Pull bugzilla-7200 into release branch
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 static kmem_zone_t *xfs_buf_zone;
38 static kmem_shaker_t xfs_buf_shake;
39 STATIC int xfsbufd(void *);
40 STATIC int xfsbufd_wakeup(int, gfp_t);
41 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
42
43 static struct workqueue_struct *xfslogd_workqueue;
44 struct workqueue_struct *xfsdatad_workqueue;
45
46 #ifdef XFS_BUF_TRACE
47 void
48 xfs_buf_trace(
49 xfs_buf_t *bp,
50 char *id,
51 void *data,
52 void *ra)
53 {
54 ktrace_enter(xfs_buf_trace_buf,
55 bp, id,
56 (void *)(unsigned long)bp->b_flags,
57 (void *)(unsigned long)bp->b_hold.counter,
58 (void *)(unsigned long)bp->b_sema.count.counter,
59 (void *)current,
60 data, ra,
61 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
62 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
63 (void *)(unsigned long)bp->b_buffer_length,
64 NULL, NULL, NULL, NULL, NULL);
65 }
66 ktrace_t *xfs_buf_trace_buf;
67 #define XFS_BUF_TRACE_SIZE 4096
68 #define XB_TRACE(bp, id, data) \
69 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
70 #else
71 #define XB_TRACE(bp, id, data) do { } while (0)
72 #endif
73
74 #ifdef XFS_BUF_LOCK_TRACKING
75 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
76 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
77 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
78 #else
79 # define XB_SET_OWNER(bp) do { } while (0)
80 # define XB_CLEAR_OWNER(bp) do { } while (0)
81 # define XB_GET_OWNER(bp) do { } while (0)
82 #endif
83
84 #define xb_to_gfp(flags) \
85 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
86 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
87
88 #define xb_to_km(flags) \
89 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
90
91 #define xfs_buf_allocate(flags) \
92 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
93 #define xfs_buf_deallocate(bp) \
94 kmem_zone_free(xfs_buf_zone, (bp));
95
96 /*
97 * Page Region interfaces.
98 *
99 * For pages in filesystems where the blocksize is smaller than the
100 * pagesize, we use the page->private field (long) to hold a bitmap
101 * of uptodate regions within the page.
102 *
103 * Each such region is "bytes per page / bits per long" bytes long.
104 *
105 * NBPPR == number-of-bytes-per-page-region
106 * BTOPR == bytes-to-page-region (rounded up)
107 * BTOPRT == bytes-to-page-region-truncated (rounded down)
108 */
109 #if (BITS_PER_LONG == 32)
110 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
111 #elif (BITS_PER_LONG == 64)
112 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
113 #else
114 #error BITS_PER_LONG must be 32 or 64
115 #endif
116 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
117 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
118 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
119
120 STATIC unsigned long
121 page_region_mask(
122 size_t offset,
123 size_t length)
124 {
125 unsigned long mask;
126 int first, final;
127
128 first = BTOPR(offset);
129 final = BTOPRT(offset + length - 1);
130 first = min(first, final);
131
132 mask = ~0UL;
133 mask <<= BITS_PER_LONG - (final - first);
134 mask >>= BITS_PER_LONG - (final);
135
136 ASSERT(offset + length <= PAGE_CACHE_SIZE);
137 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
138
139 return mask;
140 }
141
142 STATIC_INLINE void
143 set_page_region(
144 struct page *page,
145 size_t offset,
146 size_t length)
147 {
148 set_page_private(page,
149 page_private(page) | page_region_mask(offset, length));
150 if (page_private(page) == ~0UL)
151 SetPageUptodate(page);
152 }
153
154 STATIC_INLINE int
155 test_page_region(
156 struct page *page,
157 size_t offset,
158 size_t length)
159 {
160 unsigned long mask = page_region_mask(offset, length);
161
162 return (mask && (page_private(page) & mask) == mask);
163 }
164
165 /*
166 * Mapping of multi-page buffers into contiguous virtual space
167 */
168
169 typedef struct a_list {
170 void *vm_addr;
171 struct a_list *next;
172 } a_list_t;
173
174 static a_list_t *as_free_head;
175 static int as_list_len;
176 static DEFINE_SPINLOCK(as_lock);
177
178 /*
179 * Try to batch vunmaps because they are costly.
180 */
181 STATIC void
182 free_address(
183 void *addr)
184 {
185 a_list_t *aentry;
186
187 aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
188 if (likely(aentry)) {
189 spin_lock(&as_lock);
190 aentry->next = as_free_head;
191 aentry->vm_addr = addr;
192 as_free_head = aentry;
193 as_list_len++;
194 spin_unlock(&as_lock);
195 } else {
196 vunmap(addr);
197 }
198 }
199
200 STATIC void
201 purge_addresses(void)
202 {
203 a_list_t *aentry, *old;
204
205 if (as_free_head == NULL)
206 return;
207
208 spin_lock(&as_lock);
209 aentry = as_free_head;
210 as_free_head = NULL;
211 as_list_len = 0;
212 spin_unlock(&as_lock);
213
214 while ((old = aentry) != NULL) {
215 vunmap(aentry->vm_addr);
216 aentry = aentry->next;
217 kfree(old);
218 }
219 }
220
221 /*
222 * Internal xfs_buf_t object manipulation
223 */
224
225 STATIC void
226 _xfs_buf_initialize(
227 xfs_buf_t *bp,
228 xfs_buftarg_t *target,
229 xfs_off_t range_base,
230 size_t range_length,
231 xfs_buf_flags_t flags)
232 {
233 /*
234 * We don't want certain flags to appear in b_flags.
235 */
236 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
237
238 memset(bp, 0, sizeof(xfs_buf_t));
239 atomic_set(&bp->b_hold, 1);
240 init_MUTEX_LOCKED(&bp->b_iodonesema);
241 INIT_LIST_HEAD(&bp->b_list);
242 INIT_LIST_HEAD(&bp->b_hash_list);
243 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
244 XB_SET_OWNER(bp);
245 bp->b_target = target;
246 bp->b_file_offset = range_base;
247 /*
248 * Set buffer_length and count_desired to the same value initially.
249 * I/O routines should use count_desired, which will be the same in
250 * most cases but may be reset (e.g. XFS recovery).
251 */
252 bp->b_buffer_length = bp->b_count_desired = range_length;
253 bp->b_flags = flags;
254 bp->b_bn = XFS_BUF_DADDR_NULL;
255 atomic_set(&bp->b_pin_count, 0);
256 init_waitqueue_head(&bp->b_waiters);
257
258 XFS_STATS_INC(xb_create);
259 XB_TRACE(bp, "initialize", target);
260 }
261
262 /*
263 * Allocate a page array capable of holding a specified number
264 * of pages, and point the page buf at it.
265 */
266 STATIC int
267 _xfs_buf_get_pages(
268 xfs_buf_t *bp,
269 int page_count,
270 xfs_buf_flags_t flags)
271 {
272 /* Make sure that we have a page list */
273 if (bp->b_pages == NULL) {
274 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
275 bp->b_page_count = page_count;
276 if (page_count <= XB_PAGES) {
277 bp->b_pages = bp->b_page_array;
278 } else {
279 bp->b_pages = kmem_alloc(sizeof(struct page *) *
280 page_count, xb_to_km(flags));
281 if (bp->b_pages == NULL)
282 return -ENOMEM;
283 }
284 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
285 }
286 return 0;
287 }
288
289 /*
290 * Frees b_pages if it was allocated.
291 */
292 STATIC void
293 _xfs_buf_free_pages(
294 xfs_buf_t *bp)
295 {
296 if (bp->b_pages != bp->b_page_array) {
297 kmem_free(bp->b_pages,
298 bp->b_page_count * sizeof(struct page *));
299 }
300 }
301
302 /*
303 * Releases the specified buffer.
304 *
305 * The modification state of any associated pages is left unchanged.
306 * The buffer most not be on any hash - use xfs_buf_rele instead for
307 * hashed and refcounted buffers
308 */
309 void
310 xfs_buf_free(
311 xfs_buf_t *bp)
312 {
313 XB_TRACE(bp, "free", 0);
314
315 ASSERT(list_empty(&bp->b_hash_list));
316
317 if (bp->b_flags & _XBF_PAGE_CACHE) {
318 uint i;
319
320 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
321 free_address(bp->b_addr - bp->b_offset);
322
323 for (i = 0; i < bp->b_page_count; i++) {
324 struct page *page = bp->b_pages[i];
325
326 ASSERT(!PagePrivate(page));
327 page_cache_release(page);
328 }
329 _xfs_buf_free_pages(bp);
330 } else if (bp->b_flags & _XBF_KMEM_ALLOC) {
331 /*
332 * XXX(hch): bp->b_count_desired might be incorrect (see
333 * xfs_buf_associate_memory for details), but fortunately
334 * the Linux version of kmem_free ignores the len argument..
335 */
336 kmem_free(bp->b_addr, bp->b_count_desired);
337 _xfs_buf_free_pages(bp);
338 }
339
340 xfs_buf_deallocate(bp);
341 }
342
343 /*
344 * Finds all pages for buffer in question and builds it's page list.
345 */
346 STATIC int
347 _xfs_buf_lookup_pages(
348 xfs_buf_t *bp,
349 uint flags)
350 {
351 struct address_space *mapping = bp->b_target->bt_mapping;
352 size_t blocksize = bp->b_target->bt_bsize;
353 size_t size = bp->b_count_desired;
354 size_t nbytes, offset;
355 gfp_t gfp_mask = xb_to_gfp(flags);
356 unsigned short page_count, i;
357 pgoff_t first;
358 xfs_off_t end;
359 int error;
360
361 end = bp->b_file_offset + bp->b_buffer_length;
362 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
363
364 error = _xfs_buf_get_pages(bp, page_count, flags);
365 if (unlikely(error))
366 return error;
367 bp->b_flags |= _XBF_PAGE_CACHE;
368
369 offset = bp->b_offset;
370 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
371
372 for (i = 0; i < bp->b_page_count; i++) {
373 struct page *page;
374 uint retries = 0;
375
376 retry:
377 page = find_or_create_page(mapping, first + i, gfp_mask);
378 if (unlikely(page == NULL)) {
379 if (flags & XBF_READ_AHEAD) {
380 bp->b_page_count = i;
381 for (i = 0; i < bp->b_page_count; i++)
382 unlock_page(bp->b_pages[i]);
383 return -ENOMEM;
384 }
385
386 /*
387 * This could deadlock.
388 *
389 * But until all the XFS lowlevel code is revamped to
390 * handle buffer allocation failures we can't do much.
391 */
392 if (!(++retries % 100))
393 printk(KERN_ERR
394 "XFS: possible memory allocation "
395 "deadlock in %s (mode:0x%x)\n",
396 __FUNCTION__, gfp_mask);
397
398 XFS_STATS_INC(xb_page_retries);
399 xfsbufd_wakeup(0, gfp_mask);
400 congestion_wait(WRITE, HZ/50);
401 goto retry;
402 }
403
404 XFS_STATS_INC(xb_page_found);
405
406 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
407 size -= nbytes;
408
409 ASSERT(!PagePrivate(page));
410 if (!PageUptodate(page)) {
411 page_count--;
412 if (blocksize >= PAGE_CACHE_SIZE) {
413 if (flags & XBF_READ)
414 bp->b_locked = 1;
415 } else if (!PagePrivate(page)) {
416 if (test_page_region(page, offset, nbytes))
417 page_count++;
418 }
419 }
420
421 bp->b_pages[i] = page;
422 offset = 0;
423 }
424
425 if (!bp->b_locked) {
426 for (i = 0; i < bp->b_page_count; i++)
427 unlock_page(bp->b_pages[i]);
428 }
429
430 if (page_count == bp->b_page_count)
431 bp->b_flags |= XBF_DONE;
432
433 XB_TRACE(bp, "lookup_pages", (long)page_count);
434 return error;
435 }
436
437 /*
438 * Map buffer into kernel address-space if nessecary.
439 */
440 STATIC int
441 _xfs_buf_map_pages(
442 xfs_buf_t *bp,
443 uint flags)
444 {
445 /* A single page buffer is always mappable */
446 if (bp->b_page_count == 1) {
447 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
448 bp->b_flags |= XBF_MAPPED;
449 } else if (flags & XBF_MAPPED) {
450 if (as_list_len > 64)
451 purge_addresses();
452 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
453 VM_MAP, PAGE_KERNEL);
454 if (unlikely(bp->b_addr == NULL))
455 return -ENOMEM;
456 bp->b_addr += bp->b_offset;
457 bp->b_flags |= XBF_MAPPED;
458 }
459
460 return 0;
461 }
462
463 /*
464 * Finding and Reading Buffers
465 */
466
467 /*
468 * Look up, and creates if absent, a lockable buffer for
469 * a given range of an inode. The buffer is returned
470 * locked. If other overlapping buffers exist, they are
471 * released before the new buffer is created and locked,
472 * which may imply that this call will block until those buffers
473 * are unlocked. No I/O is implied by this call.
474 */
475 xfs_buf_t *
476 _xfs_buf_find(
477 xfs_buftarg_t *btp, /* block device target */
478 xfs_off_t ioff, /* starting offset of range */
479 size_t isize, /* length of range */
480 xfs_buf_flags_t flags,
481 xfs_buf_t *new_bp)
482 {
483 xfs_off_t range_base;
484 size_t range_length;
485 xfs_bufhash_t *hash;
486 xfs_buf_t *bp, *n;
487
488 range_base = (ioff << BBSHIFT);
489 range_length = (isize << BBSHIFT);
490
491 /* Check for IOs smaller than the sector size / not sector aligned */
492 ASSERT(!(range_length < (1 << btp->bt_sshift)));
493 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
494
495 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
496
497 spin_lock(&hash->bh_lock);
498
499 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
500 ASSERT(btp == bp->b_target);
501 if (bp->b_file_offset == range_base &&
502 bp->b_buffer_length == range_length) {
503 /*
504 * If we look at something, bring it to the
505 * front of the list for next time.
506 */
507 atomic_inc(&bp->b_hold);
508 list_move(&bp->b_hash_list, &hash->bh_list);
509 goto found;
510 }
511 }
512
513 /* No match found */
514 if (new_bp) {
515 _xfs_buf_initialize(new_bp, btp, range_base,
516 range_length, flags);
517 new_bp->b_hash = hash;
518 list_add(&new_bp->b_hash_list, &hash->bh_list);
519 } else {
520 XFS_STATS_INC(xb_miss_locked);
521 }
522
523 spin_unlock(&hash->bh_lock);
524 return new_bp;
525
526 found:
527 spin_unlock(&hash->bh_lock);
528
529 /* Attempt to get the semaphore without sleeping,
530 * if this does not work then we need to drop the
531 * spinlock and do a hard attempt on the semaphore.
532 */
533 if (down_trylock(&bp->b_sema)) {
534 if (!(flags & XBF_TRYLOCK)) {
535 /* wait for buffer ownership */
536 XB_TRACE(bp, "get_lock", 0);
537 xfs_buf_lock(bp);
538 XFS_STATS_INC(xb_get_locked_waited);
539 } else {
540 /* We asked for a trylock and failed, no need
541 * to look at file offset and length here, we
542 * know that this buffer at least overlaps our
543 * buffer and is locked, therefore our buffer
544 * either does not exist, or is this buffer.
545 */
546 xfs_buf_rele(bp);
547 XFS_STATS_INC(xb_busy_locked);
548 return NULL;
549 }
550 } else {
551 /* trylock worked */
552 XB_SET_OWNER(bp);
553 }
554
555 if (bp->b_flags & XBF_STALE) {
556 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
557 bp->b_flags &= XBF_MAPPED;
558 }
559 XB_TRACE(bp, "got_lock", 0);
560 XFS_STATS_INC(xb_get_locked);
561 return bp;
562 }
563
564 /*
565 * Assembles a buffer covering the specified range.
566 * Storage in memory for all portions of the buffer will be allocated,
567 * although backing storage may not be.
568 */
569 xfs_buf_t *
570 xfs_buf_get_flags(
571 xfs_buftarg_t *target,/* target for buffer */
572 xfs_off_t ioff, /* starting offset of range */
573 size_t isize, /* length of range */
574 xfs_buf_flags_t flags)
575 {
576 xfs_buf_t *bp, *new_bp;
577 int error = 0, i;
578
579 new_bp = xfs_buf_allocate(flags);
580 if (unlikely(!new_bp))
581 return NULL;
582
583 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
584 if (bp == new_bp) {
585 error = _xfs_buf_lookup_pages(bp, flags);
586 if (error)
587 goto no_buffer;
588 } else {
589 xfs_buf_deallocate(new_bp);
590 if (unlikely(bp == NULL))
591 return NULL;
592 }
593
594 for (i = 0; i < bp->b_page_count; i++)
595 mark_page_accessed(bp->b_pages[i]);
596
597 if (!(bp->b_flags & XBF_MAPPED)) {
598 error = _xfs_buf_map_pages(bp, flags);
599 if (unlikely(error)) {
600 printk(KERN_WARNING "%s: failed to map pages\n",
601 __FUNCTION__);
602 goto no_buffer;
603 }
604 }
605
606 XFS_STATS_INC(xb_get);
607
608 /*
609 * Always fill in the block number now, the mapped cases can do
610 * their own overlay of this later.
611 */
612 bp->b_bn = ioff;
613 bp->b_count_desired = bp->b_buffer_length;
614
615 XB_TRACE(bp, "get", (unsigned long)flags);
616 return bp;
617
618 no_buffer:
619 if (flags & (XBF_LOCK | XBF_TRYLOCK))
620 xfs_buf_unlock(bp);
621 xfs_buf_rele(bp);
622 return NULL;
623 }
624
625 xfs_buf_t *
626 xfs_buf_read_flags(
627 xfs_buftarg_t *target,
628 xfs_off_t ioff,
629 size_t isize,
630 xfs_buf_flags_t flags)
631 {
632 xfs_buf_t *bp;
633
634 flags |= XBF_READ;
635
636 bp = xfs_buf_get_flags(target, ioff, isize, flags);
637 if (bp) {
638 if (!XFS_BUF_ISDONE(bp)) {
639 XB_TRACE(bp, "read", (unsigned long)flags);
640 XFS_STATS_INC(xb_get_read);
641 xfs_buf_iostart(bp, flags);
642 } else if (flags & XBF_ASYNC) {
643 XB_TRACE(bp, "read_async", (unsigned long)flags);
644 /*
645 * Read ahead call which is already satisfied,
646 * drop the buffer
647 */
648 goto no_buffer;
649 } else {
650 XB_TRACE(bp, "read_done", (unsigned long)flags);
651 /* We do not want read in the flags */
652 bp->b_flags &= ~XBF_READ;
653 }
654 }
655
656 return bp;
657
658 no_buffer:
659 if (flags & (XBF_LOCK | XBF_TRYLOCK))
660 xfs_buf_unlock(bp);
661 xfs_buf_rele(bp);
662 return NULL;
663 }
664
665 /*
666 * If we are not low on memory then do the readahead in a deadlock
667 * safe manner.
668 */
669 void
670 xfs_buf_readahead(
671 xfs_buftarg_t *target,
672 xfs_off_t ioff,
673 size_t isize,
674 xfs_buf_flags_t flags)
675 {
676 struct backing_dev_info *bdi;
677
678 bdi = target->bt_mapping->backing_dev_info;
679 if (bdi_read_congested(bdi))
680 return;
681
682 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
683 xfs_buf_read_flags(target, ioff, isize, flags);
684 }
685
686 xfs_buf_t *
687 xfs_buf_get_empty(
688 size_t len,
689 xfs_buftarg_t *target)
690 {
691 xfs_buf_t *bp;
692
693 bp = xfs_buf_allocate(0);
694 if (bp)
695 _xfs_buf_initialize(bp, target, 0, len, 0);
696 return bp;
697 }
698
699 static inline struct page *
700 mem_to_page(
701 void *addr)
702 {
703 if (((unsigned long)addr < VMALLOC_START) ||
704 ((unsigned long)addr >= VMALLOC_END)) {
705 return virt_to_page(addr);
706 } else {
707 return vmalloc_to_page(addr);
708 }
709 }
710
711 int
712 xfs_buf_associate_memory(
713 xfs_buf_t *bp,
714 void *mem,
715 size_t len)
716 {
717 int rval;
718 int i = 0;
719 size_t ptr;
720 size_t end, end_cur;
721 off_t offset;
722 int page_count;
723
724 page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
725 offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
726 if (offset && (len > PAGE_CACHE_SIZE))
727 page_count++;
728
729 /* Free any previous set of page pointers */
730 if (bp->b_pages)
731 _xfs_buf_free_pages(bp);
732
733 bp->b_pages = NULL;
734 bp->b_addr = mem;
735
736 rval = _xfs_buf_get_pages(bp, page_count, 0);
737 if (rval)
738 return rval;
739
740 bp->b_offset = offset;
741 ptr = (size_t) mem & PAGE_CACHE_MASK;
742 end = PAGE_CACHE_ALIGN((size_t) mem + len);
743 end_cur = end;
744 /* set up first page */
745 bp->b_pages[0] = mem_to_page(mem);
746
747 ptr += PAGE_CACHE_SIZE;
748 bp->b_page_count = ++i;
749 while (ptr < end) {
750 bp->b_pages[i] = mem_to_page((void *)ptr);
751 bp->b_page_count = ++i;
752 ptr += PAGE_CACHE_SIZE;
753 }
754 bp->b_locked = 0;
755
756 bp->b_count_desired = bp->b_buffer_length = len;
757 bp->b_flags |= XBF_MAPPED;
758
759 return 0;
760 }
761
762 xfs_buf_t *
763 xfs_buf_get_noaddr(
764 size_t len,
765 xfs_buftarg_t *target)
766 {
767 size_t malloc_len = len;
768 xfs_buf_t *bp;
769 void *data;
770 int error;
771
772 bp = xfs_buf_allocate(0);
773 if (unlikely(bp == NULL))
774 goto fail;
775 _xfs_buf_initialize(bp, target, 0, len, 0);
776
777 try_again:
778 data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL | KM_LARGE);
779 if (unlikely(data == NULL))
780 goto fail_free_buf;
781
782 /* check whether alignment matches.. */
783 if ((__psunsigned_t)data !=
784 ((__psunsigned_t)data & ~target->bt_smask)) {
785 /* .. else double the size and try again */
786 kmem_free(data, malloc_len);
787 malloc_len <<= 1;
788 goto try_again;
789 }
790
791 error = xfs_buf_associate_memory(bp, data, len);
792 if (error)
793 goto fail_free_mem;
794 bp->b_flags |= _XBF_KMEM_ALLOC;
795
796 xfs_buf_unlock(bp);
797
798 XB_TRACE(bp, "no_daddr", data);
799 return bp;
800 fail_free_mem:
801 kmem_free(data, malloc_len);
802 fail_free_buf:
803 xfs_buf_free(bp);
804 fail:
805 return NULL;
806 }
807
808 /*
809 * Increment reference count on buffer, to hold the buffer concurrently
810 * with another thread which may release (free) the buffer asynchronously.
811 * Must hold the buffer already to call this function.
812 */
813 void
814 xfs_buf_hold(
815 xfs_buf_t *bp)
816 {
817 atomic_inc(&bp->b_hold);
818 XB_TRACE(bp, "hold", 0);
819 }
820
821 /*
822 * Releases a hold on the specified buffer. If the
823 * the hold count is 1, calls xfs_buf_free.
824 */
825 void
826 xfs_buf_rele(
827 xfs_buf_t *bp)
828 {
829 xfs_bufhash_t *hash = bp->b_hash;
830
831 XB_TRACE(bp, "rele", bp->b_relse);
832
833 if (unlikely(!hash)) {
834 ASSERT(!bp->b_relse);
835 if (atomic_dec_and_test(&bp->b_hold))
836 xfs_buf_free(bp);
837 return;
838 }
839
840 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
841 if (bp->b_relse) {
842 atomic_inc(&bp->b_hold);
843 spin_unlock(&hash->bh_lock);
844 (*(bp->b_relse)) (bp);
845 } else if (bp->b_flags & XBF_FS_MANAGED) {
846 spin_unlock(&hash->bh_lock);
847 } else {
848 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
849 list_del_init(&bp->b_hash_list);
850 spin_unlock(&hash->bh_lock);
851 xfs_buf_free(bp);
852 }
853 } else {
854 /*
855 * Catch reference count leaks
856 */
857 ASSERT(atomic_read(&bp->b_hold) >= 0);
858 }
859 }
860
861
862 /*
863 * Mutual exclusion on buffers. Locking model:
864 *
865 * Buffers associated with inodes for which buffer locking
866 * is not enabled are not protected by semaphores, and are
867 * assumed to be exclusively owned by the caller. There is a
868 * spinlock in the buffer, used by the caller when concurrent
869 * access is possible.
870 */
871
872 /*
873 * Locks a buffer object, if it is not already locked.
874 * Note that this in no way locks the underlying pages, so it is only
875 * useful for synchronizing concurrent use of buffer objects, not for
876 * synchronizing independent access to the underlying pages.
877 */
878 int
879 xfs_buf_cond_lock(
880 xfs_buf_t *bp)
881 {
882 int locked;
883
884 locked = down_trylock(&bp->b_sema) == 0;
885 if (locked) {
886 XB_SET_OWNER(bp);
887 }
888 XB_TRACE(bp, "cond_lock", (long)locked);
889 return locked ? 0 : -EBUSY;
890 }
891
892 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
893 int
894 xfs_buf_lock_value(
895 xfs_buf_t *bp)
896 {
897 return atomic_read(&bp->b_sema.count);
898 }
899 #endif
900
901 /*
902 * Locks a buffer object.
903 * Note that this in no way locks the underlying pages, so it is only
904 * useful for synchronizing concurrent use of buffer objects, not for
905 * synchronizing independent access to the underlying pages.
906 */
907 void
908 xfs_buf_lock(
909 xfs_buf_t *bp)
910 {
911 XB_TRACE(bp, "lock", 0);
912 if (atomic_read(&bp->b_io_remaining))
913 blk_run_address_space(bp->b_target->bt_mapping);
914 down(&bp->b_sema);
915 XB_SET_OWNER(bp);
916 XB_TRACE(bp, "locked", 0);
917 }
918
919 /*
920 * Releases the lock on the buffer object.
921 * If the buffer is marked delwri but is not queued, do so before we
922 * unlock the buffer as we need to set flags correctly. We also need to
923 * take a reference for the delwri queue because the unlocker is going to
924 * drop their's and they don't know we just queued it.
925 */
926 void
927 xfs_buf_unlock(
928 xfs_buf_t *bp)
929 {
930 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
931 atomic_inc(&bp->b_hold);
932 bp->b_flags |= XBF_ASYNC;
933 xfs_buf_delwri_queue(bp, 0);
934 }
935
936 XB_CLEAR_OWNER(bp);
937 up(&bp->b_sema);
938 XB_TRACE(bp, "unlock", 0);
939 }
940
941
942 /*
943 * Pinning Buffer Storage in Memory
944 * Ensure that no attempt to force a buffer to disk will succeed.
945 */
946 void
947 xfs_buf_pin(
948 xfs_buf_t *bp)
949 {
950 atomic_inc(&bp->b_pin_count);
951 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
952 }
953
954 void
955 xfs_buf_unpin(
956 xfs_buf_t *bp)
957 {
958 if (atomic_dec_and_test(&bp->b_pin_count))
959 wake_up_all(&bp->b_waiters);
960 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
961 }
962
963 int
964 xfs_buf_ispin(
965 xfs_buf_t *bp)
966 {
967 return atomic_read(&bp->b_pin_count);
968 }
969
970 STATIC void
971 xfs_buf_wait_unpin(
972 xfs_buf_t *bp)
973 {
974 DECLARE_WAITQUEUE (wait, current);
975
976 if (atomic_read(&bp->b_pin_count) == 0)
977 return;
978
979 add_wait_queue(&bp->b_waiters, &wait);
980 for (;;) {
981 set_current_state(TASK_UNINTERRUPTIBLE);
982 if (atomic_read(&bp->b_pin_count) == 0)
983 break;
984 if (atomic_read(&bp->b_io_remaining))
985 blk_run_address_space(bp->b_target->bt_mapping);
986 schedule();
987 }
988 remove_wait_queue(&bp->b_waiters, &wait);
989 set_current_state(TASK_RUNNING);
990 }
991
992 /*
993 * Buffer Utility Routines
994 */
995
996 STATIC void
997 xfs_buf_iodone_work(
998 struct work_struct *work)
999 {
1000 xfs_buf_t *bp =
1001 container_of(work, xfs_buf_t, b_iodone_work);
1002
1003 if (bp->b_iodone)
1004 (*(bp->b_iodone))(bp);
1005 else if (bp->b_flags & XBF_ASYNC)
1006 xfs_buf_relse(bp);
1007 }
1008
1009 void
1010 xfs_buf_ioend(
1011 xfs_buf_t *bp,
1012 int schedule)
1013 {
1014 bp->b_flags &= ~(XBF_READ | XBF_WRITE);
1015 if (bp->b_error == 0)
1016 bp->b_flags |= XBF_DONE;
1017
1018 XB_TRACE(bp, "iodone", bp->b_iodone);
1019
1020 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1021 if (schedule) {
1022 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1023 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1024 } else {
1025 xfs_buf_iodone_work(&bp->b_iodone_work);
1026 }
1027 } else {
1028 up(&bp->b_iodonesema);
1029 }
1030 }
1031
1032 void
1033 xfs_buf_ioerror(
1034 xfs_buf_t *bp,
1035 int error)
1036 {
1037 ASSERT(error >= 0 && error <= 0xffff);
1038 bp->b_error = (unsigned short)error;
1039 XB_TRACE(bp, "ioerror", (unsigned long)error);
1040 }
1041
1042 /*
1043 * Initiate I/O on a buffer, based on the flags supplied.
1044 * The b_iodone routine in the buffer supplied will only be called
1045 * when all of the subsidiary I/O requests, if any, have been completed.
1046 */
1047 int
1048 xfs_buf_iostart(
1049 xfs_buf_t *bp,
1050 xfs_buf_flags_t flags)
1051 {
1052 int status = 0;
1053
1054 XB_TRACE(bp, "iostart", (unsigned long)flags);
1055
1056 if (flags & XBF_DELWRI) {
1057 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1058 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1059 xfs_buf_delwri_queue(bp, 1);
1060 return status;
1061 }
1062
1063 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1064 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1065 bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1066 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1067
1068 BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1069
1070 /* For writes allow an alternate strategy routine to precede
1071 * the actual I/O request (which may not be issued at all in
1072 * a shutdown situation, for example).
1073 */
1074 status = (flags & XBF_WRITE) ?
1075 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1076
1077 /* Wait for I/O if we are not an async request.
1078 * Note: async I/O request completion will release the buffer,
1079 * and that can already be done by this point. So using the
1080 * buffer pointer from here on, after async I/O, is invalid.
1081 */
1082 if (!status && !(flags & XBF_ASYNC))
1083 status = xfs_buf_iowait(bp);
1084
1085 return status;
1086 }
1087
1088 STATIC_INLINE int
1089 _xfs_buf_iolocked(
1090 xfs_buf_t *bp)
1091 {
1092 ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE));
1093 if (bp->b_flags & XBF_READ)
1094 return bp->b_locked;
1095 return 0;
1096 }
1097
1098 STATIC_INLINE void
1099 _xfs_buf_ioend(
1100 xfs_buf_t *bp,
1101 int schedule)
1102 {
1103 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1104 bp->b_locked = 0;
1105 xfs_buf_ioend(bp, schedule);
1106 }
1107 }
1108
1109 STATIC int
1110 xfs_buf_bio_end_io(
1111 struct bio *bio,
1112 unsigned int bytes_done,
1113 int error)
1114 {
1115 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1116 unsigned int blocksize = bp->b_target->bt_bsize;
1117 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1118
1119 if (bio->bi_size)
1120 return 1;
1121
1122 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1123 bp->b_error = EIO;
1124
1125 do {
1126 struct page *page = bvec->bv_page;
1127
1128 ASSERT(!PagePrivate(page));
1129 if (unlikely(bp->b_error)) {
1130 if (bp->b_flags & XBF_READ)
1131 ClearPageUptodate(page);
1132 } else if (blocksize >= PAGE_CACHE_SIZE) {
1133 SetPageUptodate(page);
1134 } else if (!PagePrivate(page) &&
1135 (bp->b_flags & _XBF_PAGE_CACHE)) {
1136 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1137 }
1138
1139 if (--bvec >= bio->bi_io_vec)
1140 prefetchw(&bvec->bv_page->flags);
1141
1142 if (_xfs_buf_iolocked(bp)) {
1143 unlock_page(page);
1144 }
1145 } while (bvec >= bio->bi_io_vec);
1146
1147 _xfs_buf_ioend(bp, 1);
1148 bio_put(bio);
1149 return 0;
1150 }
1151
1152 STATIC void
1153 _xfs_buf_ioapply(
1154 xfs_buf_t *bp)
1155 {
1156 int i, rw, map_i, total_nr_pages, nr_pages;
1157 struct bio *bio;
1158 int offset = bp->b_offset;
1159 int size = bp->b_count_desired;
1160 sector_t sector = bp->b_bn;
1161 unsigned int blocksize = bp->b_target->bt_bsize;
1162 int locking = _xfs_buf_iolocked(bp);
1163
1164 total_nr_pages = bp->b_page_count;
1165 map_i = 0;
1166
1167 if (bp->b_flags & XBF_ORDERED) {
1168 ASSERT(!(bp->b_flags & XBF_READ));
1169 rw = WRITE_BARRIER;
1170 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1171 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1172 bp->b_flags &= ~_XBF_RUN_QUEUES;
1173 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1174 } else {
1175 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1176 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1177 }
1178
1179 /* Special code path for reading a sub page size buffer in --
1180 * we populate up the whole page, and hence the other metadata
1181 * in the same page. This optimization is only valid when the
1182 * filesystem block size is not smaller than the page size.
1183 */
1184 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1185 (bp->b_flags & XBF_READ) && locking &&
1186 (blocksize >= PAGE_CACHE_SIZE)) {
1187 bio = bio_alloc(GFP_NOIO, 1);
1188
1189 bio->bi_bdev = bp->b_target->bt_bdev;
1190 bio->bi_sector = sector - (offset >> BBSHIFT);
1191 bio->bi_end_io = xfs_buf_bio_end_io;
1192 bio->bi_private = bp;
1193
1194 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1195 size = 0;
1196
1197 atomic_inc(&bp->b_io_remaining);
1198
1199 goto submit_io;
1200 }
1201
1202 /* Lock down the pages which we need to for the request */
1203 if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) {
1204 for (i = 0; size; i++) {
1205 int nbytes = PAGE_CACHE_SIZE - offset;
1206 struct page *page = bp->b_pages[i];
1207
1208 if (nbytes > size)
1209 nbytes = size;
1210
1211 lock_page(page);
1212
1213 size -= nbytes;
1214 offset = 0;
1215 }
1216 offset = bp->b_offset;
1217 size = bp->b_count_desired;
1218 }
1219
1220 next_chunk:
1221 atomic_inc(&bp->b_io_remaining);
1222 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1223 if (nr_pages > total_nr_pages)
1224 nr_pages = total_nr_pages;
1225
1226 bio = bio_alloc(GFP_NOIO, nr_pages);
1227 bio->bi_bdev = bp->b_target->bt_bdev;
1228 bio->bi_sector = sector;
1229 bio->bi_end_io = xfs_buf_bio_end_io;
1230 bio->bi_private = bp;
1231
1232 for (; size && nr_pages; nr_pages--, map_i++) {
1233 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1234
1235 if (nbytes > size)
1236 nbytes = size;
1237
1238 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1239 if (rbytes < nbytes)
1240 break;
1241
1242 offset = 0;
1243 sector += nbytes >> BBSHIFT;
1244 size -= nbytes;
1245 total_nr_pages--;
1246 }
1247
1248 submit_io:
1249 if (likely(bio->bi_size)) {
1250 submit_bio(rw, bio);
1251 if (size)
1252 goto next_chunk;
1253 } else {
1254 bio_put(bio);
1255 xfs_buf_ioerror(bp, EIO);
1256 }
1257 }
1258
1259 int
1260 xfs_buf_iorequest(
1261 xfs_buf_t *bp)
1262 {
1263 XB_TRACE(bp, "iorequest", 0);
1264
1265 if (bp->b_flags & XBF_DELWRI) {
1266 xfs_buf_delwri_queue(bp, 1);
1267 return 0;
1268 }
1269
1270 if (bp->b_flags & XBF_WRITE) {
1271 xfs_buf_wait_unpin(bp);
1272 }
1273
1274 xfs_buf_hold(bp);
1275
1276 /* Set the count to 1 initially, this will stop an I/O
1277 * completion callout which happens before we have started
1278 * all the I/O from calling xfs_buf_ioend too early.
1279 */
1280 atomic_set(&bp->b_io_remaining, 1);
1281 _xfs_buf_ioapply(bp);
1282 _xfs_buf_ioend(bp, 0);
1283
1284 xfs_buf_rele(bp);
1285 return 0;
1286 }
1287
1288 /*
1289 * Waits for I/O to complete on the buffer supplied.
1290 * It returns immediately if no I/O is pending.
1291 * It returns the I/O error code, if any, or 0 if there was no error.
1292 */
1293 int
1294 xfs_buf_iowait(
1295 xfs_buf_t *bp)
1296 {
1297 XB_TRACE(bp, "iowait", 0);
1298 if (atomic_read(&bp->b_io_remaining))
1299 blk_run_address_space(bp->b_target->bt_mapping);
1300 down(&bp->b_iodonesema);
1301 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1302 return bp->b_error;
1303 }
1304
1305 xfs_caddr_t
1306 xfs_buf_offset(
1307 xfs_buf_t *bp,
1308 size_t offset)
1309 {
1310 struct page *page;
1311
1312 if (bp->b_flags & XBF_MAPPED)
1313 return XFS_BUF_PTR(bp) + offset;
1314
1315 offset += bp->b_offset;
1316 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1317 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1318 }
1319
1320 /*
1321 * Move data into or out of a buffer.
1322 */
1323 void
1324 xfs_buf_iomove(
1325 xfs_buf_t *bp, /* buffer to process */
1326 size_t boff, /* starting buffer offset */
1327 size_t bsize, /* length to copy */
1328 caddr_t data, /* data address */
1329 xfs_buf_rw_t mode) /* read/write/zero flag */
1330 {
1331 size_t bend, cpoff, csize;
1332 struct page *page;
1333
1334 bend = boff + bsize;
1335 while (boff < bend) {
1336 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1337 cpoff = xfs_buf_poff(boff + bp->b_offset);
1338 csize = min_t(size_t,
1339 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1340
1341 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1342
1343 switch (mode) {
1344 case XBRW_ZERO:
1345 memset(page_address(page) + cpoff, 0, csize);
1346 break;
1347 case XBRW_READ:
1348 memcpy(data, page_address(page) + cpoff, csize);
1349 break;
1350 case XBRW_WRITE:
1351 memcpy(page_address(page) + cpoff, data, csize);
1352 }
1353
1354 boff += csize;
1355 data += csize;
1356 }
1357 }
1358
1359 /*
1360 * Handling of buffer targets (buftargs).
1361 */
1362
1363 /*
1364 * Wait for any bufs with callbacks that have been submitted but
1365 * have not yet returned... walk the hash list for the target.
1366 */
1367 void
1368 xfs_wait_buftarg(
1369 xfs_buftarg_t *btp)
1370 {
1371 xfs_buf_t *bp, *n;
1372 xfs_bufhash_t *hash;
1373 uint i;
1374
1375 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1376 hash = &btp->bt_hash[i];
1377 again:
1378 spin_lock(&hash->bh_lock);
1379 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1380 ASSERT(btp == bp->b_target);
1381 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1382 spin_unlock(&hash->bh_lock);
1383 /*
1384 * Catch superblock reference count leaks
1385 * immediately
1386 */
1387 BUG_ON(bp->b_bn == 0);
1388 delay(100);
1389 goto again;
1390 }
1391 }
1392 spin_unlock(&hash->bh_lock);
1393 }
1394 }
1395
1396 /*
1397 * Allocate buffer hash table for a given target.
1398 * For devices containing metadata (i.e. not the log/realtime devices)
1399 * we need to allocate a much larger hash table.
1400 */
1401 STATIC void
1402 xfs_alloc_bufhash(
1403 xfs_buftarg_t *btp,
1404 int external)
1405 {
1406 unsigned int i;
1407
1408 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1409 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1410 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1411 sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1412 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1413 spin_lock_init(&btp->bt_hash[i].bh_lock);
1414 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1415 }
1416 }
1417
1418 STATIC void
1419 xfs_free_bufhash(
1420 xfs_buftarg_t *btp)
1421 {
1422 kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1423 btp->bt_hash = NULL;
1424 }
1425
1426 /*
1427 * buftarg list for delwrite queue processing
1428 */
1429 LIST_HEAD(xfs_buftarg_list);
1430 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1431
1432 STATIC void
1433 xfs_register_buftarg(
1434 xfs_buftarg_t *btp)
1435 {
1436 spin_lock(&xfs_buftarg_lock);
1437 list_add(&btp->bt_list, &xfs_buftarg_list);
1438 spin_unlock(&xfs_buftarg_lock);
1439 }
1440
1441 STATIC void
1442 xfs_unregister_buftarg(
1443 xfs_buftarg_t *btp)
1444 {
1445 spin_lock(&xfs_buftarg_lock);
1446 list_del(&btp->bt_list);
1447 spin_unlock(&xfs_buftarg_lock);
1448 }
1449
1450 void
1451 xfs_free_buftarg(
1452 xfs_buftarg_t *btp,
1453 int external)
1454 {
1455 xfs_flush_buftarg(btp, 1);
1456 if (external)
1457 xfs_blkdev_put(btp->bt_bdev);
1458 xfs_free_bufhash(btp);
1459 iput(btp->bt_mapping->host);
1460
1461 /* Unregister the buftarg first so that we don't get a
1462 * wakeup finding a non-existent task
1463 */
1464 xfs_unregister_buftarg(btp);
1465 kthread_stop(btp->bt_task);
1466
1467 kmem_free(btp, sizeof(*btp));
1468 }
1469
1470 STATIC int
1471 xfs_setsize_buftarg_flags(
1472 xfs_buftarg_t *btp,
1473 unsigned int blocksize,
1474 unsigned int sectorsize,
1475 int verbose)
1476 {
1477 btp->bt_bsize = blocksize;
1478 btp->bt_sshift = ffs(sectorsize) - 1;
1479 btp->bt_smask = sectorsize - 1;
1480
1481 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1482 printk(KERN_WARNING
1483 "XFS: Cannot set_blocksize to %u on device %s\n",
1484 sectorsize, XFS_BUFTARG_NAME(btp));
1485 return EINVAL;
1486 }
1487
1488 if (verbose &&
1489 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1490 printk(KERN_WARNING
1491 "XFS: %u byte sectors in use on device %s. "
1492 "This is suboptimal; %u or greater is ideal.\n",
1493 sectorsize, XFS_BUFTARG_NAME(btp),
1494 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1495 }
1496
1497 return 0;
1498 }
1499
1500 /*
1501 * When allocating the initial buffer target we have not yet
1502 * read in the superblock, so don't know what sized sectors
1503 * are being used is at this early stage. Play safe.
1504 */
1505 STATIC int
1506 xfs_setsize_buftarg_early(
1507 xfs_buftarg_t *btp,
1508 struct block_device *bdev)
1509 {
1510 return xfs_setsize_buftarg_flags(btp,
1511 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1512 }
1513
1514 int
1515 xfs_setsize_buftarg(
1516 xfs_buftarg_t *btp,
1517 unsigned int blocksize,
1518 unsigned int sectorsize)
1519 {
1520 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1521 }
1522
1523 STATIC int
1524 xfs_mapping_buftarg(
1525 xfs_buftarg_t *btp,
1526 struct block_device *bdev)
1527 {
1528 struct backing_dev_info *bdi;
1529 struct inode *inode;
1530 struct address_space *mapping;
1531 static const struct address_space_operations mapping_aops = {
1532 .sync_page = block_sync_page,
1533 .migratepage = fail_migrate_page,
1534 };
1535
1536 inode = new_inode(bdev->bd_inode->i_sb);
1537 if (!inode) {
1538 printk(KERN_WARNING
1539 "XFS: Cannot allocate mapping inode for device %s\n",
1540 XFS_BUFTARG_NAME(btp));
1541 return ENOMEM;
1542 }
1543 inode->i_mode = S_IFBLK;
1544 inode->i_bdev = bdev;
1545 inode->i_rdev = bdev->bd_dev;
1546 bdi = blk_get_backing_dev_info(bdev);
1547 if (!bdi)
1548 bdi = &default_backing_dev_info;
1549 mapping = &inode->i_data;
1550 mapping->a_ops = &mapping_aops;
1551 mapping->backing_dev_info = bdi;
1552 mapping_set_gfp_mask(mapping, GFP_NOFS);
1553 btp->bt_mapping = mapping;
1554 return 0;
1555 }
1556
1557 STATIC int
1558 xfs_alloc_delwrite_queue(
1559 xfs_buftarg_t *btp)
1560 {
1561 int error = 0;
1562
1563 INIT_LIST_HEAD(&btp->bt_list);
1564 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1565 spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
1566 btp->bt_flags = 0;
1567 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1568 if (IS_ERR(btp->bt_task)) {
1569 error = PTR_ERR(btp->bt_task);
1570 goto out_error;
1571 }
1572 xfs_register_buftarg(btp);
1573 out_error:
1574 return error;
1575 }
1576
1577 xfs_buftarg_t *
1578 xfs_alloc_buftarg(
1579 struct block_device *bdev,
1580 int external)
1581 {
1582 xfs_buftarg_t *btp;
1583
1584 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1585
1586 btp->bt_dev = bdev->bd_dev;
1587 btp->bt_bdev = bdev;
1588 if (xfs_setsize_buftarg_early(btp, bdev))
1589 goto error;
1590 if (xfs_mapping_buftarg(btp, bdev))
1591 goto error;
1592 if (xfs_alloc_delwrite_queue(btp))
1593 goto error;
1594 xfs_alloc_bufhash(btp, external);
1595 return btp;
1596
1597 error:
1598 kmem_free(btp, sizeof(*btp));
1599 return NULL;
1600 }
1601
1602
1603 /*
1604 * Delayed write buffer handling
1605 */
1606 STATIC void
1607 xfs_buf_delwri_queue(
1608 xfs_buf_t *bp,
1609 int unlock)
1610 {
1611 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1612 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1613
1614 XB_TRACE(bp, "delwri_q", (long)unlock);
1615 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1616
1617 spin_lock(dwlk);
1618 /* If already in the queue, dequeue and place at tail */
1619 if (!list_empty(&bp->b_list)) {
1620 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1621 if (unlock)
1622 atomic_dec(&bp->b_hold);
1623 list_del(&bp->b_list);
1624 }
1625
1626 bp->b_flags |= _XBF_DELWRI_Q;
1627 list_add_tail(&bp->b_list, dwq);
1628 bp->b_queuetime = jiffies;
1629 spin_unlock(dwlk);
1630
1631 if (unlock)
1632 xfs_buf_unlock(bp);
1633 }
1634
1635 void
1636 xfs_buf_delwri_dequeue(
1637 xfs_buf_t *bp)
1638 {
1639 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1640 int dequeued = 0;
1641
1642 spin_lock(dwlk);
1643 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1644 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1645 list_del_init(&bp->b_list);
1646 dequeued = 1;
1647 }
1648 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1649 spin_unlock(dwlk);
1650
1651 if (dequeued)
1652 xfs_buf_rele(bp);
1653
1654 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1655 }
1656
1657 STATIC void
1658 xfs_buf_runall_queues(
1659 struct workqueue_struct *queue)
1660 {
1661 flush_workqueue(queue);
1662 }
1663
1664 STATIC int
1665 xfsbufd_wakeup(
1666 int priority,
1667 gfp_t mask)
1668 {
1669 xfs_buftarg_t *btp;
1670
1671 spin_lock(&xfs_buftarg_lock);
1672 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1673 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1674 continue;
1675 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1676 wake_up_process(btp->bt_task);
1677 }
1678 spin_unlock(&xfs_buftarg_lock);
1679 return 0;
1680 }
1681
1682 /*
1683 * Move as many buffers as specified to the supplied list
1684 * idicating if we skipped any buffers to prevent deadlocks.
1685 */
1686 STATIC int
1687 xfs_buf_delwri_split(
1688 xfs_buftarg_t *target,
1689 struct list_head *list,
1690 unsigned long age)
1691 {
1692 xfs_buf_t *bp, *n;
1693 struct list_head *dwq = &target->bt_delwrite_queue;
1694 spinlock_t *dwlk = &target->bt_delwrite_lock;
1695 int skipped = 0;
1696 int force;
1697
1698 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1699 INIT_LIST_HEAD(list);
1700 spin_lock(dwlk);
1701 list_for_each_entry_safe(bp, n, dwq, b_list) {
1702 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1703 ASSERT(bp->b_flags & XBF_DELWRI);
1704
1705 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1706 if (!force &&
1707 time_before(jiffies, bp->b_queuetime + age)) {
1708 xfs_buf_unlock(bp);
1709 break;
1710 }
1711
1712 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1713 _XBF_RUN_QUEUES);
1714 bp->b_flags |= XBF_WRITE;
1715 list_move_tail(&bp->b_list, list);
1716 } else
1717 skipped++;
1718 }
1719 spin_unlock(dwlk);
1720
1721 return skipped;
1722
1723 }
1724
1725 STATIC int
1726 xfsbufd(
1727 void *data)
1728 {
1729 struct list_head tmp;
1730 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1731 int count;
1732 xfs_buf_t *bp;
1733
1734 current->flags |= PF_MEMALLOC;
1735
1736 do {
1737 if (unlikely(freezing(current))) {
1738 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1739 refrigerator();
1740 } else {
1741 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1742 }
1743
1744 schedule_timeout_interruptible(
1745 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1746
1747 xfs_buf_delwri_split(target, &tmp,
1748 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1749
1750 count = 0;
1751 while (!list_empty(&tmp)) {
1752 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1753 ASSERT(target == bp->b_target);
1754
1755 list_del_init(&bp->b_list);
1756 xfs_buf_iostrategy(bp);
1757 count++;
1758 }
1759
1760 if (as_list_len > 0)
1761 purge_addresses();
1762 if (count)
1763 blk_run_address_space(target->bt_mapping);
1764
1765 } while (!kthread_should_stop());
1766
1767 return 0;
1768 }
1769
1770 /*
1771 * Go through all incore buffers, and release buffers if they belong to
1772 * the given device. This is used in filesystem error handling to
1773 * preserve the consistency of its metadata.
1774 */
1775 int
1776 xfs_flush_buftarg(
1777 xfs_buftarg_t *target,
1778 int wait)
1779 {
1780 struct list_head tmp;
1781 xfs_buf_t *bp, *n;
1782 int pincount = 0;
1783
1784 xfs_buf_runall_queues(xfsdatad_workqueue);
1785 xfs_buf_runall_queues(xfslogd_workqueue);
1786
1787 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1788 pincount = xfs_buf_delwri_split(target, &tmp, 0);
1789
1790 /*
1791 * Dropped the delayed write list lock, now walk the temporary list
1792 */
1793 list_for_each_entry_safe(bp, n, &tmp, b_list) {
1794 ASSERT(target == bp->b_target);
1795 if (wait)
1796 bp->b_flags &= ~XBF_ASYNC;
1797 else
1798 list_del_init(&bp->b_list);
1799
1800 xfs_buf_iostrategy(bp);
1801 }
1802
1803 if (wait)
1804 blk_run_address_space(target->bt_mapping);
1805
1806 /*
1807 * Remaining list items must be flushed before returning
1808 */
1809 while (!list_empty(&tmp)) {
1810 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1811
1812 list_del_init(&bp->b_list);
1813 xfs_iowait(bp);
1814 xfs_buf_relse(bp);
1815 }
1816
1817 return pincount;
1818 }
1819
1820 int __init
1821 xfs_buf_init(void)
1822 {
1823 #ifdef XFS_BUF_TRACE
1824 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1825 #endif
1826
1827 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1828 KM_ZONE_HWALIGN, NULL);
1829 if (!xfs_buf_zone)
1830 goto out_free_trace_buf;
1831
1832 xfslogd_workqueue = create_freezeable_workqueue("xfslogd");
1833 if (!xfslogd_workqueue)
1834 goto out_free_buf_zone;
1835
1836 xfsdatad_workqueue = create_freezeable_workqueue("xfsdatad");
1837 if (!xfsdatad_workqueue)
1838 goto out_destroy_xfslogd_workqueue;
1839
1840 xfs_buf_shake = kmem_shake_register(xfsbufd_wakeup);
1841 if (!xfs_buf_shake)
1842 goto out_destroy_xfsdatad_workqueue;
1843
1844 return 0;
1845
1846 out_destroy_xfsdatad_workqueue:
1847 destroy_workqueue(xfsdatad_workqueue);
1848 out_destroy_xfslogd_workqueue:
1849 destroy_workqueue(xfslogd_workqueue);
1850 out_free_buf_zone:
1851 kmem_zone_destroy(xfs_buf_zone);
1852 out_free_trace_buf:
1853 #ifdef XFS_BUF_TRACE
1854 ktrace_free(xfs_buf_trace_buf);
1855 #endif
1856 return -ENOMEM;
1857 }
1858
1859 void
1860 xfs_buf_terminate(void)
1861 {
1862 kmem_shake_deregister(xfs_buf_shake);
1863 destroy_workqueue(xfsdatad_workqueue);
1864 destroy_workqueue(xfslogd_workqueue);
1865 kmem_zone_destroy(xfs_buf_zone);
1866 #ifdef XFS_BUF_TRACE
1867 ktrace_free(xfs_buf_trace_buf);
1868 #endif
1869 }
This page took 0.069712 seconds and 6 git commands to generate.