Merge git://git.infradead.org/battery-2.6
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 static kmem_zone_t *xfs_buf_zone;
38 static struct shrinker *xfs_buf_shake;
39 STATIC int xfsbufd(void *);
40 STATIC int xfsbufd_wakeup(int, gfp_t);
41 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
42
43 static struct workqueue_struct *xfslogd_workqueue;
44 struct workqueue_struct *xfsdatad_workqueue;
45
46 #ifdef XFS_BUF_TRACE
47 void
48 xfs_buf_trace(
49 xfs_buf_t *bp,
50 char *id,
51 void *data,
52 void *ra)
53 {
54 ktrace_enter(xfs_buf_trace_buf,
55 bp, id,
56 (void *)(unsigned long)bp->b_flags,
57 (void *)(unsigned long)bp->b_hold.counter,
58 (void *)(unsigned long)bp->b_sema.count.counter,
59 (void *)current,
60 data, ra,
61 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
62 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
63 (void *)(unsigned long)bp->b_buffer_length,
64 NULL, NULL, NULL, NULL, NULL);
65 }
66 ktrace_t *xfs_buf_trace_buf;
67 #define XFS_BUF_TRACE_SIZE 4096
68 #define XB_TRACE(bp, id, data) \
69 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
70 #else
71 #define XB_TRACE(bp, id, data) do { } while (0)
72 #endif
73
74 #ifdef XFS_BUF_LOCK_TRACKING
75 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
76 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
77 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
78 #else
79 # define XB_SET_OWNER(bp) do { } while (0)
80 # define XB_CLEAR_OWNER(bp) do { } while (0)
81 # define XB_GET_OWNER(bp) do { } while (0)
82 #endif
83
84 #define xb_to_gfp(flags) \
85 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
86 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
87
88 #define xb_to_km(flags) \
89 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
90
91 #define xfs_buf_allocate(flags) \
92 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
93 #define xfs_buf_deallocate(bp) \
94 kmem_zone_free(xfs_buf_zone, (bp));
95
96 /*
97 * Page Region interfaces.
98 *
99 * For pages in filesystems where the blocksize is smaller than the
100 * pagesize, we use the page->private field (long) to hold a bitmap
101 * of uptodate regions within the page.
102 *
103 * Each such region is "bytes per page / bits per long" bytes long.
104 *
105 * NBPPR == number-of-bytes-per-page-region
106 * BTOPR == bytes-to-page-region (rounded up)
107 * BTOPRT == bytes-to-page-region-truncated (rounded down)
108 */
109 #if (BITS_PER_LONG == 32)
110 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
111 #elif (BITS_PER_LONG == 64)
112 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
113 #else
114 #error BITS_PER_LONG must be 32 or 64
115 #endif
116 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
117 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
118 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
119
120 STATIC unsigned long
121 page_region_mask(
122 size_t offset,
123 size_t length)
124 {
125 unsigned long mask;
126 int first, final;
127
128 first = BTOPR(offset);
129 final = BTOPRT(offset + length - 1);
130 first = min(first, final);
131
132 mask = ~0UL;
133 mask <<= BITS_PER_LONG - (final - first);
134 mask >>= BITS_PER_LONG - (final);
135
136 ASSERT(offset + length <= PAGE_CACHE_SIZE);
137 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
138
139 return mask;
140 }
141
142 STATIC_INLINE void
143 set_page_region(
144 struct page *page,
145 size_t offset,
146 size_t length)
147 {
148 set_page_private(page,
149 page_private(page) | page_region_mask(offset, length));
150 if (page_private(page) == ~0UL)
151 SetPageUptodate(page);
152 }
153
154 STATIC_INLINE int
155 test_page_region(
156 struct page *page,
157 size_t offset,
158 size_t length)
159 {
160 unsigned long mask = page_region_mask(offset, length);
161
162 return (mask && (page_private(page) & mask) == mask);
163 }
164
165 /*
166 * Mapping of multi-page buffers into contiguous virtual space
167 */
168
169 typedef struct a_list {
170 void *vm_addr;
171 struct a_list *next;
172 } a_list_t;
173
174 static a_list_t *as_free_head;
175 static int as_list_len;
176 static DEFINE_SPINLOCK(as_lock);
177
178 /*
179 * Try to batch vunmaps because they are costly.
180 */
181 STATIC void
182 free_address(
183 void *addr)
184 {
185 a_list_t *aentry;
186
187 aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
188 if (likely(aentry)) {
189 spin_lock(&as_lock);
190 aentry->next = as_free_head;
191 aentry->vm_addr = addr;
192 as_free_head = aentry;
193 as_list_len++;
194 spin_unlock(&as_lock);
195 } else {
196 vunmap(addr);
197 }
198 }
199
200 STATIC void
201 purge_addresses(void)
202 {
203 a_list_t *aentry, *old;
204
205 if (as_free_head == NULL)
206 return;
207
208 spin_lock(&as_lock);
209 aentry = as_free_head;
210 as_free_head = NULL;
211 as_list_len = 0;
212 spin_unlock(&as_lock);
213
214 while ((old = aentry) != NULL) {
215 vunmap(aentry->vm_addr);
216 aentry = aentry->next;
217 kfree(old);
218 }
219 }
220
221 /*
222 * Internal xfs_buf_t object manipulation
223 */
224
225 STATIC void
226 _xfs_buf_initialize(
227 xfs_buf_t *bp,
228 xfs_buftarg_t *target,
229 xfs_off_t range_base,
230 size_t range_length,
231 xfs_buf_flags_t flags)
232 {
233 /*
234 * We don't want certain flags to appear in b_flags.
235 */
236 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
237
238 memset(bp, 0, sizeof(xfs_buf_t));
239 atomic_set(&bp->b_hold, 1);
240 init_MUTEX_LOCKED(&bp->b_iodonesema);
241 INIT_LIST_HEAD(&bp->b_list);
242 INIT_LIST_HEAD(&bp->b_hash_list);
243 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
244 XB_SET_OWNER(bp);
245 bp->b_target = target;
246 bp->b_file_offset = range_base;
247 /*
248 * Set buffer_length and count_desired to the same value initially.
249 * I/O routines should use count_desired, which will be the same in
250 * most cases but may be reset (e.g. XFS recovery).
251 */
252 bp->b_buffer_length = bp->b_count_desired = range_length;
253 bp->b_flags = flags;
254 bp->b_bn = XFS_BUF_DADDR_NULL;
255 atomic_set(&bp->b_pin_count, 0);
256 init_waitqueue_head(&bp->b_waiters);
257
258 XFS_STATS_INC(xb_create);
259 XB_TRACE(bp, "initialize", target);
260 }
261
262 /*
263 * Allocate a page array capable of holding a specified number
264 * of pages, and point the page buf at it.
265 */
266 STATIC int
267 _xfs_buf_get_pages(
268 xfs_buf_t *bp,
269 int page_count,
270 xfs_buf_flags_t flags)
271 {
272 /* Make sure that we have a page list */
273 if (bp->b_pages == NULL) {
274 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
275 bp->b_page_count = page_count;
276 if (page_count <= XB_PAGES) {
277 bp->b_pages = bp->b_page_array;
278 } else {
279 bp->b_pages = kmem_alloc(sizeof(struct page *) *
280 page_count, xb_to_km(flags));
281 if (bp->b_pages == NULL)
282 return -ENOMEM;
283 }
284 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
285 }
286 return 0;
287 }
288
289 /*
290 * Frees b_pages if it was allocated.
291 */
292 STATIC void
293 _xfs_buf_free_pages(
294 xfs_buf_t *bp)
295 {
296 if (bp->b_pages != bp->b_page_array) {
297 kmem_free(bp->b_pages,
298 bp->b_page_count * sizeof(struct page *));
299 }
300 }
301
302 /*
303 * Releases the specified buffer.
304 *
305 * The modification state of any associated pages is left unchanged.
306 * The buffer most not be on any hash - use xfs_buf_rele instead for
307 * hashed and refcounted buffers
308 */
309 void
310 xfs_buf_free(
311 xfs_buf_t *bp)
312 {
313 XB_TRACE(bp, "free", 0);
314
315 ASSERT(list_empty(&bp->b_hash_list));
316
317 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
318 uint i;
319
320 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
321 free_address(bp->b_addr - bp->b_offset);
322
323 for (i = 0; i < bp->b_page_count; i++) {
324 struct page *page = bp->b_pages[i];
325
326 if (bp->b_flags & _XBF_PAGE_CACHE)
327 ASSERT(!PagePrivate(page));
328 page_cache_release(page);
329 }
330 _xfs_buf_free_pages(bp);
331 }
332
333 xfs_buf_deallocate(bp);
334 }
335
336 /*
337 * Finds all pages for buffer in question and builds it's page list.
338 */
339 STATIC int
340 _xfs_buf_lookup_pages(
341 xfs_buf_t *bp,
342 uint flags)
343 {
344 struct address_space *mapping = bp->b_target->bt_mapping;
345 size_t blocksize = bp->b_target->bt_bsize;
346 size_t size = bp->b_count_desired;
347 size_t nbytes, offset;
348 gfp_t gfp_mask = xb_to_gfp(flags);
349 unsigned short page_count, i;
350 pgoff_t first;
351 xfs_off_t end;
352 int error;
353
354 end = bp->b_file_offset + bp->b_buffer_length;
355 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
356
357 error = _xfs_buf_get_pages(bp, page_count, flags);
358 if (unlikely(error))
359 return error;
360 bp->b_flags |= _XBF_PAGE_CACHE;
361
362 offset = bp->b_offset;
363 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
364
365 for (i = 0; i < bp->b_page_count; i++) {
366 struct page *page;
367 uint retries = 0;
368
369 retry:
370 page = find_or_create_page(mapping, first + i, gfp_mask);
371 if (unlikely(page == NULL)) {
372 if (flags & XBF_READ_AHEAD) {
373 bp->b_page_count = i;
374 for (i = 0; i < bp->b_page_count; i++)
375 unlock_page(bp->b_pages[i]);
376 return -ENOMEM;
377 }
378
379 /*
380 * This could deadlock.
381 *
382 * But until all the XFS lowlevel code is revamped to
383 * handle buffer allocation failures we can't do much.
384 */
385 if (!(++retries % 100))
386 printk(KERN_ERR
387 "XFS: possible memory allocation "
388 "deadlock in %s (mode:0x%x)\n",
389 __FUNCTION__, gfp_mask);
390
391 XFS_STATS_INC(xb_page_retries);
392 xfsbufd_wakeup(0, gfp_mask);
393 congestion_wait(WRITE, HZ/50);
394 goto retry;
395 }
396
397 XFS_STATS_INC(xb_page_found);
398
399 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
400 size -= nbytes;
401
402 ASSERT(!PagePrivate(page));
403 if (!PageUptodate(page)) {
404 page_count--;
405 if (blocksize >= PAGE_CACHE_SIZE) {
406 if (flags & XBF_READ)
407 bp->b_locked = 1;
408 } else if (!PagePrivate(page)) {
409 if (test_page_region(page, offset, nbytes))
410 page_count++;
411 }
412 }
413
414 bp->b_pages[i] = page;
415 offset = 0;
416 }
417
418 if (!bp->b_locked) {
419 for (i = 0; i < bp->b_page_count; i++)
420 unlock_page(bp->b_pages[i]);
421 }
422
423 if (page_count == bp->b_page_count)
424 bp->b_flags |= XBF_DONE;
425
426 XB_TRACE(bp, "lookup_pages", (long)page_count);
427 return error;
428 }
429
430 /*
431 * Map buffer into kernel address-space if nessecary.
432 */
433 STATIC int
434 _xfs_buf_map_pages(
435 xfs_buf_t *bp,
436 uint flags)
437 {
438 /* A single page buffer is always mappable */
439 if (bp->b_page_count == 1) {
440 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
441 bp->b_flags |= XBF_MAPPED;
442 } else if (flags & XBF_MAPPED) {
443 if (as_list_len > 64)
444 purge_addresses();
445 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
446 VM_MAP, PAGE_KERNEL);
447 if (unlikely(bp->b_addr == NULL))
448 return -ENOMEM;
449 bp->b_addr += bp->b_offset;
450 bp->b_flags |= XBF_MAPPED;
451 }
452
453 return 0;
454 }
455
456 /*
457 * Finding and Reading Buffers
458 */
459
460 /*
461 * Look up, and creates if absent, a lockable buffer for
462 * a given range of an inode. The buffer is returned
463 * locked. If other overlapping buffers exist, they are
464 * released before the new buffer is created and locked,
465 * which may imply that this call will block until those buffers
466 * are unlocked. No I/O is implied by this call.
467 */
468 xfs_buf_t *
469 _xfs_buf_find(
470 xfs_buftarg_t *btp, /* block device target */
471 xfs_off_t ioff, /* starting offset of range */
472 size_t isize, /* length of range */
473 xfs_buf_flags_t flags,
474 xfs_buf_t *new_bp)
475 {
476 xfs_off_t range_base;
477 size_t range_length;
478 xfs_bufhash_t *hash;
479 xfs_buf_t *bp, *n;
480
481 range_base = (ioff << BBSHIFT);
482 range_length = (isize << BBSHIFT);
483
484 /* Check for IOs smaller than the sector size / not sector aligned */
485 ASSERT(!(range_length < (1 << btp->bt_sshift)));
486 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
487
488 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
489
490 spin_lock(&hash->bh_lock);
491
492 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
493 ASSERT(btp == bp->b_target);
494 if (bp->b_file_offset == range_base &&
495 bp->b_buffer_length == range_length) {
496 /*
497 * If we look at something, bring it to the
498 * front of the list for next time.
499 */
500 atomic_inc(&bp->b_hold);
501 list_move(&bp->b_hash_list, &hash->bh_list);
502 goto found;
503 }
504 }
505
506 /* No match found */
507 if (new_bp) {
508 _xfs_buf_initialize(new_bp, btp, range_base,
509 range_length, flags);
510 new_bp->b_hash = hash;
511 list_add(&new_bp->b_hash_list, &hash->bh_list);
512 } else {
513 XFS_STATS_INC(xb_miss_locked);
514 }
515
516 spin_unlock(&hash->bh_lock);
517 return new_bp;
518
519 found:
520 spin_unlock(&hash->bh_lock);
521
522 /* Attempt to get the semaphore without sleeping,
523 * if this does not work then we need to drop the
524 * spinlock and do a hard attempt on the semaphore.
525 */
526 if (down_trylock(&bp->b_sema)) {
527 if (!(flags & XBF_TRYLOCK)) {
528 /* wait for buffer ownership */
529 XB_TRACE(bp, "get_lock", 0);
530 xfs_buf_lock(bp);
531 XFS_STATS_INC(xb_get_locked_waited);
532 } else {
533 /* We asked for a trylock and failed, no need
534 * to look at file offset and length here, we
535 * know that this buffer at least overlaps our
536 * buffer and is locked, therefore our buffer
537 * either does not exist, or is this buffer.
538 */
539 xfs_buf_rele(bp);
540 XFS_STATS_INC(xb_busy_locked);
541 return NULL;
542 }
543 } else {
544 /* trylock worked */
545 XB_SET_OWNER(bp);
546 }
547
548 if (bp->b_flags & XBF_STALE) {
549 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
550 bp->b_flags &= XBF_MAPPED;
551 }
552 XB_TRACE(bp, "got_lock", 0);
553 XFS_STATS_INC(xb_get_locked);
554 return bp;
555 }
556
557 /*
558 * Assembles a buffer covering the specified range.
559 * Storage in memory for all portions of the buffer will be allocated,
560 * although backing storage may not be.
561 */
562 xfs_buf_t *
563 xfs_buf_get_flags(
564 xfs_buftarg_t *target,/* target for buffer */
565 xfs_off_t ioff, /* starting offset of range */
566 size_t isize, /* length of range */
567 xfs_buf_flags_t flags)
568 {
569 xfs_buf_t *bp, *new_bp;
570 int error = 0, i;
571
572 new_bp = xfs_buf_allocate(flags);
573 if (unlikely(!new_bp))
574 return NULL;
575
576 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
577 if (bp == new_bp) {
578 error = _xfs_buf_lookup_pages(bp, flags);
579 if (error)
580 goto no_buffer;
581 } else {
582 xfs_buf_deallocate(new_bp);
583 if (unlikely(bp == NULL))
584 return NULL;
585 }
586
587 for (i = 0; i < bp->b_page_count; i++)
588 mark_page_accessed(bp->b_pages[i]);
589
590 if (!(bp->b_flags & XBF_MAPPED)) {
591 error = _xfs_buf_map_pages(bp, flags);
592 if (unlikely(error)) {
593 printk(KERN_WARNING "%s: failed to map pages\n",
594 __FUNCTION__);
595 goto no_buffer;
596 }
597 }
598
599 XFS_STATS_INC(xb_get);
600
601 /*
602 * Always fill in the block number now, the mapped cases can do
603 * their own overlay of this later.
604 */
605 bp->b_bn = ioff;
606 bp->b_count_desired = bp->b_buffer_length;
607
608 XB_TRACE(bp, "get", (unsigned long)flags);
609 return bp;
610
611 no_buffer:
612 if (flags & (XBF_LOCK | XBF_TRYLOCK))
613 xfs_buf_unlock(bp);
614 xfs_buf_rele(bp);
615 return NULL;
616 }
617
618 xfs_buf_t *
619 xfs_buf_read_flags(
620 xfs_buftarg_t *target,
621 xfs_off_t ioff,
622 size_t isize,
623 xfs_buf_flags_t flags)
624 {
625 xfs_buf_t *bp;
626
627 flags |= XBF_READ;
628
629 bp = xfs_buf_get_flags(target, ioff, isize, flags);
630 if (bp) {
631 if (!XFS_BUF_ISDONE(bp)) {
632 XB_TRACE(bp, "read", (unsigned long)flags);
633 XFS_STATS_INC(xb_get_read);
634 xfs_buf_iostart(bp, flags);
635 } else if (flags & XBF_ASYNC) {
636 XB_TRACE(bp, "read_async", (unsigned long)flags);
637 /*
638 * Read ahead call which is already satisfied,
639 * drop the buffer
640 */
641 goto no_buffer;
642 } else {
643 XB_TRACE(bp, "read_done", (unsigned long)flags);
644 /* We do not want read in the flags */
645 bp->b_flags &= ~XBF_READ;
646 }
647 }
648
649 return bp;
650
651 no_buffer:
652 if (flags & (XBF_LOCK | XBF_TRYLOCK))
653 xfs_buf_unlock(bp);
654 xfs_buf_rele(bp);
655 return NULL;
656 }
657
658 /*
659 * If we are not low on memory then do the readahead in a deadlock
660 * safe manner.
661 */
662 void
663 xfs_buf_readahead(
664 xfs_buftarg_t *target,
665 xfs_off_t ioff,
666 size_t isize,
667 xfs_buf_flags_t flags)
668 {
669 struct backing_dev_info *bdi;
670
671 bdi = target->bt_mapping->backing_dev_info;
672 if (bdi_read_congested(bdi))
673 return;
674
675 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
676 xfs_buf_read_flags(target, ioff, isize, flags);
677 }
678
679 xfs_buf_t *
680 xfs_buf_get_empty(
681 size_t len,
682 xfs_buftarg_t *target)
683 {
684 xfs_buf_t *bp;
685
686 bp = xfs_buf_allocate(0);
687 if (bp)
688 _xfs_buf_initialize(bp, target, 0, len, 0);
689 return bp;
690 }
691
692 static inline struct page *
693 mem_to_page(
694 void *addr)
695 {
696 if (((unsigned long)addr < VMALLOC_START) ||
697 ((unsigned long)addr >= VMALLOC_END)) {
698 return virt_to_page(addr);
699 } else {
700 return vmalloc_to_page(addr);
701 }
702 }
703
704 int
705 xfs_buf_associate_memory(
706 xfs_buf_t *bp,
707 void *mem,
708 size_t len)
709 {
710 int rval;
711 int i = 0;
712 size_t ptr;
713 size_t end, end_cur;
714 off_t offset;
715 int page_count;
716
717 page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
718 offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
719 if (offset && (len > PAGE_CACHE_SIZE))
720 page_count++;
721
722 /* Free any previous set of page pointers */
723 if (bp->b_pages)
724 _xfs_buf_free_pages(bp);
725
726 bp->b_pages = NULL;
727 bp->b_addr = mem;
728
729 rval = _xfs_buf_get_pages(bp, page_count, 0);
730 if (rval)
731 return rval;
732
733 bp->b_offset = offset;
734 ptr = (size_t) mem & PAGE_CACHE_MASK;
735 end = PAGE_CACHE_ALIGN((size_t) mem + len);
736 end_cur = end;
737 /* set up first page */
738 bp->b_pages[0] = mem_to_page(mem);
739
740 ptr += PAGE_CACHE_SIZE;
741 bp->b_page_count = ++i;
742 while (ptr < end) {
743 bp->b_pages[i] = mem_to_page((void *)ptr);
744 bp->b_page_count = ++i;
745 ptr += PAGE_CACHE_SIZE;
746 }
747 bp->b_locked = 0;
748
749 bp->b_count_desired = bp->b_buffer_length = len;
750 bp->b_flags |= XBF_MAPPED;
751
752 return 0;
753 }
754
755 xfs_buf_t *
756 xfs_buf_get_noaddr(
757 size_t len,
758 xfs_buftarg_t *target)
759 {
760 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
761 int error, i;
762 xfs_buf_t *bp;
763
764 bp = xfs_buf_allocate(0);
765 if (unlikely(bp == NULL))
766 goto fail;
767 _xfs_buf_initialize(bp, target, 0, len, 0);
768
769 error = _xfs_buf_get_pages(bp, page_count, 0);
770 if (error)
771 goto fail_free_buf;
772
773 for (i = 0; i < page_count; i++) {
774 bp->b_pages[i] = alloc_page(GFP_KERNEL);
775 if (!bp->b_pages[i])
776 goto fail_free_mem;
777 }
778 bp->b_flags |= _XBF_PAGES;
779
780 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
781 if (unlikely(error)) {
782 printk(KERN_WARNING "%s: failed to map pages\n",
783 __FUNCTION__);
784 goto fail_free_mem;
785 }
786
787 xfs_buf_unlock(bp);
788
789 XB_TRACE(bp, "no_daddr", len);
790 return bp;
791
792 fail_free_mem:
793 while (--i >= 0)
794 __free_page(bp->b_pages[i]);
795 _xfs_buf_free_pages(bp);
796 fail_free_buf:
797 xfs_buf_deallocate(bp);
798 fail:
799 return NULL;
800 }
801
802 /*
803 * Increment reference count on buffer, to hold the buffer concurrently
804 * with another thread which may release (free) the buffer asynchronously.
805 * Must hold the buffer already to call this function.
806 */
807 void
808 xfs_buf_hold(
809 xfs_buf_t *bp)
810 {
811 atomic_inc(&bp->b_hold);
812 XB_TRACE(bp, "hold", 0);
813 }
814
815 /*
816 * Releases a hold on the specified buffer. If the
817 * the hold count is 1, calls xfs_buf_free.
818 */
819 void
820 xfs_buf_rele(
821 xfs_buf_t *bp)
822 {
823 xfs_bufhash_t *hash = bp->b_hash;
824
825 XB_TRACE(bp, "rele", bp->b_relse);
826
827 if (unlikely(!hash)) {
828 ASSERT(!bp->b_relse);
829 if (atomic_dec_and_test(&bp->b_hold))
830 xfs_buf_free(bp);
831 return;
832 }
833
834 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
835 if (bp->b_relse) {
836 atomic_inc(&bp->b_hold);
837 spin_unlock(&hash->bh_lock);
838 (*(bp->b_relse)) (bp);
839 } else if (bp->b_flags & XBF_FS_MANAGED) {
840 spin_unlock(&hash->bh_lock);
841 } else {
842 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
843 list_del_init(&bp->b_hash_list);
844 spin_unlock(&hash->bh_lock);
845 xfs_buf_free(bp);
846 }
847 } else {
848 /*
849 * Catch reference count leaks
850 */
851 ASSERT(atomic_read(&bp->b_hold) >= 0);
852 }
853 }
854
855
856 /*
857 * Mutual exclusion on buffers. Locking model:
858 *
859 * Buffers associated with inodes for which buffer locking
860 * is not enabled are not protected by semaphores, and are
861 * assumed to be exclusively owned by the caller. There is a
862 * spinlock in the buffer, used by the caller when concurrent
863 * access is possible.
864 */
865
866 /*
867 * Locks a buffer object, if it is not already locked.
868 * Note that this in no way locks the underlying pages, so it is only
869 * useful for synchronizing concurrent use of buffer objects, not for
870 * synchronizing independent access to the underlying pages.
871 */
872 int
873 xfs_buf_cond_lock(
874 xfs_buf_t *bp)
875 {
876 int locked;
877
878 locked = down_trylock(&bp->b_sema) == 0;
879 if (locked) {
880 XB_SET_OWNER(bp);
881 }
882 XB_TRACE(bp, "cond_lock", (long)locked);
883 return locked ? 0 : -EBUSY;
884 }
885
886 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
887 int
888 xfs_buf_lock_value(
889 xfs_buf_t *bp)
890 {
891 return atomic_read(&bp->b_sema.count);
892 }
893 #endif
894
895 /*
896 * Locks a buffer object.
897 * Note that this in no way locks the underlying pages, so it is only
898 * useful for synchronizing concurrent use of buffer objects, not for
899 * synchronizing independent access to the underlying pages.
900 */
901 void
902 xfs_buf_lock(
903 xfs_buf_t *bp)
904 {
905 XB_TRACE(bp, "lock", 0);
906 if (atomic_read(&bp->b_io_remaining))
907 blk_run_address_space(bp->b_target->bt_mapping);
908 down(&bp->b_sema);
909 XB_SET_OWNER(bp);
910 XB_TRACE(bp, "locked", 0);
911 }
912
913 /*
914 * Releases the lock on the buffer object.
915 * If the buffer is marked delwri but is not queued, do so before we
916 * unlock the buffer as we need to set flags correctly. We also need to
917 * take a reference for the delwri queue because the unlocker is going to
918 * drop their's and they don't know we just queued it.
919 */
920 void
921 xfs_buf_unlock(
922 xfs_buf_t *bp)
923 {
924 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
925 atomic_inc(&bp->b_hold);
926 bp->b_flags |= XBF_ASYNC;
927 xfs_buf_delwri_queue(bp, 0);
928 }
929
930 XB_CLEAR_OWNER(bp);
931 up(&bp->b_sema);
932 XB_TRACE(bp, "unlock", 0);
933 }
934
935
936 /*
937 * Pinning Buffer Storage in Memory
938 * Ensure that no attempt to force a buffer to disk will succeed.
939 */
940 void
941 xfs_buf_pin(
942 xfs_buf_t *bp)
943 {
944 atomic_inc(&bp->b_pin_count);
945 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
946 }
947
948 void
949 xfs_buf_unpin(
950 xfs_buf_t *bp)
951 {
952 if (atomic_dec_and_test(&bp->b_pin_count))
953 wake_up_all(&bp->b_waiters);
954 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
955 }
956
957 int
958 xfs_buf_ispin(
959 xfs_buf_t *bp)
960 {
961 return atomic_read(&bp->b_pin_count);
962 }
963
964 STATIC void
965 xfs_buf_wait_unpin(
966 xfs_buf_t *bp)
967 {
968 DECLARE_WAITQUEUE (wait, current);
969
970 if (atomic_read(&bp->b_pin_count) == 0)
971 return;
972
973 add_wait_queue(&bp->b_waiters, &wait);
974 for (;;) {
975 set_current_state(TASK_UNINTERRUPTIBLE);
976 if (atomic_read(&bp->b_pin_count) == 0)
977 break;
978 if (atomic_read(&bp->b_io_remaining))
979 blk_run_address_space(bp->b_target->bt_mapping);
980 schedule();
981 }
982 remove_wait_queue(&bp->b_waiters, &wait);
983 set_current_state(TASK_RUNNING);
984 }
985
986 /*
987 * Buffer Utility Routines
988 */
989
990 STATIC void
991 xfs_buf_iodone_work(
992 struct work_struct *work)
993 {
994 xfs_buf_t *bp =
995 container_of(work, xfs_buf_t, b_iodone_work);
996
997 if (bp->b_iodone)
998 (*(bp->b_iodone))(bp);
999 else if (bp->b_flags & XBF_ASYNC)
1000 xfs_buf_relse(bp);
1001 }
1002
1003 void
1004 xfs_buf_ioend(
1005 xfs_buf_t *bp,
1006 int schedule)
1007 {
1008 bp->b_flags &= ~(XBF_READ | XBF_WRITE);
1009 if (bp->b_error == 0)
1010 bp->b_flags |= XBF_DONE;
1011
1012 XB_TRACE(bp, "iodone", bp->b_iodone);
1013
1014 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1015 if (schedule) {
1016 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1017 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1018 } else {
1019 xfs_buf_iodone_work(&bp->b_iodone_work);
1020 }
1021 } else {
1022 up(&bp->b_iodonesema);
1023 }
1024 }
1025
1026 void
1027 xfs_buf_ioerror(
1028 xfs_buf_t *bp,
1029 int error)
1030 {
1031 ASSERT(error >= 0 && error <= 0xffff);
1032 bp->b_error = (unsigned short)error;
1033 XB_TRACE(bp, "ioerror", (unsigned long)error);
1034 }
1035
1036 /*
1037 * Initiate I/O on a buffer, based on the flags supplied.
1038 * The b_iodone routine in the buffer supplied will only be called
1039 * when all of the subsidiary I/O requests, if any, have been completed.
1040 */
1041 int
1042 xfs_buf_iostart(
1043 xfs_buf_t *bp,
1044 xfs_buf_flags_t flags)
1045 {
1046 int status = 0;
1047
1048 XB_TRACE(bp, "iostart", (unsigned long)flags);
1049
1050 if (flags & XBF_DELWRI) {
1051 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1052 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1053 xfs_buf_delwri_queue(bp, 1);
1054 return status;
1055 }
1056
1057 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1058 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1059 bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1060 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1061
1062 BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1063
1064 /* For writes allow an alternate strategy routine to precede
1065 * the actual I/O request (which may not be issued at all in
1066 * a shutdown situation, for example).
1067 */
1068 status = (flags & XBF_WRITE) ?
1069 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1070
1071 /* Wait for I/O if we are not an async request.
1072 * Note: async I/O request completion will release the buffer,
1073 * and that can already be done by this point. So using the
1074 * buffer pointer from here on, after async I/O, is invalid.
1075 */
1076 if (!status && !(flags & XBF_ASYNC))
1077 status = xfs_buf_iowait(bp);
1078
1079 return status;
1080 }
1081
1082 STATIC_INLINE int
1083 _xfs_buf_iolocked(
1084 xfs_buf_t *bp)
1085 {
1086 ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE));
1087 if (bp->b_flags & XBF_READ)
1088 return bp->b_locked;
1089 return 0;
1090 }
1091
1092 STATIC_INLINE void
1093 _xfs_buf_ioend(
1094 xfs_buf_t *bp,
1095 int schedule)
1096 {
1097 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1098 bp->b_locked = 0;
1099 xfs_buf_ioend(bp, schedule);
1100 }
1101 }
1102
1103 STATIC int
1104 xfs_buf_bio_end_io(
1105 struct bio *bio,
1106 unsigned int bytes_done,
1107 int error)
1108 {
1109 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1110 unsigned int blocksize = bp->b_target->bt_bsize;
1111 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1112
1113 if (bio->bi_size)
1114 return 1;
1115
1116 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1117 bp->b_error = EIO;
1118
1119 do {
1120 struct page *page = bvec->bv_page;
1121
1122 ASSERT(!PagePrivate(page));
1123 if (unlikely(bp->b_error)) {
1124 if (bp->b_flags & XBF_READ)
1125 ClearPageUptodate(page);
1126 } else if (blocksize >= PAGE_CACHE_SIZE) {
1127 SetPageUptodate(page);
1128 } else if (!PagePrivate(page) &&
1129 (bp->b_flags & _XBF_PAGE_CACHE)) {
1130 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1131 }
1132
1133 if (--bvec >= bio->bi_io_vec)
1134 prefetchw(&bvec->bv_page->flags);
1135
1136 if (_xfs_buf_iolocked(bp)) {
1137 unlock_page(page);
1138 }
1139 } while (bvec >= bio->bi_io_vec);
1140
1141 _xfs_buf_ioend(bp, 1);
1142 bio_put(bio);
1143 return 0;
1144 }
1145
1146 STATIC void
1147 _xfs_buf_ioapply(
1148 xfs_buf_t *bp)
1149 {
1150 int i, rw, map_i, total_nr_pages, nr_pages;
1151 struct bio *bio;
1152 int offset = bp->b_offset;
1153 int size = bp->b_count_desired;
1154 sector_t sector = bp->b_bn;
1155 unsigned int blocksize = bp->b_target->bt_bsize;
1156 int locking = _xfs_buf_iolocked(bp);
1157
1158 total_nr_pages = bp->b_page_count;
1159 map_i = 0;
1160
1161 if (bp->b_flags & XBF_ORDERED) {
1162 ASSERT(!(bp->b_flags & XBF_READ));
1163 rw = WRITE_BARRIER;
1164 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1165 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1166 bp->b_flags &= ~_XBF_RUN_QUEUES;
1167 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1168 } else {
1169 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1170 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1171 }
1172
1173 /* Special code path for reading a sub page size buffer in --
1174 * we populate up the whole page, and hence the other metadata
1175 * in the same page. This optimization is only valid when the
1176 * filesystem block size is not smaller than the page size.
1177 */
1178 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1179 (bp->b_flags & XBF_READ) && locking &&
1180 (blocksize >= PAGE_CACHE_SIZE)) {
1181 bio = bio_alloc(GFP_NOIO, 1);
1182
1183 bio->bi_bdev = bp->b_target->bt_bdev;
1184 bio->bi_sector = sector - (offset >> BBSHIFT);
1185 bio->bi_end_io = xfs_buf_bio_end_io;
1186 bio->bi_private = bp;
1187
1188 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1189 size = 0;
1190
1191 atomic_inc(&bp->b_io_remaining);
1192
1193 goto submit_io;
1194 }
1195
1196 /* Lock down the pages which we need to for the request */
1197 if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) {
1198 for (i = 0; size; i++) {
1199 int nbytes = PAGE_CACHE_SIZE - offset;
1200 struct page *page = bp->b_pages[i];
1201
1202 if (nbytes > size)
1203 nbytes = size;
1204
1205 lock_page(page);
1206
1207 size -= nbytes;
1208 offset = 0;
1209 }
1210 offset = bp->b_offset;
1211 size = bp->b_count_desired;
1212 }
1213
1214 next_chunk:
1215 atomic_inc(&bp->b_io_remaining);
1216 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1217 if (nr_pages > total_nr_pages)
1218 nr_pages = total_nr_pages;
1219
1220 bio = bio_alloc(GFP_NOIO, nr_pages);
1221 bio->bi_bdev = bp->b_target->bt_bdev;
1222 bio->bi_sector = sector;
1223 bio->bi_end_io = xfs_buf_bio_end_io;
1224 bio->bi_private = bp;
1225
1226 for (; size && nr_pages; nr_pages--, map_i++) {
1227 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1228
1229 if (nbytes > size)
1230 nbytes = size;
1231
1232 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1233 if (rbytes < nbytes)
1234 break;
1235
1236 offset = 0;
1237 sector += nbytes >> BBSHIFT;
1238 size -= nbytes;
1239 total_nr_pages--;
1240 }
1241
1242 submit_io:
1243 if (likely(bio->bi_size)) {
1244 submit_bio(rw, bio);
1245 if (size)
1246 goto next_chunk;
1247 } else {
1248 bio_put(bio);
1249 xfs_buf_ioerror(bp, EIO);
1250 }
1251 }
1252
1253 int
1254 xfs_buf_iorequest(
1255 xfs_buf_t *bp)
1256 {
1257 XB_TRACE(bp, "iorequest", 0);
1258
1259 if (bp->b_flags & XBF_DELWRI) {
1260 xfs_buf_delwri_queue(bp, 1);
1261 return 0;
1262 }
1263
1264 if (bp->b_flags & XBF_WRITE) {
1265 xfs_buf_wait_unpin(bp);
1266 }
1267
1268 xfs_buf_hold(bp);
1269
1270 /* Set the count to 1 initially, this will stop an I/O
1271 * completion callout which happens before we have started
1272 * all the I/O from calling xfs_buf_ioend too early.
1273 */
1274 atomic_set(&bp->b_io_remaining, 1);
1275 _xfs_buf_ioapply(bp);
1276 _xfs_buf_ioend(bp, 0);
1277
1278 xfs_buf_rele(bp);
1279 return 0;
1280 }
1281
1282 /*
1283 * Waits for I/O to complete on the buffer supplied.
1284 * It returns immediately if no I/O is pending.
1285 * It returns the I/O error code, if any, or 0 if there was no error.
1286 */
1287 int
1288 xfs_buf_iowait(
1289 xfs_buf_t *bp)
1290 {
1291 XB_TRACE(bp, "iowait", 0);
1292 if (atomic_read(&bp->b_io_remaining))
1293 blk_run_address_space(bp->b_target->bt_mapping);
1294 down(&bp->b_iodonesema);
1295 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1296 return bp->b_error;
1297 }
1298
1299 xfs_caddr_t
1300 xfs_buf_offset(
1301 xfs_buf_t *bp,
1302 size_t offset)
1303 {
1304 struct page *page;
1305
1306 if (bp->b_flags & XBF_MAPPED)
1307 return XFS_BUF_PTR(bp) + offset;
1308
1309 offset += bp->b_offset;
1310 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1311 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1312 }
1313
1314 /*
1315 * Move data into or out of a buffer.
1316 */
1317 void
1318 xfs_buf_iomove(
1319 xfs_buf_t *bp, /* buffer to process */
1320 size_t boff, /* starting buffer offset */
1321 size_t bsize, /* length to copy */
1322 caddr_t data, /* data address */
1323 xfs_buf_rw_t mode) /* read/write/zero flag */
1324 {
1325 size_t bend, cpoff, csize;
1326 struct page *page;
1327
1328 bend = boff + bsize;
1329 while (boff < bend) {
1330 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1331 cpoff = xfs_buf_poff(boff + bp->b_offset);
1332 csize = min_t(size_t,
1333 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1334
1335 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1336
1337 switch (mode) {
1338 case XBRW_ZERO:
1339 memset(page_address(page) + cpoff, 0, csize);
1340 break;
1341 case XBRW_READ:
1342 memcpy(data, page_address(page) + cpoff, csize);
1343 break;
1344 case XBRW_WRITE:
1345 memcpy(page_address(page) + cpoff, data, csize);
1346 }
1347
1348 boff += csize;
1349 data += csize;
1350 }
1351 }
1352
1353 /*
1354 * Handling of buffer targets (buftargs).
1355 */
1356
1357 /*
1358 * Wait for any bufs with callbacks that have been submitted but
1359 * have not yet returned... walk the hash list for the target.
1360 */
1361 void
1362 xfs_wait_buftarg(
1363 xfs_buftarg_t *btp)
1364 {
1365 xfs_buf_t *bp, *n;
1366 xfs_bufhash_t *hash;
1367 uint i;
1368
1369 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1370 hash = &btp->bt_hash[i];
1371 again:
1372 spin_lock(&hash->bh_lock);
1373 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1374 ASSERT(btp == bp->b_target);
1375 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1376 spin_unlock(&hash->bh_lock);
1377 /*
1378 * Catch superblock reference count leaks
1379 * immediately
1380 */
1381 BUG_ON(bp->b_bn == 0);
1382 delay(100);
1383 goto again;
1384 }
1385 }
1386 spin_unlock(&hash->bh_lock);
1387 }
1388 }
1389
1390 /*
1391 * Allocate buffer hash table for a given target.
1392 * For devices containing metadata (i.e. not the log/realtime devices)
1393 * we need to allocate a much larger hash table.
1394 */
1395 STATIC void
1396 xfs_alloc_bufhash(
1397 xfs_buftarg_t *btp,
1398 int external)
1399 {
1400 unsigned int i;
1401
1402 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1403 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1404 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1405 sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1406 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1407 spin_lock_init(&btp->bt_hash[i].bh_lock);
1408 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1409 }
1410 }
1411
1412 STATIC void
1413 xfs_free_bufhash(
1414 xfs_buftarg_t *btp)
1415 {
1416 kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1417 btp->bt_hash = NULL;
1418 }
1419
1420 /*
1421 * buftarg list for delwrite queue processing
1422 */
1423 static LIST_HEAD(xfs_buftarg_list);
1424 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1425
1426 STATIC void
1427 xfs_register_buftarg(
1428 xfs_buftarg_t *btp)
1429 {
1430 spin_lock(&xfs_buftarg_lock);
1431 list_add(&btp->bt_list, &xfs_buftarg_list);
1432 spin_unlock(&xfs_buftarg_lock);
1433 }
1434
1435 STATIC void
1436 xfs_unregister_buftarg(
1437 xfs_buftarg_t *btp)
1438 {
1439 spin_lock(&xfs_buftarg_lock);
1440 list_del(&btp->bt_list);
1441 spin_unlock(&xfs_buftarg_lock);
1442 }
1443
1444 void
1445 xfs_free_buftarg(
1446 xfs_buftarg_t *btp,
1447 int external)
1448 {
1449 xfs_flush_buftarg(btp, 1);
1450 xfs_blkdev_issue_flush(btp);
1451 if (external)
1452 xfs_blkdev_put(btp->bt_bdev);
1453 xfs_free_bufhash(btp);
1454 iput(btp->bt_mapping->host);
1455
1456 /* Unregister the buftarg first so that we don't get a
1457 * wakeup finding a non-existent task
1458 */
1459 xfs_unregister_buftarg(btp);
1460 kthread_stop(btp->bt_task);
1461
1462 kmem_free(btp, sizeof(*btp));
1463 }
1464
1465 STATIC int
1466 xfs_setsize_buftarg_flags(
1467 xfs_buftarg_t *btp,
1468 unsigned int blocksize,
1469 unsigned int sectorsize,
1470 int verbose)
1471 {
1472 btp->bt_bsize = blocksize;
1473 btp->bt_sshift = ffs(sectorsize) - 1;
1474 btp->bt_smask = sectorsize - 1;
1475
1476 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1477 printk(KERN_WARNING
1478 "XFS: Cannot set_blocksize to %u on device %s\n",
1479 sectorsize, XFS_BUFTARG_NAME(btp));
1480 return EINVAL;
1481 }
1482
1483 if (verbose &&
1484 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1485 printk(KERN_WARNING
1486 "XFS: %u byte sectors in use on device %s. "
1487 "This is suboptimal; %u or greater is ideal.\n",
1488 sectorsize, XFS_BUFTARG_NAME(btp),
1489 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1490 }
1491
1492 return 0;
1493 }
1494
1495 /*
1496 * When allocating the initial buffer target we have not yet
1497 * read in the superblock, so don't know what sized sectors
1498 * are being used is at this early stage. Play safe.
1499 */
1500 STATIC int
1501 xfs_setsize_buftarg_early(
1502 xfs_buftarg_t *btp,
1503 struct block_device *bdev)
1504 {
1505 return xfs_setsize_buftarg_flags(btp,
1506 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1507 }
1508
1509 int
1510 xfs_setsize_buftarg(
1511 xfs_buftarg_t *btp,
1512 unsigned int blocksize,
1513 unsigned int sectorsize)
1514 {
1515 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1516 }
1517
1518 STATIC int
1519 xfs_mapping_buftarg(
1520 xfs_buftarg_t *btp,
1521 struct block_device *bdev)
1522 {
1523 struct backing_dev_info *bdi;
1524 struct inode *inode;
1525 struct address_space *mapping;
1526 static const struct address_space_operations mapping_aops = {
1527 .sync_page = block_sync_page,
1528 .migratepage = fail_migrate_page,
1529 };
1530
1531 inode = new_inode(bdev->bd_inode->i_sb);
1532 if (!inode) {
1533 printk(KERN_WARNING
1534 "XFS: Cannot allocate mapping inode for device %s\n",
1535 XFS_BUFTARG_NAME(btp));
1536 return ENOMEM;
1537 }
1538 inode->i_mode = S_IFBLK;
1539 inode->i_bdev = bdev;
1540 inode->i_rdev = bdev->bd_dev;
1541 bdi = blk_get_backing_dev_info(bdev);
1542 if (!bdi)
1543 bdi = &default_backing_dev_info;
1544 mapping = &inode->i_data;
1545 mapping->a_ops = &mapping_aops;
1546 mapping->backing_dev_info = bdi;
1547 mapping_set_gfp_mask(mapping, GFP_NOFS);
1548 btp->bt_mapping = mapping;
1549 return 0;
1550 }
1551
1552 STATIC int
1553 xfs_alloc_delwrite_queue(
1554 xfs_buftarg_t *btp)
1555 {
1556 int error = 0;
1557
1558 INIT_LIST_HEAD(&btp->bt_list);
1559 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1560 spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
1561 btp->bt_flags = 0;
1562 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1563 if (IS_ERR(btp->bt_task)) {
1564 error = PTR_ERR(btp->bt_task);
1565 goto out_error;
1566 }
1567 xfs_register_buftarg(btp);
1568 out_error:
1569 return error;
1570 }
1571
1572 xfs_buftarg_t *
1573 xfs_alloc_buftarg(
1574 struct block_device *bdev,
1575 int external)
1576 {
1577 xfs_buftarg_t *btp;
1578
1579 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1580
1581 btp->bt_dev = bdev->bd_dev;
1582 btp->bt_bdev = bdev;
1583 if (xfs_setsize_buftarg_early(btp, bdev))
1584 goto error;
1585 if (xfs_mapping_buftarg(btp, bdev))
1586 goto error;
1587 if (xfs_alloc_delwrite_queue(btp))
1588 goto error;
1589 xfs_alloc_bufhash(btp, external);
1590 return btp;
1591
1592 error:
1593 kmem_free(btp, sizeof(*btp));
1594 return NULL;
1595 }
1596
1597
1598 /*
1599 * Delayed write buffer handling
1600 */
1601 STATIC void
1602 xfs_buf_delwri_queue(
1603 xfs_buf_t *bp,
1604 int unlock)
1605 {
1606 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1607 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1608
1609 XB_TRACE(bp, "delwri_q", (long)unlock);
1610 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1611
1612 spin_lock(dwlk);
1613 /* If already in the queue, dequeue and place at tail */
1614 if (!list_empty(&bp->b_list)) {
1615 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1616 if (unlock)
1617 atomic_dec(&bp->b_hold);
1618 list_del(&bp->b_list);
1619 }
1620
1621 bp->b_flags |= _XBF_DELWRI_Q;
1622 list_add_tail(&bp->b_list, dwq);
1623 bp->b_queuetime = jiffies;
1624 spin_unlock(dwlk);
1625
1626 if (unlock)
1627 xfs_buf_unlock(bp);
1628 }
1629
1630 void
1631 xfs_buf_delwri_dequeue(
1632 xfs_buf_t *bp)
1633 {
1634 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1635 int dequeued = 0;
1636
1637 spin_lock(dwlk);
1638 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1639 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1640 list_del_init(&bp->b_list);
1641 dequeued = 1;
1642 }
1643 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1644 spin_unlock(dwlk);
1645
1646 if (dequeued)
1647 xfs_buf_rele(bp);
1648
1649 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1650 }
1651
1652 STATIC void
1653 xfs_buf_runall_queues(
1654 struct workqueue_struct *queue)
1655 {
1656 flush_workqueue(queue);
1657 }
1658
1659 STATIC int
1660 xfsbufd_wakeup(
1661 int priority,
1662 gfp_t mask)
1663 {
1664 xfs_buftarg_t *btp;
1665
1666 spin_lock(&xfs_buftarg_lock);
1667 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1668 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1669 continue;
1670 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1671 wake_up_process(btp->bt_task);
1672 }
1673 spin_unlock(&xfs_buftarg_lock);
1674 return 0;
1675 }
1676
1677 /*
1678 * Move as many buffers as specified to the supplied list
1679 * idicating if we skipped any buffers to prevent deadlocks.
1680 */
1681 STATIC int
1682 xfs_buf_delwri_split(
1683 xfs_buftarg_t *target,
1684 struct list_head *list,
1685 unsigned long age)
1686 {
1687 xfs_buf_t *bp, *n;
1688 struct list_head *dwq = &target->bt_delwrite_queue;
1689 spinlock_t *dwlk = &target->bt_delwrite_lock;
1690 int skipped = 0;
1691 int force;
1692
1693 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1694 INIT_LIST_HEAD(list);
1695 spin_lock(dwlk);
1696 list_for_each_entry_safe(bp, n, dwq, b_list) {
1697 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1698 ASSERT(bp->b_flags & XBF_DELWRI);
1699
1700 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1701 if (!force &&
1702 time_before(jiffies, bp->b_queuetime + age)) {
1703 xfs_buf_unlock(bp);
1704 break;
1705 }
1706
1707 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1708 _XBF_RUN_QUEUES);
1709 bp->b_flags |= XBF_WRITE;
1710 list_move_tail(&bp->b_list, list);
1711 } else
1712 skipped++;
1713 }
1714 spin_unlock(dwlk);
1715
1716 return skipped;
1717
1718 }
1719
1720 STATIC int
1721 xfsbufd(
1722 void *data)
1723 {
1724 struct list_head tmp;
1725 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1726 int count;
1727 xfs_buf_t *bp;
1728
1729 current->flags |= PF_MEMALLOC;
1730
1731 do {
1732 if (unlikely(freezing(current))) {
1733 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1734 refrigerator();
1735 } else {
1736 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1737 }
1738
1739 schedule_timeout_interruptible(
1740 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1741
1742 xfs_buf_delwri_split(target, &tmp,
1743 xfs_buf_age_centisecs * msecs_to_jiffies(10));
1744
1745 count = 0;
1746 while (!list_empty(&tmp)) {
1747 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1748 ASSERT(target == bp->b_target);
1749
1750 list_del_init(&bp->b_list);
1751 xfs_buf_iostrategy(bp);
1752 count++;
1753 }
1754
1755 if (as_list_len > 0)
1756 purge_addresses();
1757 if (count)
1758 blk_run_address_space(target->bt_mapping);
1759
1760 } while (!kthread_should_stop());
1761
1762 return 0;
1763 }
1764
1765 /*
1766 * Go through all incore buffers, and release buffers if they belong to
1767 * the given device. This is used in filesystem error handling to
1768 * preserve the consistency of its metadata.
1769 */
1770 int
1771 xfs_flush_buftarg(
1772 xfs_buftarg_t *target,
1773 int wait)
1774 {
1775 struct list_head tmp;
1776 xfs_buf_t *bp, *n;
1777 int pincount = 0;
1778
1779 xfs_buf_runall_queues(xfsdatad_workqueue);
1780 xfs_buf_runall_queues(xfslogd_workqueue);
1781
1782 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1783 pincount = xfs_buf_delwri_split(target, &tmp, 0);
1784
1785 /*
1786 * Dropped the delayed write list lock, now walk the temporary list
1787 */
1788 list_for_each_entry_safe(bp, n, &tmp, b_list) {
1789 ASSERT(target == bp->b_target);
1790 if (wait)
1791 bp->b_flags &= ~XBF_ASYNC;
1792 else
1793 list_del_init(&bp->b_list);
1794
1795 xfs_buf_iostrategy(bp);
1796 }
1797
1798 if (wait)
1799 blk_run_address_space(target->bt_mapping);
1800
1801 /*
1802 * Remaining list items must be flushed before returning
1803 */
1804 while (!list_empty(&tmp)) {
1805 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1806
1807 list_del_init(&bp->b_list);
1808 xfs_iowait(bp);
1809 xfs_buf_relse(bp);
1810 }
1811
1812 return pincount;
1813 }
1814
1815 int __init
1816 xfs_buf_init(void)
1817 {
1818 #ifdef XFS_BUF_TRACE
1819 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1820 #endif
1821
1822 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1823 KM_ZONE_HWALIGN, NULL);
1824 if (!xfs_buf_zone)
1825 goto out_free_trace_buf;
1826
1827 xfslogd_workqueue = create_workqueue("xfslogd");
1828 if (!xfslogd_workqueue)
1829 goto out_free_buf_zone;
1830
1831 xfsdatad_workqueue = create_workqueue("xfsdatad");
1832 if (!xfsdatad_workqueue)
1833 goto out_destroy_xfslogd_workqueue;
1834
1835 xfs_buf_shake = set_shrinker(DEFAULT_SEEKS, xfsbufd_wakeup);
1836 if (!xfs_buf_shake)
1837 goto out_destroy_xfsdatad_workqueue;
1838
1839 return 0;
1840
1841 out_destroy_xfsdatad_workqueue:
1842 destroy_workqueue(xfsdatad_workqueue);
1843 out_destroy_xfslogd_workqueue:
1844 destroy_workqueue(xfslogd_workqueue);
1845 out_free_buf_zone:
1846 kmem_zone_destroy(xfs_buf_zone);
1847 out_free_trace_buf:
1848 #ifdef XFS_BUF_TRACE
1849 ktrace_free(xfs_buf_trace_buf);
1850 #endif
1851 return -ENOMEM;
1852 }
1853
1854 void
1855 xfs_buf_terminate(void)
1856 {
1857 remove_shrinker(xfs_buf_shake);
1858 destroy_workqueue(xfsdatad_workqueue);
1859 destroy_workqueue(xfslogd_workqueue);
1860 kmem_zone_destroy(xfs_buf_zone);
1861 #ifdef XFS_BUF_TRACE
1862 ktrace_free(xfs_buf_trace_buf);
1863 #endif
1864 }
1865
1866 #ifdef CONFIG_KDB_MODULES
1867 struct list_head *
1868 xfs_get_buftarg_list(void)
1869 {
1870 return &xfs_buftarg_list;
1871 }
1872 #endif
This page took 0.068103 seconds and 6 git commands to generate.