhash_t *hash;
426 xfs_buf_t *bp, *n;
427
428 range_base = (ioff << BBSHIFT);
429 range_length = (isize << BBSHIFT);
430
431 /* Check for IOs smaller than the sector size / not sector aligned */
432 ASSERT(!(range_length < (1 << btp->bt_sshift)));
433 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
434
435 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
436
437 spin_lock(&hash->bh_lock);
438
439 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
440 ASSERT(btp == bp->b_target);
441 if (bp->b_file_offset == range_base &&
442 bp->b_buffer_length == range_length) {
443 atomic_inc(&bp->b_hold);
444 goto found;
445 }
446 }
447
448 /* No match found */
449 if (new_bp) {
450 _xfs_buf_initialize(new_bp, btp, range_base,
451 range_length, flags);
452 new_bp->b_hash = hash;
453 list_add(&new_bp->b_hash_list, &hash->bh_list);
454 } else {
455 XFS_STATS_INC(xb_miss_locked);
456 }
457
458 spin_unlock(&hash->bh_lock);
459 return new_bp;
460
461 found:
462 spin_unlock(&hash->bh_lock);
463
464 /* Attempt to get the semaphore without sleeping,
465 * if this does not work then we need to drop the
466 * spinlock and do a hard attempt on the semaphore.
467 */
468 if (down_trylock(&bp->b_sema)) {
469 if (!(flags & XBF_TRYLOCK)) {
470 /* wait for buffer ownership */
471 xfs_buf_lock(bp);
472 XFS_STATS_INC(xb_get_locked_waited);
473 } else {
474 /* We asked for a trylock and failed, no need
475 * to look at file offset and length here, we
476 * know that this buffer at least overlaps our
477 * buffer and is locked, therefore our buffer
478 * either does not exist, or is this buffer.
479 */
480 xfs_buf_rele(bp);
481 XFS_STATS_INC(xb_busy_locked);
482 return NULL;
483 }
484 } else {
485 /* trylock worked */
486 XB_SET_OWNER(bp);
487 }
488
489 if (bp->b_flags & XBF_STALE) {
490 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
491 bp->b_flags &= XBF_MAPPED;
492 }
493
494 trace_xfs_buf_find(bp, flags, _RET_IP_);
495 XFS_STATS_INC(xb_get_locked);
496 return bp;
497 }
498
499 /*
500 * Assembles a buffer covering the specified range.
501 * Storage in memory for all portions of the buffer will be allocated,
502 * although backing storage may not be.
503 */
504 xfs_buf_t *
505 xfs_buf_get(
506 xfs_buftarg_t *target,/* target for buffer */
507 xfs_off_t ioff, /* starting offset of range */
508 size_t isize, /* length of range */
509 xfs_buf_flags_t flags)
510 {
511 xfs_buf_t *bp, *new_bp;
512 int error = 0, i;
513
514 new_bp = xfs_buf_allocate(flags);
515 if (unlikely(!new_bp))
516 return NULL;
517
518 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
519 if (bp == new_bp) {
520 error = _xfs_buf_lookup_pages(bp, flags);
521 if (error)
522 goto no_buffer;
523 } else {
524 xfs_buf_deallocate(new_bp);
525 if (unlikely(bp == NULL))
526 return NULL;
527 }
528
529 for (i = 0; i < bp->b_page_count; i++)
530 mark_page_accessed(bp->b_pages[i]);
531
532 if (!(bp->b_flags & XBF_MAPPED)) {
533 error = _xfs_buf_map_pages(bp, flags);
534 if (unlikely(error)) {
535 printk(KERN_WARNING "%s: failed to map pages\n",
536 __func__);
537 goto no_buffer;
538 }
539 }
540
541 XFS_STATS_INC(xb_get);
542
543 /*
544 * Always fill in the block number now, the mapped cases can do
545 * their own overlay of this later.
546 */
547 bp->b_bn = ioff;
548 bp->b_count_desired = bp->b_buffer_length;
549
550 trace_xfs_buf_get(bp, flags, _RET_IP_);
551 return bp;
552
553 no_buffer:
554 if (flags & (XBF_LOCK | XBF_TRYLOCK))
555 xfs_buf_unlock(bp);
556 xfs_buf_rele(bp);
557 return NULL;
558 }
559
560 STATIC int
561 _xfs_buf_read(
562 xfs_buf_t *bp,
563 xfs_buf_flags_t flags)
564 {
565 int status;
566
567 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
568 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
569
570 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
571 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
572 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
573 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
574
575 status = xfs_buf_iorequest(bp);
576 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
577 return status;
578 return xfs_buf_iowait(bp);
579 }
580
581 xfs_buf_t *
582 xfs_buf_read(
583 xfs_buftarg_t *target,
584 xfs_off_t ioff,
585 size_t isize,
586 xfs_buf_flags_t flags)
587 {
588 xfs_buf_t *bp;
589
590 flags |= XBF_READ;
591
592 bp = xfs_buf_get(target, ioff, isize, flags);
593 if (bp) {
594 trace_xfs_buf_read(bp, flags, _RET_IP_);
595
596 if (!XFS_BUF_ISDONE(bp)) {
597 XFS_STATS_INC(xb_get_read);
598 _xfs_buf_read(bp, flags);
599 } else if (flags & XBF_ASYNC) {
600 /*
601 * Read ahead call which is already satisfied,
602 * drop the buffer
603 */
604 goto no_buffer;
605 } else {
606 /* We do not want read in the flags */
607 bp->b_flags &= ~XBF_READ;
608 }
609 }
610
611 return bp;
612
613 no_buffer:
614 if (flags & (XBF_LOCK | XBF_TRYLOCK))
615 xfs_buf_unlock(bp);
616 xfs_buf_rele(bp);
617 return NULL;
618 }
619
620 /*
621 * If we are not low on memory then do the readahead in a deadlock
622 * safe manner.
623 */
624 void
625 xfs_buf_readahead(
626 xfs_buftarg_t *target,
627 xfs_off_t ioff,
628 size_t isize,
629 xfs_buf_flags_t flags)
630 {
631 struct backing_dev_info *bdi;
632
633 bdi = target->bt_mapping->backing_dev_info;
634 if (bdi_read_congested(bdi))
635 return;
636
637 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
638 xfs_buf_read(target, ioff, isize, flags);
639 }
640
641 xfs_buf_t *
642 xfs_buf_get_empty(
643 size_t len,
644 xfs_buftarg_t *target)
645 {
646 xfs_buf_t *bp;
647
648 bp = xfs_buf_allocate(0);
649 if (bp)
650 _xfs_buf_initialize(bp, target, 0, len, 0);
651 return bp;
652 }
653
654 static inline struct page *
655 mem_to_page(
656 void *addr)
657 {
658 if ((!is_vmalloc_addr(addr))) {
659 return virt_to_page(addr);
660 } else {
661 return vmalloc_to_page(addr);
662 }
663 }
664
665 int
666 xfs_buf_associate_memory(
667 xfs_buf_t *bp,
668 void *mem,
669 size_t len)
670 {
671 int rval;
672 int i = 0;
673 unsigned long pageaddr;
674 unsigned long offset;
675 size_t buflen;
676 int page_count;
677
678 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
679 offset = (unsigned long)mem - pageaddr;
680 buflen = PAGE_CACHE_ALIGN(len + offset);
681 page_count = buflen >> PAGE_CACHE_SHIFT;
682
683 /* Free any previous set of page pointers */
684 if (bp->b_pages)
685 _xfs_buf_free_pages(bp);
686
687 bp->b_pages = NULL;
688 bp->b_addr = mem;
689
690 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
691 if (rval)
692 return rval;
693
694 bp->b_offset = offset;
695
696 for (i = 0; i < bp->b_page_count; i++) {
697 bp->b_pages[i] = mem_to_page((void *)pageaddr);
698 pageaddr += PAGE_CACHE_SIZE;
699 }
700
701 bp->b_count_desired = len;
702 bp->b_buffer_length = buflen;
703 bp->b_flags |= XBF_MAPPED;
704 bp->b_flags &= ~_XBF_PAGE_LOCKED;
705
706 return 0;
707 }
708
709 xfs_buf_t *
710 xfs_buf_get_uncached(
711 struct xfs_buftarg *target,
712 size_t len,
713 int flags)
714 {
715 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
716 int error, i;
717 xfs_buf_t *bp;
718
719 bp = xfs_buf_allocate(0);
720 if (unlikely(bp == NULL))
721 goto fail;
722 _xfs_buf_initialize(bp, target, 0, len, 0);
723
724 error = _xfs_buf_get_pages(bp, page_count, 0);
725 if (error)
726 goto fail_free_buf;
727
728 for (i = 0; i < page_count; i++) {
729 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
730 if (!bp->b_pages[i])
731 goto fail_free_mem;
732 }
733 bp->b_flags |= _XBF_PAGES;
734
735 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
736 if (unlikely(error)) {
737 printk(KERN_WARNING "%s: failed to map pages\n",
738 __func__);
739 goto fail_free_mem;
740 }
741
742 xfs_buf_unlock(bp);
743
744 trace_xfs_buf_get_uncached(bp, _RET_IP_);
745 return bp;
746
747 fail_free_mem:
748 while (--i >= 0)
749 __free_page(bp->b_pages[i]);
750 _xfs_buf_free_pages(bp);
751 fail_free_buf:
752 xfs_buf_deallocate(bp);
753 fail:
754 return NULL;
755 }
756
757 /*
758 * Increment reference count on buffer, to hold the buffer concurrently
759 * with another thread which may release (free) the buffer asynchronously.
760 * Must hold the buffer already to call this function.
761 */
762 void
763 xfs_buf_hold(
764 xfs_buf_t *bp)
765 {
766 trace_xfs_buf_hold(bp, _RET_IP_);
767 atomic_inc(&bp->b_hold);
768 }
769
770 /*
771 * Releases a hold on the specified buffer. If the
772 * the hold count is 1, calls xfs_buf_free.
773 */
774 void
775 xfs_buf_rele(
776 xfs_buf_t *bp)
777 {
778 xfs_bufhash_t *hash = bp->b_hash;
779
780 trace_xfs_buf_rele(bp, _RET_IP_);
781
782 if (unlikely(!hash)) {
783 ASSERT(!bp->b_relse);
784 if (atomic_dec_and_test(&bp->b_hold))
785 xfs_buf_free(bp);
786 return;
787 }
788
789 ASSERT(atomic_read(&bp->b_hold) > 0);
790 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
791 if (bp->b_relse) {
792 atomic_inc(&bp->b_hold);
793 spin_unlock(&hash->bh_lock);
794 (*(bp->b_relse)) (bp);
795 } else if (bp->b_flags & XBF_FS_MANAGED) {
796 spin_unlock(&hash->bh_lock);
797 } else {
798 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
799 list_del_init(&bp->b_hash_list);
800 spin_unlock(&hash->bh_lock);
801 xfs_buf_free(bp);
802 }
803 }
804 }
805
806
807 /*
808 * Mutual exclusion on buffers. Locking model:
809 *
810 * Buffers associated with inodes for which buffer locking
811 * is not enabled are not protected by semaphores, and are
812 * assumed to be exclusively owned by the caller. There is a
813 * spinlock in the buffer, used by the caller when concurrent
814 * access is possible.
815 */
816
817 /*
818 * Locks a buffer object, if it is not already locked.
819 * Note that this in no way locks the underlying pages, so it is only
820 * useful for synchronizing concurrent use of buffer objects, not for
821 * synchronizing independent access to the underlying pages.
822 */
823 int
824 xfs_buf_cond_lock(
825 xfs_buf_t *bp)
826 {
827 int locked;
828
829 locked = down_trylock(&bp->b_sema) == 0;
830 if (locked)
831 XB_SET_OWNER(bp);
832
833 trace_xfs_buf_cond_lock(bp, _RET_IP_);
834 return locked ? 0 : -EBUSY;
835 }
836
837 int
838 xfs_buf_lock_value(
839 xfs_buf_t *bp)
840 {
841 return bp->b_sema.count;
842 }
843
844 /*
845 * Locks a buffer object.
846 * Note that this in no way locks the underlying pages, so it is only
847 * useful for synchronizing concurrent use of buffer objects, not for
848 * synchronizing independent access to the underlying pages.
849 *
850 * If we come across a stale, pinned, locked buffer, we know that we
851 * are being asked to lock a buffer that has been reallocated. Because
852 * it is pinned, we know that the log has not been pushed to disk and
853 * hence it will still be locked. Rather than sleeping until someone
854 * else pushes the log, push it ourselves before trying to get the lock.
855 */
856 void
857 xfs_buf_lock(
858 xfs_buf_t *bp)
859 {
860 trace_xfs_buf_lock(bp, _RET_IP_);
861
862 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
863 xfs_log_force(bp->b_mount, 0);
864 if (atomic_read(&bp->b_io_remaining))
865 blk_run_address_space(bp->b_target->bt_mapping);
866 down(&bp->b_sema);
867 XB_SET_OWNER(bp);
868
869 trace_xfs_buf_lock_done(bp, _RET_IP_);
870 }
871
872 /*
873 * Releases the lock on the buffer object.
874 * If the buffer is marked delwri but is not queued, do so before we
875 * unlock the buffer as we need to set flags correctly. We also need to
876 * take a reference for the delwri queue because the unlocker is going to
877 * drop their's and they don't know we just queued it.
878 */
879 void
880 xfs_buf_unlock(
881 xfs_buf_t *bp)
882 {
883 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
884 atomic_inc(&bp->b_hold);
885 bp->b_flags |= XBF_ASYNC;
886 xfs_buf_delwri_queue(bp, 0);
887 }
888
889 XB_CLEAR_OWNER(bp);
890 up(&bp->b_sema);
891
892 trace_xfs_buf_unlock(bp, _RET_IP_);
893 }
894
895 STATIC void
896 xfs_buf_wait_unpin(
897 xfs_buf_t *bp)
898 {
899 DECLARE_WAITQUEUE (wait, current);
900
901 if (atomic_read(&bp->b_pin_count) == 0)
902 return;
903
904 add_wait_queue(&bp->b_waiters, &wait);
905 for (;;) {
906 set_current_state(TASK_UNINTERRUPTIBLE);
907 if (atomic_read(&bp->b_pin_count) == 0)
908 break;
909 if (atomic_read(&bp->b_io_remaining))
910 blk_run_address_space(bp->b_target->bt_mapping);
911 schedule();
912 }
913 remove_wait_queue(&bp->b_waiters, &wait);
914 set_current_state(TASK_RUNNING);
915 }
916
917 /*
918 * Buffer Utility Routines
919 */
920
921 STATIC void
922 xfs_buf_iodone_work(
923 struct work_struct *work)
924 {
925 xfs_buf_t *bp =
926 container_of(work, xfs_buf_t, b_iodone_work);
927
928 /*
929 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
930 * ordered flag and reissue them. Because we can't tell the higher
931 * layers directly that they should not issue ordered I/O anymore, they
932 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
933 */
934 if ((bp->b_error == EOPNOTSUPP) &&
935 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
936 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
937 bp->b_flags &= ~XBF_ORDERED;
938 bp->b_flags |= _XFS_BARRIER_FAILED;
939 xfs_buf_iorequest(bp);
940 } else if (bp->b_iodone)
941 (*(bp->b_iodone))(bp);
942 else if (bp->b_flags & XBF_ASYNC)
943 xfs_buf_relse(bp);
944 }
945
946 void
947 xfs_buf_ioend(
948 xfs_buf_t *bp,
949 int schedule)
950 {
951 trace_xfs_buf_iodone(bp, _RET_IP_);
952
953 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
954 if (bp->b_error == 0)
955 bp->b_flags |= XBF_DONE;
956
957 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
958 if (schedule) {
959 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
960 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
961 } else {
962 xfs_buf_iodone_work(&bp->b_iodone_work);
963 }
964 } else {
965 complete(&bp->b_iowait);
966 }
967 }
968
969 void
970 xfs_buf_ioerror(
971 xfs_buf_t *bp,
972 int error)
973 {
974 ASSERT(error >= 0 && error <= 0xffff);
975 bp->b_error = (unsigned short)error;
976 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
977 }
978
979 int
980 xfs_bwrite(
981 struct xfs_mount *mp,
982 struct xfs_buf *bp)
983 {
984 int error;
985
986 bp->b_mount = mp;
987 bp->b_flags |= XBF_WRITE;
988 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
989
990 xfs_buf_delwri_dequeue(bp);
991 xfs_bdstrat_cb(bp);
992
993 error = xfs_buf_iowait(bp);
994 if (error)
995 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
996 xfs_buf_relse(bp);
997 return error;
998 }
999
1000 void
1001 xfs_bdwrite(
1002 void *mp,
1003 struct xfs_buf *bp)
1004 {
1005 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1006
1007 bp->b_mount = mp;
1008
1009 bp->b_flags &= ~XBF_READ;
1010 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1011
1012 xfs_buf_delwri_queue(bp, 1);
1013 }
1014
1015 /*
1016 * Called when we want to stop a buffer from getting written or read.
1017 * We attach the EIO error, muck with its flags, and call biodone
1018 * so that the proper iodone callbacks get called.
1019 */
1020 STATIC int
1021 xfs_bioerror(
1022 xfs_buf_t *bp)
1023 {
1024 #ifdef XFSERRORDEBUG
1025 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1026 #endif
1027
1028 /*
1029 * No need to wait until the buffer is unpinned, we aren't flushing it.
1030 */
1031 XFS_BUF_ERROR(bp, EIO);
1032
1033 /*
1034 * We're calling biodone, so delete XBF_DONE flag.
1035 */
1036 XFS_BUF_UNREAD(bp);
1037 XFS_BUF_UNDELAYWRITE(bp);
1038 XFS_BUF_UNDONE(bp);
1039 XFS_BUF_STALE(bp);
1040
1041 xfs_biodone(bp);
1042
1043 return EIO;
1044 }
1045
1046 /*
1047 * Same as xfs_bioerror, except that we are releasing the buffer
1048 * here ourselves, and avoiding the biodone call.
1049 * This is meant for userdata errors; metadata bufs come with
1050 * iodone functions attached, so that we can track down errors.
1051 */
1052 STATIC int
1053 xfs_bioerror_relse(
1054 struct xfs_buf *bp)
1055 {
1056 int64_t fl = XFS_BUF_BFLAGS(bp);
1057 /*
1058 * No need to wait until the buffer is unpinned.
1059 * We aren't flushing it.
1060 *
1061 * chunkhold expects B_DONE to be set, whether
1062 * we actually finish the I/O or not. We don't want to
1063 * change that interface.
1064 */
1065 XFS_BUF_UNREAD(bp);
1066 XFS_BUF_UNDELAYWRITE(bp);
1067 XFS_BUF_DONE(bp);
1068 XFS_BUF_STALE(bp);
1069 XFS_BUF_CLR_IODONE_FUNC(bp);
1070 if (!(fl & XBF_ASYNC)) {
1071 /*
1072 * Mark b_error and B_ERROR _both_.
1073 * Lot's of chunkcache code assumes that.
1074 * There's no reason to mark error for
1075 * ASYNC buffers.
1076 */
1077 XFS_BUF_ERROR(bp, EIO);
1078 XFS_BUF_FINISH_IOWAIT(bp);
1079 } else {
1080 xfs_buf_relse(bp);
1081 }
1082
1083 return EIO;
1084 }
1085
1086
1087 /*
1088 * All xfs metadata buffers except log state machine buffers
1089 * get this attached as their b_bdstrat callback function.
1090 * This is so that we can catch a buffer
1091 * after prematurely unpinning it to forcibly shutdown the filesystem.
1092 */
1093 int
1094 xfs_bdstrat_cb(
1095 struct xfs_buf *bp)
1096 {
1097 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1098 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1099 /*
1100 * Metadata write that didn't get logged but
1101 * written delayed anyway. These aren't associated
1102 * with a transaction, and can be ignored.
1103 */
1104 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1105 return xfs_bioerror_relse(bp);
1106 else
1107 return xfs_bioerror(bp);
1108 }
1109
1110 xfs_buf_iorequest(bp);
1111 return 0;
1112 }
1113
1114 /*
1115 * Wrapper around bdstrat so that we can stop data from going to disk in case
1116 * we are shutting down the filesystem. Typically user data goes thru this
1117 * path; one of the exceptions is the superblock.
1118 */
1119 void
1120 xfsbdstrat(
1121 struct xfs_mount *mp,
1122 struct xfs_buf *bp)
1123 {
1124 if (XFS_FORCED_SHUTDOWN(mp)) {
1125 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1126 xfs_bioerror_relse(bp);
1127 return;
1128 }
1129
1130 xfs_buf_iorequest(bp);
1131 }
1132
1133 STATIC void
1134 _xfs_buf_ioend(
1135 xfs_buf_t *bp,
1136 int schedule)
1137 {
1138 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1139 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1140 xfs_buf_ioend(bp, schedule);
1141 }
1142 }
1143
1144 STATIC void
1145 xfs_buf_bio_end_io(
1146 struct bio *bio,
1147 int error)
1148 {
1149 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1150 unsigned int blocksize = bp->b_target->bt_bsize;
1151 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1152
1153 xfs_buf_ioerror(bp, -error);
1154
1155 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1156 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1157
1158 do {
1159 struct page *page = bvec->bv_page;
1160
1161 ASSERT(!PagePrivate(page));
1162 if (unlikely(bp->b_error)) {
1163 if (bp->b_flags & XBF_READ)
1164 ClearPageUptodate(page);
1165 } else if (blocksize >= PAGE_CACHE_SIZE) {
1166 SetPageUptodate(page);
1167 } else if (!PagePrivate(page) &&
1168 (bp->b_flags & _XBF_PAGE_CACHE)) {
1169 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1170 }
1171
1172 if (--bvec >= bio->bi_io_vec)
1173 prefetchw(&bvec->bv_page->flags);
1174
1175 if (bp->b_flags & _XBF_PAGE_LOCKED)
1176 unlock_page(page);
1177 } while (bvec >= bio->bi_io_vec);
1178
1179 _xfs_buf_ioend(bp, 1);
1180 bio_put(bio);
1181 }
1182
1183 STATIC void
1184 _xfs_buf_ioapply(
1185 xfs_buf_t *bp)
1186 {
1187 int rw, map_i, total_nr_pages, nr_pages;
1188 struct bio *bio;
1189 int offset = bp->b_offset;
1190 int size = bp->b_count_desired;
1191 sector_t sector = bp->b_bn;
1192 unsigned int blocksize = bp->b_target->bt_bsize;
1193
1194 total_nr_pages = bp->b_page_count;
1195 map_i = 0;
1196
1197 if (bp->b_flags & XBF_ORDERED) {
1198 ASSERT(!(bp->b_flags & XBF_READ));
1199 rw = WRITE_BARRIER;
1200 } else if (bp->b_flags & XBF_LOG_BUFFER) {
1201 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1202 bp->b_flags &= ~_XBF_RUN_QUEUES;
1203 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1204 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1205 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1206 bp->b_flags &= ~_XBF_RUN_QUEUES;
1207 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1208 } else {
1209 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1210 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1211 }
1212
1213 /* Special code path for reading a sub page size buffer in --
1214 * we populate up the whole page, and hence the other metadata
1215 * in the same page. This optimization is only valid when the
1216 * filesystem block size is not smaller than the page size.
1217 */
1218 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1219 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1220 (XBF_READ|_XBF_PAGE_LOCKED)) &&
1221 (blocksize >= PAGE_CACHE_SIZE)) {
1222 bio = bio_alloc(GFP_NOIO, 1);
1223
1224 bio->bi_bdev = bp->b_target->bt_bdev;
1225 bio->bi_sector = sector - (offset >> BBSHIFT);
1226 bio->bi_end_io = xfs_buf_bio_end_io;
1227 bio->bi_private = bp;
1228
1229 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1230 size = 0;
1231
1232 atomic_inc(&bp->b_io_remaining);
1233
1234 goto submit_io;
1235 }
1236
1237 next_chunk:
1238 atomic_inc(&bp->b_io_remaining);
1239 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1240 if (nr_pages > total_nr_pages)
1241 nr_pages = total_nr_pages;
1242
1243 bio = bio_alloc(GFP_NOIO, nr_pages);
1244 bio->bi_bdev = bp->b_target->bt_bdev;
1245 bio->bi_sector = sector;
1246 bio->bi_end_io = xfs_buf_bio_end_io;
1247 bio->bi_private = bp;
1248
1249 for (; size && nr_pages; nr_pages--, map_i++) {
1250 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1251
1252 if (nbytes > size)
1253 nbytes = size;
1254
1255 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1256 if (rbytes < nbytes)
1257 break;
1258
1259 offset = 0;
1260 sector += nbytes >> BBSHIFT;
1261 size -= nbytes;
1262 total_nr_pages--;
1263 }
1264
1265 submit_io:
1266 if (likely(bio->bi_size)) {
1267 if (xfs_buf_is_vmapped(bp)) {
1268 flush_kernel_vmap_range(bp->b_addr,
1269 xfs_buf_vmap_len(bp));
1270 }
1271 submit_bio(rw, bio);
1272 if (size)
1273 goto next_chunk;
1274 } else {
1275 /*
1276 * if we get here, no pages were added to the bio. However,
1277 * we can't just error out here - if the pages are locked then
1278 * we have to unlock them otherwise we can hang on a later
1279 * access to the page.
1280 */
1281 xfs_buf_ioerror(bp, EIO);
1282 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1283 int i;
1284 for (i = 0; i < bp->b_page_count; i++)
1285 unlock_page(bp->b_pages[i]);
1286 }
1287 bio_put(bio);
1288 }
1289 }
1290
1291 int
1292 xfs_buf_iorequest(
1293 xfs_buf_t *bp)
1294 {
1295 trace_xfs_buf_iorequest(bp, _RET_IP_);
1296
1297 if (bp->b_flags & XBF_DELWRI) {
1298 xfs_buf_delwri_queue(bp, 1);
1299 return 0;
1300 }
1301
1302 if (bp->b_flags & XBF_WRITE) {
1303 xfs_buf_wait_unpin(bp);
1304 }
1305
1306 xfs_buf_hold(bp);
1307
1308 /* Set the count to 1 initially, this will stop an I/O
1309 * completion callout which happens before we have started
1310 * all the I/O from calling xfs_buf_ioend too early.
1311 */
1312 atomic_set(&bp->b_io_remaining, 1);
1313 _xfs_buf_ioapply(bp);
1314 _xfs_buf_ioend(bp, 0);
1315
1316 xfs_buf_rele(bp);
1317 return 0;
1318 }
1319
1320 /*
1321 * Waits for I/O to complete on the buffer supplied.
1322 * It returns immediately if no I/O is pending.
1323 * It returns the I/O error code, if any, or 0 if there was no error.
1324 */
1325 int
1326 xfs_buf_iowait(
1327 xfs_buf_t *bp)
1328 {
1329 trace_xfs_buf_iowait(bp, _RET_IP_);
1330
1331 if (atomic_read(&bp->b_io_remaining))
1332 blk_run_address_space(bp->b_target->bt_mapping);
1333 wait_for_completion(&bp->b_iowait);
1334
1335 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1336 return bp->b_error;
1337 }
1338
1339 xfs_caddr_t
1340 xfs_buf_offset(
1341 xfs_buf_t *bp,
1342 size_t offset)
1343 {
1344 struct page *page;
1345
1346 if (bp->b_flags & XBF_MAPPED)
1347 return XFS_BUF_PTR(bp) + offset;
1348
1349 offset += bp->b_offset;
1350 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1351 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1352 }
1353
1354 /*
1355 * Move data into or out of a buffer.
1356 */
1357 void
1358 xfs_buf_iomove(
1359 xfs_buf_t *bp, /* buffer to process */
1360 size_t boff, /* starting buffer offset */
1361 size_t bsize, /* length to copy */
1362 void *data, /* data address */
1363 xfs_buf_rw_t mode) /* read/write/zero flag */
1364 {
1365 size_t bend, cpoff, csize;
1366 struct page *page;
1367
1368 bend = boff + bsize;
1369 while (boff < bend) {
1370 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1371 cpoff = xfs_buf_poff(boff + bp->b_offset);
1372 csize = min_t(size_t,
1373 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1374
1375 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1376
1377 switch (mode) {
1378 case XBRW_ZERO:
1379 memset(page_address(page) + cpoff, 0, csize);
1380 break;
1381 case XBRW_READ:
1382 memcpy(data, page_address(page) + cpoff, csize);
1383 break;
1384 case XBRW_WRITE:
1385 memcpy(page_address(page) + cpoff, data, csize);
1386 }
1387
1388 boff += csize;
1389 data += csize;
1390 }
1391 }
1392
1393 /*
1394 * Handling of buffer targets (buftargs).
1395 */
1396
1397 /*
1398 * Wait for any bufs with callbacks that have been submitted but
1399 * have not yet returned... walk the hash list for the target.
1400 */
1401 void
1402 xfs_wait_buftarg(
1403 xfs_buftarg_t *btp)
1404 {
1405 xfs_buf_t *bp, *n;
1406 xfs_bufhash_t *hash;
1407 uint i;
1408
1409 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1410 hash = &btp->bt_hash[i];
1411 again:
1412 spin_lock(&hash->bh_lock);
1413 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1414 ASSERT(btp == bp->b_target);
1415 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1416 spin_unlock(&hash->bh_lock);
1417 /*
1418 * Catch superblock reference count leaks
1419 * immediately
1420 */
1421 BUG_ON(bp->b_bn == 0);
1422 delay(100);
1423 goto again;
1424 }
1425 }
1426 spin_unlock(&hash->bh_lock);
1427 }
1428 }
1429
1430 /*
1431 * Allocate buffer hash table for a given target.
1432 * For devices containing metadata (i.e. not the log/realtime devices)
1433 * we need to allocate a much larger hash table.
1434 */
1435 STATIC void
1436 xfs_alloc_bufhash(
1437 xfs_buftarg_t *btp,
1438 int external)
1439 {
1440 unsigned int i;
1441
1442 btp->bt_hashshift = external ? 3 : 12; /* 8 or 4096 buckets */
1443 btp->bt_hash = kmem_zalloc_large((1 << btp->bt_hashshift) *
1444 sizeof(xfs_bufhash_t));
1445 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1446 spin_lock_init(&btp->bt_hash[i].bh_lock);
1447 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1448 }
1449 }
1450
1451 STATIC void
1452 xfs_free_bufhash(
1453 xfs_buftarg_t *btp)
1454 {
1455 kmem_free_large(btp->bt_hash);
1456 btp->bt_hash = NULL;
1457 }
1458
1459 /*
1460 * buftarg list for delwrite queue processing
1461 */
1462 static LIST_HEAD(xfs_buftarg_list);
1463 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1464
1465 STATIC void
1466 xfs_register_buftarg(
1467 xfs_buftarg_t *btp)
1468 {
1469 spin_lock(&xfs_buftarg_lock);
1470 list_add(&btp->bt_list, &xfs_buftarg_list);
1471 spin_unlock(&xfs_buftarg_lock);
1472 }
1473
1474 STATIC void
1475 xfs_unregister_buftarg(
1476 xfs_buftarg_t *btp)
1477 {
1478 spin_lock(&xfs_buftarg_lock);
1479 list_del(&btp->bt_list);
1480 spin_unlock(&xfs_buftarg_lock);
1481 }
1482
1483 void
1484 xfs_free_buftarg(
1485 struct xfs_mount *mp,
1486 struct xfs_buftarg *btp)
1487 {
1488 xfs_flush_buftarg(btp, 1);
1489 if (mp->m_flags & XFS_MOUNT_BARRIER)
1490 xfs_blkdev_issue_flush(btp);
1491 xfs_free_bufhash(btp);
1492 iput(btp->bt_mapping->host);
1493
1494 /* Unregister the buftarg first so that we don't get a
1495 * wakeup finding a non-existent task
1496 */
1497 xfs_unregister_buftarg(btp);
1498 kthread_stop(btp->bt_task);
1499
1500 kmem_free(btp);
1501 }
1502
1503 STATIC int
1504 xfs_setsize_buftarg_flags(
1505 xfs_buftarg_t *btp,
1506 unsigned int blocksize,
1507 unsigned int sectorsize,
1508 int verbose)
1509 {
1510 btp->bt_bsize = blocksize;
1511 btp->bt_sshift = ffs(sectorsize) - 1;
1512 btp->bt_smask = sectorsize - 1;
1513
1514 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1515 printk(KERN_WARNING
1516 "XFS: Cannot set_blocksize to %u on device %s\n",
1517 sectorsize, XFS_BUFTARG_NAME(btp));
1518 return EINVAL;
1519 }
1520
1521 if (verbose &&
1522 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1523 printk(KERN_WARNING
1524 "XFS: %u byte sectors in use on device %s. "
1525 "This is suboptimal; %u or greater is ideal.\n",
1526 sectorsize, XFS_BUFTARG_NAME(btp),
1527 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1528 }
1529
1530 return 0;
1531 }
1532
1533 /*
1534 * When allocating the initial buffer target we have not yet
1535 * read in the superblock, so don't know what sized sectors
1536 * are being used is at this early stage. Play safe.
1537 */
1538 STATIC int
1539 xfs_setsize_buftarg_early(
1540 xfs_buftarg_t *btp,
1541 struct block_device *bdev)
1542 {
1543 return xfs_setsize_buftarg_flags(btp,
1544 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1545 }
1546
1547 int
1548 xfs_setsize_buftarg(
1549 xfs_buftarg_t *btp,
1550 unsigned int blocksize,
1551 unsigned int sectorsize)
1552 {
1553 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1554 }
1555
1556 STATIC int
1557 xfs_mapping_buftarg(
1558 xfs_buftarg_t *btp,
1559 struct block_device *bdev)
1560 {
1561 struct backing_dev_info *bdi;
1562 struct inode *inode;
1563 struct address_space *mapping;
1564 static const struct address_space_operations mapping_aops = {
1565 .sync_page = block_sync_page,
1566 .migratepage = fail_migrate_page,
1567 };
1568
1569 inode = new_inode(bdev->bd_inode->i_sb);
1570 if (!inode) {
1571 printk(KERN_WARNING
1572 "XFS: Cannot allocate mapping inode for device %s\n",
1573 XFS_BUFTARG_NAME(btp));
1574 return ENOMEM;
1575 }
1576 inode->i_mode = S_IFBLK;
1577 inode->i_bdev = bdev;
1578 inode->i_rdev = bdev->bd_dev;
1579 bdi = blk_get_backing_dev_info(bdev);
1580 if (!bdi)
1581 bdi = &default_backing_dev_info;
1582 mapping = &inode->i_data;
1583 mapping->a_ops = &mapping_aops;
1584 mapping->backing_dev_info = bdi;
1585 mapping_set_gfp_mask(mapping, GFP_NOFS);
1586 btp->bt_mapping = mapping;
1587 return 0;
1588 }
1589
1590 STATIC int
1591 xfs_alloc_delwrite_queue(
1592 xfs_buftarg_t *btp,
1593 const char *fsname)
1594 {
1595 int error = 0;
1596
1597 INIT_LIST_HEAD(&btp->bt_list);
1598 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1599 spin_lock_init(&btp->bt_delwrite_lock);
1600 btp->bt_flags = 0;
1601 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1602 if (IS_ERR(btp->bt_task)) {
1603 error = PTR_ERR(btp->bt_task);
1604 goto out_error;
1605 }
1606 xfs_register_buftarg(btp);
1607 out_error:
1608 return error;
1609 }
1610
1611 xfs_buftarg_t *
1612 xfs_alloc_buftarg(
1613 struct block_device *bdev,
1614 int external,
1615 const char *fsname)
1616 {
1617 xfs_buftarg_t *btp;
1618
1619 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1620
1621 btp->bt_dev = bdev->bd_dev;
1622 btp->bt_bdev = bdev;
1623 if (xfs_setsize_buftarg_early(btp, bdev))
1624 goto error;
1625 if (xfs_mapping_buftarg(btp, bdev))
1626 goto error;
1627 if (xfs_alloc_delwrite_queue(btp, fsname))
1628 goto error;
1629 xfs_alloc_bufhash(btp, external);
1630 return btp;
1631
1632 error:
1633 kmem_free(btp);
1634 return NULL;
1635 }
1636
1637
1638 /*
1639 * Delayed write buffer handling
1640 */
1641 STATIC void
1642 xfs_buf_delwri_queue(
1643 xfs_buf_t *bp,
1644 int unlock)
1645 {
1646 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1647 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1648
1649 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1650
1651 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1652
1653 spin_lock(dwlk);
1654 /* If already in the queue, dequeue and place at tail */
1655 if (!list_empty(&bp->b_list)) {
1656 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1657 if (unlock)
1658 atomic_dec(&bp->b_hold);
1659 list_del(&bp->b_list);
1660 }
1661
1662 if (list_empty(dwq)) {
1663 /* start xfsbufd as it is about to have something to do */
1664 wake_up_process(bp->b_target->bt_task);
1665 }
1666
1667 bp->b_flags |= _XBF_DELWRI_Q;
1668 list_add_tail(&bp->b_list, dwq);
1669 bp->b_queuetime = jiffies;
1670 spin_unlock(dwlk);
1671
1672 if (unlock)
1673 xfs_buf_unlock(bp);
1674 }
1675
1676 void
1677 xfs_buf_delwri_dequeue(
1678 xfs_buf_t *bp)
1679 {
1680 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1681 int dequeued = 0;
1682
1683 spin_lock(dwlk);
1684 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1685 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1686 list_del_init(&bp->b_list);
1687 dequeued = 1;
1688 }
1689 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1690 spin_unlock(dwlk);
1691
1692 if (dequeued)
1693 xfs_buf_rele(bp);
1694
1695 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1696 }
1697
1698 /*
1699 * If a delwri buffer needs to be pushed before it has aged out, then promote
1700 * it to the head of the delwri queue so that it will be flushed on the next
1701 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1702 * than the age currently needed to flush the buffer. Hence the next time the
1703 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1704 */
1705 void
1706 xfs_buf_delwri_promote(
1707 struct xfs_buf *bp)
1708 {
1709 struct xfs_buftarg *btp = bp->b_target;
1710 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1711
1712 ASSERT(bp->b_flags & XBF_DELWRI);
1713 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1714
1715 /*
1716 * Check the buffer age before locking the delayed write queue as we
1717 * don't need to promote buffers that are already past the flush age.
1718 */
1719 if (bp->b_queuetime < jiffies - age)
1720 return;
1721 bp->b_queuetime = jiffies - age;
1722 spin_lock(&btp->bt_delwrite_lock);
1723 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1724 spin_unlock(&btp->bt_delwrite_lock);
1725 }
1726
1727 STATIC void
1728 xfs_buf_runall_queues(
1729 struct workqueue_struct *queue)
1730 {
1731 flush_workqueue(queue);
1732 }
1733
1734 STATIC int
1735 xfsbufd_wakeup(
1736 struct shrinker *shrink,
1737 int priority,
1738 gfp_t mask)
1739 {
1740 xfs_buftarg_t *btp;
1741
1742 spin_lock(&xfs_buftarg_lock);
1743 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1744 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1745 continue;
1746 if (list_empty(&btp->bt_delwrite_queue))
1747 continue;
1748 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1749 wake_up_process(btp->bt_task);
1750 }
1751 spin_unlock(&xfs_buftarg_lock);
1752 return 0;
1753 }
1754
1755 /*
1756 * Move as many buffers as specified to the supplied list
1757 * idicating if we skipped any buffers to prevent deadlocks.
1758 */
1759 STATIC int
1760 xfs_buf_delwri_split(
1761 xfs_buftarg_t *target,
1762 struct list_head *list,
1763 unsigned long age)
1764 {
1765 xfs_buf_t *bp, *n;
1766 struct list_head *dwq = &target->bt_delwrite_queue;
1767 spinlock_t *dwlk = &target->bt_delwrite_lock;
1768 int skipped = 0;
1769 int force;
1770
1771 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1772 INIT_LIST_HEAD(list);
1773 spin_lock(dwlk);
1774 list_for_each_entry_safe(bp, n, dwq, b_list) {
1775 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1776 ASSERT(bp->b_flags & XBF_DELWRI);
1777
1778 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1779 if (!force &&
1780 time_before(jiffies, bp->b_queuetime + age)) {
1781 xfs_buf_unlock(bp);
1782 break;
1783 }
1784
1785 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1786 _XBF_RUN_QUEUES);
1787 bp->b_flags |= XBF_WRITE;
1788 list_move_tail(&bp->b_list, list);
1789 } else
1790 skipped++;
1791 }
1792 spin_unlock(dwlk);
1793
1794 return skipped;
1795
1796 }
1797
1798 /*
1799 * Compare function is more complex than it needs to be because
1800 * the return value is only 32 bits and we are doing comparisons
1801 * on 64 bit values
1802 */
1803 static int
1804 xfs_buf_cmp(
1805 void *priv,
1806 struct list_head *a,
1807 struct list_head *b)
1808 {
1809 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1810 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1811 xfs_daddr_t diff;
1812
1813 diff = ap->b_bn - bp->b_bn;
1814 if (diff < 0)
1815 return -1;
1816 if (diff > 0)
1817 return 1;
1818 return 0;
1819 }
1820
1821 void
1822 xfs_buf_delwri_sort(
1823 xfs_buftarg_t *target,
1824 struct list_head *list)
1825 {
1826 list_sort(NULL, list, xfs_buf_cmp);
1827 }
1828
1829 STATIC int
1830 xfsbufd(
1831 void *data)
1832 {
1833 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1834
1835 current->flags |= PF_MEMALLOC;
1836
1837 set_freezable();
1838
1839 do {
1840 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1841 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1842 int count = 0;
1843 struct list_head tmp;
1844
1845 if (unlikely(freezing(current))) {
1846 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1847 refrigerator();
1848 } else {
1849 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1850 }
1851
1852 /* sleep for a long time if there is nothing to do. */
1853 if (list_empty(&target->bt_delwrite_queue))
1854 tout = MAX_SCHEDULE_TIMEOUT;
1855 schedule_timeout_interruptible(tout);
1856
1857 xfs_buf_delwri_split(target, &tmp, age);
1858 list_sort(NULL, &tmp, xfs_buf_cmp);
1859 while (!list_empty(&tmp)) {
1860 struct xfs_buf *bp;
1861 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1862 list_del_init(&bp->b_list);
1863 xfs_bdstrat_cb(bp);
1864 count++;
1865 }
1866 if (count)
1867 blk_run_address_space(target->bt_mapping);
1868
1869 } while (!kthread_should_stop());
1870
1871 return 0;
1872 }
1873
1874 /*
1875 * Go through all incore buffers, and release buffers if they belong to
1876 * the given device. This is used in filesystem error handling to
1877 * preserve the consistency of its metadata.
1878 */
1879 int
1880 xfs_flush_buftarg(
1881 xfs_buftarg_t *target,
1882 int wait)
1883 {
1884 xfs_buf_t *bp;
1885 int pincount = 0;
1886 LIST_HEAD(tmp_list);
1887 LIST_HEAD(wait_list);
1888
1889 xfs_buf_runall_queues(xfsconvertd_workqueue);
1890 xfs_buf_runall_queues(xfsdatad_workqueue);
1891 xfs_buf_runall_queues(xfslogd_workqueue);
1892
1893 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1894 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1895
1896 /*
1897 * Dropped the delayed write list lock, now walk the temporary list.
1898 * All I/O is issued async and then if we need to wait for completion
1899 * we do that after issuing all the IO.
1900 */
1901 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1902 while (!list_empty(&tmp_list)) {
1903 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1904 ASSERT(target == bp->b_target);
1905 list_del_init(&bp->b_list);
1906 if (wait) {
1907 bp->b_flags &= ~XBF_ASYNC;
1908 list_add(&bp->b_list, &wait_list);
1909 }
1910 xfs_bdstrat_cb(bp);
1911 }
1912
1913 if (wait) {
1914 /* Expedite and wait for IO to complete. */
1915 blk_run_address_space(target->bt_mapping);
1916 while (!list_empty(&wait_list)) {
1917 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1918
1919 list_del_init(&bp->b_list);
1920 xfs_iowait(bp);
1921 xfs_buf_relse(bp);
1922 }
1923 }
1924
1925 return pincount;
1926 }
1927
1928 int __init
1929 xfs_buf_init(void)
1930 {
1931 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1932 KM_ZONE_HWALIGN, NULL);
1933 if (!xfs_buf_zone)
1934 goto out;
1935
1936 xfslogd_workqueue = alloc_workqueue("xfslogd",
1937 WQ_RESCUER | WQ_HIGHPRI, 1);
1938 if (!xfslogd_workqueue)
1939 goto out_free_buf_zone;
1940
1941 xfsdatad_workqueue = create_workqueue("xfsdatad");
1942 if (!xfsdatad_workqueue)
1943 goto out_destroy_xfslogd_workqueue;
1944
1945 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1946 if (!xfsconvertd_workqueue)
1947 goto out_destroy_xfsdatad_workqueue;
1948
1949 register_shrinker(&xfs_buf_shake);
1950 return 0;
1951
1952 out_destroy_xfsdatad_workqueue:
1953 destroy_workqueue(xfsdatad_workqueue);
1954 out_destroy_xfslogd_workqueue:
1955 destroy_workqueue(xfslogd_workqueue);
1956 out_free_buf_zone:
1957 kmem_zone_destroy(xfs_buf_zone);
1958 out:
1959 return -ENOMEM;
1960 }
1961
1962 void
1963 xfs_buf_terminate(void)
1964 {
1965 unregister_shrinker(&xfs_buf_shake);
1966 destroy_workqueue(xfsconvertd_workqueue);
1967 destroy_workqueue(xfsdatad_workqueue);
1968 destroy_workqueue(xfslogd_workqueue);
1969 kmem_zone_destroy(xfs_buf_zone);
1970 }
1971
1972 #ifdef CONFIG_KDB_MODULES
1973 struct list_head *
1974 xfs_get_buftarg_list(void)
1975 {
1976 return &xfs_buftarg_list;
1977 }
1978 #endif
This page took 0.072353 seconds and 5 git commands to generate.