[XFS] remove some dead code from pagebuf
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11 *
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22 *
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
25 *
26 * http://www.sgi.com
27 *
28 * For further information regarding this notice, see:
29 *
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31 */
32
33 /*
34 * The xfs_buf.c code provides an abstract buffer cache model on top
35 * of the Linux page cache. Cached metadata blocks for a file system
36 * are hashed to the inode for the block device. xfs_buf.c assembles
37 * buffers (xfs_buf_t) on demand to aggregate such cached pages for I/O.
38 *
39 * Written by Steve Lord, Jim Mostek, Russell Cattelan
40 * and Rajagopal Ananthanarayanan ("ananth") at SGI.
41 *
42 */
43
44 #include <linux/stddef.h>
45 #include <linux/errno.h>
46 #include <linux/slab.h>
47 #include <linux/pagemap.h>
48 #include <linux/init.h>
49 #include <linux/vmalloc.h>
50 #include <linux/bio.h>
51 #include <linux/sysctl.h>
52 #include <linux/proc_fs.h>
53 #include <linux/workqueue.h>
54 #include <linux/percpu.h>
55 #include <linux/blkdev.h>
56 #include <linux/hash.h>
57
58 #include "xfs_linux.h"
59
60 /*
61 * File wide globals
62 */
63
64 STATIC kmem_cache_t *pagebuf_zone;
65 STATIC kmem_shaker_t pagebuf_shake;
66 STATIC int xfsbufd_wakeup(int, unsigned int);
67 STATIC void pagebuf_delwri_queue(xfs_buf_t *, int);
68
69 STATIC struct workqueue_struct *xfslogd_workqueue;
70 struct workqueue_struct *xfsdatad_workqueue;
71
72 /*
73 * Pagebuf debugging
74 */
75
76 #ifdef PAGEBUF_TRACE
77 void
78 pagebuf_trace(
79 xfs_buf_t *pb,
80 char *id,
81 void *data,
82 void *ra)
83 {
84 ktrace_enter(pagebuf_trace_buf,
85 pb, id,
86 (void *)(unsigned long)pb->pb_flags,
87 (void *)(unsigned long)pb->pb_hold.counter,
88 (void *)(unsigned long)pb->pb_sema.count.counter,
89 (void *)current,
90 data, ra,
91 (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff),
92 (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff),
93 (void *)(unsigned long)pb->pb_buffer_length,
94 NULL, NULL, NULL, NULL, NULL);
95 }
96 ktrace_t *pagebuf_trace_buf;
97 #define PAGEBUF_TRACE_SIZE 4096
98 #define PB_TRACE(pb, id, data) \
99 pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0))
100 #else
101 #define PB_TRACE(pb, id, data) do { } while (0)
102 #endif
103
104 #ifdef PAGEBUF_LOCK_TRACKING
105 # define PB_SET_OWNER(pb) ((pb)->pb_last_holder = current->pid)
106 # define PB_CLEAR_OWNER(pb) ((pb)->pb_last_holder = -1)
107 # define PB_GET_OWNER(pb) ((pb)->pb_last_holder)
108 #else
109 # define PB_SET_OWNER(pb) do { } while (0)
110 # define PB_CLEAR_OWNER(pb) do { } while (0)
111 # define PB_GET_OWNER(pb) do { } while (0)
112 #endif
113
114 /*
115 * Pagebuf allocation / freeing.
116 */
117
118 #define pb_to_gfp(flags) \
119 ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \
120 ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
121
122 #define pb_to_km(flags) \
123 (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
124
125
126 #define pagebuf_allocate(flags) \
127 kmem_zone_alloc(pagebuf_zone, pb_to_km(flags))
128 #define pagebuf_deallocate(pb) \
129 kmem_zone_free(pagebuf_zone, (pb));
130
131 /*
132 * Page Region interfaces.
133 *
134 * For pages in filesystems where the blocksize is smaller than the
135 * pagesize, we use the page->private field (long) to hold a bitmap
136 * of uptodate regions within the page.
137 *
138 * Each such region is "bytes per page / bits per long" bytes long.
139 *
140 * NBPPR == number-of-bytes-per-page-region
141 * BTOPR == bytes-to-page-region (rounded up)
142 * BTOPRT == bytes-to-page-region-truncated (rounded down)
143 */
144 #if (BITS_PER_LONG == 32)
145 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
146 #elif (BITS_PER_LONG == 64)
147 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
148 #else
149 #error BITS_PER_LONG must be 32 or 64
150 #endif
151 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
152 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
153 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
154
155 STATIC unsigned long
156 page_region_mask(
157 size_t offset,
158 size_t length)
159 {
160 unsigned long mask;
161 int first, final;
162
163 first = BTOPR(offset);
164 final = BTOPRT(offset + length - 1);
165 first = min(first, final);
166
167 mask = ~0UL;
168 mask <<= BITS_PER_LONG - (final - first);
169 mask >>= BITS_PER_LONG - (final);
170
171 ASSERT(offset + length <= PAGE_CACHE_SIZE);
172 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
173
174 return mask;
175 }
176
177 STATIC inline void
178 set_page_region(
179 struct page *page,
180 size_t offset,
181 size_t length)
182 {
183 page->private |= page_region_mask(offset, length);
184 if (page->private == ~0UL)
185 SetPageUptodate(page);
186 }
187
188 STATIC inline int
189 test_page_region(
190 struct page *page,
191 size_t offset,
192 size_t length)
193 {
194 unsigned long mask = page_region_mask(offset, length);
195
196 return (mask && (page->private & mask) == mask);
197 }
198
199 /*
200 * Mapping of multi-page buffers into contiguous virtual space
201 */
202
203 typedef struct a_list {
204 void *vm_addr;
205 struct a_list *next;
206 } a_list_t;
207
208 STATIC a_list_t *as_free_head;
209 STATIC int as_list_len;
210 STATIC DEFINE_SPINLOCK(as_lock);
211
212 /*
213 * Try to batch vunmaps because they are costly.
214 */
215 STATIC void
216 free_address(
217 void *addr)
218 {
219 a_list_t *aentry;
220
221 aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
222 if (likely(aentry)) {
223 spin_lock(&as_lock);
224 aentry->next = as_free_head;
225 aentry->vm_addr = addr;
226 as_free_head = aentry;
227 as_list_len++;
228 spin_unlock(&as_lock);
229 } else {
230 vunmap(addr);
231 }
232 }
233
234 STATIC void
235 purge_addresses(void)
236 {
237 a_list_t *aentry, *old;
238
239 if (as_free_head == NULL)
240 return;
241
242 spin_lock(&as_lock);
243 aentry = as_free_head;
244 as_free_head = NULL;
245 as_list_len = 0;
246 spin_unlock(&as_lock);
247
248 while ((old = aentry) != NULL) {
249 vunmap(aentry->vm_addr);
250 aentry = aentry->next;
251 kfree(old);
252 }
253 }
254
255 /*
256 * Internal pagebuf object manipulation
257 */
258
259 STATIC void
260 _pagebuf_initialize(
261 xfs_buf_t *pb,
262 xfs_buftarg_t *target,
263 loff_t range_base,
264 size_t range_length,
265 page_buf_flags_t flags)
266 {
267 /*
268 * We don't want certain flags to appear in pb->pb_flags.
269 */
270 flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD);
271
272 memset(pb, 0, sizeof(xfs_buf_t));
273 atomic_set(&pb->pb_hold, 1);
274 init_MUTEX_LOCKED(&pb->pb_iodonesema);
275 INIT_LIST_HEAD(&pb->pb_list);
276 INIT_LIST_HEAD(&pb->pb_hash_list);
277 init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */
278 PB_SET_OWNER(pb);
279 pb->pb_target = target;
280 pb->pb_file_offset = range_base;
281 /*
282 * Set buffer_length and count_desired to the same value initially.
283 * I/O routines should use count_desired, which will be the same in
284 * most cases but may be reset (e.g. XFS recovery).
285 */
286 pb->pb_buffer_length = pb->pb_count_desired = range_length;
287 pb->pb_flags = flags | PBF_NONE;
288 pb->pb_bn = XFS_BUF_DADDR_NULL;
289 atomic_set(&pb->pb_pin_count, 0);
290 init_waitqueue_head(&pb->pb_waiters);
291
292 XFS_STATS_INC(pb_create);
293 PB_TRACE(pb, "initialize", target);
294 }
295
296 /*
297 * Allocate a page array capable of holding a specified number
298 * of pages, and point the page buf at it.
299 */
300 STATIC int
301 _pagebuf_get_pages(
302 xfs_buf_t *pb,
303 int page_count,
304 page_buf_flags_t flags)
305 {
306 /* Make sure that we have a page list */
307 if (pb->pb_pages == NULL) {
308 pb->pb_offset = page_buf_poff(pb->pb_file_offset);
309 pb->pb_page_count = page_count;
310 if (page_count <= PB_PAGES) {
311 pb->pb_pages = pb->pb_page_array;
312 } else {
313 pb->pb_pages = kmem_alloc(sizeof(struct page *) *
314 page_count, pb_to_km(flags));
315 if (pb->pb_pages == NULL)
316 return -ENOMEM;
317 }
318 memset(pb->pb_pages, 0, sizeof(struct page *) * page_count);
319 }
320 return 0;
321 }
322
323 /*
324 * Frees pb_pages if it was malloced.
325 */
326 STATIC void
327 _pagebuf_free_pages(
328 xfs_buf_t *bp)
329 {
330 if (bp->pb_pages != bp->pb_page_array) {
331 kmem_free(bp->pb_pages,
332 bp->pb_page_count * sizeof(struct page *));
333 }
334 }
335
336 /*
337 * Releases the specified buffer.
338 *
339 * The modification state of any associated pages is left unchanged.
340 * The buffer most not be on any hash - use pagebuf_rele instead for
341 * hashed and refcounted buffers
342 */
343 void
344 pagebuf_free(
345 xfs_buf_t *bp)
346 {
347 PB_TRACE(bp, "free", 0);
348
349 ASSERT(list_empty(&bp->pb_hash_list));
350
351 if (bp->pb_flags & _PBF_PAGE_CACHE) {
352 uint i;
353
354 if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1))
355 free_address(bp->pb_addr - bp->pb_offset);
356
357 for (i = 0; i < bp->pb_page_count; i++)
358 page_cache_release(bp->pb_pages[i]);
359 _pagebuf_free_pages(bp);
360 } else if (bp->pb_flags & _PBF_KMEM_ALLOC) {
361 /*
362 * XXX(hch): bp->pb_count_desired might be incorrect (see
363 * pagebuf_associate_memory for details), but fortunately
364 * the Linux version of kmem_free ignores the len argument..
365 */
366 kmem_free(bp->pb_addr, bp->pb_count_desired);
367 _pagebuf_free_pages(bp);
368 }
369
370 pagebuf_deallocate(bp);
371 }
372
373 /*
374 * Finds all pages for buffer in question and builds it's page list.
375 */
376 STATIC int
377 _pagebuf_lookup_pages(
378 xfs_buf_t *bp,
379 uint flags)
380 {
381 struct address_space *mapping = bp->pb_target->pbr_mapping;
382 size_t blocksize = bp->pb_target->pbr_bsize;
383 size_t size = bp->pb_count_desired;
384 size_t nbytes, offset;
385 int gfp_mask = pb_to_gfp(flags);
386 unsigned short page_count, i;
387 pgoff_t first;
388 loff_t end;
389 int error;
390
391 end = bp->pb_file_offset + bp->pb_buffer_length;
392 page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset);
393
394 error = _pagebuf_get_pages(bp, page_count, flags);
395 if (unlikely(error))
396 return error;
397 bp->pb_flags |= _PBF_PAGE_CACHE;
398
399 offset = bp->pb_offset;
400 first = bp->pb_file_offset >> PAGE_CACHE_SHIFT;
401
402 for (i = 0; i < bp->pb_page_count; i++) {
403 struct page *page;
404 uint retries = 0;
405
406 retry:
407 page = find_or_create_page(mapping, first + i, gfp_mask);
408 if (unlikely(page == NULL)) {
409 if (flags & PBF_READ_AHEAD) {
410 bp->pb_page_count = i;
411 for (i = 0; i < bp->pb_page_count; i++)
412 unlock_page(bp->pb_pages[i]);
413 return -ENOMEM;
414 }
415
416 /*
417 * This could deadlock.
418 *
419 * But until all the XFS lowlevel code is revamped to
420 * handle buffer allocation failures we can't do much.
421 */
422 if (!(++retries % 100))
423 printk(KERN_ERR
424 "XFS: possible memory allocation "
425 "deadlock in %s (mode:0x%x)\n",
426 __FUNCTION__, gfp_mask);
427
428 XFS_STATS_INC(pb_page_retries);
429 xfsbufd_wakeup(0, gfp_mask);
430 blk_congestion_wait(WRITE, HZ/50);
431 goto retry;
432 }
433
434 XFS_STATS_INC(pb_page_found);
435
436 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
437 size -= nbytes;
438
439 if (!PageUptodate(page)) {
440 page_count--;
441 if (blocksize >= PAGE_CACHE_SIZE) {
442 if (flags & PBF_READ)
443 bp->pb_locked = 1;
444 } else if (!PagePrivate(page)) {
445 if (test_page_region(page, offset, nbytes))
446 page_count++;
447 }
448 }
449
450 bp->pb_pages[i] = page;
451 offset = 0;
452 }
453
454 if (!bp->pb_locked) {
455 for (i = 0; i < bp->pb_page_count; i++)
456 unlock_page(bp->pb_pages[i]);
457 }
458
459 if (page_count) {
460 /* if we have any uptodate pages, mark that in the buffer */
461 bp->pb_flags &= ~PBF_NONE;
462
463 /* if some pages aren't uptodate, mark that in the buffer */
464 if (page_count != bp->pb_page_count)
465 bp->pb_flags |= PBF_PARTIAL;
466 }
467
468 PB_TRACE(bp, "lookup_pages", (long)page_count);
469 return error;
470 }
471
472 /*
473 * Map buffer into kernel address-space if nessecary.
474 */
475 STATIC int
476 _pagebuf_map_pages(
477 xfs_buf_t *bp,
478 uint flags)
479 {
480 /* A single page buffer is always mappable */
481 if (bp->pb_page_count == 1) {
482 bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset;
483 bp->pb_flags |= PBF_MAPPED;
484 } else if (flags & PBF_MAPPED) {
485 if (as_list_len > 64)
486 purge_addresses();
487 bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count,
488 VM_MAP, PAGE_KERNEL);
489 if (unlikely(bp->pb_addr == NULL))
490 return -ENOMEM;
491 bp->pb_addr += bp->pb_offset;
492 bp->pb_flags |= PBF_MAPPED;
493 }
494
495 return 0;
496 }
497
498 /*
499 * Finding and Reading Buffers
500 */
501
502 /*
503 * _pagebuf_find
504 *
505 * Looks up, and creates if absent, a lockable buffer for
506 * a given range of an inode. The buffer is returned
507 * locked. If other overlapping buffers exist, they are
508 * released before the new buffer is created and locked,
509 * which may imply that this call will block until those buffers
510 * are unlocked. No I/O is implied by this call.
511 */
512 xfs_buf_t *
513 _pagebuf_find(
514 xfs_buftarg_t *btp, /* block device target */
515 loff_t ioff, /* starting offset of range */
516 size_t isize, /* length of range */
517 page_buf_flags_t flags, /* PBF_TRYLOCK */
518 xfs_buf_t *new_pb)/* newly allocated buffer */
519 {
520 loff_t range_base;
521 size_t range_length;
522 xfs_bufhash_t *hash;
523 xfs_buf_t *pb, *n;
524
525 range_base = (ioff << BBSHIFT);
526 range_length = (isize << BBSHIFT);
527
528 /* Check for IOs smaller than the sector size / not sector aligned */
529 ASSERT(!(range_length < (1 << btp->pbr_sshift)));
530 ASSERT(!(range_base & (loff_t)btp->pbr_smask));
531
532 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
533
534 spin_lock(&hash->bh_lock);
535
536 list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) {
537 ASSERT(btp == pb->pb_target);
538 if (pb->pb_file_offset == range_base &&
539 pb->pb_buffer_length == range_length) {
540 /*
541 * If we look at something bring it to the
542 * front of the list for next time.
543 */
544 atomic_inc(&pb->pb_hold);
545 list_move(&pb->pb_hash_list, &hash->bh_list);
546 goto found;
547 }
548 }
549
550 /* No match found */
551 if (new_pb) {
552 _pagebuf_initialize(new_pb, btp, range_base,
553 range_length, flags);
554 new_pb->pb_hash = hash;
555 list_add(&new_pb->pb_hash_list, &hash->bh_list);
556 } else {
557 XFS_STATS_INC(pb_miss_locked);
558 }
559
560 spin_unlock(&hash->bh_lock);
561 return new_pb;
562
563 found:
564 spin_unlock(&hash->bh_lock);
565
566 /* Attempt to get the semaphore without sleeping,
567 * if this does not work then we need to drop the
568 * spinlock and do a hard attempt on the semaphore.
569 */
570 if (down_trylock(&pb->pb_sema)) {
571 if (!(flags & PBF_TRYLOCK)) {
572 /* wait for buffer ownership */
573 PB_TRACE(pb, "get_lock", 0);
574 pagebuf_lock(pb);
575 XFS_STATS_INC(pb_get_locked_waited);
576 } else {
577 /* We asked for a trylock and failed, no need
578 * to look at file offset and length here, we
579 * know that this pagebuf at least overlaps our
580 * pagebuf and is locked, therefore our buffer
581 * either does not exist, or is this buffer
582 */
583
584 pagebuf_rele(pb);
585 XFS_STATS_INC(pb_busy_locked);
586 return (NULL);
587 }
588 } else {
589 /* trylock worked */
590 PB_SET_OWNER(pb);
591 }
592
593 if (pb->pb_flags & PBF_STALE)
594 pb->pb_flags &= PBF_MAPPED;
595 PB_TRACE(pb, "got_lock", 0);
596 XFS_STATS_INC(pb_get_locked);
597 return (pb);
598 }
599
600 /*
601 * xfs_buf_get_flags assembles a buffer covering the specified range.
602 *
603 * Storage in memory for all portions of the buffer will be allocated,
604 * although backing storage may not be.
605 */
606 xfs_buf_t *
607 xfs_buf_get_flags( /* allocate a buffer */
608 xfs_buftarg_t *target,/* target for buffer */
609 loff_t ioff, /* starting offset of range */
610 size_t isize, /* length of range */
611 page_buf_flags_t flags) /* PBF_TRYLOCK */
612 {
613 xfs_buf_t *pb, *new_pb;
614 int error = 0, i;
615
616 new_pb = pagebuf_allocate(flags);
617 if (unlikely(!new_pb))
618 return NULL;
619
620 pb = _pagebuf_find(target, ioff, isize, flags, new_pb);
621 if (pb == new_pb) {
622 error = _pagebuf_lookup_pages(pb, flags);
623 if (error)
624 goto no_buffer;
625 } else {
626 pagebuf_deallocate(new_pb);
627 if (unlikely(pb == NULL))
628 return NULL;
629 }
630
631 for (i = 0; i < pb->pb_page_count; i++)
632 mark_page_accessed(pb->pb_pages[i]);
633
634 if (!(pb->pb_flags & PBF_MAPPED)) {
635 error = _pagebuf_map_pages(pb, flags);
636 if (unlikely(error)) {
637 printk(KERN_WARNING "%s: failed to map pages\n",
638 __FUNCTION__);
639 goto no_buffer;
640 }
641 }
642
643 XFS_STATS_INC(pb_get);
644
645 /*
646 * Always fill in the block number now, the mapped cases can do
647 * their own overlay of this later.
648 */
649 pb->pb_bn = ioff;
650 pb->pb_count_desired = pb->pb_buffer_length;
651
652 PB_TRACE(pb, "get", (unsigned long)flags);
653 return pb;
654
655 no_buffer:
656 if (flags & (PBF_LOCK | PBF_TRYLOCK))
657 pagebuf_unlock(pb);
658 pagebuf_rele(pb);
659 return NULL;
660 }
661
662 xfs_buf_t *
663 xfs_buf_read_flags(
664 xfs_buftarg_t *target,
665 loff_t ioff,
666 size_t isize,
667 page_buf_flags_t flags)
668 {
669 xfs_buf_t *pb;
670
671 flags |= PBF_READ;
672
673 pb = xfs_buf_get_flags(target, ioff, isize, flags);
674 if (pb) {
675 if (PBF_NOT_DONE(pb)) {
676 PB_TRACE(pb, "read", (unsigned long)flags);
677 XFS_STATS_INC(pb_get_read);
678 pagebuf_iostart(pb, flags);
679 } else if (flags & PBF_ASYNC) {
680 PB_TRACE(pb, "read_async", (unsigned long)flags);
681 /*
682 * Read ahead call which is already satisfied,
683 * drop the buffer
684 */
685 goto no_buffer;
686 } else {
687 PB_TRACE(pb, "read_done", (unsigned long)flags);
688 /* We do not want read in the flags */
689 pb->pb_flags &= ~PBF_READ;
690 }
691 }
692
693 return pb;
694
695 no_buffer:
696 if (flags & (PBF_LOCK | PBF_TRYLOCK))
697 pagebuf_unlock(pb);
698 pagebuf_rele(pb);
699 return NULL;
700 }
701
702 /*
703 * If we are not low on memory then do the readahead in a deadlock
704 * safe manner.
705 */
706 void
707 pagebuf_readahead(
708 xfs_buftarg_t *target,
709 loff_t ioff,
710 size_t isize,
711 page_buf_flags_t flags)
712 {
713 struct backing_dev_info *bdi;
714
715 bdi = target->pbr_mapping->backing_dev_info;
716 if (bdi_read_congested(bdi))
717 return;
718
719 flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD);
720 xfs_buf_read_flags(target, ioff, isize, flags);
721 }
722
723 xfs_buf_t *
724 pagebuf_get_empty(
725 size_t len,
726 xfs_buftarg_t *target)
727 {
728 xfs_buf_t *pb;
729
730 pb = pagebuf_allocate(0);
731 if (pb)
732 _pagebuf_initialize(pb, target, 0, len, 0);
733 return pb;
734 }
735
736 static inline struct page *
737 mem_to_page(
738 void *addr)
739 {
740 if (((unsigned long)addr < VMALLOC_START) ||
741 ((unsigned long)addr >= VMALLOC_END)) {
742 return virt_to_page(addr);
743 } else {
744 return vmalloc_to_page(addr);
745 }
746 }
747
748 int
749 pagebuf_associate_memory(
750 xfs_buf_t *pb,
751 void *mem,
752 size_t len)
753 {
754 int rval;
755 int i = 0;
756 size_t ptr;
757 size_t end, end_cur;
758 off_t offset;
759 int page_count;
760
761 page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
762 offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
763 if (offset && (len > PAGE_CACHE_SIZE))
764 page_count++;
765
766 /* Free any previous set of page pointers */
767 if (pb->pb_pages)
768 _pagebuf_free_pages(pb);
769
770 pb->pb_pages = NULL;
771 pb->pb_addr = mem;
772
773 rval = _pagebuf_get_pages(pb, page_count, 0);
774 if (rval)
775 return rval;
776
777 pb->pb_offset = offset;
778 ptr = (size_t) mem & PAGE_CACHE_MASK;
779 end = PAGE_CACHE_ALIGN((size_t) mem + len);
780 end_cur = end;
781 /* set up first page */
782 pb->pb_pages[0] = mem_to_page(mem);
783
784 ptr += PAGE_CACHE_SIZE;
785 pb->pb_page_count = ++i;
786 while (ptr < end) {
787 pb->pb_pages[i] = mem_to_page((void *)ptr);
788 pb->pb_page_count = ++i;
789 ptr += PAGE_CACHE_SIZE;
790 }
791 pb->pb_locked = 0;
792
793 pb->pb_count_desired = pb->pb_buffer_length = len;
794 pb->pb_flags |= PBF_MAPPED;
795
796 return 0;
797 }
798
799 xfs_buf_t *
800 pagebuf_get_no_daddr(
801 size_t len,
802 xfs_buftarg_t *target)
803 {
804 size_t malloc_len = len;
805 xfs_buf_t *bp;
806 void *data;
807 int error;
808
809 bp = pagebuf_allocate(0);
810 if (unlikely(bp == NULL))
811 goto fail;
812 _pagebuf_initialize(bp, target, 0, len, PBF_FORCEIO);
813
814 try_again:
815 data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
816 if (unlikely(data == NULL))
817 goto fail_free_buf;
818
819 /* check whether alignment matches.. */
820 if ((__psunsigned_t)data !=
821 ((__psunsigned_t)data & ~target->pbr_smask)) {
822 /* .. else double the size and try again */
823 kmem_free(data, malloc_len);
824 malloc_len <<= 1;
825 goto try_again;
826 }
827
828 error = pagebuf_associate_memory(bp, data, len);
829 if (error)
830 goto fail_free_mem;
831 bp->pb_flags |= _PBF_KMEM_ALLOC;
832
833 pagebuf_unlock(bp);
834
835 PB_TRACE(bp, "no_daddr", data);
836 return bp;
837 fail_free_mem:
838 kmem_free(data, malloc_len);
839 fail_free_buf:
840 pagebuf_free(bp);
841 fail:
842 return NULL;
843 }
844
845 /*
846 * pagebuf_hold
847 *
848 * Increment reference count on buffer, to hold the buffer concurrently
849 * with another thread which may release (free) the buffer asynchronously.
850 *
851 * Must hold the buffer already to call this function.
852 */
853 void
854 pagebuf_hold(
855 xfs_buf_t *pb)
856 {
857 atomic_inc(&pb->pb_hold);
858 PB_TRACE(pb, "hold", 0);
859 }
860
861 /*
862 * pagebuf_rele
863 *
864 * pagebuf_rele releases a hold on the specified buffer. If the
865 * the hold count is 1, pagebuf_rele calls pagebuf_free.
866 */
867 void
868 pagebuf_rele(
869 xfs_buf_t *pb)
870 {
871 xfs_bufhash_t *hash = pb->pb_hash;
872
873 PB_TRACE(pb, "rele", pb->pb_relse);
874
875 if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) {
876 int do_free = 1;
877
878 if (pb->pb_relse) {
879 atomic_inc(&pb->pb_hold);
880 spin_unlock(&hash->bh_lock);
881 (*(pb->pb_relse)) (pb);
882 spin_lock(&hash->bh_lock);
883 do_free = 0;
884 }
885
886 if (pb->pb_flags & PBF_DELWRI) {
887 pb->pb_flags |= PBF_ASYNC;
888 atomic_inc(&pb->pb_hold);
889 pagebuf_delwri_queue(pb, 0);
890 do_free = 0;
891 } else if (pb->pb_flags & PBF_FS_MANAGED) {
892 do_free = 0;
893 }
894
895 if (do_free) {
896 list_del_init(&pb->pb_hash_list);
897 spin_unlock(&hash->bh_lock);
898 pagebuf_free(pb);
899 } else {
900 spin_unlock(&hash->bh_lock);
901 }
902 }
903 }
904
905
906 /*
907 * Mutual exclusion on buffers. Locking model:
908 *
909 * Buffers associated with inodes for which buffer locking
910 * is not enabled are not protected by semaphores, and are
911 * assumed to be exclusively owned by the caller. There is a
912 * spinlock in the buffer, used by the caller when concurrent
913 * access is possible.
914 */
915
916 /*
917 * pagebuf_cond_lock
918 *
919 * pagebuf_cond_lock locks a buffer object, if it is not already locked.
920 * Note that this in no way
921 * locks the underlying pages, so it is only useful for synchronizing
922 * concurrent use of page buffer objects, not for synchronizing independent
923 * access to the underlying pages.
924 */
925 int
926 pagebuf_cond_lock( /* lock buffer, if not locked */
927 /* returns -EBUSY if locked) */
928 xfs_buf_t *pb)
929 {
930 int locked;
931
932 locked = down_trylock(&pb->pb_sema) == 0;
933 if (locked) {
934 PB_SET_OWNER(pb);
935 }
936 PB_TRACE(pb, "cond_lock", (long)locked);
937 return(locked ? 0 : -EBUSY);
938 }
939
940 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
941 /*
942 * pagebuf_lock_value
943 *
944 * Return lock value for a pagebuf
945 */
946 int
947 pagebuf_lock_value(
948 xfs_buf_t *pb)
949 {
950 return(atomic_read(&pb->pb_sema.count));
951 }
952 #endif
953
954 /*
955 * pagebuf_lock
956 *
957 * pagebuf_lock locks a buffer object. Note that this in no way
958 * locks the underlying pages, so it is only useful for synchronizing
959 * concurrent use of page buffer objects, not for synchronizing independent
960 * access to the underlying pages.
961 */
962 int
963 pagebuf_lock(
964 xfs_buf_t *pb)
965 {
966 PB_TRACE(pb, "lock", 0);
967 if (atomic_read(&pb->pb_io_remaining))
968 blk_run_address_space(pb->pb_target->pbr_mapping);
969 down(&pb->pb_sema);
970 PB_SET_OWNER(pb);
971 PB_TRACE(pb, "locked", 0);
972 return 0;
973 }
974
975 /*
976 * pagebuf_unlock
977 *
978 * pagebuf_unlock releases the lock on the buffer object created by
979 * pagebuf_lock or pagebuf_cond_lock (not any
980 * pinning of underlying pages created by pagebuf_pin).
981 */
982 void
983 pagebuf_unlock( /* unlock buffer */
984 xfs_buf_t *pb) /* buffer to unlock */
985 {
986 PB_CLEAR_OWNER(pb);
987 up(&pb->pb_sema);
988 PB_TRACE(pb, "unlock", 0);
989 }
990
991
992 /*
993 * Pinning Buffer Storage in Memory
994 */
995
996 /*
997 * pagebuf_pin
998 *
999 * pagebuf_pin locks all of the memory represented by a buffer in
1000 * memory. Multiple calls to pagebuf_pin and pagebuf_unpin, for
1001 * the same or different buffers affecting a given page, will
1002 * properly count the number of outstanding "pin" requests. The
1003 * buffer may be released after the pagebuf_pin and a different
1004 * buffer used when calling pagebuf_unpin, if desired.
1005 * pagebuf_pin should be used by the file system when it wants be
1006 * assured that no attempt will be made to force the affected
1007 * memory to disk. It does not assure that a given logical page
1008 * will not be moved to a different physical page.
1009 */
1010 void
1011 pagebuf_pin(
1012 xfs_buf_t *pb)
1013 {
1014 atomic_inc(&pb->pb_pin_count);
1015 PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter);
1016 }
1017
1018 /*
1019 * pagebuf_unpin
1020 *
1021 * pagebuf_unpin reverses the locking of memory performed by
1022 * pagebuf_pin. Note that both functions affected the logical
1023 * pages associated with the buffer, not the buffer itself.
1024 */
1025 void
1026 pagebuf_unpin(
1027 xfs_buf_t *pb)
1028 {
1029 if (atomic_dec_and_test(&pb->pb_pin_count)) {
1030 wake_up_all(&pb->pb_waiters);
1031 }
1032 PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter);
1033 }
1034
1035 int
1036 pagebuf_ispin(
1037 xfs_buf_t *pb)
1038 {
1039 return atomic_read(&pb->pb_pin_count);
1040 }
1041
1042 /*
1043 * pagebuf_wait_unpin
1044 *
1045 * pagebuf_wait_unpin waits until all of the memory associated
1046 * with the buffer is not longer locked in memory. It returns
1047 * immediately if none of the affected pages are locked.
1048 */
1049 static inline void
1050 _pagebuf_wait_unpin(
1051 xfs_buf_t *pb)
1052 {
1053 DECLARE_WAITQUEUE (wait, current);
1054
1055 if (atomic_read(&pb->pb_pin_count) == 0)
1056 return;
1057
1058 add_wait_queue(&pb->pb_waiters, &wait);
1059 for (;;) {
1060 set_current_state(TASK_UNINTERRUPTIBLE);
1061 if (atomic_read(&pb->pb_pin_count) == 0)
1062 break;
1063 if (atomic_read(&pb->pb_io_remaining))
1064 blk_run_address_space(pb->pb_target->pbr_mapping);
1065 schedule();
1066 }
1067 remove_wait_queue(&pb->pb_waiters, &wait);
1068 set_current_state(TASK_RUNNING);
1069 }
1070
1071 /*
1072 * Buffer Utility Routines
1073 */
1074
1075 /*
1076 * pagebuf_iodone
1077 *
1078 * pagebuf_iodone marks a buffer for which I/O is in progress
1079 * done with respect to that I/O. The pb_iodone routine, if
1080 * present, will be called as a side-effect.
1081 */
1082 STATIC void
1083 pagebuf_iodone_work(
1084 void *v)
1085 {
1086 xfs_buf_t *bp = (xfs_buf_t *)v;
1087
1088 if (bp->pb_iodone)
1089 (*(bp->pb_iodone))(bp);
1090 else if (bp->pb_flags & PBF_ASYNC)
1091 xfs_buf_relse(bp);
1092 }
1093
1094 void
1095 pagebuf_iodone(
1096 xfs_buf_t *pb,
1097 int dataio,
1098 int schedule)
1099 {
1100 pb->pb_flags &= ~(PBF_READ | PBF_WRITE);
1101 if (pb->pb_error == 0) {
1102 pb->pb_flags &= ~(PBF_PARTIAL | PBF_NONE);
1103 }
1104
1105 PB_TRACE(pb, "iodone", pb->pb_iodone);
1106
1107 if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) {
1108 if (schedule) {
1109 INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb);
1110 queue_work(dataio ? xfsdatad_workqueue :
1111 xfslogd_workqueue, &pb->pb_iodone_work);
1112 } else {
1113 pagebuf_iodone_work(pb);
1114 }
1115 } else {
1116 up(&pb->pb_iodonesema);
1117 }
1118 }
1119
1120 /*
1121 * pagebuf_ioerror
1122 *
1123 * pagebuf_ioerror sets the error code for a buffer.
1124 */
1125 void
1126 pagebuf_ioerror( /* mark/clear buffer error flag */
1127 xfs_buf_t *pb, /* buffer to mark */
1128 int error) /* error to store (0 if none) */
1129 {
1130 ASSERT(error >= 0 && error <= 0xffff);
1131 pb->pb_error = (unsigned short)error;
1132 PB_TRACE(pb, "ioerror", (unsigned long)error);
1133 }
1134
1135 /*
1136 * pagebuf_iostart
1137 *
1138 * pagebuf_iostart initiates I/O on a buffer, based on the flags supplied.
1139 * If necessary, it will arrange for any disk space allocation required,
1140 * and it will break up the request if the block mappings require it.
1141 * The pb_iodone routine in the buffer supplied will only be called
1142 * when all of the subsidiary I/O requests, if any, have been completed.
1143 * pagebuf_iostart calls the pagebuf_ioinitiate routine or
1144 * pagebuf_iorequest, if the former routine is not defined, to start
1145 * the I/O on a given low-level request.
1146 */
1147 int
1148 pagebuf_iostart( /* start I/O on a buffer */
1149 xfs_buf_t *pb, /* buffer to start */
1150 page_buf_flags_t flags) /* PBF_LOCK, PBF_ASYNC, PBF_READ, */
1151 /* PBF_WRITE, PBF_DELWRI, */
1152 /* PBF_DONT_BLOCK */
1153 {
1154 int status = 0;
1155
1156 PB_TRACE(pb, "iostart", (unsigned long)flags);
1157
1158 if (flags & PBF_DELWRI) {
1159 pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC);
1160 pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC);
1161 pagebuf_delwri_queue(pb, 1);
1162 return status;
1163 }
1164
1165 pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \
1166 PBF_READ_AHEAD | _PBF_RUN_QUEUES);
1167 pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \
1168 PBF_READ_AHEAD | _PBF_RUN_QUEUES);
1169
1170 BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL);
1171
1172 /* For writes allow an alternate strategy routine to precede
1173 * the actual I/O request (which may not be issued at all in
1174 * a shutdown situation, for example).
1175 */
1176 status = (flags & PBF_WRITE) ?
1177 pagebuf_iostrategy(pb) : pagebuf_iorequest(pb);
1178
1179 /* Wait for I/O if we are not an async request.
1180 * Note: async I/O request completion will release the buffer,
1181 * and that can already be done by this point. So using the
1182 * buffer pointer from here on, after async I/O, is invalid.
1183 */
1184 if (!status && !(flags & PBF_ASYNC))
1185 status = pagebuf_iowait(pb);
1186
1187 return status;
1188 }
1189
1190 /*
1191 * Helper routine for pagebuf_iorequest
1192 */
1193
1194 STATIC __inline__ int
1195 _pagebuf_iolocked(
1196 xfs_buf_t *pb)
1197 {
1198 ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE));
1199 if (pb->pb_flags & PBF_READ)
1200 return pb->pb_locked;
1201 return 0;
1202 }
1203
1204 STATIC __inline__ void
1205 _pagebuf_iodone(
1206 xfs_buf_t *pb,
1207 int schedule)
1208 {
1209 if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
1210 pb->pb_locked = 0;
1211 pagebuf_iodone(pb, (pb->pb_flags & PBF_FS_DATAIOD), schedule);
1212 }
1213 }
1214
1215 STATIC int
1216 bio_end_io_pagebuf(
1217 struct bio *bio,
1218 unsigned int bytes_done,
1219 int error)
1220 {
1221 xfs_buf_t *pb = (xfs_buf_t *)bio->bi_private;
1222 unsigned int blocksize = pb->pb_target->pbr_bsize;
1223 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1224
1225 if (bio->bi_size)
1226 return 1;
1227
1228 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1229 pb->pb_error = EIO;
1230
1231 do {
1232 struct page *page = bvec->bv_page;
1233
1234 if (unlikely(pb->pb_error)) {
1235 if (pb->pb_flags & PBF_READ)
1236 ClearPageUptodate(page);
1237 SetPageError(page);
1238 } else if (blocksize == PAGE_CACHE_SIZE) {
1239 SetPageUptodate(page);
1240 } else if (!PagePrivate(page) &&
1241 (pb->pb_flags & _PBF_PAGE_CACHE)) {
1242 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1243 }
1244
1245 if (--bvec >= bio->bi_io_vec)
1246 prefetchw(&bvec->bv_page->flags);
1247
1248 if (_pagebuf_iolocked(pb)) {
1249 unlock_page(page);
1250 }
1251 } while (bvec >= bio->bi_io_vec);
1252
1253 _pagebuf_iodone(pb, 1);
1254 bio_put(bio);
1255 return 0;
1256 }
1257
1258 STATIC void
1259 _pagebuf_ioapply(
1260 xfs_buf_t *pb)
1261 {
1262 int i, rw, map_i, total_nr_pages, nr_pages;
1263 struct bio *bio;
1264 int offset = pb->pb_offset;
1265 int size = pb->pb_count_desired;
1266 sector_t sector = pb->pb_bn;
1267 unsigned int blocksize = pb->pb_target->pbr_bsize;
1268 int locking = _pagebuf_iolocked(pb);
1269
1270 total_nr_pages = pb->pb_page_count;
1271 map_i = 0;
1272
1273 if (pb->pb_flags & _PBF_RUN_QUEUES) {
1274 pb->pb_flags &= ~_PBF_RUN_QUEUES;
1275 rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC;
1276 } else {
1277 rw = (pb->pb_flags & PBF_READ) ? READ : WRITE;
1278 }
1279
1280 /* Special code path for reading a sub page size pagebuf in --
1281 * we populate up the whole page, and hence the other metadata
1282 * in the same page. This optimization is only valid when the
1283 * filesystem block size and the page size are equal.
1284 */
1285 if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) &&
1286 (pb->pb_flags & PBF_READ) && locking &&
1287 (blocksize == PAGE_CACHE_SIZE)) {
1288 bio = bio_alloc(GFP_NOIO, 1);
1289
1290 bio->bi_bdev = pb->pb_target->pbr_bdev;
1291 bio->bi_sector = sector - (offset >> BBSHIFT);
1292 bio->bi_end_io = bio_end_io_pagebuf;
1293 bio->bi_private = pb;
1294
1295 bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0);
1296 size = 0;
1297
1298 atomic_inc(&pb->pb_io_remaining);
1299
1300 goto submit_io;
1301 }
1302
1303 /* Lock down the pages which we need to for the request */
1304 if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) {
1305 for (i = 0; size; i++) {
1306 int nbytes = PAGE_CACHE_SIZE - offset;
1307 struct page *page = pb->pb_pages[i];
1308
1309 if (nbytes > size)
1310 nbytes = size;
1311
1312 lock_page(page);
1313
1314 size -= nbytes;
1315 offset = 0;
1316 }
1317 offset = pb->pb_offset;
1318 size = pb->pb_count_desired;
1319 }
1320
1321 next_chunk:
1322 atomic_inc(&pb->pb_io_remaining);
1323 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1324 if (nr_pages > total_nr_pages)
1325 nr_pages = total_nr_pages;
1326
1327 bio = bio_alloc(GFP_NOIO, nr_pages);
1328 bio->bi_bdev = pb->pb_target->pbr_bdev;
1329 bio->bi_sector = sector;
1330 bio->bi_end_io = bio_end_io_pagebuf;
1331 bio->bi_private = pb;
1332
1333 for (; size && nr_pages; nr_pages--, map_i++) {
1334 int nbytes = PAGE_CACHE_SIZE - offset;
1335
1336 if (nbytes > size)
1337 nbytes = size;
1338
1339 if (bio_add_page(bio, pb->pb_pages[map_i],
1340 nbytes, offset) < nbytes)
1341 break;
1342
1343 offset = 0;
1344 sector += nbytes >> BBSHIFT;
1345 size -= nbytes;
1346 total_nr_pages--;
1347 }
1348
1349 submit_io:
1350 if (likely(bio->bi_size)) {
1351 submit_bio(rw, bio);
1352 if (size)
1353 goto next_chunk;
1354 } else {
1355 bio_put(bio);
1356 pagebuf_ioerror(pb, EIO);
1357 }
1358 }
1359
1360 /*
1361 * pagebuf_iorequest -- the core I/O request routine.
1362 */
1363 int
1364 pagebuf_iorequest( /* start real I/O */
1365 xfs_buf_t *pb) /* buffer to convey to device */
1366 {
1367 PB_TRACE(pb, "iorequest", 0);
1368
1369 if (pb->pb_flags & PBF_DELWRI) {
1370 pagebuf_delwri_queue(pb, 1);
1371 return 0;
1372 }
1373
1374 if (pb->pb_flags & PBF_WRITE) {
1375 _pagebuf_wait_unpin(pb);
1376 }
1377
1378 pagebuf_hold(pb);
1379
1380 /* Set the count to 1 initially, this will stop an I/O
1381 * completion callout which happens before we have started
1382 * all the I/O from calling pagebuf_iodone too early.
1383 */
1384 atomic_set(&pb->pb_io_remaining, 1);
1385 _pagebuf_ioapply(pb);
1386 _pagebuf_iodone(pb, 0);
1387
1388 pagebuf_rele(pb);
1389 return 0;
1390 }
1391
1392 /*
1393 * pagebuf_iowait
1394 *
1395 * pagebuf_iowait waits for I/O to complete on the buffer supplied.
1396 * It returns immediately if no I/O is pending. In any case, it returns
1397 * the error code, if any, or 0 if there is no error.
1398 */
1399 int
1400 pagebuf_iowait(
1401 xfs_buf_t *pb)
1402 {
1403 PB_TRACE(pb, "iowait", 0);
1404 if (atomic_read(&pb->pb_io_remaining))
1405 blk_run_address_space(pb->pb_target->pbr_mapping);
1406 down(&pb->pb_iodonesema);
1407 PB_TRACE(pb, "iowaited", (long)pb->pb_error);
1408 return pb->pb_error;
1409 }
1410
1411 caddr_t
1412 pagebuf_offset(
1413 xfs_buf_t *pb,
1414 size_t offset)
1415 {
1416 struct page *page;
1417
1418 offset += pb->pb_offset;
1419
1420 page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT];
1421 return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1));
1422 }
1423
1424 /*
1425 * pagebuf_iomove
1426 *
1427 * Move data into or out of a buffer.
1428 */
1429 void
1430 pagebuf_iomove(
1431 xfs_buf_t *pb, /* buffer to process */
1432 size_t boff, /* starting buffer offset */
1433 size_t bsize, /* length to copy */
1434 caddr_t data, /* data address */
1435 page_buf_rw_t mode) /* read/write flag */
1436 {
1437 size_t bend, cpoff, csize;
1438 struct page *page;
1439
1440 bend = boff + bsize;
1441 while (boff < bend) {
1442 page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)];
1443 cpoff = page_buf_poff(boff + pb->pb_offset);
1444 csize = min_t(size_t,
1445 PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff);
1446
1447 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1448
1449 switch (mode) {
1450 case PBRW_ZERO:
1451 memset(page_address(page) + cpoff, 0, csize);
1452 break;
1453 case PBRW_READ:
1454 memcpy(data, page_address(page) + cpoff, csize);
1455 break;
1456 case PBRW_WRITE:
1457 memcpy(page_address(page) + cpoff, data, csize);
1458 }
1459
1460 boff += csize;
1461 data += csize;
1462 }
1463 }
1464
1465 /*
1466 * Handling of buftargs.
1467 */
1468
1469 /*
1470 * Wait for any bufs with callbacks that have been submitted but
1471 * have not yet returned... walk the hash list for the target.
1472 */
1473 void
1474 xfs_wait_buftarg(
1475 xfs_buftarg_t *btp)
1476 {
1477 xfs_buf_t *bp, *n;
1478 xfs_bufhash_t *hash;
1479 uint i;
1480
1481 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1482 hash = &btp->bt_hash[i];
1483 again:
1484 spin_lock(&hash->bh_lock);
1485 list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) {
1486 ASSERT(btp == bp->pb_target);
1487 if (!(bp->pb_flags & PBF_FS_MANAGED)) {
1488 spin_unlock(&hash->bh_lock);
1489 delay(100);
1490 goto again;
1491 }
1492 }
1493 spin_unlock(&hash->bh_lock);
1494 }
1495 }
1496
1497 /*
1498 * Allocate buffer hash table for a given target.
1499 * For devices containing metadata (i.e. not the log/realtime devices)
1500 * we need to allocate a much larger hash table.
1501 */
1502 STATIC void
1503 xfs_alloc_bufhash(
1504 xfs_buftarg_t *btp,
1505 int external)
1506 {
1507 unsigned int i;
1508
1509 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1510 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1511 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1512 sizeof(xfs_bufhash_t), KM_SLEEP);
1513 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1514 spin_lock_init(&btp->bt_hash[i].bh_lock);
1515 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1516 }
1517 }
1518
1519 STATIC void
1520 xfs_free_bufhash(
1521 xfs_buftarg_t *btp)
1522 {
1523 kmem_free(btp->bt_hash,
1524 (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1525 btp->bt_hash = NULL;
1526 }
1527
1528 void
1529 xfs_free_buftarg(
1530 xfs_buftarg_t *btp,
1531 int external)
1532 {
1533 xfs_flush_buftarg(btp, 1);
1534 if (external)
1535 xfs_blkdev_put(btp->pbr_bdev);
1536 xfs_free_bufhash(btp);
1537 iput(btp->pbr_mapping->host);
1538 kmem_free(btp, sizeof(*btp));
1539 }
1540
1541 STATIC int
1542 xfs_setsize_buftarg_flags(
1543 xfs_buftarg_t *btp,
1544 unsigned int blocksize,
1545 unsigned int sectorsize,
1546 int verbose)
1547 {
1548 btp->pbr_bsize = blocksize;
1549 btp->pbr_sshift = ffs(sectorsize) - 1;
1550 btp->pbr_smask = sectorsize - 1;
1551
1552 if (set_blocksize(btp->pbr_bdev, sectorsize)) {
1553 printk(KERN_WARNING
1554 "XFS: Cannot set_blocksize to %u on device %s\n",
1555 sectorsize, XFS_BUFTARG_NAME(btp));
1556 return EINVAL;
1557 }
1558
1559 if (verbose &&
1560 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1561 printk(KERN_WARNING
1562 "XFS: %u byte sectors in use on device %s. "
1563 "This is suboptimal; %u or greater is ideal.\n",
1564 sectorsize, XFS_BUFTARG_NAME(btp),
1565 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1566 }
1567
1568 return 0;
1569 }
1570
1571 /*
1572 * When allocating the initial buffer target we have not yet
1573 * read in the superblock, so don't know what sized sectors
1574 * are being used is at this early stage. Play safe.
1575 */
1576 STATIC int
1577 xfs_setsize_buftarg_early(
1578 xfs_buftarg_t *btp,
1579 struct block_device *bdev)
1580 {
1581 return xfs_setsize_buftarg_flags(btp,
1582 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1583 }
1584
1585 int
1586 xfs_setsize_buftarg(
1587 xfs_buftarg_t *btp,
1588 unsigned int blocksize,
1589 unsigned int sectorsize)
1590 {
1591 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1592 }
1593
1594 STATIC int
1595 xfs_mapping_buftarg(
1596 xfs_buftarg_t *btp,
1597 struct block_device *bdev)
1598 {
1599 struct backing_dev_info *bdi;
1600 struct inode *inode;
1601 struct address_space *mapping;
1602 static struct address_space_operations mapping_aops = {
1603 .sync_page = block_sync_page,
1604 };
1605
1606 inode = new_inode(bdev->bd_inode->i_sb);
1607 if (!inode) {
1608 printk(KERN_WARNING
1609 "XFS: Cannot allocate mapping inode for device %s\n",
1610 XFS_BUFTARG_NAME(btp));
1611 return ENOMEM;
1612 }
1613 inode->i_mode = S_IFBLK;
1614 inode->i_bdev = bdev;
1615 inode->i_rdev = bdev->bd_dev;
1616 bdi = blk_get_backing_dev_info(bdev);
1617 if (!bdi)
1618 bdi = &default_backing_dev_info;
1619 mapping = &inode->i_data;
1620 mapping->a_ops = &mapping_aops;
1621 mapping->backing_dev_info = bdi;
1622 mapping_set_gfp_mask(mapping, GFP_NOFS);
1623 btp->pbr_mapping = mapping;
1624 return 0;
1625 }
1626
1627 xfs_buftarg_t *
1628 xfs_alloc_buftarg(
1629 struct block_device *bdev,
1630 int external)
1631 {
1632 xfs_buftarg_t *btp;
1633
1634 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1635
1636 btp->pbr_dev = bdev->bd_dev;
1637 btp->pbr_bdev = bdev;
1638 if (xfs_setsize_buftarg_early(btp, bdev))
1639 goto error;
1640 if (xfs_mapping_buftarg(btp, bdev))
1641 goto error;
1642 xfs_alloc_bufhash(btp, external);
1643 return btp;
1644
1645 error:
1646 kmem_free(btp, sizeof(*btp));
1647 return NULL;
1648 }
1649
1650
1651 /*
1652 * Pagebuf delayed write buffer handling
1653 */
1654
1655 STATIC LIST_HEAD(pbd_delwrite_queue);
1656 STATIC DEFINE_SPINLOCK(pbd_delwrite_lock);
1657
1658 STATIC void
1659 pagebuf_delwri_queue(
1660 xfs_buf_t *pb,
1661 int unlock)
1662 {
1663 PB_TRACE(pb, "delwri_q", (long)unlock);
1664 ASSERT(pb->pb_flags & PBF_DELWRI);
1665
1666 spin_lock(&pbd_delwrite_lock);
1667 /* If already in the queue, dequeue and place at tail */
1668 if (!list_empty(&pb->pb_list)) {
1669 if (unlock) {
1670 atomic_dec(&pb->pb_hold);
1671 }
1672 list_del(&pb->pb_list);
1673 }
1674
1675 list_add_tail(&pb->pb_list, &pbd_delwrite_queue);
1676 pb->pb_queuetime = jiffies;
1677 spin_unlock(&pbd_delwrite_lock);
1678
1679 if (unlock)
1680 pagebuf_unlock(pb);
1681 }
1682
1683 void
1684 pagebuf_delwri_dequeue(
1685 xfs_buf_t *pb)
1686 {
1687 int dequeued = 0;
1688
1689 spin_lock(&pbd_delwrite_lock);
1690 if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) {
1691 list_del_init(&pb->pb_list);
1692 dequeued = 1;
1693 }
1694 pb->pb_flags &= ~PBF_DELWRI;
1695 spin_unlock(&pbd_delwrite_lock);
1696
1697 if (dequeued)
1698 pagebuf_rele(pb);
1699
1700 PB_TRACE(pb, "delwri_dq", (long)dequeued);
1701 }
1702
1703 STATIC void
1704 pagebuf_runall_queues(
1705 struct workqueue_struct *queue)
1706 {
1707 flush_workqueue(queue);
1708 }
1709
1710 /* Defines for pagebuf daemon */
1711 STATIC DECLARE_COMPLETION(xfsbufd_done);
1712 STATIC struct task_struct *xfsbufd_task;
1713 STATIC int xfsbufd_active;
1714 STATIC int xfsbufd_force_flush;
1715 STATIC int xfsbufd_force_sleep;
1716
1717 STATIC int
1718 xfsbufd_wakeup(
1719 int priority,
1720 unsigned int mask)
1721 {
1722 if (xfsbufd_force_sleep)
1723 return 0;
1724 xfsbufd_force_flush = 1;
1725 barrier();
1726 wake_up_process(xfsbufd_task);
1727 return 0;
1728 }
1729
1730 STATIC int
1731 xfsbufd(
1732 void *data)
1733 {
1734 struct list_head tmp;
1735 unsigned long age;
1736 xfs_buftarg_t *target;
1737 xfs_buf_t *pb, *n;
1738
1739 /* Set up the thread */
1740 daemonize("xfsbufd");
1741 current->flags |= PF_MEMALLOC;
1742
1743 xfsbufd_task = current;
1744 xfsbufd_active = 1;
1745 barrier();
1746
1747 INIT_LIST_HEAD(&tmp);
1748 do {
1749 if (unlikely(freezing(current))) {
1750 xfsbufd_force_sleep = 1;
1751 refrigerator();
1752 } else {
1753 xfsbufd_force_sleep = 0;
1754 }
1755
1756 set_current_state(TASK_INTERRUPTIBLE);
1757 schedule_timeout((xfs_buf_timer_centisecs * HZ) / 100);
1758
1759 age = (xfs_buf_age_centisecs * HZ) / 100;
1760 spin_lock(&pbd_delwrite_lock);
1761 list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
1762 PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb));
1763 ASSERT(pb->pb_flags & PBF_DELWRI);
1764
1765 if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) {
1766 if (!xfsbufd_force_flush &&
1767 time_before(jiffies,
1768 pb->pb_queuetime + age)) {
1769 pagebuf_unlock(pb);
1770 break;
1771 }
1772
1773 pb->pb_flags &= ~PBF_DELWRI;
1774 pb->pb_flags |= PBF_WRITE;
1775 list_move(&pb->pb_list, &tmp);
1776 }
1777 }
1778 spin_unlock(&pbd_delwrite_lock);
1779
1780 while (!list_empty(&tmp)) {
1781 pb = list_entry(tmp.next, xfs_buf_t, pb_list);
1782 target = pb->pb_target;
1783
1784 list_del_init(&pb->pb_list);
1785 pagebuf_iostrategy(pb);
1786
1787 blk_run_address_space(target->pbr_mapping);
1788 }
1789
1790 if (as_list_len > 0)
1791 purge_addresses();
1792
1793 xfsbufd_force_flush = 0;
1794 } while (xfsbufd_active);
1795
1796 complete_and_exit(&xfsbufd_done, 0);
1797 }
1798
1799 /*
1800 * Go through all incore buffers, and release buffers if they belong to
1801 * the given device. This is used in filesystem error handling to
1802 * preserve the consistency of its metadata.
1803 */
1804 int
1805 xfs_flush_buftarg(
1806 xfs_buftarg_t *target,
1807 int wait)
1808 {
1809 struct list_head tmp;
1810 xfs_buf_t *pb, *n;
1811 int pincount = 0;
1812
1813 pagebuf_runall_queues(xfsdatad_workqueue);
1814 pagebuf_runall_queues(xfslogd_workqueue);
1815
1816 INIT_LIST_HEAD(&tmp);
1817 spin_lock(&pbd_delwrite_lock);
1818 list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
1819
1820 if (pb->pb_target != target)
1821 continue;
1822
1823 ASSERT(pb->pb_flags & PBF_DELWRI);
1824 PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb));
1825 if (pagebuf_ispin(pb)) {
1826 pincount++;
1827 continue;
1828 }
1829
1830 pb->pb_flags &= ~PBF_DELWRI;
1831 pb->pb_flags |= PBF_WRITE;
1832 list_move(&pb->pb_list, &tmp);
1833 }
1834 spin_unlock(&pbd_delwrite_lock);
1835
1836 /*
1837 * Dropped the delayed write list lock, now walk the temporary list
1838 */
1839 list_for_each_entry_safe(pb, n, &tmp, pb_list) {
1840 if (wait)
1841 pb->pb_flags &= ~PBF_ASYNC;
1842 else
1843 list_del_init(&pb->pb_list);
1844
1845 pagebuf_lock(pb);
1846 pagebuf_iostrategy(pb);
1847 }
1848
1849 /*
1850 * Remaining list items must be flushed before returning
1851 */
1852 while (!list_empty(&tmp)) {
1853 pb = list_entry(tmp.next, xfs_buf_t, pb_list);
1854
1855 list_del_init(&pb->pb_list);
1856 xfs_iowait(pb);
1857 xfs_buf_relse(pb);
1858 }
1859
1860 if (wait)
1861 blk_run_address_space(target->pbr_mapping);
1862
1863 return pincount;
1864 }
1865
1866 STATIC int
1867 xfs_buf_daemons_start(void)
1868 {
1869 int error = -ENOMEM;
1870
1871 xfslogd_workqueue = create_workqueue("xfslogd");
1872 if (!xfslogd_workqueue)
1873 goto out;
1874
1875 xfsdatad_workqueue = create_workqueue("xfsdatad");
1876 if (!xfsdatad_workqueue)
1877 goto out_destroy_xfslogd_workqueue;
1878
1879 error = kernel_thread(xfsbufd, NULL, CLONE_FS|CLONE_FILES);
1880 if (error < 0)
1881 goto out_destroy_xfsdatad_workqueue;
1882 return 0;
1883
1884 out_destroy_xfsdatad_workqueue:
1885 destroy_workqueue(xfsdatad_workqueue);
1886 out_destroy_xfslogd_workqueue:
1887 destroy_workqueue(xfslogd_workqueue);
1888 out:
1889 return error;
1890 }
1891
1892 /*
1893 * Note: do not mark as __exit, it is called from pagebuf_terminate.
1894 */
1895 STATIC void
1896 xfs_buf_daemons_stop(void)
1897 {
1898 xfsbufd_active = 0;
1899 barrier();
1900 wait_for_completion(&xfsbufd_done);
1901
1902 destroy_workqueue(xfslogd_workqueue);
1903 destroy_workqueue(xfsdatad_workqueue);
1904 }
1905
1906 /*
1907 * Initialization and Termination
1908 */
1909
1910 int __init
1911 pagebuf_init(void)
1912 {
1913 int error = -ENOMEM;
1914
1915 pagebuf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf");
1916 if (!pagebuf_zone)
1917 goto out;
1918
1919 #ifdef PAGEBUF_TRACE
1920 pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP);
1921 #endif
1922
1923 error = xfs_buf_daemons_start();
1924 if (error)
1925 goto out_free_buf_zone;
1926
1927 pagebuf_shake = kmem_shake_register(xfsbufd_wakeup);
1928 if (!pagebuf_shake) {
1929 error = -ENOMEM;
1930 goto out_stop_daemons;
1931 }
1932
1933 return 0;
1934
1935 out_stop_daemons:
1936 xfs_buf_daemons_stop();
1937 out_free_buf_zone:
1938 #ifdef PAGEBUF_TRACE
1939 ktrace_free(pagebuf_trace_buf);
1940 #endif
1941 kmem_zone_destroy(pagebuf_zone);
1942 out:
1943 return error;
1944 }
1945
1946
1947 /*
1948 * pagebuf_terminate.
1949 *
1950 * Note: do not mark as __exit, this is also called from the __init code.
1951 */
1952 void
1953 pagebuf_terminate(void)
1954 {
1955 xfs_buf_daemons_stop();
1956
1957 #ifdef PAGEBUF_TRACE
1958 ktrace_free(pagebuf_trace_buf);
1959 #endif
1960
1961 kmem_zone_destroy(pagebuf_zone);
1962 kmem_shake_deregister(pagebuf_shake);
1963 }
This page took 0.067745 seconds and 6 git commands to generate.