vmap: flush vmap aliases when mapping fails
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
48
49 static struct workqueue_struct *xfslogd_workqueue;
50 struct workqueue_struct *xfsdatad_workqueue;
51 struct workqueue_struct *xfsconvertd_workqueue;
52
53 #ifdef XFS_BUF_LOCK_TRACKING
54 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
55 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
56 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
57 #else
58 # define XB_SET_OWNER(bp) do { } while (0)
59 # define XB_CLEAR_OWNER(bp) do { } while (0)
60 # define XB_GET_OWNER(bp) do { } while (0)
61 #endif
62
63 #define xb_to_gfp(flags) \
64 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
65 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
66
67 #define xb_to_km(flags) \
68 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
69
70 #define xfs_buf_allocate(flags) \
71 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
72 #define xfs_buf_deallocate(bp) \
73 kmem_zone_free(xfs_buf_zone, (bp));
74
75 static inline int
76 xfs_buf_is_vmapped(
77 struct xfs_buf *bp)
78 {
79 /*
80 * Return true if the buffer is vmapped.
81 *
82 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
83 * code is clever enough to know it doesn't have to map a single page,
84 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
85 */
86 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
87 }
88
89 static inline int
90 xfs_buf_vmap_len(
91 struct xfs_buf *bp)
92 {
93 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
94 }
95
96 /*
97 * Page Region interfaces.
98 *
99 * For pages in filesystems where the blocksize is smaller than the
100 * pagesize, we use the page->private field (long) to hold a bitmap
101 * of uptodate regions within the page.
102 *
103 * Each such region is "bytes per page / bits per long" bytes long.
104 *
105 * NBPPR == number-of-bytes-per-page-region
106 * BTOPR == bytes-to-page-region (rounded up)
107 * BTOPRT == bytes-to-page-region-truncated (rounded down)
108 */
109 #if (BITS_PER_LONG == 32)
110 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
111 #elif (BITS_PER_LONG == 64)
112 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
113 #else
114 #error BITS_PER_LONG must be 32 or 64
115 #endif
116 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
117 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
118 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
119
120 STATIC unsigned long
121 page_region_mask(
122 size_t offset,
123 size_t length)
124 {
125 unsigned long mask;
126 int first, final;
127
128 first = BTOPR(offset);
129 final = BTOPRT(offset + length - 1);
130 first = min(first, final);
131
132 mask = ~0UL;
133 mask <<= BITS_PER_LONG - (final - first);
134 mask >>= BITS_PER_LONG - (final);
135
136 ASSERT(offset + length <= PAGE_CACHE_SIZE);
137 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
138
139 return mask;
140 }
141
142 STATIC void
143 set_page_region(
144 struct page *page,
145 size_t offset,
146 size_t length)
147 {
148 set_page_private(page,
149 page_private(page) | page_region_mask(offset, length));
150 if (page_private(page) == ~0UL)
151 SetPageUptodate(page);
152 }
153
154 STATIC int
155 test_page_region(
156 struct page *page,
157 size_t offset,
158 size_t length)
159 {
160 unsigned long mask = page_region_mask(offset, length);
161
162 return (mask && (page_private(page) & mask) == mask);
163 }
164
165 /*
166 * xfs_buf_lru_add - add a buffer to the LRU.
167 *
168 * The LRU takes a new reference to the buffer so that it will only be freed
169 * once the shrinker takes the buffer off the LRU.
170 */
171 STATIC void
172 xfs_buf_lru_add(
173 struct xfs_buf *bp)
174 {
175 struct xfs_buftarg *btp = bp->b_target;
176
177 spin_lock(&btp->bt_lru_lock);
178 if (list_empty(&bp->b_lru)) {
179 atomic_inc(&bp->b_hold);
180 list_add_tail(&bp->b_lru, &btp->bt_lru);
181 btp->bt_lru_nr++;
182 }
183 spin_unlock(&btp->bt_lru_lock);
184 }
185
186 /*
187 * xfs_buf_lru_del - remove a buffer from the LRU
188 *
189 * The unlocked check is safe here because it only occurs when there are not
190 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
191 * to optimise the shrinker removing the buffer from the LRU and calling
192 * xfs_buf_free(). i.e. it removes an unneccessary round trip on the
193 * bt_lru_lock.
194 */
195 STATIC void
196 xfs_buf_lru_del(
197 struct xfs_buf *bp)
198 {
199 struct xfs_buftarg *btp = bp->b_target;
200
201 if (list_empty(&bp->b_lru))
202 return;
203
204 spin_lock(&btp->bt_lru_lock);
205 if (!list_empty(&bp->b_lru)) {
206 list_del_init(&bp->b_lru);
207 btp->bt_lru_nr--;
208 }
209 spin_unlock(&btp->bt_lru_lock);
210 }
211
212 /*
213 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
214 * b_lru_ref count so that the buffer is freed immediately when the buffer
215 * reference count falls to zero. If the buffer is already on the LRU, we need
216 * to remove the reference that LRU holds on the buffer.
217 *
218 * This prevents build-up of stale buffers on the LRU.
219 */
220 void
221 xfs_buf_stale(
222 struct xfs_buf *bp)
223 {
224 bp->b_flags |= XBF_STALE;
225 atomic_set(&(bp)->b_lru_ref, 0);
226 if (!list_empty(&bp->b_lru)) {
227 struct xfs_buftarg *btp = bp->b_target;
228
229 spin_lock(&btp->bt_lru_lock);
230 if (!list_empty(&bp->b_lru)) {
231 list_del_init(&bp->b_lru);
232 btp->bt_lru_nr--;
233 atomic_dec(&bp->b_hold);
234 }
235 spin_unlock(&btp->bt_lru_lock);
236 }
237 ASSERT(atomic_read(&bp->b_hold) >= 1);
238 }
239
240 STATIC void
241 _xfs_buf_initialize(
242 xfs_buf_t *bp,
243 xfs_buftarg_t *target,
244 xfs_off_t range_base,
245 size_t range_length,
246 xfs_buf_flags_t flags)
247 {
248 /*
249 * We don't want certain flags to appear in b_flags.
250 */
251 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
252
253 memset(bp, 0, sizeof(xfs_buf_t));
254 atomic_set(&bp->b_hold, 1);
255 atomic_set(&bp->b_lru_ref, 1);
256 init_completion(&bp->b_iowait);
257 INIT_LIST_HEAD(&bp->b_lru);
258 INIT_LIST_HEAD(&bp->b_list);
259 RB_CLEAR_NODE(&bp->b_rbnode);
260 sema_init(&bp->b_sema, 0); /* held, no waiters */
261 XB_SET_OWNER(bp);
262 bp->b_target = target;
263 bp->b_file_offset = range_base;
264 /*
265 * Set buffer_length and count_desired to the same value initially.
266 * I/O routines should use count_desired, which will be the same in
267 * most cases but may be reset (e.g. XFS recovery).
268 */
269 bp->b_buffer_length = bp->b_count_desired = range_length;
270 bp->b_flags = flags;
271 bp->b_bn = XFS_BUF_DADDR_NULL;
272 atomic_set(&bp->b_pin_count, 0);
273 init_waitqueue_head(&bp->b_waiters);
274
275 XFS_STATS_INC(xb_create);
276
277 trace_xfs_buf_init(bp, _RET_IP_);
278 }
279
280 /*
281 * Allocate a page array capable of holding a specified number
282 * of pages, and point the page buf at it.
283 */
284 STATIC int
285 _xfs_buf_get_pages(
286 xfs_buf_t *bp,
287 int page_count,
288 xfs_buf_flags_t flags)
289 {
290 /* Make sure that we have a page list */
291 if (bp->b_pages == NULL) {
292 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
293 bp->b_page_count = page_count;
294 if (page_count <= XB_PAGES) {
295 bp->b_pages = bp->b_page_array;
296 } else {
297 bp->b_pages = kmem_alloc(sizeof(struct page *) *
298 page_count, xb_to_km(flags));
299 if (bp->b_pages == NULL)
300 return -ENOMEM;
301 }
302 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
303 }
304 return 0;
305 }
306
307 /*
308 * Frees b_pages if it was allocated.
309 */
310 STATIC void
311 _xfs_buf_free_pages(
312 xfs_buf_t *bp)
313 {
314 if (bp->b_pages != bp->b_page_array) {
315 kmem_free(bp->b_pages);
316 bp->b_pages = NULL;
317 }
318 }
319
320 /*
321 * Releases the specified buffer.
322 *
323 * The modification state of any associated pages is left unchanged.
324 * The buffer most not be on any hash - use xfs_buf_rele instead for
325 * hashed and refcounted buffers
326 */
327 void
328 xfs_buf_free(
329 xfs_buf_t *bp)
330 {
331 trace_xfs_buf_free(bp, _RET_IP_);
332
333 ASSERT(list_empty(&bp->b_lru));
334
335 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
336 uint i;
337
338 if (xfs_buf_is_vmapped(bp))
339 vm_unmap_ram(bp->b_addr - bp->b_offset,
340 bp->b_page_count);
341
342 for (i = 0; i < bp->b_page_count; i++) {
343 struct page *page = bp->b_pages[i];
344
345 if (bp->b_flags & _XBF_PAGE_CACHE)
346 ASSERT(!PagePrivate(page));
347 page_cache_release(page);
348 }
349 }
350 _xfs_buf_free_pages(bp);
351 xfs_buf_deallocate(bp);
352 }
353
354 /*
355 * Finds all pages for buffer in question and builds it's page list.
356 */
357 STATIC int
358 _xfs_buf_lookup_pages(
359 xfs_buf_t *bp,
360 uint flags)
361 {
362 struct address_space *mapping = bp->b_target->bt_mapping;
363 size_t blocksize = bp->b_target->bt_bsize;
364 size_t size = bp->b_count_desired;
365 size_t nbytes, offset;
366 gfp_t gfp_mask = xb_to_gfp(flags);
367 unsigned short page_count, i;
368 pgoff_t first;
369 xfs_off_t end;
370 int error;
371
372 end = bp->b_file_offset + bp->b_buffer_length;
373 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
374
375 error = _xfs_buf_get_pages(bp, page_count, flags);
376 if (unlikely(error))
377 return error;
378 bp->b_flags |= _XBF_PAGE_CACHE;
379
380 offset = bp->b_offset;
381 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
382
383 for (i = 0; i < bp->b_page_count; i++) {
384 struct page *page;
385 uint retries = 0;
386
387 retry:
388 page = find_or_create_page(mapping, first + i, gfp_mask);
389 if (unlikely(page == NULL)) {
390 if (flags & XBF_READ_AHEAD) {
391 bp->b_page_count = i;
392 for (i = 0; i < bp->b_page_count; i++)
393 unlock_page(bp->b_pages[i]);
394 return -ENOMEM;
395 }
396
397 /*
398 * This could deadlock.
399 *
400 * But until all the XFS lowlevel code is revamped to
401 * handle buffer allocation failures we can't do much.
402 */
403 if (!(++retries % 100))
404 xfs_err(NULL,
405 "possible memory allocation deadlock in %s (mode:0x%x)",
406 __func__, gfp_mask);
407
408 XFS_STATS_INC(xb_page_retries);
409 congestion_wait(BLK_RW_ASYNC, HZ/50);
410 goto retry;
411 }
412
413 XFS_STATS_INC(xb_page_found);
414
415 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
416 size -= nbytes;
417
418 ASSERT(!PagePrivate(page));
419 if (!PageUptodate(page)) {
420 page_count--;
421 if (blocksize >= PAGE_CACHE_SIZE) {
422 if (flags & XBF_READ)
423 bp->b_flags |= _XBF_PAGE_LOCKED;
424 } else if (!PagePrivate(page)) {
425 if (test_page_region(page, offset, nbytes))
426 page_count++;
427 }
428 }
429
430 bp->b_pages[i] = page;
431 offset = 0;
432 }
433
434 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
435 for (i = 0; i < bp->b_page_count; i++)
436 unlock_page(bp->b_pages[i]);
437 }
438
439 if (page_count == bp->b_page_count)
440 bp->b_flags |= XBF_DONE;
441
442 return error;
443 }
444
445 /*
446 * Map buffer into kernel address-space if nessecary.
447 */
448 STATIC int
449 _xfs_buf_map_pages(
450 xfs_buf_t *bp,
451 uint flags)
452 {
453 /* A single page buffer is always mappable */
454 if (bp->b_page_count == 1) {
455 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
456 bp->b_flags |= XBF_MAPPED;
457 } else if (flags & XBF_MAPPED) {
458 int retried = 0;
459
460 do {
461 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
462 -1, PAGE_KERNEL);
463 if (bp->b_addr)
464 break;
465 vm_unmap_aliases();
466 } while (retried++ <= 1);
467
468 if (!bp->b_addr)
469 return -ENOMEM;
470 bp->b_addr += bp->b_offset;
471 bp->b_flags |= XBF_MAPPED;
472 }
473
474 return 0;
475 }
476
477 /*
478 * Finding and Reading Buffers
479 */
480
481 /*
482 * Look up, and creates if absent, a lockable buffer for
483 * a given range of an inode. The buffer is returned
484 * locked. If other overlapping buffers exist, they are
485 * released before the new buffer is created and locked,
486 * which may imply that this call will block until those buffers
487 * are unlocked. No I/O is implied by this call.
488 */
489 xfs_buf_t *
490 _xfs_buf_find(
491 xfs_buftarg_t *btp, /* block device target */
492 xfs_off_t ioff, /* starting offset of range */
493 size_t isize, /* length of range */
494 xfs_buf_flags_t flags,
495 xfs_buf_t *new_bp)
496 {
497 xfs_off_t range_base;
498 size_t range_length;
499 struct xfs_perag *pag;
500 struct rb_node **rbp;
501 struct rb_node *parent;
502 xfs_buf_t *bp;
503
504 range_base = (ioff << BBSHIFT);
505 range_length = (isize << BBSHIFT);
506
507 /* Check for IOs smaller than the sector size / not sector aligned */
508 ASSERT(!(range_length < (1 << btp->bt_sshift)));
509 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
510
511 /* get tree root */
512 pag = xfs_perag_get(btp->bt_mount,
513 xfs_daddr_to_agno(btp->bt_mount, ioff));
514
515 /* walk tree */
516 spin_lock(&pag->pag_buf_lock);
517 rbp = &pag->pag_buf_tree.rb_node;
518 parent = NULL;
519 bp = NULL;
520 while (*rbp) {
521 parent = *rbp;
522 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
523
524 if (range_base < bp->b_file_offset)
525 rbp = &(*rbp)->rb_left;
526 else if (range_base > bp->b_file_offset)
527 rbp = &(*rbp)->rb_right;
528 else {
529 /*
530 * found a block offset match. If the range doesn't
531 * match, the only way this is allowed is if the buffer
532 * in the cache is stale and the transaction that made
533 * it stale has not yet committed. i.e. we are
534 * reallocating a busy extent. Skip this buffer and
535 * continue searching to the right for an exact match.
536 */
537 if (bp->b_buffer_length != range_length) {
538 ASSERT(bp->b_flags & XBF_STALE);
539 rbp = &(*rbp)->rb_right;
540 continue;
541 }
542 atomic_inc(&bp->b_hold);
543 goto found;
544 }
545 }
546
547 /* No match found */
548 if (new_bp) {
549 _xfs_buf_initialize(new_bp, btp, range_base,
550 range_length, flags);
551 rb_link_node(&new_bp->b_rbnode, parent, rbp);
552 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
553 /* the buffer keeps the perag reference until it is freed */
554 new_bp->b_pag = pag;
555 spin_unlock(&pag->pag_buf_lock);
556 } else {
557 XFS_STATS_INC(xb_miss_locked);
558 spin_unlock(&pag->pag_buf_lock);
559 xfs_perag_put(pag);
560 }
561 return new_bp;
562
563 found:
564 spin_unlock(&pag->pag_buf_lock);
565 xfs_perag_put(pag);
566
567 if (xfs_buf_cond_lock(bp)) {
568 /* failed, so wait for the lock if requested. */
569 if (!(flags & XBF_TRYLOCK)) {
570 xfs_buf_lock(bp);
571 XFS_STATS_INC(xb_get_locked_waited);
572 } else {
573 xfs_buf_rele(bp);
574 XFS_STATS_INC(xb_busy_locked);
575 return NULL;
576 }
577 }
578
579 if (bp->b_flags & XBF_STALE) {
580 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
581 bp->b_flags &= XBF_MAPPED;
582 }
583
584 trace_xfs_buf_find(bp, flags, _RET_IP_);
585 XFS_STATS_INC(xb_get_locked);
586 return bp;
587 }
588
589 /*
590 * Assembles a buffer covering the specified range.
591 * Storage in memory for all portions of the buffer will be allocated,
592 * although backing storage may not be.
593 */
594 xfs_buf_t *
595 xfs_buf_get(
596 xfs_buftarg_t *target,/* target for buffer */
597 xfs_off_t ioff, /* starting offset of range */
598 size_t isize, /* length of range */
599 xfs_buf_flags_t flags)
600 {
601 xfs_buf_t *bp, *new_bp;
602 int error = 0, i;
603
604 new_bp = xfs_buf_allocate(flags);
605 if (unlikely(!new_bp))
606 return NULL;
607
608 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
609 if (bp == new_bp) {
610 error = _xfs_buf_lookup_pages(bp, flags);
611 if (error)
612 goto no_buffer;
613 } else {
614 xfs_buf_deallocate(new_bp);
615 if (unlikely(bp == NULL))
616 return NULL;
617 }
618
619 for (i = 0; i < bp->b_page_count; i++)
620 mark_page_accessed(bp->b_pages[i]);
621
622 if (!(bp->b_flags & XBF_MAPPED)) {
623 error = _xfs_buf_map_pages(bp, flags);
624 if (unlikely(error)) {
625 xfs_warn(target->bt_mount,
626 "%s: failed to map pages\n", __func__);
627 goto no_buffer;
628 }
629 }
630
631 XFS_STATS_INC(xb_get);
632
633 /*
634 * Always fill in the block number now, the mapped cases can do
635 * their own overlay of this later.
636 */
637 bp->b_bn = ioff;
638 bp->b_count_desired = bp->b_buffer_length;
639
640 trace_xfs_buf_get(bp, flags, _RET_IP_);
641 return bp;
642
643 no_buffer:
644 if (flags & (XBF_LOCK | XBF_TRYLOCK))
645 xfs_buf_unlock(bp);
646 xfs_buf_rele(bp);
647 return NULL;
648 }
649
650 STATIC int
651 _xfs_buf_read(
652 xfs_buf_t *bp,
653 xfs_buf_flags_t flags)
654 {
655 int status;
656
657 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
658 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
659
660 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
661 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
662 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
663 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
664
665 status = xfs_buf_iorequest(bp);
666 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
667 return status;
668 return xfs_buf_iowait(bp);
669 }
670
671 xfs_buf_t *
672 xfs_buf_read(
673 xfs_buftarg_t *target,
674 xfs_off_t ioff,
675 size_t isize,
676 xfs_buf_flags_t flags)
677 {
678 xfs_buf_t *bp;
679
680 flags |= XBF_READ;
681
682 bp = xfs_buf_get(target, ioff, isize, flags);
683 if (bp) {
684 trace_xfs_buf_read(bp, flags, _RET_IP_);
685
686 if (!XFS_BUF_ISDONE(bp)) {
687 XFS_STATS_INC(xb_get_read);
688 _xfs_buf_read(bp, flags);
689 } else if (flags & XBF_ASYNC) {
690 /*
691 * Read ahead call which is already satisfied,
692 * drop the buffer
693 */
694 goto no_buffer;
695 } else {
696 /* We do not want read in the flags */
697 bp->b_flags &= ~XBF_READ;
698 }
699 }
700
701 return bp;
702
703 no_buffer:
704 if (flags & (XBF_LOCK | XBF_TRYLOCK))
705 xfs_buf_unlock(bp);
706 xfs_buf_rele(bp);
707 return NULL;
708 }
709
710 /*
711 * If we are not low on memory then do the readahead in a deadlock
712 * safe manner.
713 */
714 void
715 xfs_buf_readahead(
716 xfs_buftarg_t *target,
717 xfs_off_t ioff,
718 size_t isize)
719 {
720 struct backing_dev_info *bdi;
721
722 bdi = target->bt_mapping->backing_dev_info;
723 if (bdi_read_congested(bdi))
724 return;
725
726 xfs_buf_read(target, ioff, isize,
727 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
728 }
729
730 /*
731 * Read an uncached buffer from disk. Allocates and returns a locked
732 * buffer containing the disk contents or nothing.
733 */
734 struct xfs_buf *
735 xfs_buf_read_uncached(
736 struct xfs_mount *mp,
737 struct xfs_buftarg *target,
738 xfs_daddr_t daddr,
739 size_t length,
740 int flags)
741 {
742 xfs_buf_t *bp;
743 int error;
744
745 bp = xfs_buf_get_uncached(target, length, flags);
746 if (!bp)
747 return NULL;
748
749 /* set up the buffer for a read IO */
750 xfs_buf_lock(bp);
751 XFS_BUF_SET_ADDR(bp, daddr);
752 XFS_BUF_READ(bp);
753 XFS_BUF_BUSY(bp);
754
755 xfsbdstrat(mp, bp);
756 error = xfs_buf_iowait(bp);
757 if (error || bp->b_error) {
758 xfs_buf_relse(bp);
759 return NULL;
760 }
761 return bp;
762 }
763
764 xfs_buf_t *
765 xfs_buf_get_empty(
766 size_t len,
767 xfs_buftarg_t *target)
768 {
769 xfs_buf_t *bp;
770
771 bp = xfs_buf_allocate(0);
772 if (bp)
773 _xfs_buf_initialize(bp, target, 0, len, 0);
774 return bp;
775 }
776
777 static inline struct page *
778 mem_to_page(
779 void *addr)
780 {
781 if ((!is_vmalloc_addr(addr))) {
782 return virt_to_page(addr);
783 } else {
784 return vmalloc_to_page(addr);
785 }
786 }
787
788 int
789 xfs_buf_associate_memory(
790 xfs_buf_t *bp,
791 void *mem,
792 size_t len)
793 {
794 int rval;
795 int i = 0;
796 unsigned long pageaddr;
797 unsigned long offset;
798 size_t buflen;
799 int page_count;
800
801 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
802 offset = (unsigned long)mem - pageaddr;
803 buflen = PAGE_CACHE_ALIGN(len + offset);
804 page_count = buflen >> PAGE_CACHE_SHIFT;
805
806 /* Free any previous set of page pointers */
807 if (bp->b_pages)
808 _xfs_buf_free_pages(bp);
809
810 bp->b_pages = NULL;
811 bp->b_addr = mem;
812
813 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
814 if (rval)
815 return rval;
816
817 bp->b_offset = offset;
818
819 for (i = 0; i < bp->b_page_count; i++) {
820 bp->b_pages[i] = mem_to_page((void *)pageaddr);
821 pageaddr += PAGE_CACHE_SIZE;
822 }
823
824 bp->b_count_desired = len;
825 bp->b_buffer_length = buflen;
826 bp->b_flags |= XBF_MAPPED;
827 bp->b_flags &= ~_XBF_PAGE_LOCKED;
828
829 return 0;
830 }
831
832 xfs_buf_t *
833 xfs_buf_get_uncached(
834 struct xfs_buftarg *target,
835 size_t len,
836 int flags)
837 {
838 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
839 int error, i;
840 xfs_buf_t *bp;
841
842 bp = xfs_buf_allocate(0);
843 if (unlikely(bp == NULL))
844 goto fail;
845 _xfs_buf_initialize(bp, target, 0, len, 0);
846
847 error = _xfs_buf_get_pages(bp, page_count, 0);
848 if (error)
849 goto fail_free_buf;
850
851 for (i = 0; i < page_count; i++) {
852 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
853 if (!bp->b_pages[i])
854 goto fail_free_mem;
855 }
856 bp->b_flags |= _XBF_PAGES;
857
858 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
859 if (unlikely(error)) {
860 xfs_warn(target->bt_mount,
861 "%s: failed to map pages\n", __func__);
862 goto fail_free_mem;
863 }
864
865 xfs_buf_unlock(bp);
866
867 trace_xfs_buf_get_uncached(bp, _RET_IP_);
868 return bp;
869
870 fail_free_mem:
871 while (--i >= 0)
872 __free_page(bp->b_pages[i]);
873 _xfs_buf_free_pages(bp);
874 fail_free_buf:
875 xfs_buf_deallocate(bp);
876 fail:
877 return NULL;
878 }
879
880 /*
881 * Increment reference count on buffer, to hold the buffer concurrently
882 * with another thread which may release (free) the buffer asynchronously.
883 * Must hold the buffer already to call this function.
884 */
885 void
886 xfs_buf_hold(
887 xfs_buf_t *bp)
888 {
889 trace_xfs_buf_hold(bp, _RET_IP_);
890 atomic_inc(&bp->b_hold);
891 }
892
893 /*
894 * Releases a hold on the specified buffer. If the
895 * the hold count is 1, calls xfs_buf_free.
896 */
897 void
898 xfs_buf_rele(
899 xfs_buf_t *bp)
900 {
901 struct xfs_perag *pag = bp->b_pag;
902
903 trace_xfs_buf_rele(bp, _RET_IP_);
904
905 if (!pag) {
906 ASSERT(list_empty(&bp->b_lru));
907 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
908 if (atomic_dec_and_test(&bp->b_hold))
909 xfs_buf_free(bp);
910 return;
911 }
912
913 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
914
915 ASSERT(atomic_read(&bp->b_hold) > 0);
916 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
917 if (!(bp->b_flags & XBF_STALE) &&
918 atomic_read(&bp->b_lru_ref)) {
919 xfs_buf_lru_add(bp);
920 spin_unlock(&pag->pag_buf_lock);
921 } else {
922 xfs_buf_lru_del(bp);
923 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
924 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
925 spin_unlock(&pag->pag_buf_lock);
926 xfs_perag_put(pag);
927 xfs_buf_free(bp);
928 }
929 }
930 }
931
932
933 /*
934 * Mutual exclusion on buffers. Locking model:
935 *
936 * Buffers associated with inodes for which buffer locking
937 * is not enabled are not protected by semaphores, and are
938 * assumed to be exclusively owned by the caller. There is a
939 * spinlock in the buffer, used by the caller when concurrent
940 * access is possible.
941 */
942
943 /*
944 * Locks a buffer object, if it is not already locked. Note that this in
945 * no way locks the underlying pages, so it is only useful for
946 * synchronizing concurrent use of buffer objects, not for synchronizing
947 * independent access to the underlying pages.
948 *
949 * If we come across a stale, pinned, locked buffer, we know that we are
950 * being asked to lock a buffer that has been reallocated. Because it is
951 * pinned, we know that the log has not been pushed to disk and hence it
952 * will still be locked. Rather than continuing to have trylock attempts
953 * fail until someone else pushes the log, push it ourselves before
954 * returning. This means that the xfsaild will not get stuck trying
955 * to push on stale inode buffers.
956 */
957 int
958 xfs_buf_cond_lock(
959 xfs_buf_t *bp)
960 {
961 int locked;
962
963 locked = down_trylock(&bp->b_sema) == 0;
964 if (locked)
965 XB_SET_OWNER(bp);
966 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
967 xfs_log_force(bp->b_target->bt_mount, 0);
968
969 trace_xfs_buf_cond_lock(bp, _RET_IP_);
970 return locked ? 0 : -EBUSY;
971 }
972
973 int
974 xfs_buf_lock_value(
975 xfs_buf_t *bp)
976 {
977 return bp->b_sema.count;
978 }
979
980 /*
981 * Locks a buffer object.
982 * Note that this in no way locks the underlying pages, so it is only
983 * useful for synchronizing concurrent use of buffer objects, not for
984 * synchronizing independent access to the underlying pages.
985 *
986 * If we come across a stale, pinned, locked buffer, we know that we
987 * are being asked to lock a buffer that has been reallocated. Because
988 * it is pinned, we know that the log has not been pushed to disk and
989 * hence it will still be locked. Rather than sleeping until someone
990 * else pushes the log, push it ourselves before trying to get the lock.
991 */
992 void
993 xfs_buf_lock(
994 xfs_buf_t *bp)
995 {
996 trace_xfs_buf_lock(bp, _RET_IP_);
997
998 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
999 xfs_log_force(bp->b_target->bt_mount, 0);
1000 if (atomic_read(&bp->b_io_remaining))
1001 blk_run_address_space(bp->b_target->bt_mapping);
1002 down(&bp->b_sema);
1003 XB_SET_OWNER(bp);
1004
1005 trace_xfs_buf_lock_done(bp, _RET_IP_);
1006 }
1007
1008 /*
1009 * Releases the lock on the buffer object.
1010 * If the buffer is marked delwri but is not queued, do so before we
1011 * unlock the buffer as we need to set flags correctly. We also need to
1012 * take a reference for the delwri queue because the unlocker is going to
1013 * drop their's and they don't know we just queued it.
1014 */
1015 void
1016 xfs_buf_unlock(
1017 xfs_buf_t *bp)
1018 {
1019 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
1020 atomic_inc(&bp->b_hold);
1021 bp->b_flags |= XBF_ASYNC;
1022 xfs_buf_delwri_queue(bp, 0);
1023 }
1024
1025 XB_CLEAR_OWNER(bp);
1026 up(&bp->b_sema);
1027
1028 trace_xfs_buf_unlock(bp, _RET_IP_);
1029 }
1030
1031 STATIC void
1032 xfs_buf_wait_unpin(
1033 xfs_buf_t *bp)
1034 {
1035 DECLARE_WAITQUEUE (wait, current);
1036
1037 if (atomic_read(&bp->b_pin_count) == 0)
1038 return;
1039
1040 add_wait_queue(&bp->b_waiters, &wait);
1041 for (;;) {
1042 set_current_state(TASK_UNINTERRUPTIBLE);
1043 if (atomic_read(&bp->b_pin_count) == 0)
1044 break;
1045 if (atomic_read(&bp->b_io_remaining))
1046 blk_run_address_space(bp->b_target->bt_mapping);
1047 schedule();
1048 }
1049 remove_wait_queue(&bp->b_waiters, &wait);
1050 set_current_state(TASK_RUNNING);
1051 }
1052
1053 /*
1054 * Buffer Utility Routines
1055 */
1056
1057 STATIC void
1058 xfs_buf_iodone_work(
1059 struct work_struct *work)
1060 {
1061 xfs_buf_t *bp =
1062 container_of(work, xfs_buf_t, b_iodone_work);
1063
1064 if (bp->b_iodone)
1065 (*(bp->b_iodone))(bp);
1066 else if (bp->b_flags & XBF_ASYNC)
1067 xfs_buf_relse(bp);
1068 }
1069
1070 void
1071 xfs_buf_ioend(
1072 xfs_buf_t *bp,
1073 int schedule)
1074 {
1075 trace_xfs_buf_iodone(bp, _RET_IP_);
1076
1077 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1078 if (bp->b_error == 0)
1079 bp->b_flags |= XBF_DONE;
1080
1081 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1082 if (schedule) {
1083 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1084 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1085 } else {
1086 xfs_buf_iodone_work(&bp->b_iodone_work);
1087 }
1088 } else {
1089 complete(&bp->b_iowait);
1090 }
1091 }
1092
1093 void
1094 xfs_buf_ioerror(
1095 xfs_buf_t *bp,
1096 int error)
1097 {
1098 ASSERT(error >= 0 && error <= 0xffff);
1099 bp->b_error = (unsigned short)error;
1100 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1101 }
1102
1103 int
1104 xfs_bwrite(
1105 struct xfs_mount *mp,
1106 struct xfs_buf *bp)
1107 {
1108 int error;
1109
1110 bp->b_flags |= XBF_WRITE;
1111 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1112
1113 xfs_buf_delwri_dequeue(bp);
1114 xfs_bdstrat_cb(bp);
1115
1116 error = xfs_buf_iowait(bp);
1117 if (error)
1118 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1119 xfs_buf_relse(bp);
1120 return error;
1121 }
1122
1123 void
1124 xfs_bdwrite(
1125 void *mp,
1126 struct xfs_buf *bp)
1127 {
1128 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1129
1130 bp->b_flags &= ~XBF_READ;
1131 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1132
1133 xfs_buf_delwri_queue(bp, 1);
1134 }
1135
1136 /*
1137 * Called when we want to stop a buffer from getting written or read.
1138 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1139 * so that the proper iodone callbacks get called.
1140 */
1141 STATIC int
1142 xfs_bioerror(
1143 xfs_buf_t *bp)
1144 {
1145 #ifdef XFSERRORDEBUG
1146 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1147 #endif
1148
1149 /*
1150 * No need to wait until the buffer is unpinned, we aren't flushing it.
1151 */
1152 XFS_BUF_ERROR(bp, EIO);
1153
1154 /*
1155 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1156 */
1157 XFS_BUF_UNREAD(bp);
1158 XFS_BUF_UNDELAYWRITE(bp);
1159 XFS_BUF_UNDONE(bp);
1160 XFS_BUF_STALE(bp);
1161
1162 xfs_buf_ioend(bp, 0);
1163
1164 return EIO;
1165 }
1166
1167 /*
1168 * Same as xfs_bioerror, except that we are releasing the buffer
1169 * here ourselves, and avoiding the xfs_buf_ioend call.
1170 * This is meant for userdata errors; metadata bufs come with
1171 * iodone functions attached, so that we can track down errors.
1172 */
1173 STATIC int
1174 xfs_bioerror_relse(
1175 struct xfs_buf *bp)
1176 {
1177 int64_t fl = XFS_BUF_BFLAGS(bp);
1178 /*
1179 * No need to wait until the buffer is unpinned.
1180 * We aren't flushing it.
1181 *
1182 * chunkhold expects B_DONE to be set, whether
1183 * we actually finish the I/O or not. We don't want to
1184 * change that interface.
1185 */
1186 XFS_BUF_UNREAD(bp);
1187 XFS_BUF_UNDELAYWRITE(bp);
1188 XFS_BUF_DONE(bp);
1189 XFS_BUF_STALE(bp);
1190 XFS_BUF_CLR_IODONE_FUNC(bp);
1191 if (!(fl & XBF_ASYNC)) {
1192 /*
1193 * Mark b_error and B_ERROR _both_.
1194 * Lot's of chunkcache code assumes that.
1195 * There's no reason to mark error for
1196 * ASYNC buffers.
1197 */
1198 XFS_BUF_ERROR(bp, EIO);
1199 XFS_BUF_FINISH_IOWAIT(bp);
1200 } else {
1201 xfs_buf_relse(bp);
1202 }
1203
1204 return EIO;
1205 }
1206
1207
1208 /*
1209 * All xfs metadata buffers except log state machine buffers
1210 * get this attached as their b_bdstrat callback function.
1211 * This is so that we can catch a buffer
1212 * after prematurely unpinning it to forcibly shutdown the filesystem.
1213 */
1214 int
1215 xfs_bdstrat_cb(
1216 struct xfs_buf *bp)
1217 {
1218 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1219 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1220 /*
1221 * Metadata write that didn't get logged but
1222 * written delayed anyway. These aren't associated
1223 * with a transaction, and can be ignored.
1224 */
1225 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1226 return xfs_bioerror_relse(bp);
1227 else
1228 return xfs_bioerror(bp);
1229 }
1230
1231 xfs_buf_iorequest(bp);
1232 return 0;
1233 }
1234
1235 /*
1236 * Wrapper around bdstrat so that we can stop data from going to disk in case
1237 * we are shutting down the filesystem. Typically user data goes thru this
1238 * path; one of the exceptions is the superblock.
1239 */
1240 void
1241 xfsbdstrat(
1242 struct xfs_mount *mp,
1243 struct xfs_buf *bp)
1244 {
1245 if (XFS_FORCED_SHUTDOWN(mp)) {
1246 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1247 xfs_bioerror_relse(bp);
1248 return;
1249 }
1250
1251 xfs_buf_iorequest(bp);
1252 }
1253
1254 STATIC void
1255 _xfs_buf_ioend(
1256 xfs_buf_t *bp,
1257 int schedule)
1258 {
1259 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1260 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1261 xfs_buf_ioend(bp, schedule);
1262 }
1263 }
1264
1265 STATIC void
1266 xfs_buf_bio_end_io(
1267 struct bio *bio,
1268 int error)
1269 {
1270 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1271 unsigned int blocksize = bp->b_target->bt_bsize;
1272 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1273
1274 xfs_buf_ioerror(bp, -error);
1275
1276 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1277 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1278
1279 do {
1280 struct page *page = bvec->bv_page;
1281
1282 ASSERT(!PagePrivate(page));
1283 if (unlikely(bp->b_error)) {
1284 if (bp->b_flags & XBF_READ)
1285 ClearPageUptodate(page);
1286 } else if (blocksize >= PAGE_CACHE_SIZE) {
1287 SetPageUptodate(page);
1288 } else if (!PagePrivate(page) &&
1289 (bp->b_flags & _XBF_PAGE_CACHE)) {
1290 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1291 }
1292
1293 if (--bvec >= bio->bi_io_vec)
1294 prefetchw(&bvec->bv_page->flags);
1295
1296 if (bp->b_flags & _XBF_PAGE_LOCKED)
1297 unlock_page(page);
1298 } while (bvec >= bio->bi_io_vec);
1299
1300 _xfs_buf_ioend(bp, 1);
1301 bio_put(bio);
1302 }
1303
1304 STATIC void
1305 _xfs_buf_ioapply(
1306 xfs_buf_t *bp)
1307 {
1308 int rw, map_i, total_nr_pages, nr_pages;
1309 struct bio *bio;
1310 int offset = bp->b_offset;
1311 int size = bp->b_count_desired;
1312 sector_t sector = bp->b_bn;
1313 unsigned int blocksize = bp->b_target->bt_bsize;
1314
1315 total_nr_pages = bp->b_page_count;
1316 map_i = 0;
1317
1318 if (bp->b_flags & XBF_ORDERED) {
1319 ASSERT(!(bp->b_flags & XBF_READ));
1320 rw = WRITE_FLUSH_FUA;
1321 } else if (bp->b_flags & XBF_LOG_BUFFER) {
1322 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1323 bp->b_flags &= ~_XBF_RUN_QUEUES;
1324 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1325 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1326 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1327 bp->b_flags &= ~_XBF_RUN_QUEUES;
1328 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1329 } else {
1330 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1331 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1332 }
1333
1334 /* Special code path for reading a sub page size buffer in --
1335 * we populate up the whole page, and hence the other metadata
1336 * in the same page. This optimization is only valid when the
1337 * filesystem block size is not smaller than the page size.
1338 */
1339 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1340 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1341 (XBF_READ|_XBF_PAGE_LOCKED)) &&
1342 (blocksize >= PAGE_CACHE_SIZE)) {
1343 bio = bio_alloc(GFP_NOIO, 1);
1344
1345 bio->bi_bdev = bp->b_target->bt_bdev;
1346 bio->bi_sector = sector - (offset >> BBSHIFT);
1347 bio->bi_end_io = xfs_buf_bio_end_io;
1348 bio->bi_private = bp;
1349
1350 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1351 size = 0;
1352
1353 atomic_inc(&bp->b_io_remaining);
1354
1355 goto submit_io;
1356 }
1357
1358 next_chunk:
1359 atomic_inc(&bp->b_io_remaining);
1360 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1361 if (nr_pages > total_nr_pages)
1362 nr_pages = total_nr_pages;
1363
1364 bio = bio_alloc(GFP_NOIO, nr_pages);
1365 bio->bi_bdev = bp->b_target->bt_bdev;
1366 bio->bi_sector = sector;
1367 bio->bi_end_io = xfs_buf_bio_end_io;
1368 bio->bi_private = bp;
1369
1370 for (; size && nr_pages; nr_pages--, map_i++) {
1371 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1372
1373 if (nbytes > size)
1374 nbytes = size;
1375
1376 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1377 if (rbytes < nbytes)
1378 break;
1379
1380 offset = 0;
1381 sector += nbytes >> BBSHIFT;
1382 size -= nbytes;
1383 total_nr_pages--;
1384 }
1385
1386 submit_io:
1387 if (likely(bio->bi_size)) {
1388 if (xfs_buf_is_vmapped(bp)) {
1389 flush_kernel_vmap_range(bp->b_addr,
1390 xfs_buf_vmap_len(bp));
1391 }
1392 submit_bio(rw, bio);
1393 if (size)
1394 goto next_chunk;
1395 } else {
1396 /*
1397 * if we get here, no pages were added to the bio. However,
1398 * we can't just error out here - if the pages are locked then
1399 * we have to unlock them otherwise we can hang on a later
1400 * access to the page.
1401 */
1402 xfs_buf_ioerror(bp, EIO);
1403 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1404 int i;
1405 for (i = 0; i < bp->b_page_count; i++)
1406 unlock_page(bp->b_pages[i]);
1407 }
1408 bio_put(bio);
1409 }
1410 }
1411
1412 int
1413 xfs_buf_iorequest(
1414 xfs_buf_t *bp)
1415 {
1416 trace_xfs_buf_iorequest(bp, _RET_IP_);
1417
1418 if (bp->b_flags & XBF_DELWRI) {
1419 xfs_buf_delwri_queue(bp, 1);
1420 return 0;
1421 }
1422
1423 if (bp->b_flags & XBF_WRITE) {
1424 xfs_buf_wait_unpin(bp);
1425 }
1426
1427 xfs_buf_hold(bp);
1428
1429 /* Set the count to 1 initially, this will stop an I/O
1430 * completion callout which happens before we have started
1431 * all the I/O from calling xfs_buf_ioend too early.
1432 */
1433 atomic_set(&bp->b_io_remaining, 1);
1434 _xfs_buf_ioapply(bp);
1435 _xfs_buf_ioend(bp, 0);
1436
1437 xfs_buf_rele(bp);
1438 return 0;
1439 }
1440
1441 /*
1442 * Waits for I/O to complete on the buffer supplied.
1443 * It returns immediately if no I/O is pending.
1444 * It returns the I/O error code, if any, or 0 if there was no error.
1445 */
1446 int
1447 xfs_buf_iowait(
1448 xfs_buf_t *bp)
1449 {
1450 trace_xfs_buf_iowait(bp, _RET_IP_);
1451
1452 if (atomic_read(&bp->b_io_remaining))
1453 blk_run_address_space(bp->b_target->bt_mapping);
1454 wait_for_completion(&bp->b_iowait);
1455
1456 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1457 return bp->b_error;
1458 }
1459
1460 xfs_caddr_t
1461 xfs_buf_offset(
1462 xfs_buf_t *bp,
1463 size_t offset)
1464 {
1465 struct page *page;
1466
1467 if (bp->b_flags & XBF_MAPPED)
1468 return XFS_BUF_PTR(bp) + offset;
1469
1470 offset += bp->b_offset;
1471 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1472 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1473 }
1474
1475 /*
1476 * Move data into or out of a buffer.
1477 */
1478 void
1479 xfs_buf_iomove(
1480 xfs_buf_t *bp, /* buffer to process */
1481 size_t boff, /* starting buffer offset */
1482 size_t bsize, /* length to copy */
1483 void *data, /* data address */
1484 xfs_buf_rw_t mode) /* read/write/zero flag */
1485 {
1486 size_t bend, cpoff, csize;
1487 struct page *page;
1488
1489 bend = boff + bsize;
1490 while (boff < bend) {
1491 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1492 cpoff = xfs_buf_poff(boff + bp->b_offset);
1493 csize = min_t(size_t,
1494 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1495
1496 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1497
1498 switch (mode) {
1499 case XBRW_ZERO:
1500 memset(page_address(page) + cpoff, 0, csize);
1501 break;
1502 case XBRW_READ:
1503 memcpy(data, page_address(page) + cpoff, csize);
1504 break;
1505 case XBRW_WRITE:
1506 memcpy(page_address(page) + cpoff, data, csize);
1507 }
1508
1509 boff += csize;
1510 data += csize;
1511 }
1512 }
1513
1514 /*
1515 * Handling of buffer targets (buftargs).
1516 */
1517
1518 /*
1519 * Wait for any bufs with callbacks that have been submitted but have not yet
1520 * returned. These buffers will have an elevated hold count, so wait on those
1521 * while freeing all the buffers only held by the LRU.
1522 */
1523 void
1524 xfs_wait_buftarg(
1525 struct xfs_buftarg *btp)
1526 {
1527 struct xfs_buf *bp;
1528
1529 restart:
1530 spin_lock(&btp->bt_lru_lock);
1531 while (!list_empty(&btp->bt_lru)) {
1532 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1533 if (atomic_read(&bp->b_hold) > 1) {
1534 spin_unlock(&btp->bt_lru_lock);
1535 delay(100);
1536 goto restart;
1537 }
1538 /*
1539 * clear the LRU reference count so the bufer doesn't get
1540 * ignored in xfs_buf_rele().
1541 */
1542 atomic_set(&bp->b_lru_ref, 0);
1543 spin_unlock(&btp->bt_lru_lock);
1544 xfs_buf_rele(bp);
1545 spin_lock(&btp->bt_lru_lock);
1546 }
1547 spin_unlock(&btp->bt_lru_lock);
1548 }
1549
1550 int
1551 xfs_buftarg_shrink(
1552 struct shrinker *shrink,
1553 int nr_to_scan,
1554 gfp_t mask)
1555 {
1556 struct xfs_buftarg *btp = container_of(shrink,
1557 struct xfs_buftarg, bt_shrinker);
1558 struct xfs_buf *bp;
1559 LIST_HEAD(dispose);
1560
1561 if (!nr_to_scan)
1562 return btp->bt_lru_nr;
1563
1564 spin_lock(&btp->bt_lru_lock);
1565 while (!list_empty(&btp->bt_lru)) {
1566 if (nr_to_scan-- <= 0)
1567 break;
1568
1569 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1570
1571 /*
1572 * Decrement the b_lru_ref count unless the value is already
1573 * zero. If the value is already zero, we need to reclaim the
1574 * buffer, otherwise it gets another trip through the LRU.
1575 */
1576 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1577 list_move_tail(&bp->b_lru, &btp->bt_lru);
1578 continue;
1579 }
1580
1581 /*
1582 * remove the buffer from the LRU now to avoid needing another
1583 * lock round trip inside xfs_buf_rele().
1584 */
1585 list_move(&bp->b_lru, &dispose);
1586 btp->bt_lru_nr--;
1587 }
1588 spin_unlock(&btp->bt_lru_lock);
1589
1590 while (!list_empty(&dispose)) {
1591 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1592 list_del_init(&bp->b_lru);
1593 xfs_buf_rele(bp);
1594 }
1595
1596 return btp->bt_lru_nr;
1597 }
1598
1599 void
1600 xfs_free_buftarg(
1601 struct xfs_mount *mp,
1602 struct xfs_buftarg *btp)
1603 {
1604 unregister_shrinker(&btp->bt_shrinker);
1605
1606 xfs_flush_buftarg(btp, 1);
1607 if (mp->m_flags & XFS_MOUNT_BARRIER)
1608 xfs_blkdev_issue_flush(btp);
1609 iput(btp->bt_mapping->host);
1610
1611 kthread_stop(btp->bt_task);
1612 kmem_free(btp);
1613 }
1614
1615 STATIC int
1616 xfs_setsize_buftarg_flags(
1617 xfs_buftarg_t *btp,
1618 unsigned int blocksize,
1619 unsigned int sectorsize,
1620 int verbose)
1621 {
1622 btp->bt_bsize = blocksize;
1623 btp->bt_sshift = ffs(sectorsize) - 1;
1624 btp->bt_smask = sectorsize - 1;
1625
1626 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1627 xfs_warn(btp->bt_mount,
1628 "Cannot set_blocksize to %u on device %s\n",
1629 sectorsize, XFS_BUFTARG_NAME(btp));
1630 return EINVAL;
1631 }
1632
1633 if (verbose &&
1634 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1635 printk(KERN_WARNING
1636 "XFS: %u byte sectors in use on device %s. "
1637 "This is suboptimal; %u or greater is ideal.\n",
1638 sectorsize, XFS_BUFTARG_NAME(btp),
1639 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1640 }
1641
1642 return 0;
1643 }
1644
1645 /*
1646 * When allocating the initial buffer target we have not yet
1647 * read in the superblock, so don't know what sized sectors
1648 * are being used is at this early stage. Play safe.
1649 */
1650 STATIC int
1651 xfs_setsize_buftarg_early(
1652 xfs_buftarg_t *btp,
1653 struct block_device *bdev)
1654 {
1655 return xfs_setsize_buftarg_flags(btp,
1656 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1657 }
1658
1659 int
1660 xfs_setsize_buftarg(
1661 xfs_buftarg_t *btp,
1662 unsigned int blocksize,
1663 unsigned int sectorsize)
1664 {
1665 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1666 }
1667
1668 STATIC int
1669 xfs_mapping_buftarg(
1670 xfs_buftarg_t *btp,
1671 struct block_device *bdev)
1672 {
1673 struct backing_dev_info *bdi;
1674 struct inode *inode;
1675 struct address_space *mapping;
1676 static const struct address_space_operations mapping_aops = {
1677 .sync_page = block_sync_page,
1678 .migratepage = fail_migrate_page,
1679 };
1680
1681 inode = new_inode(bdev->bd_inode->i_sb);
1682 if (!inode) {
1683 printk(KERN_WARNING
1684 "XFS: Cannot allocate mapping inode for device %s\n",
1685 XFS_BUFTARG_NAME(btp));
1686 return ENOMEM;
1687 }
1688 inode->i_ino = get_next_ino();
1689 inode->i_mode = S_IFBLK;
1690 inode->i_bdev = bdev;
1691 inode->i_rdev = bdev->bd_dev;
1692 bdi = blk_get_backing_dev_info(bdev);
1693 if (!bdi)
1694 bdi = &default_backing_dev_info;
1695 mapping = &inode->i_data;
1696 mapping->a_ops = &mapping_aops;
1697 mapping->backing_dev_info = bdi;
1698 mapping_set_gfp_mask(mapping, GFP_NOFS);
1699 btp->bt_mapping = mapping;
1700 return 0;
1701 }
1702
1703 STATIC int
1704 xfs_alloc_delwrite_queue(
1705 xfs_buftarg_t *btp,
1706 const char *fsname)
1707 {
1708 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1709 spin_lock_init(&btp->bt_delwrite_lock);
1710 btp->bt_flags = 0;
1711 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1712 if (IS_ERR(btp->bt_task))
1713 return PTR_ERR(btp->bt_task);
1714 return 0;
1715 }
1716
1717 xfs_buftarg_t *
1718 xfs_alloc_buftarg(
1719 struct xfs_mount *mp,
1720 struct block_device *bdev,
1721 int external,
1722 const char *fsname)
1723 {
1724 xfs_buftarg_t *btp;
1725
1726 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1727
1728 btp->bt_mount = mp;
1729 btp->bt_dev = bdev->bd_dev;
1730 btp->bt_bdev = bdev;
1731 INIT_LIST_HEAD(&btp->bt_lru);
1732 spin_lock_init(&btp->bt_lru_lock);
1733 if (xfs_setsize_buftarg_early(btp, bdev))
1734 goto error;
1735 if (xfs_mapping_buftarg(btp, bdev))
1736 goto error;
1737 if (xfs_alloc_delwrite_queue(btp, fsname))
1738 goto error;
1739 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1740 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1741 register_shrinker(&btp->bt_shrinker);
1742 return btp;
1743
1744 error:
1745 kmem_free(btp);
1746 return NULL;
1747 }
1748
1749
1750 /*
1751 * Delayed write buffer handling
1752 */
1753 STATIC void
1754 xfs_buf_delwri_queue(
1755 xfs_buf_t *bp,
1756 int unlock)
1757 {
1758 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1759 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1760
1761 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1762
1763 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1764
1765 spin_lock(dwlk);
1766 /* If already in the queue, dequeue and place at tail */
1767 if (!list_empty(&bp->b_list)) {
1768 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1769 if (unlock)
1770 atomic_dec(&bp->b_hold);
1771 list_del(&bp->b_list);
1772 }
1773
1774 if (list_empty(dwq)) {
1775 /* start xfsbufd as it is about to have something to do */
1776 wake_up_process(bp->b_target->bt_task);
1777 }
1778
1779 bp->b_flags |= _XBF_DELWRI_Q;
1780 list_add_tail(&bp->b_list, dwq);
1781 bp->b_queuetime = jiffies;
1782 spin_unlock(dwlk);
1783
1784 if (unlock)
1785 xfs_buf_unlock(bp);
1786 }
1787
1788 void
1789 xfs_buf_delwri_dequeue(
1790 xfs_buf_t *bp)
1791 {
1792 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1793 int dequeued = 0;
1794
1795 spin_lock(dwlk);
1796 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1797 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1798 list_del_init(&bp->b_list);
1799 dequeued = 1;
1800 }
1801 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1802 spin_unlock(dwlk);
1803
1804 if (dequeued)
1805 xfs_buf_rele(bp);
1806
1807 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1808 }
1809
1810 /*
1811 * If a delwri buffer needs to be pushed before it has aged out, then promote
1812 * it to the head of the delwri queue so that it will be flushed on the next
1813 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1814 * than the age currently needed to flush the buffer. Hence the next time the
1815 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1816 */
1817 void
1818 xfs_buf_delwri_promote(
1819 struct xfs_buf *bp)
1820 {
1821 struct xfs_buftarg *btp = bp->b_target;
1822 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1823
1824 ASSERT(bp->b_flags & XBF_DELWRI);
1825 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1826
1827 /*
1828 * Check the buffer age before locking the delayed write queue as we
1829 * don't need to promote buffers that are already past the flush age.
1830 */
1831 if (bp->b_queuetime < jiffies - age)
1832 return;
1833 bp->b_queuetime = jiffies - age;
1834 spin_lock(&btp->bt_delwrite_lock);
1835 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1836 spin_unlock(&btp->bt_delwrite_lock);
1837 }
1838
1839 STATIC void
1840 xfs_buf_runall_queues(
1841 struct workqueue_struct *queue)
1842 {
1843 flush_workqueue(queue);
1844 }
1845
1846 /*
1847 * Move as many buffers as specified to the supplied list
1848 * idicating if we skipped any buffers to prevent deadlocks.
1849 */
1850 STATIC int
1851 xfs_buf_delwri_split(
1852 xfs_buftarg_t *target,
1853 struct list_head *list,
1854 unsigned long age)
1855 {
1856 xfs_buf_t *bp, *n;
1857 struct list_head *dwq = &target->bt_delwrite_queue;
1858 spinlock_t *dwlk = &target->bt_delwrite_lock;
1859 int skipped = 0;
1860 int force;
1861
1862 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1863 INIT_LIST_HEAD(list);
1864 spin_lock(dwlk);
1865 list_for_each_entry_safe(bp, n, dwq, b_list) {
1866 ASSERT(bp->b_flags & XBF_DELWRI);
1867
1868 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1869 if (!force &&
1870 time_before(jiffies, bp->b_queuetime + age)) {
1871 xfs_buf_unlock(bp);
1872 break;
1873 }
1874
1875 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1876 _XBF_RUN_QUEUES);
1877 bp->b_flags |= XBF_WRITE;
1878 list_move_tail(&bp->b_list, list);
1879 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1880 } else
1881 skipped++;
1882 }
1883 spin_unlock(dwlk);
1884
1885 return skipped;
1886
1887 }
1888
1889 /*
1890 * Compare function is more complex than it needs to be because
1891 * the return value is only 32 bits and we are doing comparisons
1892 * on 64 bit values
1893 */
1894 static int
1895 xfs_buf_cmp(
1896 void *priv,
1897 struct list_head *a,
1898 struct list_head *b)
1899 {
1900 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1901 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1902 xfs_daddr_t diff;
1903
1904 diff = ap->b_bn - bp->b_bn;
1905 if (diff < 0)
1906 return -1;
1907 if (diff > 0)
1908 return 1;
1909 return 0;
1910 }
1911
1912 void
1913 xfs_buf_delwri_sort(
1914 xfs_buftarg_t *target,
1915 struct list_head *list)
1916 {
1917 list_sort(NULL, list, xfs_buf_cmp);
1918 }
1919
1920 STATIC int
1921 xfsbufd(
1922 void *data)
1923 {
1924 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1925
1926 current->flags |= PF_MEMALLOC;
1927
1928 set_freezable();
1929
1930 do {
1931 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1932 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1933 int count = 0;
1934 struct list_head tmp;
1935
1936 if (unlikely(freezing(current))) {
1937 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1938 refrigerator();
1939 } else {
1940 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1941 }
1942
1943 /* sleep for a long time if there is nothing to do. */
1944 if (list_empty(&target->bt_delwrite_queue))
1945 tout = MAX_SCHEDULE_TIMEOUT;
1946 schedule_timeout_interruptible(tout);
1947
1948 xfs_buf_delwri_split(target, &tmp, age);
1949 list_sort(NULL, &tmp, xfs_buf_cmp);
1950 while (!list_empty(&tmp)) {
1951 struct xfs_buf *bp;
1952 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1953 list_del_init(&bp->b_list);
1954 xfs_bdstrat_cb(bp);
1955 count++;
1956 }
1957 if (count)
1958 blk_run_address_space(target->bt_mapping);
1959
1960 } while (!kthread_should_stop());
1961
1962 return 0;
1963 }
1964
1965 /*
1966 * Go through all incore buffers, and release buffers if they belong to
1967 * the given device. This is used in filesystem error handling to
1968 * preserve the consistency of its metadata.
1969 */
1970 int
1971 xfs_flush_buftarg(
1972 xfs_buftarg_t *target,
1973 int wait)
1974 {
1975 xfs_buf_t *bp;
1976 int pincount = 0;
1977 LIST_HEAD(tmp_list);
1978 LIST_HEAD(wait_list);
1979
1980 xfs_buf_runall_queues(xfsconvertd_workqueue);
1981 xfs_buf_runall_queues(xfsdatad_workqueue);
1982 xfs_buf_runall_queues(xfslogd_workqueue);
1983
1984 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1985 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1986
1987 /*
1988 * Dropped the delayed write list lock, now walk the temporary list.
1989 * All I/O is issued async and then if we need to wait for completion
1990 * we do that after issuing all the IO.
1991 */
1992 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1993 while (!list_empty(&tmp_list)) {
1994 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1995 ASSERT(target == bp->b_target);
1996 list_del_init(&bp->b_list);
1997 if (wait) {
1998 bp->b_flags &= ~XBF_ASYNC;
1999 list_add(&bp->b_list, &wait_list);
2000 }
2001 xfs_bdstrat_cb(bp);
2002 }
2003
2004 if (wait) {
2005 /* Expedite and wait for IO to complete. */
2006 blk_run_address_space(target->bt_mapping);
2007 while (!list_empty(&wait_list)) {
2008 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2009
2010 list_del_init(&bp->b_list);
2011 xfs_buf_iowait(bp);
2012 xfs_buf_relse(bp);
2013 }
2014 }
2015
2016 return pincount;
2017 }
2018
2019 int __init
2020 xfs_buf_init(void)
2021 {
2022 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2023 KM_ZONE_HWALIGN, NULL);
2024 if (!xfs_buf_zone)
2025 goto out;
2026
2027 xfslogd_workqueue = alloc_workqueue("xfslogd",
2028 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
2029 if (!xfslogd_workqueue)
2030 goto out_free_buf_zone;
2031
2032 xfsdatad_workqueue = create_workqueue("xfsdatad");
2033 if (!xfsdatad_workqueue)
2034 goto out_destroy_xfslogd_workqueue;
2035
2036 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
2037 if (!xfsconvertd_workqueue)
2038 goto out_destroy_xfsdatad_workqueue;
2039
2040 return 0;
2041
2042 out_destroy_xfsdatad_workqueue:
2043 destroy_workqueue(xfsdatad_workqueue);
2044 out_destroy_xfslogd_workqueue:
2045 destroy_workqueue(xfslogd_workqueue);
2046 out_free_buf_zone:
2047 kmem_zone_destroy(xfs_buf_zone);
2048 out:
2049 return -ENOMEM;
2050 }
2051
2052 void
2053 xfs_buf_terminate(void)
2054 {
2055 destroy_workqueue(xfsconvertd_workqueue);
2056 destroy_workqueue(xfsdatad_workqueue);
2057 destroy_workqueue(xfslogd_workqueue);
2058 kmem_zone_destroy(xfs_buf_zone);
2059 }
2060
2061 #ifdef CONFIG_KDB_MODULES
2062 struct list_head *
2063 xfs_get_buftarg_list(void)
2064 {
2065 return &xfs_buftarg_list;
2066 }
2067 #endif
This page took 0.073528 seconds and 6 git commands to generate.