WorkStruct: make allyesconfig
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35
36 STATIC kmem_zone_t *xfs_buf_zone;
37 STATIC kmem_shaker_t xfs_buf_shake;
38 STATIC int xfsbufd(void *);
39 STATIC int xfsbufd_wakeup(int, gfp_t);
40 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
41
42 STATIC struct workqueue_struct *xfslogd_workqueue;
43 struct workqueue_struct *xfsdatad_workqueue;
44
45 #ifdef XFS_BUF_TRACE
46 void
47 xfs_buf_trace(
48 xfs_buf_t *bp,
49 char *id,
50 void *data,
51 void *ra)
52 {
53 ktrace_enter(xfs_buf_trace_buf,
54 bp, id,
55 (void *)(unsigned long)bp->b_flags,
56 (void *)(unsigned long)bp->b_hold.counter,
57 (void *)(unsigned long)bp->b_sema.count.counter,
58 (void *)current,
59 data, ra,
60 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
61 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
62 (void *)(unsigned long)bp->b_buffer_length,
63 NULL, NULL, NULL, NULL, NULL);
64 }
65 ktrace_t *xfs_buf_trace_buf;
66 #define XFS_BUF_TRACE_SIZE 4096
67 #define XB_TRACE(bp, id, data) \
68 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
69 #else
70 #define XB_TRACE(bp, id, data) do { } while (0)
71 #endif
72
73 #ifdef XFS_BUF_LOCK_TRACKING
74 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
75 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
76 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
77 #else
78 # define XB_SET_OWNER(bp) do { } while (0)
79 # define XB_CLEAR_OWNER(bp) do { } while (0)
80 # define XB_GET_OWNER(bp) do { } while (0)
81 #endif
82
83 #define xb_to_gfp(flags) \
84 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
85 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
86
87 #define xb_to_km(flags) \
88 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
89
90 #define xfs_buf_allocate(flags) \
91 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
92 #define xfs_buf_deallocate(bp) \
93 kmem_zone_free(xfs_buf_zone, (bp));
94
95 /*
96 * Page Region interfaces.
97 *
98 * For pages in filesystems where the blocksize is smaller than the
99 * pagesize, we use the page->private field (long) to hold a bitmap
100 * of uptodate regions within the page.
101 *
102 * Each such region is "bytes per page / bits per long" bytes long.
103 *
104 * NBPPR == number-of-bytes-per-page-region
105 * BTOPR == bytes-to-page-region (rounded up)
106 * BTOPRT == bytes-to-page-region-truncated (rounded down)
107 */
108 #if (BITS_PER_LONG == 32)
109 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
110 #elif (BITS_PER_LONG == 64)
111 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
112 #else
113 #error BITS_PER_LONG must be 32 or 64
114 #endif
115 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
116 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
117 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
118
119 STATIC unsigned long
120 page_region_mask(
121 size_t offset,
122 size_t length)
123 {
124 unsigned long mask;
125 int first, final;
126
127 first = BTOPR(offset);
128 final = BTOPRT(offset + length - 1);
129 first = min(first, final);
130
131 mask = ~0UL;
132 mask <<= BITS_PER_LONG - (final - first);
133 mask >>= BITS_PER_LONG - (final);
134
135 ASSERT(offset + length <= PAGE_CACHE_SIZE);
136 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
137
138 return mask;
139 }
140
141 STATIC inline void
142 set_page_region(
143 struct page *page,
144 size_t offset,
145 size_t length)
146 {
147 set_page_private(page,
148 page_private(page) | page_region_mask(offset, length));
149 if (page_private(page) == ~0UL)
150 SetPageUptodate(page);
151 }
152
153 STATIC inline int
154 test_page_region(
155 struct page *page,
156 size_t offset,
157 size_t length)
158 {
159 unsigned long mask = page_region_mask(offset, length);
160
161 return (mask && (page_private(page) & mask) == mask);
162 }
163
164 /*
165 * Mapping of multi-page buffers into contiguous virtual space
166 */
167
168 typedef struct a_list {
169 void *vm_addr;
170 struct a_list *next;
171 } a_list_t;
172
173 STATIC a_list_t *as_free_head;
174 STATIC int as_list_len;
175 STATIC DEFINE_SPINLOCK(as_lock);
176
177 /*
178 * Try to batch vunmaps because they are costly.
179 */
180 STATIC void
181 free_address(
182 void *addr)
183 {
184 a_list_t *aentry;
185
186 aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
187 if (likely(aentry)) {
188 spin_lock(&as_lock);
189 aentry->next = as_free_head;
190 aentry->vm_addr = addr;
191 as_free_head = aentry;
192 as_list_len++;
193 spin_unlock(&as_lock);
194 } else {
195 vunmap(addr);
196 }
197 }
198
199 STATIC void
200 purge_addresses(void)
201 {
202 a_list_t *aentry, *old;
203
204 if (as_free_head == NULL)
205 return;
206
207 spin_lock(&as_lock);
208 aentry = as_free_head;
209 as_free_head = NULL;
210 as_list_len = 0;
211 spin_unlock(&as_lock);
212
213 while ((old = aentry) != NULL) {
214 vunmap(aentry->vm_addr);
215 aentry = aentry->next;
216 kfree(old);
217 }
218 }
219
220 /*
221 * Internal xfs_buf_t object manipulation
222 */
223
224 STATIC void
225 _xfs_buf_initialize(
226 xfs_buf_t *bp,
227 xfs_buftarg_t *target,
228 xfs_off_t range_base,
229 size_t range_length,
230 xfs_buf_flags_t flags)
231 {
232 /*
233 * We don't want certain flags to appear in b_flags.
234 */
235 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
236
237 memset(bp, 0, sizeof(xfs_buf_t));
238 atomic_set(&bp->b_hold, 1);
239 init_MUTEX_LOCKED(&bp->b_iodonesema);
240 INIT_LIST_HEAD(&bp->b_list);
241 INIT_LIST_HEAD(&bp->b_hash_list);
242 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
243 XB_SET_OWNER(bp);
244 bp->b_target = target;
245 bp->b_file_offset = range_base;
246 /*
247 * Set buffer_length and count_desired to the same value initially.
248 * I/O routines should use count_desired, which will be the same in
249 * most cases but may be reset (e.g. XFS recovery).
250 */
251 bp->b_buffer_length = bp->b_count_desired = range_length;
252 bp->b_flags = flags;
253 bp->b_bn = XFS_BUF_DADDR_NULL;
254 atomic_set(&bp->b_pin_count, 0);
255 init_waitqueue_head(&bp->b_waiters);
256
257 XFS_STATS_INC(xb_create);
258 XB_TRACE(bp, "initialize", target);
259 }
260
261 /*
262 * Allocate a page array capable of holding a specified number
263 * of pages, and point the page buf at it.
264 */
265 STATIC int
266 _xfs_buf_get_pages(
267 xfs_buf_t *bp,
268 int page_count,
269 xfs_buf_flags_t flags)
270 {
271 /* Make sure that we have a page list */
272 if (bp->b_pages == NULL) {
273 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
274 bp->b_page_count = page_count;
275 if (page_count <= XB_PAGES) {
276 bp->b_pages = bp->b_page_array;
277 } else {
278 bp->b_pages = kmem_alloc(sizeof(struct page *) *
279 page_count, xb_to_km(flags));
280 if (bp->b_pages == NULL)
281 return -ENOMEM;
282 }
283 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
284 }
285 return 0;
286 }
287
288 /*
289 * Frees b_pages if it was allocated.
290 */
291 STATIC void
292 _xfs_buf_free_pages(
293 xfs_buf_t *bp)
294 {
295 if (bp->b_pages != bp->b_page_array) {
296 kmem_free(bp->b_pages,
297 bp->b_page_count * sizeof(struct page *));
298 }
299 }
300
301 /*
302 * Releases the specified buffer.
303 *
304 * The modification state of any associated pages is left unchanged.
305 * The buffer most not be on any hash - use xfs_buf_rele instead for
306 * hashed and refcounted buffers
307 */
308 void
309 xfs_buf_free(
310 xfs_buf_t *bp)
311 {
312 XB_TRACE(bp, "free", 0);
313
314 ASSERT(list_empty(&bp->b_hash_list));
315
316 if (bp->b_flags & _XBF_PAGE_CACHE) {
317 uint i;
318
319 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
320 free_address(bp->b_addr - bp->b_offset);
321
322 for (i = 0; i < bp->b_page_count; i++) {
323 struct page *page = bp->b_pages[i];
324
325 ASSERT(!PagePrivate(page));
326 page_cache_release(page);
327 }
328 _xfs_buf_free_pages(bp);
329 } else if (bp->b_flags & _XBF_KMEM_ALLOC) {
330 /*
331 * XXX(hch): bp->b_count_desired might be incorrect (see
332 * xfs_buf_associate_memory for details), but fortunately
333 * the Linux version of kmem_free ignores the len argument..
334 */
335 kmem_free(bp->b_addr, bp->b_count_desired);
336 _xfs_buf_free_pages(bp);
337 }
338
339 xfs_buf_deallocate(bp);
340 }
341
342 /*
343 * Finds all pages for buffer in question and builds it's page list.
344 */
345 STATIC int
346 _xfs_buf_lookup_pages(
347 xfs_buf_t *bp,
348 uint flags)
349 {
350 struct address_space *mapping = bp->b_target->bt_mapping;
351 size_t blocksize = bp->b_target->bt_bsize;
352 size_t size = bp->b_count_desired;
353 size_t nbytes, offset;
354 gfp_t gfp_mask = xb_to_gfp(flags);
355 unsigned short page_count, i;
356 pgoff_t first;
357 xfs_off_t end;
358 int error;
359
360 end = bp->b_file_offset + bp->b_buffer_length;
361 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
362
363 error = _xfs_buf_get_pages(bp, page_count, flags);
364 if (unlikely(error))
365 return error;
366 bp->b_flags |= _XBF_PAGE_CACHE;
367
368 offset = bp->b_offset;
369 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
370
371 for (i = 0; i < bp->b_page_count; i++) {
372 struct page *page;
373 uint retries = 0;
374
375 retry:
376 page = find_or_create_page(mapping, first + i, gfp_mask);
377 if (unlikely(page == NULL)) {
378 if (flags & XBF_READ_AHEAD) {
379 bp->b_page_count = i;
380 for (i = 0; i < bp->b_page_count; i++)
381 unlock_page(bp->b_pages[i]);
382 return -ENOMEM;
383 }
384
385 /*
386 * This could deadlock.
387 *
388 * But until all the XFS lowlevel code is revamped to
389 * handle buffer allocation failures we can't do much.
390 */
391 if (!(++retries % 100))
392 printk(KERN_ERR
393 "XFS: possible memory allocation "
394 "deadlock in %s (mode:0x%x)\n",
395 __FUNCTION__, gfp_mask);
396
397 XFS_STATS_INC(xb_page_retries);
398 xfsbufd_wakeup(0, gfp_mask);
399 congestion_wait(WRITE, HZ/50);
400 goto retry;
401 }
402
403 XFS_STATS_INC(xb_page_found);
404
405 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
406 size -= nbytes;
407
408 ASSERT(!PagePrivate(page));
409 if (!PageUptodate(page)) {
410 page_count--;
411 if (blocksize >= PAGE_CACHE_SIZE) {
412 if (flags & XBF_READ)
413 bp->b_locked = 1;
414 } else if (!PagePrivate(page)) {
415 if (test_page_region(page, offset, nbytes))
416 page_count++;
417 }
418 }
419
420 bp->b_pages[i] = page;
421 offset = 0;
422 }
423
424 if (!bp->b_locked) {
425 for (i = 0; i < bp->b_page_count; i++)
426 unlock_page(bp->b_pages[i]);
427 }
428
429 if (page_count == bp->b_page_count)
430 bp->b_flags |= XBF_DONE;
431
432 XB_TRACE(bp, "lookup_pages", (long)page_count);
433 return error;
434 }
435
436 /*
437 * Map buffer into kernel address-space if nessecary.
438 */
439 STATIC int
440 _xfs_buf_map_pages(
441 xfs_buf_t *bp,
442 uint flags)
443 {
444 /* A single page buffer is always mappable */
445 if (bp->b_page_count == 1) {
446 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
447 bp->b_flags |= XBF_MAPPED;
448 } else if (flags & XBF_MAPPED) {
449 if (as_list_len > 64)
450 purge_addresses();
451 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
452 VM_MAP, PAGE_KERNEL);
453 if (unlikely(bp->b_addr == NULL))
454 return -ENOMEM;
455 bp->b_addr += bp->b_offset;
456 bp->b_flags |= XBF_MAPPED;
457 }
458
459 return 0;
460 }
461
462 /*
463 * Finding and Reading Buffers
464 */
465
466 /*
467 * Look up, and creates if absent, a lockable buffer for
468 * a given range of an inode. The buffer is returned
469 * locked. If other overlapping buffers exist, they are
470 * released before the new buffer is created and locked,
471 * which may imply that this call will block until those buffers
472 * are unlocked. No I/O is implied by this call.
473 */
474 xfs_buf_t *
475 _xfs_buf_find(
476 xfs_buftarg_t *btp, /* block device target */
477 xfs_off_t ioff, /* starting offset of range */
478 size_t isize, /* length of range */
479 xfs_buf_flags_t flags,
480 xfs_buf_t *new_bp)
481 {
482 xfs_off_t range_base;
483 size_t range_length;
484 xfs_bufhash_t *hash;
485 xfs_buf_t *bp, *n;
486
487 range_base = (ioff << BBSHIFT);
488 range_length = (isize << BBSHIFT);
489
490 /* Check for IOs smaller than the sector size / not sector aligned */
491 ASSERT(!(range_length < (1 << btp->bt_sshift)));
492 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
493
494 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
495
496 spin_lock(&hash->bh_lock);
497
498 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
499 ASSERT(btp == bp->b_target);
500 if (bp->b_file_offset == range_base &&
501 bp->b_buffer_length == range_length) {
502 /*
503 * If we look at something, bring it to the
504 * front of the list for next time.
505 */
506 atomic_inc(&bp->b_hold);
507 list_move(&bp->b_hash_list, &hash->bh_list);
508 goto found;
509 }
510 }
511
512 /* No match found */
513 if (new_bp) {
514 _xfs_buf_initialize(new_bp, btp, range_base,
515 range_length, flags);
516 new_bp->b_hash = hash;
517 list_add(&new_bp->b_hash_list, &hash->bh_list);
518 } else {
519 XFS_STATS_INC(xb_miss_locked);
520 }
521
522 spin_unlock(&hash->bh_lock);
523 return new_bp;
524
525 found:
526 spin_unlock(&hash->bh_lock);
527
528 /* Attempt to get the semaphore without sleeping,
529 * if this does not work then we need to drop the
530 * spinlock and do a hard attempt on the semaphore.
531 */
532 if (down_trylock(&bp->b_sema)) {
533 if (!(flags & XBF_TRYLOCK)) {
534 /* wait for buffer ownership */
535 XB_TRACE(bp, "get_lock", 0);
536 xfs_buf_lock(bp);
537 XFS_STATS_INC(xb_get_locked_waited);
538 } else {
539 /* We asked for a trylock and failed, no need
540 * to look at file offset and length here, we
541 * know that this buffer at least overlaps our
542 * buffer and is locked, therefore our buffer
543 * either does not exist, or is this buffer.
544 */
545 xfs_buf_rele(bp);
546 XFS_STATS_INC(xb_busy_locked);
547 return NULL;
548 }
549 } else {
550 /* trylock worked */
551 XB_SET_OWNER(bp);
552 }
553
554 if (bp->b_flags & XBF_STALE) {
555 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
556 bp->b_flags &= XBF_MAPPED;
557 }
558 XB_TRACE(bp, "got_lock", 0);
559 XFS_STATS_INC(xb_get_locked);
560 return bp;
561 }
562
563 /*
564 * Assembles a buffer covering the specified range.
565 * Storage in memory for all portions of the buffer will be allocated,
566 * although backing storage may not be.
567 */
568 xfs_buf_t *
569 xfs_buf_get_flags(
570 xfs_buftarg_t *target,/* target for buffer */
571 xfs_off_t ioff, /* starting offset of range */
572 size_t isize, /* length of range */
573 xfs_buf_flags_t flags)
574 {
575 xfs_buf_t *bp, *new_bp;
576 int error = 0, i;
577
578 new_bp = xfs_buf_allocate(flags);
579 if (unlikely(!new_bp))
580 return NULL;
581
582 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
583 if (bp == new_bp) {
584 error = _xfs_buf_lookup_pages(bp, flags);
585 if (error)
586 goto no_buffer;
587 } else {
588 xfs_buf_deallocate(new_bp);
589 if (unlikely(bp == NULL))
590 return NULL;
591 }
592
593 for (i = 0; i < bp->b_page_count; i++)
594 mark_page_accessed(bp->b_pages[i]);
595
596 if (!(bp->b_flags & XBF_MAPPED)) {
597 error = _xfs_buf_map_pages(bp, flags);
598 if (unlikely(error)) {
599 printk(KERN_WARNING "%s: failed to map pages\n",
600 __FUNCTION__);
601 goto no_buffer;
602 }
603 }
604
605 XFS_STATS_INC(xb_get);
606
607 /*
608 * Always fill in the block number now, the mapped cases can do
609 * their own overlay of this later.
610 */
611 bp->b_bn = ioff;
612 bp->b_count_desired = bp->b_buffer_length;
613
614 XB_TRACE(bp, "get", (unsigned long)flags);
615 return bp;
616
617 no_buffer:
618 if (flags & (XBF_LOCK | XBF_TRYLOCK))
619 xfs_buf_unlock(bp);
620 xfs_buf_rele(bp);
621 return NULL;
622 }
623
624 xfs_buf_t *
625 xfs_buf_read_flags(
626 xfs_buftarg_t *target,
627 xfs_off_t ioff,
628 size_t isize,
629 xfs_buf_flags_t flags)
630 {
631 xfs_buf_t *bp;
632
633 flags |= XBF_READ;
634
635 bp = xfs_buf_get_flags(target, ioff, isize, flags);
636 if (bp) {
637 if (!XFS_BUF_ISDONE(bp)) {
638 XB_TRACE(bp, "read", (unsigned long)flags);
639 XFS_STATS_INC(xb_get_read);
640 xfs_buf_iostart(bp, flags);
641 } else if (flags & XBF_ASYNC) {
642 XB_TRACE(bp, "read_async", (unsigned long)flags);
643 /*
644 * Read ahead call which is already satisfied,
645 * drop the buffer
646 */
647 goto no_buffer;
648 } else {
649 XB_TRACE(bp, "read_done", (unsigned long)flags);
650 /* We do not want read in the flags */
651 bp->b_flags &= ~XBF_READ;
652 }
653 }
654
655 return bp;
656
657 no_buffer:
658 if (flags & (XBF_LOCK | XBF_TRYLOCK))
659 xfs_buf_unlock(bp);
660 xfs_buf_rele(bp);
661 return NULL;
662 }
663
664 /*
665 * If we are not low on memory then do the readahead in a deadlock
666 * safe manner.
667 */
668 void
669 xfs_buf_readahead(
670 xfs_buftarg_t *target,
671 xfs_off_t ioff,
672 size_t isize,
673 xfs_buf_flags_t flags)
674 {
675 struct backing_dev_info *bdi;
676
677 bdi = target->bt_mapping->backing_dev_info;
678 if (bdi_read_congested(bdi))
679 return;
680
681 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
682 xfs_buf_read_flags(target, ioff, isize, flags);
683 }
684
685 xfs_buf_t *
686 xfs_buf_get_empty(
687 size_t len,
688 xfs_buftarg_t *target)
689 {
690 xfs_buf_t *bp;
691
692 bp = xfs_buf_allocate(0);
693 if (bp)
694 _xfs_buf_initialize(bp, target, 0, len, 0);
695 return bp;
696 }
697
698 static inline struct page *
699 mem_to_page(
700 void *addr)
701 {
702 if (((unsigned long)addr < VMALLOC_START) ||
703 ((unsigned long)addr >= VMALLOC_END)) {
704 return virt_to_page(addr);
705 } else {
706 return vmalloc_to_page(addr);
707 }
708 }
709
710 int
711 xfs_buf_associate_memory(
712 xfs_buf_t *bp,
713 void *mem,
714 size_t len)
715 {
716 int rval;
717 int i = 0;
718 size_t ptr;
719 size_t end, end_cur;
720 off_t offset;
721 int page_count;
722
723 page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
724 offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
725 if (offset && (len > PAGE_CACHE_SIZE))
726 page_count++;
727
728 /* Free any previous set of page pointers */
729 if (bp->b_pages)
730 _xfs_buf_free_pages(bp);
731
732 bp->b_pages = NULL;
733 bp->b_addr = mem;
734
735 rval = _xfs_buf_get_pages(bp, page_count, 0);
736 if (rval)
737 return rval;
738
739 bp->b_offset = offset;
740 ptr = (size_t) mem & PAGE_CACHE_MASK;
741 end = PAGE_CACHE_ALIGN((size_t) mem + len);
742 end_cur = end;
743 /* set up first page */
744 bp->b_pages[0] = mem_to_page(mem);
745
746 ptr += PAGE_CACHE_SIZE;
747 bp->b_page_count = ++i;
748 while (ptr < end) {
749 bp->b_pages[i] = mem_to_page((void *)ptr);
750 bp->b_page_count = ++i;
751 ptr += PAGE_CACHE_SIZE;
752 }
753 bp->b_locked = 0;
754
755 bp->b_count_desired = bp->b_buffer_length = len;
756 bp->b_flags |= XBF_MAPPED;
757
758 return 0;
759 }
760
761 xfs_buf_t *
762 xfs_buf_get_noaddr(
763 size_t len,
764 xfs_buftarg_t *target)
765 {
766 size_t malloc_len = len;
767 xfs_buf_t *bp;
768 void *data;
769 int error;
770
771 bp = xfs_buf_allocate(0);
772 if (unlikely(bp == NULL))
773 goto fail;
774 _xfs_buf_initialize(bp, target, 0, len, 0);
775
776 try_again:
777 data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL | KM_LARGE);
778 if (unlikely(data == NULL))
779 goto fail_free_buf;
780
781 /* check whether alignment matches.. */
782 if ((__psunsigned_t)data !=
783 ((__psunsigned_t)data & ~target->bt_smask)) {
784 /* .. else double the size and try again */
785 kmem_free(data, malloc_len);
786 malloc_len <<= 1;
787 goto try_again;
788 }
789
790 error = xfs_buf_associate_memory(bp, data, len);
791 if (error)
792 goto fail_free_mem;
793 bp->b_flags |= _XBF_KMEM_ALLOC;
794
795 xfs_buf_unlock(bp);
796
797 XB_TRACE(bp, "no_daddr", data);
798 return bp;
799 fail_free_mem:
800 kmem_free(data, malloc_len);
801 fail_free_buf:
802 xfs_buf_free(bp);
803 fail:
804 return NULL;
805 }
806
807 /*
808 * Increment reference count on buffer, to hold the buffer concurrently
809 * with another thread which may release (free) the buffer asynchronously.
810 * Must hold the buffer already to call this function.
811 */
812 void
813 xfs_buf_hold(
814 xfs_buf_t *bp)
815 {
816 atomic_inc(&bp->b_hold);
817 XB_TRACE(bp, "hold", 0);
818 }
819
820 /*
821 * Releases a hold on the specified buffer. If the
822 * the hold count is 1, calls xfs_buf_free.
823 */
824 void
825 xfs_buf_rele(
826 xfs_buf_t *bp)
827 {
828 xfs_bufhash_t *hash = bp->b_hash;
829
830 XB_TRACE(bp, "rele", bp->b_relse);
831
832 if (unlikely(!hash)) {
833 ASSERT(!bp->b_relse);
834 if (atomic_dec_and_test(&bp->b_hold))
835 xfs_buf_free(bp);
836 return;
837 }
838
839 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
840 if (bp->b_relse) {
841 atomic_inc(&bp->b_hold);
842 spin_unlock(&hash->bh_lock);
843 (*(bp->b_relse)) (bp);
844 } else if (bp->b_flags & XBF_FS_MANAGED) {
845 spin_unlock(&hash->bh_lock);
846 } else {
847 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
848 list_del_init(&bp->b_hash_list);
849 spin_unlock(&hash->bh_lock);
850 xfs_buf_free(bp);
851 }
852 } else {
853 /*
854 * Catch reference count leaks
855 */
856 ASSERT(atomic_read(&bp->b_hold) >= 0);
857 }
858 }
859
860
861 /*
862 * Mutual exclusion on buffers. Locking model:
863 *
864 * Buffers associated with inodes for which buffer locking
865 * is not enabled are not protected by semaphores, and are
866 * assumed to be exclusively owned by the caller. There is a
867 * spinlock in the buffer, used by the caller when concurrent
868 * access is possible.
869 */
870
871 /*
872 * Locks a buffer object, if it is not already locked.
873 * Note that this in no way locks the underlying pages, so it is only
874 * useful for synchronizing concurrent use of buffer objects, not for
875 * synchronizing independent access to the underlying pages.
876 */
877 int
878 xfs_buf_cond_lock(
879 xfs_buf_t *bp)
880 {
881 int locked;
882
883 locked = down_trylock(&bp->b_sema) == 0;
884 if (locked) {
885 XB_SET_OWNER(bp);
886 }
887 XB_TRACE(bp, "cond_lock", (long)locked);
888 return locked ? 0 : -EBUSY;
889 }
890
891 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
892 int
893 xfs_buf_lock_value(
894 xfs_buf_t *bp)
895 {
896 return atomic_read(&bp->b_sema.count);
897 }
898 #endif
899
900 /*
901 * Locks a buffer object.
902 * Note that this in no way locks the underlying pages, so it is only
903 * useful for synchronizing concurrent use of buffer objects, not for
904 * synchronizing independent access to the underlying pages.
905 */
906 void
907 xfs_buf_lock(
908 xfs_buf_t *bp)
909 {
910 XB_TRACE(bp, "lock", 0);
911 if (atomic_read(&bp->b_io_remaining))
912 blk_run_address_space(bp->b_target->bt_mapping);
913 down(&bp->b_sema);
914 XB_SET_OWNER(bp);
915 XB_TRACE(bp, "locked", 0);
916 }
917
918 /*
919 * Releases the lock on the buffer object.
920 * If the buffer is marked delwri but is not queued, do so before we
921 * unlock the buffer as we need to set flags correctly. We also need to
922 * take a reference for the delwri queue because the unlocker is going to
923 * drop their's and they don't know we just queued it.
924 */
925 void
926 xfs_buf_unlock(
927 xfs_buf_t *bp)
928 {
929 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
930 atomic_inc(&bp->b_hold);
931 bp->b_flags |= XBF_ASYNC;
932 xfs_buf_delwri_queue(bp, 0);
933 }
934
935 XB_CLEAR_OWNER(bp);
936 up(&bp->b_sema);
937 XB_TRACE(bp, "unlock", 0);
938 }
939
940
941 /*
942 * Pinning Buffer Storage in Memory
943 * Ensure that no attempt to force a buffer to disk will succeed.
944 */
945 void
946 xfs_buf_pin(
947 xfs_buf_t *bp)
948 {
949 atomic_inc(&bp->b_pin_count);
950 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
951 }
952
953 void
954 xfs_buf_unpin(
955 xfs_buf_t *bp)
956 {
957 if (atomic_dec_and_test(&bp->b_pin_count))
958 wake_up_all(&bp->b_waiters);
959 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
960 }
961
962 int
963 xfs_buf_ispin(
964 xfs_buf_t *bp)
965 {
966 return atomic_read(&bp->b_pin_count);
967 }
968
969 STATIC void
970 xfs_buf_wait_unpin(
971 xfs_buf_t *bp)
972 {
973 DECLARE_WAITQUEUE (wait, current);
974
975 if (atomic_read(&bp->b_pin_count) == 0)
976 return;
977
978 add_wait_queue(&bp->b_waiters, &wait);
979 for (;;) {
980 set_current_state(TASK_UNINTERRUPTIBLE);
981 if (atomic_read(&bp->b_pin_count) == 0)
982 break;
983 if (atomic_read(&bp->b_io_remaining))
984 blk_run_address_space(bp->b_target->bt_mapping);
985 schedule();
986 }
987 remove_wait_queue(&bp->b_waiters, &wait);
988 set_current_state(TASK_RUNNING);
989 }
990
991 /*
992 * Buffer Utility Routines
993 */
994
995 STATIC void
996 xfs_buf_iodone_work(
997 struct work_struct *work)
998 {
999 xfs_buf_t *bp =
1000 container_of(work, xfs_buf_t, b_iodone_work);
1001
1002 if (bp->b_iodone)
1003 (*(bp->b_iodone))(bp);
1004 else if (bp->b_flags & XBF_ASYNC)
1005 xfs_buf_relse(bp);
1006 }
1007
1008 void
1009 xfs_buf_ioend(
1010 xfs_buf_t *bp,
1011 int schedule)
1012 {
1013 bp->b_flags &= ~(XBF_READ | XBF_WRITE);
1014 if (bp->b_error == 0)
1015 bp->b_flags |= XBF_DONE;
1016
1017 XB_TRACE(bp, "iodone", bp->b_iodone);
1018
1019 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1020 if (schedule) {
1021 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1022 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1023 } else {
1024 xfs_buf_iodone_work(&bp->b_iodone_work);
1025 }
1026 } else {
1027 up(&bp->b_iodonesema);
1028 }
1029 }
1030
1031 void
1032 xfs_buf_ioerror(
1033 xfs_buf_t *bp,
1034 int error)
1035 {
1036 ASSERT(error >= 0 && error <= 0xffff);
1037 bp->b_error = (unsigned short)error;
1038 XB_TRACE(bp, "ioerror", (unsigned long)error);
1039 }
1040
1041 /*
1042 * Initiate I/O on a buffer, based on the flags supplied.
1043 * The b_iodone routine in the buffer supplied will only be called
1044 * when all of the subsidiary I/O requests, if any, have been completed.
1045 */
1046 int
1047 xfs_buf_iostart(
1048 xfs_buf_t *bp,
1049 xfs_buf_flags_t flags)
1050 {
1051 int status = 0;
1052
1053 XB_TRACE(bp, "iostart", (unsigned long)flags);
1054
1055 if (flags & XBF_DELWRI) {
1056 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1057 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1058 xfs_buf_delwri_queue(bp, 1);
1059 return status;
1060 }
1061
1062 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1063 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1064 bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1065 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1066
1067 BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1068
1069 /* For writes allow an alternate strategy routine to precede
1070 * the actual I/O request (which may not be issued at all in
1071 * a shutdown situation, for example).
1072 */
1073 status = (flags & XBF_WRITE) ?
1074 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1075
1076 /* Wait for I/O if we are not an async request.
1077 * Note: async I/O request completion will release the buffer,
1078 * and that can already be done by this point. So using the
1079 * buffer pointer from here on, after async I/O, is invalid.
1080 */
1081 if (!status && !(flags & XBF_ASYNC))
1082 status = xfs_buf_iowait(bp);
1083
1084 return status;
1085 }
1086
1087 STATIC __inline__ int
1088 _xfs_buf_iolocked(
1089 xfs_buf_t *bp)
1090 {
1091 ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE));
1092 if (bp->b_flags & XBF_READ)
1093 return bp->b_locked;
1094 return 0;
1095 }
1096
1097 STATIC __inline__ void
1098 _xfs_buf_ioend(
1099 xfs_buf_t *bp,
1100 int schedule)
1101 {
1102 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1103 bp->b_locked = 0;
1104 xfs_buf_ioend(bp, schedule);
1105 }
1106 }
1107
1108 STATIC int
1109 xfs_buf_bio_end_io(
1110 struct bio *bio,
1111 unsigned int bytes_done,
1112 int error)
1113 {
1114 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1115 unsigned int blocksize = bp->b_target->bt_bsize;
1116 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1117
1118 if (bio->bi_size)
1119 return 1;
1120
1121 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1122 bp->b_error = EIO;
1123
1124 do {
1125 struct page *page = bvec->bv_page;
1126
1127 ASSERT(!PagePrivate(page));
1128 if (unlikely(bp->b_error)) {
1129 if (bp->b_flags & XBF_READ)
1130 ClearPageUptodate(page);
1131 } else if (blocksize >= PAGE_CACHE_SIZE) {
1132 SetPageUptodate(page);
1133 } else if (!PagePrivate(page) &&
1134 (bp->b_flags & _XBF_PAGE_CACHE)) {
1135 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1136 }
1137
1138 if (--bvec >= bio->bi_io_vec)
1139 prefetchw(&bvec->bv_page->flags);
1140
1141 if (_xfs_buf_iolocked(bp)) {
1142 unlock_page(page);
1143 }
1144 } while (bvec >= bio->bi_io_vec);
1145
1146 _xfs_buf_ioend(bp, 1);
1147 bio_put(bio);
1148 return 0;
1149 }
1150
1151 STATIC void
1152 _xfs_buf_ioapply(
1153 xfs_buf_t *bp)
1154 {
1155 int i, rw, map_i, total_nr_pages, nr_pages;
1156 struct bio *bio;
1157 int offset = bp->b_offset;
1158 int size = bp->b_count_desired;
1159 sector_t sector = bp->b_bn;
1160 unsigned int blocksize = bp->b_target->bt_bsize;
1161 int locking = _xfs_buf_iolocked(bp);
1162
1163 total_nr_pages = bp->b_page_count;
1164 map_i = 0;
1165
1166 if (bp->b_flags & XBF_ORDERED) {
1167 ASSERT(!(bp->b_flags & XBF_READ));
1168 rw = WRITE_BARRIER;
1169 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1170 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1171 bp->b_flags &= ~_XBF_RUN_QUEUES;
1172 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1173 } else {
1174 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1175 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1176 }
1177
1178 /* Special code path for reading a sub page size buffer in --
1179 * we populate up the whole page, and hence the other metadata
1180 * in the same page. This optimization is only valid when the
1181 * filesystem block size is not smaller than the page size.
1182 */
1183 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1184 (bp->b_flags & XBF_READ) && locking &&
1185 (blocksize >= PAGE_CACHE_SIZE)) {
1186 bio = bio_alloc(GFP_NOIO, 1);
1187
1188 bio->bi_bdev = bp->b_target->bt_bdev;
1189 bio->bi_sector = sector - (offset >> BBSHIFT);
1190 bio->bi_end_io = xfs_buf_bio_end_io;
1191 bio->bi_private = bp;
1192
1193 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1194 size = 0;
1195
1196 atomic_inc(&bp->b_io_remaining);
1197
1198 goto submit_io;
1199 }
1200
1201 /* Lock down the pages which we need to for the request */
1202 if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) {
1203 for (i = 0; size; i++) {
1204 int nbytes = PAGE_CACHE_SIZE - offset;
1205 struct page *page = bp->b_pages[i];
1206
1207 if (nbytes > size)
1208 nbytes = size;
1209
1210 lock_page(page);
1211
1212 size -= nbytes;
1213 offset = 0;
1214 }
1215 offset = bp->b_offset;
1216 size = bp->b_count_desired;
1217 }
1218
1219 next_chunk:
1220 atomic_inc(&bp->b_io_remaining);
1221 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1222 if (nr_pages > total_nr_pages)
1223 nr_pages = total_nr_pages;
1224
1225 bio = bio_alloc(GFP_NOIO, nr_pages);
1226 bio->bi_bdev = bp->b_target->bt_bdev;
1227 bio->bi_sector = sector;
1228 bio->bi_end_io = xfs_buf_bio_end_io;
1229 bio->bi_private = bp;
1230
1231 for (; size && nr_pages; nr_pages--, map_i++) {
1232 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1233
1234 if (nbytes > size)
1235 nbytes = size;
1236
1237 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1238 if (rbytes < nbytes)
1239 break;
1240
1241 offset = 0;
1242 sector += nbytes >> BBSHIFT;
1243 size -= nbytes;
1244 total_nr_pages--;
1245 }
1246
1247 submit_io:
1248 if (likely(bio->bi_size)) {
1249 submit_bio(rw, bio);
1250 if (size)
1251 goto next_chunk;
1252 } else {
1253 bio_put(bio);
1254 xfs_buf_ioerror(bp, EIO);
1255 }
1256 }
1257
1258 int
1259 xfs_buf_iorequest(
1260 xfs_buf_t *bp)
1261 {
1262 XB_TRACE(bp, "iorequest", 0);
1263
1264 if (bp->b_flags & XBF_DELWRI) {
1265 xfs_buf_delwri_queue(bp, 1);
1266 return 0;
1267 }
1268
1269 if (bp->b_flags & XBF_WRITE) {
1270 xfs_buf_wait_unpin(bp);
1271 }
1272
1273 xfs_buf_hold(bp);
1274
1275 /* Set the count to 1 initially, this will stop an I/O
1276 * completion callout which happens before we have started
1277 * all the I/O from calling xfs_buf_ioend too early.
1278 */
1279 atomic_set(&bp->b_io_remaining, 1);
1280 _xfs_buf_ioapply(bp);
1281 _xfs_buf_ioend(bp, 0);
1282
1283 xfs_buf_rele(bp);
1284 return 0;
1285 }
1286
1287 /*
1288 * Waits for I/O to complete on the buffer supplied.
1289 * It returns immediately if no I/O is pending.
1290 * It returns the I/O error code, if any, or 0 if there was no error.
1291 */
1292 int
1293 xfs_buf_iowait(
1294 xfs_buf_t *bp)
1295 {
1296 XB_TRACE(bp, "iowait", 0);
1297 if (atomic_read(&bp->b_io_remaining))
1298 blk_run_address_space(bp->b_target->bt_mapping);
1299 down(&bp->b_iodonesema);
1300 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1301 return bp->b_error;
1302 }
1303
1304 xfs_caddr_t
1305 xfs_buf_offset(
1306 xfs_buf_t *bp,
1307 size_t offset)
1308 {
1309 struct page *page;
1310
1311 if (bp->b_flags & XBF_MAPPED)
1312 return XFS_BUF_PTR(bp) + offset;
1313
1314 offset += bp->b_offset;
1315 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1316 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1317 }
1318
1319 /*
1320 * Move data into or out of a buffer.
1321 */
1322 void
1323 xfs_buf_iomove(
1324 xfs_buf_t *bp, /* buffer to process */
1325 size_t boff, /* starting buffer offset */
1326 size_t bsize, /* length to copy */
1327 caddr_t data, /* data address */
1328 xfs_buf_rw_t mode) /* read/write/zero flag */
1329 {
1330 size_t bend, cpoff, csize;
1331 struct page *page;
1332
1333 bend = boff + bsize;
1334 while (boff < bend) {
1335 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1336 cpoff = xfs_buf_poff(boff + bp->b_offset);
1337 csize = min_t(size_t,
1338 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1339
1340 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1341
1342 switch (mode) {
1343 case XBRW_ZERO:
1344 memset(page_address(page) + cpoff, 0, csize);
1345 break;
1346 case XBRW_READ:
1347 memcpy(data, page_address(page) + cpoff, csize);
1348 break;
1349 case XBRW_WRITE:
1350 memcpy(page_address(page) + cpoff, data, csize);
1351 }
1352
1353 boff += csize;
1354 data += csize;
1355 }
1356 }
1357
1358 /*
1359 * Handling of buffer targets (buftargs).
1360 */
1361
1362 /*
1363 * Wait for any bufs with callbacks that have been submitted but
1364 * have not yet returned... walk the hash list for the target.
1365 */
1366 void
1367 xfs_wait_buftarg(
1368 xfs_buftarg_t *btp)
1369 {
1370 xfs_buf_t *bp, *n;
1371 xfs_bufhash_t *hash;
1372 uint i;
1373
1374 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1375 hash = &btp->bt_hash[i];
1376 again:
1377 spin_lock(&hash->bh_lock);
1378 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1379 ASSERT(btp == bp->b_target);
1380 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1381 spin_unlock(&hash->bh_lock);
1382 /*
1383 * Catch superblock reference count leaks
1384 * immediately
1385 */
1386 BUG_ON(bp->b_bn == 0);
1387 delay(100);
1388 goto again;
1389 }
1390 }
1391 spin_unlock(&hash->bh_lock);
1392 }
1393 }
1394
1395 /*
1396 * Allocate buffer hash table for a given target.
1397 * For devices containing metadata (i.e. not the log/realtime devices)
1398 * we need to allocate a much larger hash table.
1399 */
1400 STATIC void
1401 xfs_alloc_bufhash(
1402 xfs_buftarg_t *btp,
1403 int external)
1404 {
1405 unsigned int i;
1406
1407 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1408 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1409 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1410 sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1411 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1412 spin_lock_init(&btp->bt_hash[i].bh_lock);
1413 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1414 }
1415 }
1416
1417 STATIC void
1418 xfs_free_bufhash(
1419 xfs_buftarg_t *btp)
1420 {
1421 kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1422 btp->bt_hash = NULL;
1423 }
1424
1425 /*
1426 * buftarg list for delwrite queue processing
1427 */
1428 STATIC LIST_HEAD(xfs_buftarg_list);
1429 STATIC DEFINE_SPINLOCK(xfs_buftarg_lock);
1430
1431 STATIC void
1432 xfs_register_buftarg(
1433 xfs_buftarg_t *btp)
1434 {
1435 spin_lock(&xfs_buftarg_lock);
1436 list_add(&btp->bt_list, &xfs_buftarg_list);
1437 spin_unlock(&xfs_buftarg_lock);
1438 }
1439
1440 STATIC void
1441 xfs_unregister_buftarg(
1442 xfs_buftarg_t *btp)
1443 {
1444 spin_lock(&xfs_buftarg_lock);
1445 list_del(&btp->bt_list);
1446 spin_unlock(&xfs_buftarg_lock);
1447 }
1448
1449 void
1450 xfs_free_buftarg(
1451 xfs_buftarg_t *btp,
1452 int external)
1453 {
1454 xfs_flush_buftarg(btp, 1);
1455 if (external)
1456 xfs_blkdev_put(btp->bt_bdev);
1457 xfs_free_bufhash(btp);
1458 iput(btp->bt_mapping->host);
1459
1460 /* Unregister the buftarg first so that we don't get a
1461 * wakeup finding a non-existent task
1462 */
1463 xfs_unregister_buftarg(btp);
1464 kthread_stop(btp->bt_task);
1465
1466 kmem_free(btp, sizeof(*btp));
1467 }
1468
1469 STATIC int
1470 xfs_setsize_buftarg_flags(
1471 xfs_buftarg_t *btp,
1472 unsigned int blocksize,
1473 unsigned int sectorsize,
1474 int verbose)
1475 {
1476 btp->bt_bsize = blocksize;
1477 btp->bt_sshift = ffs(sectorsize) - 1;
1478 btp->bt_smask = sectorsize - 1;
1479
1480 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1481 printk(KERN_WARNING
1482 "XFS: Cannot set_blocksize to %u on device %s\n",
1483 sectorsize, XFS_BUFTARG_NAME(btp));
1484 return EINVAL;
1485 }
1486
1487 if (verbose &&
1488 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1489 printk(KERN_WARNING
1490 "XFS: %u byte sectors in use on device %s. "
1491 "This is suboptimal; %u or greater is ideal.\n",
1492 sectorsize, XFS_BUFTARG_NAME(btp),
1493 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1494 }
1495
1496 return 0;
1497 }
1498
1499 /*
1500 * When allocating the initial buffer target we have not yet
1501 * read in the superblock, so don't know what sized sectors
1502 * are being used is at this early stage. Play safe.
1503 */
1504 STATIC int
1505 xfs_setsize_buftarg_early(
1506 xfs_buftarg_t *btp,
1507 struct block_device *bdev)
1508 {
1509 return xfs_setsize_buftarg_flags(btp,
1510 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1511 }
1512
1513 int
1514 xfs_setsize_buftarg(
1515 xfs_buftarg_t *btp,
1516 unsigned int blocksize,
1517 unsigned int sectorsize)
1518 {
1519 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1520 }
1521
1522 STATIC int
1523 xfs_mapping_buftarg(
1524 xfs_buftarg_t *btp,
1525 struct block_device *bdev)
1526 {
1527 struct backing_dev_info *bdi;
1528 struct inode *inode;
1529 struct address_space *mapping;
1530 static const struct address_space_operations mapping_aops = {
1531 .sync_page = block_sync_page,
1532 .migratepage = fail_migrate_page,
1533 };
1534
1535 inode = new_inode(bdev->bd_inode->i_sb);
1536 if (!inode) {
1537 printk(KERN_WARNING
1538 "XFS: Cannot allocate mapping inode for device %s\n",
1539 XFS_BUFTARG_NAME(btp));
1540 return ENOMEM;
1541 }
1542 inode->i_mode = S_IFBLK;
1543 inode->i_bdev = bdev;
1544 inode->i_rdev = bdev->bd_dev;
1545 bdi = blk_get_backing_dev_info(bdev);
1546 if (!bdi)
1547 bdi = &default_backing_dev_info;
1548 mapping = &inode->i_data;
1549 mapping->a_ops = &mapping_aops;
1550 mapping->backing_dev_info = bdi;
1551 mapping_set_gfp_mask(mapping, GFP_NOFS);
1552 btp->bt_mapping = mapping;
1553 return 0;
1554 }
1555
1556 STATIC int
1557 xfs_alloc_delwrite_queue(
1558 xfs_buftarg_t *btp)
1559 {
1560 int error = 0;
1561
1562 INIT_LIST_HEAD(&btp->bt_list);
1563 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1564 spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
1565 btp->bt_flags = 0;
1566 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1567 if (IS_ERR(btp->bt_task)) {
1568 error = PTR_ERR(btp->bt_task);
1569 goto out_error;
1570 }
1571 xfs_register_buftarg(btp);
1572 out_error:
1573 return error;
1574 }
1575
1576 xfs_buftarg_t *
1577 xfs_alloc_buftarg(
1578 struct block_device *bdev,
1579 int external)
1580 {
1581 xfs_buftarg_t *btp;
1582
1583 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1584
1585 btp->bt_dev = bdev->bd_dev;
1586 btp->bt_bdev = bdev;
1587 if (xfs_setsize_buftarg_early(btp, bdev))
1588 goto error;
1589 if (xfs_mapping_buftarg(btp, bdev))
1590 goto error;
1591 if (xfs_alloc_delwrite_queue(btp))
1592 goto error;
1593 xfs_alloc_bufhash(btp, external);
1594 return btp;
1595
1596 error:
1597 kmem_free(btp, sizeof(*btp));
1598 return NULL;
1599 }
1600
1601
1602 /*
1603 * Delayed write buffer handling
1604 */
1605 STATIC void
1606 xfs_buf_delwri_queue(
1607 xfs_buf_t *bp,
1608 int unlock)
1609 {
1610 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1611 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1612
1613 XB_TRACE(bp, "delwri_q", (long)unlock);
1614 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1615
1616 spin_lock(dwlk);
1617 /* If already in the queue, dequeue and place at tail */
1618 if (!list_empty(&bp->b_list)) {
1619 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1620 if (unlock)
1621 atomic_dec(&bp->b_hold);
1622 list_del(&bp->b_list);
1623 }
1624
1625 bp->b_flags |= _XBF_DELWRI_Q;
1626 list_add_tail(&bp->b_list, dwq);
1627 bp->b_queuetime = jiffies;
1628 spin_unlock(dwlk);
1629
1630 if (unlock)
1631 xfs_buf_unlock(bp);
1632 }
1633
1634 void
1635 xfs_buf_delwri_dequeue(
1636 xfs_buf_t *bp)
1637 {
1638 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1639 int dequeued = 0;
1640
1641 spin_lock(dwlk);
1642 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1643 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1644 list_del_init(&bp->b_list);
1645 dequeued = 1;
1646 }
1647 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1648 spin_unlock(dwlk);
1649
1650 if (dequeued)
1651 xfs_buf_rele(bp);
1652
1653 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1654 }
1655
1656 STATIC void
1657 xfs_buf_runall_queues(
1658 struct workqueue_struct *queue)
1659 {
1660 flush_workqueue(queue);
1661 }
1662
1663 STATIC int
1664 xfsbufd_wakeup(
1665 int priority,
1666 gfp_t mask)
1667 {
1668 xfs_buftarg_t *btp;
1669
1670 spin_lock(&xfs_buftarg_lock);
1671 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1672 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1673 continue;
1674 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1675 wake_up_process(btp->bt_task);
1676 }
1677 spin_unlock(&xfs_buftarg_lock);
1678 return 0;
1679 }
1680
1681 STATIC int
1682 xfsbufd(
1683 void *data)
1684 {
1685 struct list_head tmp;
1686 unsigned long age;
1687 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1688 xfs_buf_t *bp, *n;
1689 struct list_head *dwq = &target->bt_delwrite_queue;
1690 spinlock_t *dwlk = &target->bt_delwrite_lock;
1691 int count;
1692
1693 current->flags |= PF_MEMALLOC;
1694
1695 INIT_LIST_HEAD(&tmp);
1696 do {
1697 if (unlikely(freezing(current))) {
1698 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1699 refrigerator();
1700 } else {
1701 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1702 }
1703
1704 schedule_timeout_interruptible(
1705 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1706
1707 count = 0;
1708 age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1709 spin_lock(dwlk);
1710 list_for_each_entry_safe(bp, n, dwq, b_list) {
1711 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1712 ASSERT(bp->b_flags & XBF_DELWRI);
1713
1714 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1715 if (!test_bit(XBT_FORCE_FLUSH,
1716 &target->bt_flags) &&
1717 time_before(jiffies,
1718 bp->b_queuetime + age)) {
1719 xfs_buf_unlock(bp);
1720 break;
1721 }
1722
1723 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1724 _XBF_RUN_QUEUES);
1725 bp->b_flags |= XBF_WRITE;
1726 list_move_tail(&bp->b_list, &tmp);
1727 count++;
1728 }
1729 }
1730 spin_unlock(dwlk);
1731
1732 while (!list_empty(&tmp)) {
1733 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1734 ASSERT(target == bp->b_target);
1735
1736 list_del_init(&bp->b_list);
1737 xfs_buf_iostrategy(bp);
1738 }
1739
1740 if (as_list_len > 0)
1741 purge_addresses();
1742 if (count)
1743 blk_run_address_space(target->bt_mapping);
1744
1745 clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1746 } while (!kthread_should_stop());
1747
1748 return 0;
1749 }
1750
1751 /*
1752 * Go through all incore buffers, and release buffers if they belong to
1753 * the given device. This is used in filesystem error handling to
1754 * preserve the consistency of its metadata.
1755 */
1756 int
1757 xfs_flush_buftarg(
1758 xfs_buftarg_t *target,
1759 int wait)
1760 {
1761 struct list_head tmp;
1762 xfs_buf_t *bp, *n;
1763 int pincount = 0;
1764 struct list_head *dwq = &target->bt_delwrite_queue;
1765 spinlock_t *dwlk = &target->bt_delwrite_lock;
1766
1767 xfs_buf_runall_queues(xfsdatad_workqueue);
1768 xfs_buf_runall_queues(xfslogd_workqueue);
1769
1770 INIT_LIST_HEAD(&tmp);
1771 spin_lock(dwlk);
1772 list_for_each_entry_safe(bp, n, dwq, b_list) {
1773 ASSERT(bp->b_target == target);
1774 ASSERT(bp->b_flags & (XBF_DELWRI | _XBF_DELWRI_Q));
1775 XB_TRACE(bp, "walkq2", (long)xfs_buf_ispin(bp));
1776 if (xfs_buf_ispin(bp)) {
1777 pincount++;
1778 continue;
1779 }
1780
1781 list_move_tail(&bp->b_list, &tmp);
1782 }
1783 spin_unlock(dwlk);
1784
1785 /*
1786 * Dropped the delayed write list lock, now walk the temporary list
1787 */
1788 list_for_each_entry_safe(bp, n, &tmp, b_list) {
1789 xfs_buf_lock(bp);
1790 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|_XBF_RUN_QUEUES);
1791 bp->b_flags |= XBF_WRITE;
1792 if (wait)
1793 bp->b_flags &= ~XBF_ASYNC;
1794 else
1795 list_del_init(&bp->b_list);
1796
1797 xfs_buf_iostrategy(bp);
1798 }
1799
1800 if (wait)
1801 blk_run_address_space(target->bt_mapping);
1802
1803 /*
1804 * Remaining list items must be flushed before returning
1805 */
1806 while (!list_empty(&tmp)) {
1807 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1808
1809 list_del_init(&bp->b_list);
1810 xfs_iowait(bp);
1811 xfs_buf_relse(bp);
1812 }
1813
1814 return pincount;
1815 }
1816
1817 int __init
1818 xfs_buf_init(void)
1819 {
1820 #ifdef XFS_BUF_TRACE
1821 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1822 #endif
1823
1824 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1825 KM_ZONE_HWALIGN, NULL);
1826 if (!xfs_buf_zone)
1827 goto out_free_trace_buf;
1828
1829 xfslogd_workqueue = create_workqueue("xfslogd");
1830 if (!xfslogd_workqueue)
1831 goto out_free_buf_zone;
1832
1833 xfsdatad_workqueue = create_workqueue("xfsdatad");
1834 if (!xfsdatad_workqueue)
1835 goto out_destroy_xfslogd_workqueue;
1836
1837 xfs_buf_shake = kmem_shake_register(xfsbufd_wakeup);
1838 if (!xfs_buf_shake)
1839 goto out_destroy_xfsdatad_workqueue;
1840
1841 return 0;
1842
1843 out_destroy_xfsdatad_workqueue:
1844 destroy_workqueue(xfsdatad_workqueue);
1845 out_destroy_xfslogd_workqueue:
1846 destroy_workqueue(xfslogd_workqueue);
1847 out_free_buf_zone:
1848 kmem_zone_destroy(xfs_buf_zone);
1849 out_free_trace_buf:
1850 #ifdef XFS_BUF_TRACE
1851 ktrace_free(xfs_buf_trace_buf);
1852 #endif
1853 return -ENOMEM;
1854 }
1855
1856 void
1857 xfs_buf_terminate(void)
1858 {
1859 kmem_shake_deregister(xfs_buf_shake);
1860 destroy_workqueue(xfsdatad_workqueue);
1861 destroy_workqueue(xfslogd_workqueue);
1862 kmem_zone_destroy(xfs_buf_zone);
1863 #ifdef XFS_BUF_TRACE
1864 ktrace_free(xfs_buf_trace_buf);
1865 #endif
1866 }
This page took 0.071198 seconds and 5 git commands to generate.