Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ericvh...
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 static kmem_zone_t *xfs_buf_zone;
38 STATIC int xfsbufd(void *);
39 STATIC int xfsbufd_wakeup(int, gfp_t);
40 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
41 static struct shrinker xfs_buf_shake = {
42 .shrink = xfsbufd_wakeup,
43 .seeks = DEFAULT_SEEKS,
44 };
45
46 static struct workqueue_struct *xfslogd_workqueue;
47 struct workqueue_struct *xfsdatad_workqueue;
48
49 #ifdef XFS_BUF_TRACE
50 void
51 xfs_buf_trace(
52 xfs_buf_t *bp,
53 char *id,
54 void *data,
55 void *ra)
56 {
57 ktrace_enter(xfs_buf_trace_buf,
58 bp, id,
59 (void *)(unsigned long)bp->b_flags,
60 (void *)(unsigned long)bp->b_hold.counter,
61 (void *)(unsigned long)bp->b_sema.count.counter,
62 (void *)current,
63 data, ra,
64 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
65 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
66 (void *)(unsigned long)bp->b_buffer_length,
67 NULL, NULL, NULL, NULL, NULL);
68 }
69 ktrace_t *xfs_buf_trace_buf;
70 #define XFS_BUF_TRACE_SIZE 4096
71 #define XB_TRACE(bp, id, data) \
72 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
73 #else
74 #define XB_TRACE(bp, id, data) do { } while (0)
75 #endif
76
77 #ifdef XFS_BUF_LOCK_TRACKING
78 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
79 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
80 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
81 #else
82 # define XB_SET_OWNER(bp) do { } while (0)
83 # define XB_CLEAR_OWNER(bp) do { } while (0)
84 # define XB_GET_OWNER(bp) do { } while (0)
85 #endif
86
87 #define xb_to_gfp(flags) \
88 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
89 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
90
91 #define xb_to_km(flags) \
92 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
93
94 #define xfs_buf_allocate(flags) \
95 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
96 #define xfs_buf_deallocate(bp) \
97 kmem_zone_free(xfs_buf_zone, (bp));
98
99 /*
100 * Page Region interfaces.
101 *
102 * For pages in filesystems where the blocksize is smaller than the
103 * pagesize, we use the page->private field (long) to hold a bitmap
104 * of uptodate regions within the page.
105 *
106 * Each such region is "bytes per page / bits per long" bytes long.
107 *
108 * NBPPR == number-of-bytes-per-page-region
109 * BTOPR == bytes-to-page-region (rounded up)
110 * BTOPRT == bytes-to-page-region-truncated (rounded down)
111 */
112 #if (BITS_PER_LONG == 32)
113 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
114 #elif (BITS_PER_LONG == 64)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
116 #else
117 #error BITS_PER_LONG must be 32 or 64
118 #endif
119 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
120 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
121 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
122
123 STATIC unsigned long
124 page_region_mask(
125 size_t offset,
126 size_t length)
127 {
128 unsigned long mask;
129 int first, final;
130
131 first = BTOPR(offset);
132 final = BTOPRT(offset + length - 1);
133 first = min(first, final);
134
135 mask = ~0UL;
136 mask <<= BITS_PER_LONG - (final - first);
137 mask >>= BITS_PER_LONG - (final);
138
139 ASSERT(offset + length <= PAGE_CACHE_SIZE);
140 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
141
142 return mask;
143 }
144
145 STATIC_INLINE void
146 set_page_region(
147 struct page *page,
148 size_t offset,
149 size_t length)
150 {
151 set_page_private(page,
152 page_private(page) | page_region_mask(offset, length));
153 if (page_private(page) == ~0UL)
154 SetPageUptodate(page);
155 }
156
157 STATIC_INLINE int
158 test_page_region(
159 struct page *page,
160 size_t offset,
161 size_t length)
162 {
163 unsigned long mask = page_region_mask(offset, length);
164
165 return (mask && (page_private(page) & mask) == mask);
166 }
167
168 /*
169 * Mapping of multi-page buffers into contiguous virtual space
170 */
171
172 typedef struct a_list {
173 void *vm_addr;
174 struct a_list *next;
175 } a_list_t;
176
177 static a_list_t *as_free_head;
178 static int as_list_len;
179 static DEFINE_SPINLOCK(as_lock);
180
181 /*
182 * Try to batch vunmaps because they are costly.
183 */
184 STATIC void
185 free_address(
186 void *addr)
187 {
188 a_list_t *aentry;
189
190 aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
191 if (likely(aentry)) {
192 spin_lock(&as_lock);
193 aentry->next = as_free_head;
194 aentry->vm_addr = addr;
195 as_free_head = aentry;
196 as_list_len++;
197 spin_unlock(&as_lock);
198 } else {
199 vunmap(addr);
200 }
201 }
202
203 STATIC void
204 purge_addresses(void)
205 {
206 a_list_t *aentry, *old;
207
208 if (as_free_head == NULL)
209 return;
210
211 spin_lock(&as_lock);
212 aentry = as_free_head;
213 as_free_head = NULL;
214 as_list_len = 0;
215 spin_unlock(&as_lock);
216
217 while ((old = aentry) != NULL) {
218 vunmap(aentry->vm_addr);
219 aentry = aentry->next;
220 kfree(old);
221 }
222 }
223
224 /*
225 * Internal xfs_buf_t object manipulation
226 */
227
228 STATIC void
229 _xfs_buf_initialize(
230 xfs_buf_t *bp,
231 xfs_buftarg_t *target,
232 xfs_off_t range_base,
233 size_t range_length,
234 xfs_buf_flags_t flags)
235 {
236 /*
237 * We don't want certain flags to appear in b_flags.
238 */
239 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
240
241 memset(bp, 0, sizeof(xfs_buf_t));
242 atomic_set(&bp->b_hold, 1);
243 init_MUTEX_LOCKED(&bp->b_iodonesema);
244 INIT_LIST_HEAD(&bp->b_list);
245 INIT_LIST_HEAD(&bp->b_hash_list);
246 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
247 XB_SET_OWNER(bp);
248 bp->b_target = target;
249 bp->b_file_offset = range_base;
250 /*
251 * Set buffer_length and count_desired to the same value initially.
252 * I/O routines should use count_desired, which will be the same in
253 * most cases but may be reset (e.g. XFS recovery).
254 */
255 bp->b_buffer_length = bp->b_count_desired = range_length;
256 bp->b_flags = flags;
257 bp->b_bn = XFS_BUF_DADDR_NULL;
258 atomic_set(&bp->b_pin_count, 0);
259 init_waitqueue_head(&bp->b_waiters);
260
261 XFS_STATS_INC(xb_create);
262 XB_TRACE(bp, "initialize", target);
263 }
264
265 /*
266 * Allocate a page array capable of holding a specified number
267 * of pages, and point the page buf at it.
268 */
269 STATIC int
270 _xfs_buf_get_pages(
271 xfs_buf_t *bp,
272 int page_count,
273 xfs_buf_flags_t flags)
274 {
275 /* Make sure that we have a page list */
276 if (bp->b_pages == NULL) {
277 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
278 bp->b_page_count = page_count;
279 if (page_count <= XB_PAGES) {
280 bp->b_pages = bp->b_page_array;
281 } else {
282 bp->b_pages = kmem_alloc(sizeof(struct page *) *
283 page_count, xb_to_km(flags));
284 if (bp->b_pages == NULL)
285 return -ENOMEM;
286 }
287 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
288 }
289 return 0;
290 }
291
292 /*
293 * Frees b_pages if it was allocated.
294 */
295 STATIC void
296 _xfs_buf_free_pages(
297 xfs_buf_t *bp)
298 {
299 if (bp->b_pages != bp->b_page_array) {
300 kmem_free(bp->b_pages,
301 bp->b_page_count * sizeof(struct page *));
302 }
303 }
304
305 /*
306 * Releases the specified buffer.
307 *
308 * The modification state of any associated pages is left unchanged.
309 * The buffer most not be on any hash - use xfs_buf_rele instead for
310 * hashed and refcounted buffers
311 */
312 void
313 xfs_buf_free(
314 xfs_buf_t *bp)
315 {
316 XB_TRACE(bp, "free", 0);
317
318 ASSERT(list_empty(&bp->b_hash_list));
319
320 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
321 uint i;
322
323 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
324 free_address(bp->b_addr - bp->b_offset);
325
326 for (i = 0; i < bp->b_page_count; i++) {
327 struct page *page = bp->b_pages[i];
328
329 if (bp->b_flags & _XBF_PAGE_CACHE)
330 ASSERT(!PagePrivate(page));
331 page_cache_release(page);
332 }
333 _xfs_buf_free_pages(bp);
334 }
335
336 xfs_buf_deallocate(bp);
337 }
338
339 /*
340 * Finds all pages for buffer in question and builds it's page list.
341 */
342 STATIC int
343 _xfs_buf_lookup_pages(
344 xfs_buf_t *bp,
345 uint flags)
346 {
347 struct address_space *mapping = bp->b_target->bt_mapping;
348 size_t blocksize = bp->b_target->bt_bsize;
349 size_t size = bp->b_count_desired;
350 size_t nbytes, offset;
351 gfp_t gfp_mask = xb_to_gfp(flags);
352 unsigned short page_count, i;
353 pgoff_t first;
354 xfs_off_t end;
355 int error;
356
357 end = bp->b_file_offset + bp->b_buffer_length;
358 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
359
360 error = _xfs_buf_get_pages(bp, page_count, flags);
361 if (unlikely(error))
362 return error;
363 bp->b_flags |= _XBF_PAGE_CACHE;
364
365 offset = bp->b_offset;
366 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
367
368 for (i = 0; i < bp->b_page_count; i++) {
369 struct page *page;
370 uint retries = 0;
371
372 retry:
373 page = find_or_create_page(mapping, first + i, gfp_mask);
374 if (unlikely(page == NULL)) {
375 if (flags & XBF_READ_AHEAD) {
376 bp->b_page_count = i;
377 for (i = 0; i < bp->b_page_count; i++)
378 unlock_page(bp->b_pages[i]);
379 return -ENOMEM;
380 }
381
382 /*
383 * This could deadlock.
384 *
385 * But until all the XFS lowlevel code is revamped to
386 * handle buffer allocation failures we can't do much.
387 */
388 if (!(++retries % 100))
389 printk(KERN_ERR
390 "XFS: possible memory allocation "
391 "deadlock in %s (mode:0x%x)\n",
392 __FUNCTION__, gfp_mask);
393
394 XFS_STATS_INC(xb_page_retries);
395 xfsbufd_wakeup(0, gfp_mask);
396 congestion_wait(WRITE, HZ/50);
397 goto retry;
398 }
399
400 XFS_STATS_INC(xb_page_found);
401
402 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
403 size -= nbytes;
404
405 ASSERT(!PagePrivate(page));
406 if (!PageUptodate(page)) {
407 page_count--;
408 if (blocksize >= PAGE_CACHE_SIZE) {
409 if (flags & XBF_READ)
410 bp->b_locked = 1;
411 } else if (!PagePrivate(page)) {
412 if (test_page_region(page, offset, nbytes))
413 page_count++;
414 }
415 }
416
417 bp->b_pages[i] = page;
418 offset = 0;
419 }
420
421 if (!bp->b_locked) {
422 for (i = 0; i < bp->b_page_count; i++)
423 unlock_page(bp->b_pages[i]);
424 }
425
426 if (page_count == bp->b_page_count)
427 bp->b_flags |= XBF_DONE;
428
429 XB_TRACE(bp, "lookup_pages", (long)page_count);
430 return error;
431 }
432
433 /*
434 * Map buffer into kernel address-space if nessecary.
435 */
436 STATIC int
437 _xfs_buf_map_pages(
438 xfs_buf_t *bp,
439 uint flags)
440 {
441 /* A single page buffer is always mappable */
442 if (bp->b_page_count == 1) {
443 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
444 bp->b_flags |= XBF_MAPPED;
445 } else if (flags & XBF_MAPPED) {
446 if (as_list_len > 64)
447 purge_addresses();
448 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
449 VM_MAP, PAGE_KERNEL);
450 if (unlikely(bp->b_addr == NULL))
451 return -ENOMEM;
452 bp->b_addr += bp->b_offset;
453 bp->b_flags |= XBF_MAPPED;
454 }
455
456 return 0;
457 }
458
459 /*
460 * Finding and Reading Buffers
461 */
462
463 /*
464 * Look up, and creates if absent, a lockable buffer for
465 * a given range of an inode. The buffer is returned
466 * locked. If other overlapping buffers exist, they are
467 * released before the new buffer is created and locked,
468 * which may imply that this call will block until those buffers
469 * are unlocked. No I/O is implied by this call.
470 */
471 xfs_buf_t *
472 _xfs_buf_find(
473 xfs_buftarg_t *btp, /* block device target */
474 xfs_off_t ioff, /* starting offset of range */
475 size_t isize, /* length of range */
476 xfs_buf_flags_t flags,
477 xfs_buf_t *new_bp)
478 {
479 xfs_off_t range_base;
480 size_t range_length;
481 xfs_bufhash_t *hash;
482 xfs_buf_t *bp, *n;
483
484 range_base = (ioff << BBSHIFT);
485 range_length = (isize << BBSHIFT);
486
487 /* Check for IOs smaller than the sector size / not sector aligned */
488 ASSERT(!(range_length < (1 << btp->bt_sshift)));
489 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
490
491 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
492
493 spin_lock(&hash->bh_lock);
494
495 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
496 ASSERT(btp == bp->b_target);
497 if (bp->b_file_offset == range_base &&
498 bp->b_buffer_length == range_length) {
499 /*
500 * If we look at something, bring it to the
501 * front of the list for next time.
502 */
503 atomic_inc(&bp->b_hold);
504 list_move(&bp->b_hash_list, &hash->bh_list);
505 goto found;
506 }
507 }
508
509 /* No match found */
510 if (new_bp) {
511 _xfs_buf_initialize(new_bp, btp, range_base,
512 range_length, flags);
513 new_bp->b_hash = hash;
514 list_add(&new_bp->b_hash_list, &hash->bh_list);
515 } else {
516 XFS_STATS_INC(xb_miss_locked);
517 }
518
519 spin_unlock(&hash->bh_lock);
520 return new_bp;
521
522 found:
523 spin_unlock(&hash->bh_lock);
524
525 /* Attempt to get the semaphore without sleeping,
526 * if this does not work then we need to drop the
527 * spinlock and do a hard attempt on the semaphore.
528 */
529 if (down_trylock(&bp->b_sema)) {
530 if (!(flags & XBF_TRYLOCK)) {
531 /* wait for buffer ownership */
532 XB_TRACE(bp, "get_lock", 0);
533 xfs_buf_lock(bp);
534 XFS_STATS_INC(xb_get_locked_waited);
535 } else {
536 /* We asked for a trylock and failed, no need
537 * to look at file offset and length here, we
538 * know that this buffer at least overlaps our
539 * buffer and is locked, therefore our buffer
540 * either does not exist, or is this buffer.
541 */
542 xfs_buf_rele(bp);
543 XFS_STATS_INC(xb_busy_locked);
544 return NULL;
545 }
546 } else {
547 /* trylock worked */
548 XB_SET_OWNER(bp);
549 }
550
551 if (bp->b_flags & XBF_STALE) {
552 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
553 bp->b_flags &= XBF_MAPPED;
554 }
555 XB_TRACE(bp, "got_lock", 0);
556 XFS_STATS_INC(xb_get_locked);
557 return bp;
558 }
559
560 /*
561 * Assembles a buffer covering the specified range.
562 * Storage in memory for all portions of the buffer will be allocated,
563 * although backing storage may not be.
564 */
565 xfs_buf_t *
566 xfs_buf_get_flags(
567 xfs_buftarg_t *target,/* target for buffer */
568 xfs_off_t ioff, /* starting offset of range */
569 size_t isize, /* length of range */
570 xfs_buf_flags_t flags)
571 {
572 xfs_buf_t *bp, *new_bp;
573 int error = 0, i;
574
575 new_bp = xfs_buf_allocate(flags);
576 if (unlikely(!new_bp))
577 return NULL;
578
579 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
580 if (bp == new_bp) {
581 error = _xfs_buf_lookup_pages(bp, flags);
582 if (error)
583 goto no_buffer;
584 } else {
585 xfs_buf_deallocate(new_bp);
586 if (unlikely(bp == NULL))
587 return NULL;
588 }
589
590 for (i = 0; i < bp->b_page_count; i++)
591 mark_page_accessed(bp->b_pages[i]);
592
593 if (!(bp->b_flags & XBF_MAPPED)) {
594 error = _xfs_buf_map_pages(bp, flags);
595 if (unlikely(error)) {
596 printk(KERN_WARNING "%s: failed to map pages\n",
597 __FUNCTION__);
598 goto no_buffer;
599 }
600 }
601
602 XFS_STATS_INC(xb_get);
603
604 /*
605 * Always fill in the block number now, the mapped cases can do
606 * their own overlay of this later.
607 */
608 bp->b_bn = ioff;
609 bp->b_count_desired = bp->b_buffer_length;
610
611 XB_TRACE(bp, "get", (unsigned long)flags);
612 return bp;
613
614 no_buffer:
615 if (flags & (XBF_LOCK | XBF_TRYLOCK))
616 xfs_buf_unlock(bp);
617 xfs_buf_rele(bp);
618 return NULL;
619 }
620
621 xfs_buf_t *
622 xfs_buf_read_flags(
623 xfs_buftarg_t *target,
624 xfs_off_t ioff,
625 size_t isize,
626 xfs_buf_flags_t flags)
627 {
628 xfs_buf_t *bp;
629
630 flags |= XBF_READ;
631
632 bp = xfs_buf_get_flags(target, ioff, isize, flags);
633 if (bp) {
634 if (!XFS_BUF_ISDONE(bp)) {
635 XB_TRACE(bp, "read", (unsigned long)flags);
636 XFS_STATS_INC(xb_get_read);
637 xfs_buf_iostart(bp, flags);
638 } else if (flags & XBF_ASYNC) {
639 XB_TRACE(bp, "read_async", (unsigned long)flags);
640 /*
641 * Read ahead call which is already satisfied,
642 * drop the buffer
643 */
644 goto no_buffer;
645 } else {
646 XB_TRACE(bp, "read_done", (unsigned long)flags);
647 /* We do not want read in the flags */
648 bp->b_flags &= ~XBF_READ;
649 }
650 }
651
652 return bp;
653
654 no_buffer:
655 if (flags & (XBF_LOCK | XBF_TRYLOCK))
656 xfs_buf_unlock(bp);
657 xfs_buf_rele(bp);
658 return NULL;
659 }
660
661 /*
662 * If we are not low on memory then do the readahead in a deadlock
663 * safe manner.
664 */
665 void
666 xfs_buf_readahead(
667 xfs_buftarg_t *target,
668 xfs_off_t ioff,
669 size_t isize,
670 xfs_buf_flags_t flags)
671 {
672 struct backing_dev_info *bdi;
673
674 bdi = target->bt_mapping->backing_dev_info;
675 if (bdi_read_congested(bdi))
676 return;
677
678 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
679 xfs_buf_read_flags(target, ioff, isize, flags);
680 }
681
682 xfs_buf_t *
683 xfs_buf_get_empty(
684 size_t len,
685 xfs_buftarg_t *target)
686 {
687 xfs_buf_t *bp;
688
689 bp = xfs_buf_allocate(0);
690 if (bp)
691 _xfs_buf_initialize(bp, target, 0, len, 0);
692 return bp;
693 }
694
695 static inline struct page *
696 mem_to_page(
697 void *addr)
698 {
699 if (((unsigned long)addr < VMALLOC_START) ||
700 ((unsigned long)addr >= VMALLOC_END)) {
701 return virt_to_page(addr);
702 } else {
703 return vmalloc_to_page(addr);
704 }
705 }
706
707 int
708 xfs_buf_associate_memory(
709 xfs_buf_t *bp,
710 void *mem,
711 size_t len)
712 {
713 int rval;
714 int i = 0;
715 size_t ptr;
716 size_t end, end_cur;
717 off_t offset;
718 int page_count;
719
720 page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
721 offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
722 if (offset && (len > PAGE_CACHE_SIZE))
723 page_count++;
724
725 /* Free any previous set of page pointers */
726 if (bp->b_pages)
727 _xfs_buf_free_pages(bp);
728
729 bp->b_pages = NULL;
730 bp->b_addr = mem;
731
732 rval = _xfs_buf_get_pages(bp, page_count, 0);
733 if (rval)
734 return rval;
735
736 bp->b_offset = offset;
737 ptr = (size_t) mem & PAGE_CACHE_MASK;
738 end = PAGE_CACHE_ALIGN((size_t) mem + len);
739 end_cur = end;
740 /* set up first page */
741 bp->b_pages[0] = mem_to_page(mem);
742
743 ptr += PAGE_CACHE_SIZE;
744 bp->b_page_count = ++i;
745 while (ptr < end) {
746 bp->b_pages[i] = mem_to_page((void *)ptr);
747 bp->b_page_count = ++i;
748 ptr += PAGE_CACHE_SIZE;
749 }
750 bp->b_locked = 0;
751
752 bp->b_count_desired = bp->b_buffer_length = len;
753 bp->b_flags |= XBF_MAPPED;
754
755 return 0;
756 }
757
758 xfs_buf_t *
759 xfs_buf_get_noaddr(
760 size_t len,
761 xfs_buftarg_t *target)
762 {
763 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
764 int error, i;
765 xfs_buf_t *bp;
766
767 bp = xfs_buf_allocate(0);
768 if (unlikely(bp == NULL))
769 goto fail;
770 _xfs_buf_initialize(bp, target, 0, len, 0);
771
772 error = _xfs_buf_get_pages(bp, page_count, 0);
773 if (error)
774 goto fail_free_buf;
775
776 for (i = 0; i < page_count; i++) {
777 bp->b_pages[i] = alloc_page(GFP_KERNEL);
778 if (!bp->b_pages[i])
779 goto fail_free_mem;
780 }
781 bp->b_flags |= _XBF_PAGES;
782
783 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
784 if (unlikely(error)) {
785 printk(KERN_WARNING "%s: failed to map pages\n",
786 __FUNCTION__);
787 goto fail_free_mem;
788 }
789
790 xfs_buf_unlock(bp);
791
792 XB_TRACE(bp, "no_daddr", len);
793 return bp;
794
795 fail_free_mem:
796 while (--i >= 0)
797 __free_page(bp->b_pages[i]);
798 _xfs_buf_free_pages(bp);
799 fail_free_buf:
800 xfs_buf_deallocate(bp);
801 fail:
802 return NULL;
803 }
804
805 /*
806 * Increment reference count on buffer, to hold the buffer concurrently
807 * with another thread which may release (free) the buffer asynchronously.
808 * Must hold the buffer already to call this function.
809 */
810 void
811 xfs_buf_hold(
812 xfs_buf_t *bp)
813 {
814 atomic_inc(&bp->b_hold);
815 XB_TRACE(bp, "hold", 0);
816 }
817
818 /*
819 * Releases a hold on the specified buffer. If the
820 * the hold count is 1, calls xfs_buf_free.
821 */
822 void
823 xfs_buf_rele(
824 xfs_buf_t *bp)
825 {
826 xfs_bufhash_t *hash = bp->b_hash;
827
828 XB_TRACE(bp, "rele", bp->b_relse);
829
830 if (unlikely(!hash)) {
831 ASSERT(!bp->b_relse);
832 if (atomic_dec_and_test(&bp->b_hold))
833 xfs_buf_free(bp);
834 return;
835 }
836
837 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
838 if (bp->b_relse) {
839 atomic_inc(&bp->b_hold);
840 spin_unlock(&hash->bh_lock);
841 (*(bp->b_relse)) (bp);
842 } else if (bp->b_flags & XBF_FS_MANAGED) {
843 spin_unlock(&hash->bh_lock);
844 } else {
845 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
846 list_del_init(&bp->b_hash_list);
847 spin_unlock(&hash->bh_lock);
848 xfs_buf_free(bp);
849 }
850 } else {
851 /*
852 * Catch reference count leaks
853 */
854 ASSERT(atomic_read(&bp->b_hold) >= 0);
855 }
856 }
857
858
859 /*
860 * Mutual exclusion on buffers. Locking model:
861 *
862 * Buffers associated with inodes for which buffer locking
863 * is not enabled are not protected by semaphores, and are
864 * assumed to be exclusively owned by the caller. There is a
865 * spinlock in the buffer, used by the caller when concurrent
866 * access is possible.
867 */
868
869 /*
870 * Locks a buffer object, if it is not already locked.
871 * Note that this in no way locks the underlying pages, so it is only
872 * useful for synchronizing concurrent use of buffer objects, not for
873 * synchronizing independent access to the underlying pages.
874 */
875 int
876 xfs_buf_cond_lock(
877 xfs_buf_t *bp)
878 {
879 int locked;
880
881 locked = down_trylock(&bp->b_sema) == 0;
882 if (locked) {
883 XB_SET_OWNER(bp);
884 }
885 XB_TRACE(bp, "cond_lock", (long)locked);
886 return locked ? 0 : -EBUSY;
887 }
888
889 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
890 int
891 xfs_buf_lock_value(
892 xfs_buf_t *bp)
893 {
894 return atomic_read(&bp->b_sema.count);
895 }
896 #endif
897
898 /*
899 * Locks a buffer object.
900 * Note that this in no way locks the underlying pages, so it is only
901 * useful for synchronizing concurrent use of buffer objects, not for
902 * synchronizing independent access to the underlying pages.
903 */
904 void
905 xfs_buf_lock(
906 xfs_buf_t *bp)
907 {
908 XB_TRACE(bp, "lock", 0);
909 if (atomic_read(&bp->b_io_remaining))
910 blk_run_address_space(bp->b_target->bt_mapping);
911 down(&bp->b_sema);
912 XB_SET_OWNER(bp);
913 XB_TRACE(bp, "locked", 0);
914 }
915
916 /*
917 * Releases the lock on the buffer object.
918 * If the buffer is marked delwri but is not queued, do so before we
919 * unlock the buffer as we need to set flags correctly. We also need to
920 * take a reference for the delwri queue because the unlocker is going to
921 * drop their's and they don't know we just queued it.
922 */
923 void
924 xfs_buf_unlock(
925 xfs_buf_t *bp)
926 {
927 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
928 atomic_inc(&bp->b_hold);
929 bp->b_flags |= XBF_ASYNC;
930 xfs_buf_delwri_queue(bp, 0);
931 }
932
933 XB_CLEAR_OWNER(bp);
934 up(&bp->b_sema);
935 XB_TRACE(bp, "unlock", 0);
936 }
937
938
939 /*
940 * Pinning Buffer Storage in Memory
941 * Ensure that no attempt to force a buffer to disk will succeed.
942 */
943 void
944 xfs_buf_pin(
945 xfs_buf_t *bp)
946 {
947 atomic_inc(&bp->b_pin_count);
948 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
949 }
950
951 void
952 xfs_buf_unpin(
953 xfs_buf_t *bp)
954 {
955 if (atomic_dec_and_test(&bp->b_pin_count))
956 wake_up_all(&bp->b_waiters);
957 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
958 }
959
960 int
961 xfs_buf_ispin(
962 xfs_buf_t *bp)
963 {
964 return atomic_read(&bp->b_pin_count);
965 }
966
967 STATIC void
968 xfs_buf_wait_unpin(
969 xfs_buf_t *bp)
970 {
971 DECLARE_WAITQUEUE (wait, current);
972
973 if (atomic_read(&bp->b_pin_count) == 0)
974 return;
975
976 add_wait_queue(&bp->b_waiters, &wait);
977 for (;;) {
978 set_current_state(TASK_UNINTERRUPTIBLE);
979 if (atomic_read(&bp->b_pin_count) == 0)
980 break;
981 if (atomic_read(&bp->b_io_remaining))
982 blk_run_address_space(bp->b_target->bt_mapping);
983 schedule();
984 }
985 remove_wait_queue(&bp->b_waiters, &wait);
986 set_current_state(TASK_RUNNING);
987 }
988
989 /*
990 * Buffer Utility Routines
991 */
992
993 STATIC void
994 xfs_buf_iodone_work(
995 struct work_struct *work)
996 {
997 xfs_buf_t *bp =
998 container_of(work, xfs_buf_t, b_iodone_work);
999
1000 if (bp->b_iodone)
1001 (*(bp->b_iodone))(bp);
1002 else if (bp->b_flags & XBF_ASYNC)
1003 xfs_buf_relse(bp);
1004 }
1005
1006 void
1007 xfs_buf_ioend(
1008 xfs_buf_t *bp,
1009 int schedule)
1010 {
1011 bp->b_flags &= ~(XBF_READ | XBF_WRITE);
1012 if (bp->b_error == 0)
1013 bp->b_flags |= XBF_DONE;
1014
1015 XB_TRACE(bp, "iodone", bp->b_iodone);
1016
1017 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1018 if (schedule) {
1019 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1020 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1021 } else {
1022 xfs_buf_iodone_work(&bp->b_iodone_work);
1023 }
1024 } else {
1025 up(&bp->b_iodonesema);
1026 }
1027 }
1028
1029 void
1030 xfs_buf_ioerror(
1031 xfs_buf_t *bp,
1032 int error)
1033 {
1034 ASSERT(error >= 0 && error <= 0xffff);
1035 bp->b_error = (unsigned short)error;
1036 XB_TRACE(bp, "ioerror", (unsigned long)error);
1037 }
1038
1039 /*
1040 * Initiate I/O on a buffer, based on the flags supplied.
1041 * The b_iodone routine in the buffer supplied will only be called
1042 * when all of the subsidiary I/O requests, if any, have been completed.
1043 */
1044 int
1045 xfs_buf_iostart(
1046 xfs_buf_t *bp,
1047 xfs_buf_flags_t flags)
1048 {
1049 int status = 0;
1050
1051 XB_TRACE(bp, "iostart", (unsigned long)flags);
1052
1053 if (flags & XBF_DELWRI) {
1054 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1055 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1056 xfs_buf_delwri_queue(bp, 1);
1057 return status;
1058 }
1059
1060 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1061 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1062 bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1063 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1064
1065 BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1066
1067 /* For writes allow an alternate strategy routine to precede
1068 * the actual I/O request (which may not be issued at all in
1069 * a shutdown situation, for example).
1070 */
1071 status = (flags & XBF_WRITE) ?
1072 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1073
1074 /* Wait for I/O if we are not an async request.
1075 * Note: async I/O request completion will release the buffer,
1076 * and that can already be done by this point. So using the
1077 * buffer pointer from here on, after async I/O, is invalid.
1078 */
1079 if (!status && !(flags & XBF_ASYNC))
1080 status = xfs_buf_iowait(bp);
1081
1082 return status;
1083 }
1084
1085 STATIC_INLINE int
1086 _xfs_buf_iolocked(
1087 xfs_buf_t *bp)
1088 {
1089 ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE));
1090 if (bp->b_flags & XBF_READ)
1091 return bp->b_locked;
1092 return 0;
1093 }
1094
1095 STATIC_INLINE void
1096 _xfs_buf_ioend(
1097 xfs_buf_t *bp,
1098 int schedule)
1099 {
1100 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1101 bp->b_locked = 0;
1102 xfs_buf_ioend(bp, schedule);
1103 }
1104 }
1105
1106 STATIC int
1107 xfs_buf_bio_end_io(
1108 struct bio *bio,
1109 unsigned int bytes_done,
1110 int error)
1111 {
1112 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1113 unsigned int blocksize = bp->b_target->bt_bsize;
1114 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1115
1116 if (bio->bi_size)
1117 return 1;
1118
1119 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1120 bp->b_error = EIO;
1121
1122 do {
1123 struct page *page = bvec->bv_page;
1124
1125 ASSERT(!PagePrivate(page));
1126 if (unlikely(bp->b_error)) {
1127 if (bp->b_flags & XBF_READ)
1128 ClearPageUptodate(page);
1129 } else if (blocksize >= PAGE_CACHE_SIZE) {
1130 SetPageUptodate(page);
1131 } else if (!PagePrivate(page) &&
1132 (bp->b_flags & _XBF_PAGE_CACHE)) {
1133 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1134 }
1135
1136 if (--bvec >= bio->bi_io_vec)
1137 prefetchw(&bvec->bv_page->flags);
1138
1139 if (_xfs_buf_iolocked(bp)) {
1140 unlock_page(page);
1141 }
1142 } while (bvec >= bio->bi_io_vec);
1143
1144 _xfs_buf_ioend(bp, 1);
1145 bio_put(bio);
1146 return 0;
1147 }
1148
1149 STATIC void
1150 _xfs_buf_ioapply(
1151 xfs_buf_t *bp)
1152 {
1153 int i, rw, map_i, total_nr_pages, nr_pages;
1154 struct bio *bio;
1155 int offset = bp->b_offset;
1156 int size = bp->b_count_desired;
1157 sector_t sector = bp->b_bn;
1158 unsigned int blocksize = bp->b_target->bt_bsize;
1159 int locking = _xfs_buf_iolocked(bp);
1160
1161 total_nr_pages = bp->b_page_count;
1162 map_i = 0;
1163
1164 if (bp->b_flags & XBF_ORDERED) {
1165 ASSERT(!(bp->b_flags & XBF_READ));
1166 rw = WRITE_BARRIER;
1167 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1168 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1169 bp->b_flags &= ~_XBF_RUN_QUEUES;
1170 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1171 } else {
1172 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1173 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1174 }
1175
1176 /* Special code path for reading a sub page size buffer in --
1177 * we populate up the whole page, and hence the other metadata
1178 * in the same page. This optimization is only valid when the
1179 * filesystem block size is not smaller than the page size.
1180 */
1181 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1182 (bp->b_flags & XBF_READ) && locking &&
1183 (blocksize >= PAGE_CACHE_SIZE)) {
1184 bio = bio_alloc(GFP_NOIO, 1);
1185
1186 bio->bi_bdev = bp->b_target->bt_bdev;
1187 bio->bi_sector = sector - (offset >> BBSHIFT);
1188 bio->bi_end_io = xfs_buf_bio_end_io;
1189 bio->bi_private = bp;
1190
1191 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1192 size = 0;
1193
1194 atomic_inc(&bp->b_io_remaining);
1195
1196 goto submit_io;
1197 }
1198
1199 /* Lock down the pages which we need to for the request */
1200 if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) {
1201 for (i = 0; size; i++) {
1202 int nbytes = PAGE_CACHE_SIZE - offset;
1203 struct page *page = bp->b_pages[i];
1204
1205 if (nbytes > size)
1206 nbytes = size;
1207
1208 lock_page(page);
1209
1210 size -= nbytes;
1211 offset = 0;
1212 }
1213 offset = bp->b_offset;
1214 size = bp->b_count_desired;
1215 }
1216
1217 next_chunk:
1218 atomic_inc(&bp->b_io_remaining);
1219 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1220 if (nr_pages > total_nr_pages)
1221 nr_pages = total_nr_pages;
1222
1223 bio = bio_alloc(GFP_NOIO, nr_pages);
1224 bio->bi_bdev = bp->b_target->bt_bdev;
1225 bio->bi_sector = sector;
1226 bio->bi_end_io = xfs_buf_bio_end_io;
1227 bio->bi_private = bp;
1228
1229 for (; size && nr_pages; nr_pages--, map_i++) {
1230 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1231
1232 if (nbytes > size)
1233 nbytes = size;
1234
1235 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1236 if (rbytes < nbytes)
1237 break;
1238
1239 offset = 0;
1240 sector += nbytes >> BBSHIFT;
1241 size -= nbytes;
1242 total_nr_pages--;
1243 }
1244
1245 submit_io:
1246 if (likely(bio->bi_size)) {
1247 submit_bio(rw, bio);
1248 if (size)
1249 goto next_chunk;
1250 } else {
1251 bio_put(bio);
1252 xfs_buf_ioerror(bp, EIO);
1253 }
1254 }
1255
1256 int
1257 xfs_buf_iorequest(
1258 xfs_buf_t *bp)
1259 {
1260 XB_TRACE(bp, "iorequest", 0);
1261
1262 if (bp->b_flags & XBF_DELWRI) {
1263 xfs_buf_delwri_queue(bp, 1);
1264 return 0;
1265 }
1266
1267 if (bp->b_flags & XBF_WRITE) {
1268 xfs_buf_wait_unpin(bp);
1269 }
1270
1271 xfs_buf_hold(bp);
1272
1273 /* Set the count to 1 initially, this will stop an I/O
1274 * completion callout which happens before we have started
1275 * all the I/O from calling xfs_buf_ioend too early.
1276 */
1277 atomic_set(&bp->b_io_remaining, 1);
1278 _xfs_buf_ioapply(bp);
1279 _xfs_buf_ioend(bp, 0);
1280
1281 xfs_buf_rele(bp);
1282 return 0;
1283 }
1284
1285 /*
1286 * Waits for I/O to complete on the buffer supplied.
1287 * It returns immediately if no I/O is pending.
1288 * It returns the I/O error code, if any, or 0 if there was no error.
1289 */
1290 int
1291 xfs_buf_iowait(
1292 xfs_buf_t *bp)
1293 {
1294 XB_TRACE(bp, "iowait", 0);
1295 if (atomic_read(&bp->b_io_remaining))
1296 blk_run_address_space(bp->b_target->bt_mapping);
1297 down(&bp->b_iodonesema);
1298 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1299 return bp->b_error;
1300 }
1301
1302 xfs_caddr_t
1303 xfs_buf_offset(
1304 xfs_buf_t *bp,
1305 size_t offset)
1306 {
1307 struct page *page;
1308
1309 if (bp->b_flags & XBF_MAPPED)
1310 return XFS_BUF_PTR(bp) + offset;
1311
1312 offset += bp->b_offset;
1313 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1314 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1315 }
1316
1317 /*
1318 * Move data into or out of a buffer.
1319 */
1320 void
1321 xfs_buf_iomove(
1322 xfs_buf_t *bp, /* buffer to process */
1323 size_t boff, /* starting buffer offset */
1324 size_t bsize, /* length to copy */
1325 caddr_t data, /* data address */
1326 xfs_buf_rw_t mode) /* read/write/zero flag */
1327 {
1328 size_t bend, cpoff, csize;
1329 struct page *page;
1330
1331 bend = boff + bsize;
1332 while (boff < bend) {
1333 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1334 cpoff = xfs_buf_poff(boff + bp->b_offset);
1335 csize = min_t(size_t,
1336 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1337
1338 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1339
1340 switch (mode) {
1341 case XBRW_ZERO:
1342 memset(page_address(page) + cpoff, 0, csize);
1343 break;
1344 case XBRW_READ:
1345 memcpy(data, page_address(page) + cpoff, csize);
1346 break;
1347 case XBRW_WRITE:
1348 memcpy(page_address(page) + cpoff, data, csize);
1349 }
1350
1351 boff += csize;
1352 data += csize;
1353 }
1354 }
1355
1356 /*
1357 * Handling of buffer targets (buftargs).
1358 */
1359
1360 /*
1361 * Wait for any bufs with callbacks that have been submitted but
1362 * have not yet returned... walk the hash list for the target.
1363 */
1364 void
1365 xfs_wait_buftarg(
1366 xfs_buftarg_t *btp)
1367 {
1368 xfs_buf_t *bp, *n;
1369 xfs_bufhash_t *hash;
1370 uint i;
1371
1372 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1373 hash = &btp->bt_hash[i];
1374 again:
1375 spin_lock(&hash->bh_lock);
1376 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1377 ASSERT(btp == bp->b_target);
1378 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1379 spin_unlock(&hash->bh_lock);
1380 /*
1381 * Catch superblock reference count leaks
1382 * immediately
1383 */
1384 BUG_ON(bp->b_bn == 0);
1385 delay(100);
1386 goto again;
1387 }
1388 }
1389 spin_unlock(&hash->bh_lock);
1390 }
1391 }
1392
1393 /*
1394 * Allocate buffer hash table for a given target.
1395 * For devices containing metadata (i.e. not the log/realtime devices)
1396 * we need to allocate a much larger hash table.
1397 */
1398 STATIC void
1399 xfs_alloc_bufhash(
1400 xfs_buftarg_t *btp,
1401 int external)
1402 {
1403 unsigned int i;
1404
1405 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1406 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1407 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1408 sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1409 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1410 spin_lock_init(&btp->bt_hash[i].bh_lock);
1411 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1412 }
1413 }
1414
1415 STATIC void
1416 xfs_free_bufhash(
1417 xfs_buftarg_t *btp)
1418 {
1419 kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1420 btp->bt_hash = NULL;
1421 }
1422
1423 /*
1424 * buftarg list for delwrite queue processing
1425 */
1426 static LIST_HEAD(xfs_buftarg_list);
1427 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1428
1429 STATIC void
1430 xfs_register_buftarg(
1431 xfs_buftarg_t *btp)
1432 {
1433 spin_lock(&xfs_buftarg_lock);
1434 list_add(&btp->bt_list, &xfs_buftarg_list);
1435 spin_unlock(&xfs_buftarg_lock);
1436 }
1437
1438 STATIC void
1439 xfs_unregister_buftarg(
1440 xfs_buftarg_t *btp)
1441 {
1442 spin_lock(&xfs_buftarg_lock);
1443 list_del(&btp->bt_list);
1444 spin_unlock(&xfs_buftarg_lock);
1445 }
1446
1447 void
1448 xfs_free_buftarg(
1449 xfs_buftarg_t *btp,
1450 int external)
1451 {
1452 xfs_flush_buftarg(btp, 1);
1453 xfs_blkdev_issue_flush(btp);
1454 if (external)
1455 xfs_blkdev_put(btp->bt_bdev);
1456 xfs_free_bufhash(btp);
1457 iput(btp->bt_mapping->host);
1458
1459 /* Unregister the buftarg first so that we don't get a
1460 * wakeup finding a non-existent task
1461 */
1462 xfs_unregister_buftarg(btp);
1463 kthread_stop(btp->bt_task);
1464
1465 kmem_free(btp, sizeof(*btp));
1466 }
1467
1468 STATIC int
1469 xfs_setsize_buftarg_flags(
1470 xfs_buftarg_t *btp,
1471 unsigned int blocksize,
1472 unsigned int sectorsize,
1473 int verbose)
1474 {
1475 btp->bt_bsize = blocksize;
1476 btp->bt_sshift = ffs(sectorsize) - 1;
1477 btp->bt_smask = sectorsize - 1;
1478
1479 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1480 printk(KERN_WARNING
1481 "XFS: Cannot set_blocksize to %u on device %s\n",
1482 sectorsize, XFS_BUFTARG_NAME(btp));
1483 return EINVAL;
1484 }
1485
1486 if (verbose &&
1487 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1488 printk(KERN_WARNING
1489 "XFS: %u byte sectors in use on device %s. "
1490 "This is suboptimal; %u or greater is ideal.\n",
1491 sectorsize, XFS_BUFTARG_NAME(btp),
1492 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1493 }
1494
1495 return 0;
1496 }
1497
1498 /*
1499 * When allocating the initial buffer target we have not yet
1500 * read in the superblock, so don't know what sized sectors
1501 * are being used is at this early stage. Play safe.
1502 */
1503 STATIC int
1504 xfs_setsize_buftarg_early(
1505 xfs_buftarg_t *btp,
1506 struct block_device *bdev)
1507 {
1508 return xfs_setsize_buftarg_flags(btp,
1509 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1510 }
1511
1512 int
1513 xfs_setsize_buftarg(
1514 xfs_buftarg_t *btp,
1515 unsigned int blocksize,
1516 unsigned int sectorsize)
1517 {
1518 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1519 }
1520
1521 STATIC int
1522 xfs_mapping_buftarg(
1523 xfs_buftarg_t *btp,
1524 struct block_device *bdev)
1525 {
1526 struct backing_dev_info *bdi;
1527 struct inode *inode;
1528 struct address_space *mapping;
1529 static const struct address_space_operations mapping_aops = {
1530 .sync_page = block_sync_page,
1531 .migratepage = fail_migrate_page,
1532 };
1533
1534 inode = new_inode(bdev->bd_inode->i_sb);
1535 if (!inode) {
1536 printk(KERN_WARNING
1537 "XFS: Cannot allocate mapping inode for device %s\n",
1538 XFS_BUFTARG_NAME(btp));
1539 return ENOMEM;
1540 }
1541 inode->i_mode = S_IFBLK;
1542 inode->i_bdev = bdev;
1543 inode->i_rdev = bdev->bd_dev;
1544 bdi = blk_get_backing_dev_info(bdev);
1545 if (!bdi)
1546 bdi = &default_backing_dev_info;
1547 mapping = &inode->i_data;
1548 mapping->a_ops = &mapping_aops;
1549 mapping->backing_dev_info = bdi;
1550 mapping_set_gfp_mask(mapping, GFP_NOFS);
1551 btp->bt_mapping = mapping;
1552 return 0;
1553 }
1554
1555 STATIC int
1556 xfs_alloc_delwrite_queue(
1557 xfs_buftarg_t *btp)
1558 {
1559 int error = 0;
1560
1561 INIT_LIST_HEAD(&btp->bt_list);
1562 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1563 spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
1564 btp->bt_flags = 0;
1565 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1566 if (IS_ERR(btp->bt_task)) {
1567 error = PTR_ERR(btp->bt_task);
1568 goto out_error;
1569 }
1570 xfs_register_buftarg(btp);
1571 out_error:
1572 return error;
1573 }
1574
1575 xfs_buftarg_t *
1576 xfs_alloc_buftarg(
1577 struct block_device *bdev,
1578 int external)
1579 {
1580 xfs_buftarg_t *btp;
1581
1582 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1583
1584 btp->bt_dev = bdev->bd_dev;
1585 btp->bt_bdev = bdev;
1586 if (xfs_setsize_buftarg_early(btp, bdev))
1587 goto error;
1588 if (xfs_mapping_buftarg(btp, bdev))
1589 goto error;
1590 if (xfs_alloc_delwrite_queue(btp))
1591 goto error;
1592 xfs_alloc_bufhash(btp, external);
1593 return btp;
1594
1595 error:
1596 kmem_free(btp, sizeof(*btp));
1597 return NULL;
1598 }
1599
1600
1601 /*
1602 * Delayed write buffer handling
1603 */
1604 STATIC void
1605 xfs_buf_delwri_queue(
1606 xfs_buf_t *bp,
1607 int unlock)
1608 {
1609 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1610 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1611
1612 XB_TRACE(bp, "delwri_q", (long)unlock);
1613 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1614
1615 spin_lock(dwlk);
1616 /* If already in the queue, dequeue and place at tail */
1617 if (!list_empty(&bp->b_list)) {
1618 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1619 if (unlock)
1620 atomic_dec(&bp->b_hold);
1621 list_del(&bp->b_list);
1622 }
1623
1624 bp->b_flags |= _XBF_DELWRI_Q;
1625 list_add_tail(&bp->b_list, dwq);
1626 bp->b_queuetime = jiffies;
1627 spin_unlock(dwlk);
1628
1629 if (unlock)
1630 xfs_buf_unlock(bp);
1631 }
1632
1633 void
1634 xfs_buf_delwri_dequeue(
1635 xfs_buf_t *bp)
1636 {
1637 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1638 int dequeued = 0;
1639
1640 spin_lock(dwlk);
1641 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1642 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1643 list_del_init(&bp->b_list);
1644 dequeued = 1;
1645 }
1646 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1647 spin_unlock(dwlk);
1648
1649 if (dequeued)
1650 xfs_buf_rele(bp);
1651
1652 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1653 }
1654
1655 STATIC void
1656 xfs_buf_runall_queues(
1657 struct workqueue_struct *queue)
1658 {
1659 flush_workqueue(queue);
1660 }
1661
1662 STATIC int
1663 xfsbufd_wakeup(
1664 int priority,
1665 gfp_t mask)
1666 {
1667 xfs_buftarg_t *btp;
1668
1669 spin_lock(&xfs_buftarg_lock);
1670 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1671 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1672 continue;
1673 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1674 wake_up_process(btp->bt_task);
1675 }
1676 spin_unlock(&xfs_buftarg_lock);
1677 return 0;
1678 }
1679
1680 /*
1681 * Move as many buffers as specified to the supplied list
1682 * idicating if we skipped any buffers to prevent deadlocks.
1683 */
1684 STATIC int
1685 xfs_buf_delwri_split(
1686 xfs_buftarg_t *target,
1687 struct list_head *list,
1688 unsigned long age)
1689 {
1690 xfs_buf_t *bp, *n;
1691 struct list_head *dwq = &target->bt_delwrite_queue;
1692 spinlock_t *dwlk = &target->bt_delwrite_lock;
1693 int skipped = 0;
1694 int force;
1695
1696 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1697 INIT_LIST_HEAD(list);
1698 spin_lock(dwlk);
1699 list_for_each_entry_safe(bp, n, dwq, b_list) {
1700 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1701 ASSERT(bp->b_flags & XBF_DELWRI);
1702
1703 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1704 if (!force &&
1705 time_before(jiffies, bp->b_queuetime + age)) {
1706 xfs_buf_unlock(bp);
1707 break;
1708 }
1709
1710 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1711 _XBF_RUN_QUEUES);
1712 bp->b_flags |= XBF_WRITE;
1713 list_move_tail(&bp->b_list, list);
1714 } else
1715 skipped++;
1716 }
1717 spin_unlock(dwlk);
1718
1719 return skipped;
1720
1721 }
1722
1723 STATIC int
1724 xfsbufd(
1725 void *data)
1726 {
1727 struct list_head tmp;
1728 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1729 int count;
1730 xfs_buf_t *bp;
1731
1732 current->flags |= PF_MEMALLOC;
1733
1734 do {
1735 if (unlikely(freezing(current))) {
1736 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1737 refrigerator();
1738 } else {
1739 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1740 }
1741
1742 schedule_timeout_interruptible(
1743 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1744
1745 xfs_buf_delwri_split(target, &tmp,
1746 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1747
1748 count = 0;
1749 while (!list_empty(&tmp)) {
1750 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1751 ASSERT(target == bp->b_target);
1752
1753 list_del_init(&bp->b_list);
1754 xfs_buf_iostrategy(bp);
1755 count++;
1756 }
1757
1758 if (as_list_len > 0)
1759 purge_addresses();
1760 if (count)
1761 blk_run_address_space(target->bt_mapping);
1762
1763 } while (!kthread_should_stop());
1764
1765 return 0;
1766 }
1767
1768 /*
1769 * Go through all incore buffers, and release buffers if they belong to
1770 * the given device. This is used in filesystem error handling to
1771 * preserve the consistency of its metadata.
1772 */
1773 int
1774 xfs_flush_buftarg(
1775 xfs_buftarg_t *target,
1776 int wait)
1777 {
1778 struct list_head tmp;
1779 xfs_buf_t *bp, *n;
1780 int pincount = 0;
1781
1782 xfs_buf_runall_queues(xfsdatad_workqueue);
1783 xfs_buf_runall_queues(xfslogd_workqueue);
1784
1785 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1786 pincount = xfs_buf_delwri_split(target, &tmp, 0);
1787
1788 /*
1789 * Dropped the delayed write list lock, now walk the temporary list
1790 */
1791 list_for_each_entry_safe(bp, n, &tmp, b_list) {
1792 ASSERT(target == bp->b_target);
1793 if (wait)
1794 bp->b_flags &= ~XBF_ASYNC;
1795 else
1796 list_del_init(&bp->b_list);
1797
1798 xfs_buf_iostrategy(bp);
1799 }
1800
1801 if (wait)
1802 blk_run_address_space(target->bt_mapping);
1803
1804 /*
1805 * Remaining list items must be flushed before returning
1806 */
1807 while (!list_empty(&tmp)) {
1808 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1809
1810 list_del_init(&bp->b_list);
1811 xfs_iowait(bp);
1812 xfs_buf_relse(bp);
1813 }
1814
1815 return pincount;
1816 }
1817
1818 int __init
1819 xfs_buf_init(void)
1820 {
1821 #ifdef XFS_BUF_TRACE
1822 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1823 #endif
1824
1825 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1826 KM_ZONE_HWALIGN, NULL);
1827 if (!xfs_buf_zone)
1828 goto out_free_trace_buf;
1829
1830 xfslogd_workqueue = create_workqueue("xfslogd");
1831 if (!xfslogd_workqueue)
1832 goto out_free_buf_zone;
1833
1834 xfsdatad_workqueue = create_workqueue("xfsdatad");
1835 if (!xfsdatad_workqueue)
1836 goto out_destroy_xfslogd_workqueue;
1837
1838 register_shrinker(&xfs_buf_shake);
1839 return 0;
1840
1841 out_destroy_xfslogd_workqueue:
1842 destroy_workqueue(xfslogd_workqueue);
1843 out_free_buf_zone:
1844 kmem_zone_destroy(xfs_buf_zone);
1845 out_free_trace_buf:
1846 #ifdef XFS_BUF_TRACE
1847 ktrace_free(xfs_buf_trace_buf);
1848 #endif
1849 return -ENOMEM;
1850 }
1851
1852 void
1853 xfs_buf_terminate(void)
1854 {
1855 unregister_shrinker(&xfs_buf_shake);
1856 destroy_workqueue(xfsdatad_workqueue);
1857 destroy_workqueue(xfslogd_workqueue);
1858 kmem_zone_destroy(xfs_buf_zone);
1859 #ifdef XFS_BUF_TRACE
1860 ktrace_free(xfs_buf_trace_buf);
1861 #endif
1862 }
1863
1864 #ifdef CONFIG_KDB_MODULES
1865 struct list_head *
1866 xfs_get_buftarg_list(void)
1867 {
1868 return &xfs_buftarg_list;
1869 }
1870 #endif
This page took 0.106358 seconds and 6 git commands to generate.