xfs: give li_cb callbacks the correct prototype
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/list_sort.h>
37
38 #include "xfs_sb.h"
39 #include "xfs_inum.h"
40 #include "xfs_log.h"
41 #include "xfs_ag.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46 STATIC int xfsbufd(void *);
47 STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
48 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
49 static struct shrinker xfs_buf_shake = {
50 .shrink = xfsbufd_wakeup,
51 .seeks = DEFAULT_SEEKS,
52 };
53
54 static struct workqueue_struct *xfslogd_workqueue;
55 struct workqueue_struct *xfsdatad_workqueue;
56 struct workqueue_struct *xfsconvertd_workqueue;
57
58 #ifdef XFS_BUF_LOCK_TRACKING
59 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
60 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
61 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
62 #else
63 # define XB_SET_OWNER(bp) do { } while (0)
64 # define XB_CLEAR_OWNER(bp) do { } while (0)
65 # define XB_GET_OWNER(bp) do { } while (0)
66 #endif
67
68 #define xb_to_gfp(flags) \
69 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
71
72 #define xb_to_km(flags) \
73 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
74
75 #define xfs_buf_allocate(flags) \
76 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77 #define xfs_buf_deallocate(bp) \
78 kmem_zone_free(xfs_buf_zone, (bp));
79
80 static inline int
81 xfs_buf_is_vmapped(
82 struct xfs_buf *bp)
83 {
84 /*
85 * Return true if the buffer is vmapped.
86 *
87 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88 * code is clever enough to know it doesn't have to map a single page,
89 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90 */
91 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92 }
93
94 static inline int
95 xfs_buf_vmap_len(
96 struct xfs_buf *bp)
97 {
98 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99 }
100
101 /*
102 * Page Region interfaces.
103 *
104 * For pages in filesystems where the blocksize is smaller than the
105 * pagesize, we use the page->private field (long) to hold a bitmap
106 * of uptodate regions within the page.
107 *
108 * Each such region is "bytes per page / bits per long" bytes long.
109 *
110 * NBPPR == number-of-bytes-per-page-region
111 * BTOPR == bytes-to-page-region (rounded up)
112 * BTOPRT == bytes-to-page-region-truncated (rounded down)
113 */
114 #if (BITS_PER_LONG == 32)
115 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
116 #elif (BITS_PER_LONG == 64)
117 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
118 #else
119 #error BITS_PER_LONG must be 32 or 64
120 #endif
121 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
122 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
124
125 STATIC unsigned long
126 page_region_mask(
127 size_t offset,
128 size_t length)
129 {
130 unsigned long mask;
131 int first, final;
132
133 first = BTOPR(offset);
134 final = BTOPRT(offset + length - 1);
135 first = min(first, final);
136
137 mask = ~0UL;
138 mask <<= BITS_PER_LONG - (final - first);
139 mask >>= BITS_PER_LONG - (final);
140
141 ASSERT(offset + length <= PAGE_CACHE_SIZE);
142 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144 return mask;
145 }
146
147 STATIC void
148 set_page_region(
149 struct page *page,
150 size_t offset,
151 size_t length)
152 {
153 set_page_private(page,
154 page_private(page) | page_region_mask(offset, length));
155 if (page_private(page) == ~0UL)
156 SetPageUptodate(page);
157 }
158
159 STATIC int
160 test_page_region(
161 struct page *page,
162 size_t offset,
163 size_t length)
164 {
165 unsigned long mask = page_region_mask(offset, length);
166
167 return (mask && (page_private(page) & mask) == mask);
168 }
169
170 /*
171 * Internal xfs_buf_t object manipulation
172 */
173
174 STATIC void
175 _xfs_buf_initialize(
176 xfs_buf_t *bp,
177 xfs_buftarg_t *target,
178 xfs_off_t range_base,
179 size_t range_length,
180 xfs_buf_flags_t flags)
181 {
182 /*
183 * We don't want certain flags to appear in b_flags.
184 */
185 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187 memset(bp, 0, sizeof(xfs_buf_t));
188 atomic_set(&bp->b_hold, 1);
189 init_completion(&bp->b_iowait);
190 INIT_LIST_HEAD(&bp->b_list);
191 INIT_LIST_HEAD(&bp->b_hash_list);
192 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
193 XB_SET_OWNER(bp);
194 bp->b_target = target;
195 bp->b_file_offset = range_base;
196 /*
197 * Set buffer_length and count_desired to the same value initially.
198 * I/O routines should use count_desired, which will be the same in
199 * most cases but may be reset (e.g. XFS recovery).
200 */
201 bp->b_buffer_length = bp->b_count_desired = range_length;
202 bp->b_flags = flags;
203 bp->b_bn = XFS_BUF_DADDR_NULL;
204 atomic_set(&bp->b_pin_count, 0);
205 init_waitqueue_head(&bp->b_waiters);
206
207 XFS_STATS_INC(xb_create);
208
209 trace_xfs_buf_init(bp, _RET_IP_);
210 }
211
212 /*
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
215 */
216 STATIC int
217 _xfs_buf_get_pages(
218 xfs_buf_t *bp,
219 int page_count,
220 xfs_buf_flags_t flags)
221 {
222 /* Make sure that we have a page list */
223 if (bp->b_pages == NULL) {
224 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225 bp->b_page_count = page_count;
226 if (page_count <= XB_PAGES) {
227 bp->b_pages = bp->b_page_array;
228 } else {
229 bp->b_pages = kmem_alloc(sizeof(struct page *) *
230 page_count, xb_to_km(flags));
231 if (bp->b_pages == NULL)
232 return -ENOMEM;
233 }
234 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
235 }
236 return 0;
237 }
238
239 /*
240 * Frees b_pages if it was allocated.
241 */
242 STATIC void
243 _xfs_buf_free_pages(
244 xfs_buf_t *bp)
245 {
246 if (bp->b_pages != bp->b_page_array) {
247 kmem_free(bp->b_pages);
248 bp->b_pages = NULL;
249 }
250 }
251
252 /*
253 * Releases the specified buffer.
254 *
255 * The modification state of any associated pages is left unchanged.
256 * The buffer most not be on any hash - use xfs_buf_rele instead for
257 * hashed and refcounted buffers
258 */
259 void
260 xfs_buf_free(
261 xfs_buf_t *bp)
262 {
263 trace_xfs_buf_free(bp, _RET_IP_);
264
265 ASSERT(list_empty(&bp->b_hash_list));
266
267 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
268 uint i;
269
270 if (xfs_buf_is_vmapped(bp))
271 vm_unmap_ram(bp->b_addr - bp->b_offset,
272 bp->b_page_count);
273
274 for (i = 0; i < bp->b_page_count; i++) {
275 struct page *page = bp->b_pages[i];
276
277 if (bp->b_flags & _XBF_PAGE_CACHE)
278 ASSERT(!PagePrivate(page));
279 page_cache_release(page);
280 }
281 }
282 _xfs_buf_free_pages(bp);
283 xfs_buf_deallocate(bp);
284 }
285
286 /*
287 * Finds all pages for buffer in question and builds it's page list.
288 */
289 STATIC int
290 _xfs_buf_lookup_pages(
291 xfs_buf_t *bp,
292 uint flags)
293 {
294 struct address_space *mapping = bp->b_target->bt_mapping;
295 size_t blocksize = bp->b_target->bt_bsize;
296 size_t size = bp->b_count_desired;
297 size_t nbytes, offset;
298 gfp_t gfp_mask = xb_to_gfp(flags);
299 unsigned short page_count, i;
300 pgoff_t first;
301 xfs_off_t end;
302 int error;
303
304 end = bp->b_file_offset + bp->b_buffer_length;
305 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
306
307 error = _xfs_buf_get_pages(bp, page_count, flags);
308 if (unlikely(error))
309 return error;
310 bp->b_flags |= _XBF_PAGE_CACHE;
311
312 offset = bp->b_offset;
313 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
314
315 for (i = 0; i < bp->b_page_count; i++) {
316 struct page *page;
317 uint retries = 0;
318
319 retry:
320 page = find_or_create_page(mapping, first + i, gfp_mask);
321 if (unlikely(page == NULL)) {
322 if (flags & XBF_READ_AHEAD) {
323 bp->b_page_count = i;
324 for (i = 0; i < bp->b_page_count; i++)
325 unlock_page(bp->b_pages[i]);
326 return -ENOMEM;
327 }
328
329 /*
330 * This could deadlock.
331 *
332 * But until all the XFS lowlevel code is revamped to
333 * handle buffer allocation failures we can't do much.
334 */
335 if (!(++retries % 100))
336 printk(KERN_ERR
337 "XFS: possible memory allocation "
338 "deadlock in %s (mode:0x%x)\n",
339 __func__, gfp_mask);
340
341 XFS_STATS_INC(xb_page_retries);
342 xfsbufd_wakeup(NULL, 0, gfp_mask);
343 congestion_wait(BLK_RW_ASYNC, HZ/50);
344 goto retry;
345 }
346
347 XFS_STATS_INC(xb_page_found);
348
349 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
350 size -= nbytes;
351
352 ASSERT(!PagePrivate(page));
353 if (!PageUptodate(page)) {
354 page_count--;
355 if (blocksize >= PAGE_CACHE_SIZE) {
356 if (flags & XBF_READ)
357 bp->b_flags |= _XBF_PAGE_LOCKED;
358 } else if (!PagePrivate(page)) {
359 if (test_page_region(page, offset, nbytes))
360 page_count++;
361 }
362 }
363
364 bp->b_pages[i] = page;
365 offset = 0;
366 }
367
368 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
369 for (i = 0; i < bp->b_page_count; i++)
370 unlock_page(bp->b_pages[i]);
371 }
372
373 if (page_count == bp->b_page_count)
374 bp->b_flags |= XBF_DONE;
375
376 return error;
377 }
378
379 /*
380 * Map buffer into kernel address-space if nessecary.
381 */
382 STATIC int
383 _xfs_buf_map_pages(
384 xfs_buf_t *bp,
385 uint flags)
386 {
387 /* A single page buffer is always mappable */
388 if (bp->b_page_count == 1) {
389 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390 bp->b_flags |= XBF_MAPPED;
391 } else if (flags & XBF_MAPPED) {
392 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
393 -1, PAGE_KERNEL);
394 if (unlikely(bp->b_addr == NULL))
395 return -ENOMEM;
396 bp->b_addr += bp->b_offset;
397 bp->b_flags |= XBF_MAPPED;
398 }
399
400 return 0;
401 }
402
403 /*
404 * Finding and Reading Buffers
405 */
406
407 /*
408 * Look up, and creates if absent, a lockable buffer for
409 * a given range of an inode. The buffer is returned
410 * locked. If other overlapping buffers exist, they are
411 * released before the new buffer is created and locked,
412 * which may imply that this call will block until those buffers
413 * are unlocked. No I/O is implied by this call.
414 */
415 xfs_buf_t *
416 _xfs_buf_find(
417 xfs_buftarg_t *btp, /* block device target */
418 xfs_off_t ioff, /* starting offset of range */
419 size_t isize, /* length of range */
420 xfs_buf_flags_t flags,
421 xfs_buf_t *new_bp)
422 {
423 xfs_off_t range_base;
424 size_t range_length;
425 xfs_bufhash_t *hash;
426 xfs_buf_t *bp, *n;
427
428 range_base = (ioff << BBSHIFT);
429 range_length = (isize << BBSHIFT);
430
431 /* Check for IOs smaller than the sector size / not sector aligned */
432 ASSERT(!(range_length < (1 << btp->bt_sshift)));
433 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
434
435 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
436
437 spin_lock(&hash->bh_lock);
438
439 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
440 ASSERT(btp == bp->b_target);
441 if (bp->b_file_offset == range_base &&
442 bp->b_buffer_length == range_length) {
443 /*
444 * If we look at something, bring it to the
445 * front of the list for next time.
446 */
447 atomic_inc(&bp->b_hold);
448 list_move(&bp->b_hash_list, &hash->bh_list);
449 goto found;
450 }
451 }
452
453 /* No match found */
454 if (new_bp) {
455 _xfs_buf_initialize(new_bp, btp, range_base,
456 range_length, flags);
457 new_bp->b_hash = hash;
458 list_add(&new_bp->b_hash_list, &hash->bh_list);
459 } else {
460 XFS_STATS_INC(xb_miss_locked);
461 }
462
463 spin_unlock(&hash->bh_lock);
464 return new_bp;
465
466 found:
467 spin_unlock(&hash->bh_lock);
468
469 /* Attempt to get the semaphore without sleeping,
470 * if this does not work then we need to drop the
471 * spinlock and do a hard attempt on the semaphore.
472 */
473 if (down_trylock(&bp->b_sema)) {
474 if (!(flags & XBF_TRYLOCK)) {
475 /* wait for buffer ownership */
476 xfs_buf_lock(bp);
477 XFS_STATS_INC(xb_get_locked_waited);
478 } else {
479 /* We asked for a trylock and failed, no need
480 * to look at file offset and length here, we
481 * know that this buffer at least overlaps our
482 * buffer and is locked, therefore our buffer
483 * either does not exist, or is this buffer.
484 */
485 xfs_buf_rele(bp);
486 XFS_STATS_INC(xb_busy_locked);
487 return NULL;
488 }
489 } else {
490 /* trylock worked */
491 XB_SET_OWNER(bp);
492 }
493
494 if (bp->b_flags & XBF_STALE) {
495 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
496 bp->b_flags &= XBF_MAPPED;
497 }
498
499 trace_xfs_buf_find(bp, flags, _RET_IP_);
500 XFS_STATS_INC(xb_get_locked);
501 return bp;
502 }
503
504 /*
505 * Assembles a buffer covering the specified range.
506 * Storage in memory for all portions of the buffer will be allocated,
507 * although backing storage may not be.
508 */
509 xfs_buf_t *
510 xfs_buf_get(
511 xfs_buftarg_t *target,/* target for buffer */
512 xfs_off_t ioff, /* starting offset of range */
513 size_t isize, /* length of range */
514 xfs_buf_flags_t flags)
515 {
516 xfs_buf_t *bp, *new_bp;
517 int error = 0, i;
518
519 new_bp = xfs_buf_allocate(flags);
520 if (unlikely(!new_bp))
521 return NULL;
522
523 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
524 if (bp == new_bp) {
525 error = _xfs_buf_lookup_pages(bp, flags);
526 if (error)
527 goto no_buffer;
528 } else {
529 xfs_buf_deallocate(new_bp);
530 if (unlikely(bp == NULL))
531 return NULL;
532 }
533
534 for (i = 0; i < bp->b_page_count; i++)
535 mark_page_accessed(bp->b_pages[i]);
536
537 if (!(bp->b_flags & XBF_MAPPED)) {
538 error = _xfs_buf_map_pages(bp, flags);
539 if (unlikely(error)) {
540 printk(KERN_WARNING "%s: failed to map pages\n",
541 __func__);
542 goto no_buffer;
543 }
544 }
545
546 XFS_STATS_INC(xb_get);
547
548 /*
549 * Always fill in the block number now, the mapped cases can do
550 * their own overlay of this later.
551 */
552 bp->b_bn = ioff;
553 bp->b_count_desired = bp->b_buffer_length;
554
555 trace_xfs_buf_get(bp, flags, _RET_IP_);
556 return bp;
557
558 no_buffer:
559 if (flags & (XBF_LOCK | XBF_TRYLOCK))
560 xfs_buf_unlock(bp);
561 xfs_buf_rele(bp);
562 return NULL;
563 }
564
565 STATIC int
566 _xfs_buf_read(
567 xfs_buf_t *bp,
568 xfs_buf_flags_t flags)
569 {
570 int status;
571
572 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
573 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
574
575 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
576 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
577 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
578 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
579
580 status = xfs_buf_iorequest(bp);
581 if (!status && !(flags & XBF_ASYNC))
582 status = xfs_buf_iowait(bp);
583 return status;
584 }
585
586 xfs_buf_t *
587 xfs_buf_read(
588 xfs_buftarg_t *target,
589 xfs_off_t ioff,
590 size_t isize,
591 xfs_buf_flags_t flags)
592 {
593 xfs_buf_t *bp;
594
595 flags |= XBF_READ;
596
597 bp = xfs_buf_get(target, ioff, isize, flags);
598 if (bp) {
599 trace_xfs_buf_read(bp, flags, _RET_IP_);
600
601 if (!XFS_BUF_ISDONE(bp)) {
602 XFS_STATS_INC(xb_get_read);
603 _xfs_buf_read(bp, flags);
604 } else if (flags & XBF_ASYNC) {
605 /*
606 * Read ahead call which is already satisfied,
607 * drop the buffer
608 */
609 goto no_buffer;
610 } else {
611 /* We do not want read in the flags */
612 bp->b_flags &= ~XBF_READ;
613 }
614 }
615
616 return bp;
617
618 no_buffer:
619 if (flags & (XBF_LOCK | XBF_TRYLOCK))
620 xfs_buf_unlock(bp);
621 xfs_buf_rele(bp);
622 return NULL;
623 }
624
625 /*
626 * If we are not low on memory then do the readahead in a deadlock
627 * safe manner.
628 */
629 void
630 xfs_buf_readahead(
631 xfs_buftarg_t *target,
632 xfs_off_t ioff,
633 size_t isize,
634 xfs_buf_flags_t flags)
635 {
636 struct backing_dev_info *bdi;
637
638 bdi = target->bt_mapping->backing_dev_info;
639 if (bdi_read_congested(bdi))
640 return;
641
642 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
643 xfs_buf_read(target, ioff, isize, flags);
644 }
645
646 xfs_buf_t *
647 xfs_buf_get_empty(
648 size_t len,
649 xfs_buftarg_t *target)
650 {
651 xfs_buf_t *bp;
652
653 bp = xfs_buf_allocate(0);
654 if (bp)
655 _xfs_buf_initialize(bp, target, 0, len, 0);
656 return bp;
657 }
658
659 static inline struct page *
660 mem_to_page(
661 void *addr)
662 {
663 if ((!is_vmalloc_addr(addr))) {
664 return virt_to_page(addr);
665 } else {
666 return vmalloc_to_page(addr);
667 }
668 }
669
670 int
671 xfs_buf_associate_memory(
672 xfs_buf_t *bp,
673 void *mem,
674 size_t len)
675 {
676 int rval;
677 int i = 0;
678 unsigned long pageaddr;
679 unsigned long offset;
680 size_t buflen;
681 int page_count;
682
683 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
684 offset = (unsigned long)mem - pageaddr;
685 buflen = PAGE_CACHE_ALIGN(len + offset);
686 page_count = buflen >> PAGE_CACHE_SHIFT;
687
688 /* Free any previous set of page pointers */
689 if (bp->b_pages)
690 _xfs_buf_free_pages(bp);
691
692 bp->b_pages = NULL;
693 bp->b_addr = mem;
694
695 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
696 if (rval)
697 return rval;
698
699 bp->b_offset = offset;
700
701 for (i = 0; i < bp->b_page_count; i++) {
702 bp->b_pages[i] = mem_to_page((void *)pageaddr);
703 pageaddr += PAGE_CACHE_SIZE;
704 }
705
706 bp->b_count_desired = len;
707 bp->b_buffer_length = buflen;
708 bp->b_flags |= XBF_MAPPED;
709 bp->b_flags &= ~_XBF_PAGE_LOCKED;
710
711 return 0;
712 }
713
714 xfs_buf_t *
715 xfs_buf_get_noaddr(
716 size_t len,
717 xfs_buftarg_t *target)
718 {
719 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
720 int error, i;
721 xfs_buf_t *bp;
722
723 bp = xfs_buf_allocate(0);
724 if (unlikely(bp == NULL))
725 goto fail;
726 _xfs_buf_initialize(bp, target, 0, len, 0);
727
728 error = _xfs_buf_get_pages(bp, page_count, 0);
729 if (error)
730 goto fail_free_buf;
731
732 for (i = 0; i < page_count; i++) {
733 bp->b_pages[i] = alloc_page(GFP_KERNEL);
734 if (!bp->b_pages[i])
735 goto fail_free_mem;
736 }
737 bp->b_flags |= _XBF_PAGES;
738
739 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
740 if (unlikely(error)) {
741 printk(KERN_WARNING "%s: failed to map pages\n",
742 __func__);
743 goto fail_free_mem;
744 }
745
746 xfs_buf_unlock(bp);
747
748 trace_xfs_buf_get_noaddr(bp, _RET_IP_);
749 return bp;
750
751 fail_free_mem:
752 while (--i >= 0)
753 __free_page(bp->b_pages[i]);
754 _xfs_buf_free_pages(bp);
755 fail_free_buf:
756 xfs_buf_deallocate(bp);
757 fail:
758 return NULL;
759 }
760
761 /*
762 * Increment reference count on buffer, to hold the buffer concurrently
763 * with another thread which may release (free) the buffer asynchronously.
764 * Must hold the buffer already to call this function.
765 */
766 void
767 xfs_buf_hold(
768 xfs_buf_t *bp)
769 {
770 trace_xfs_buf_hold(bp, _RET_IP_);
771 atomic_inc(&bp->b_hold);
772 }
773
774 /*
775 * Releases a hold on the specified buffer. If the
776 * the hold count is 1, calls xfs_buf_free.
777 */
778 void
779 xfs_buf_rele(
780 xfs_buf_t *bp)
781 {
782 xfs_bufhash_t *hash = bp->b_hash;
783
784 trace_xfs_buf_rele(bp, _RET_IP_);
785
786 if (unlikely(!hash)) {
787 ASSERT(!bp->b_relse);
788 if (atomic_dec_and_test(&bp->b_hold))
789 xfs_buf_free(bp);
790 return;
791 }
792
793 ASSERT(atomic_read(&bp->b_hold) > 0);
794 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
795 if (bp->b_relse) {
796 atomic_inc(&bp->b_hold);
797 spin_unlock(&hash->bh_lock);
798 (*(bp->b_relse)) (bp);
799 } else if (bp->b_flags & XBF_FS_MANAGED) {
800 spin_unlock(&hash->bh_lock);
801 } else {
802 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
803 list_del_init(&bp->b_hash_list);
804 spin_unlock(&hash->bh_lock);
805 xfs_buf_free(bp);
806 }
807 }
808 }
809
810
811 /*
812 * Mutual exclusion on buffers. Locking model:
813 *
814 * Buffers associated with inodes for which buffer locking
815 * is not enabled are not protected by semaphores, and are
816 * assumed to be exclusively owned by the caller. There is a
817 * spinlock in the buffer, used by the caller when concurrent
818 * access is possible.
819 */
820
821 /*
822 * Locks a buffer object, if it is not already locked.
823 * Note that this in no way locks the underlying pages, so it is only
824 * useful for synchronizing concurrent use of buffer objects, not for
825 * synchronizing independent access to the underlying pages.
826 */
827 int
828 xfs_buf_cond_lock(
829 xfs_buf_t *bp)
830 {
831 int locked;
832
833 locked = down_trylock(&bp->b_sema) == 0;
834 if (locked)
835 XB_SET_OWNER(bp);
836
837 trace_xfs_buf_cond_lock(bp, _RET_IP_);
838 return locked ? 0 : -EBUSY;
839 }
840
841 int
842 xfs_buf_lock_value(
843 xfs_buf_t *bp)
844 {
845 return bp->b_sema.count;
846 }
847
848 /*
849 * Locks a buffer object.
850 * Note that this in no way locks the underlying pages, so it is only
851 * useful for synchronizing concurrent use of buffer objects, not for
852 * synchronizing independent access to the underlying pages.
853 *
854 * If we come across a stale, pinned, locked buffer, we know that we
855 * are being asked to lock a buffer that has been reallocated. Because
856 * it is pinned, we know that the log has not been pushed to disk and
857 * hence it will still be locked. Rather than sleeping until someone
858 * else pushes the log, push it ourselves before trying to get the lock.
859 */
860 void
861 xfs_buf_lock(
862 xfs_buf_t *bp)
863 {
864 trace_xfs_buf_lock(bp, _RET_IP_);
865
866 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
867 xfs_log_force(bp->b_mount, 0);
868 if (atomic_read(&bp->b_io_remaining))
869 blk_run_address_space(bp->b_target->bt_mapping);
870 down(&bp->b_sema);
871 XB_SET_OWNER(bp);
872
873 trace_xfs_buf_lock_done(bp, _RET_IP_);
874 }
875
876 /*
877 * Releases the lock on the buffer object.
878 * If the buffer is marked delwri but is not queued, do so before we
879 * unlock the buffer as we need to set flags correctly. We also need to
880 * take a reference for the delwri queue because the unlocker is going to
881 * drop their's and they don't know we just queued it.
882 */
883 void
884 xfs_buf_unlock(
885 xfs_buf_t *bp)
886 {
887 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
888 atomic_inc(&bp->b_hold);
889 bp->b_flags |= XBF_ASYNC;
890 xfs_buf_delwri_queue(bp, 0);
891 }
892
893 XB_CLEAR_OWNER(bp);
894 up(&bp->b_sema);
895
896 trace_xfs_buf_unlock(bp, _RET_IP_);
897 }
898
899
900 /*
901 * Pinning Buffer Storage in Memory
902 * Ensure that no attempt to force a buffer to disk will succeed.
903 */
904 void
905 xfs_buf_pin(
906 xfs_buf_t *bp)
907 {
908 trace_xfs_buf_pin(bp, _RET_IP_);
909 atomic_inc(&bp->b_pin_count);
910 }
911
912 void
913 xfs_buf_unpin(
914 xfs_buf_t *bp)
915 {
916 trace_xfs_buf_unpin(bp, _RET_IP_);
917
918 if (atomic_dec_and_test(&bp->b_pin_count))
919 wake_up_all(&bp->b_waiters);
920 }
921
922 int
923 xfs_buf_ispin(
924 xfs_buf_t *bp)
925 {
926 return atomic_read(&bp->b_pin_count);
927 }
928
929 STATIC void
930 xfs_buf_wait_unpin(
931 xfs_buf_t *bp)
932 {
933 DECLARE_WAITQUEUE (wait, current);
934
935 if (atomic_read(&bp->b_pin_count) == 0)
936 return;
937
938 add_wait_queue(&bp->b_waiters, &wait);
939 for (;;) {
940 set_current_state(TASK_UNINTERRUPTIBLE);
941 if (atomic_read(&bp->b_pin_count) == 0)
942 break;
943 if (atomic_read(&bp->b_io_remaining))
944 blk_run_address_space(bp->b_target->bt_mapping);
945 schedule();
946 }
947 remove_wait_queue(&bp->b_waiters, &wait);
948 set_current_state(TASK_RUNNING);
949 }
950
951 /*
952 * Buffer Utility Routines
953 */
954
955 STATIC void
956 xfs_buf_iodone_work(
957 struct work_struct *work)
958 {
959 xfs_buf_t *bp =
960 container_of(work, xfs_buf_t, b_iodone_work);
961
962 /*
963 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
964 * ordered flag and reissue them. Because we can't tell the higher
965 * layers directly that they should not issue ordered I/O anymore, they
966 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
967 */
968 if ((bp->b_error == EOPNOTSUPP) &&
969 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
970 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
971 bp->b_flags &= ~XBF_ORDERED;
972 bp->b_flags |= _XFS_BARRIER_FAILED;
973 xfs_buf_iorequest(bp);
974 } else if (bp->b_iodone)
975 (*(bp->b_iodone))(bp);
976 else if (bp->b_flags & XBF_ASYNC)
977 xfs_buf_relse(bp);
978 }
979
980 void
981 xfs_buf_ioend(
982 xfs_buf_t *bp,
983 int schedule)
984 {
985 trace_xfs_buf_iodone(bp, _RET_IP_);
986
987 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
988 if (bp->b_error == 0)
989 bp->b_flags |= XBF_DONE;
990
991 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
992 if (schedule) {
993 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
994 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
995 } else {
996 xfs_buf_iodone_work(&bp->b_iodone_work);
997 }
998 } else {
999 complete(&bp->b_iowait);
1000 }
1001 }
1002
1003 void
1004 xfs_buf_ioerror(
1005 xfs_buf_t *bp,
1006 int error)
1007 {
1008 ASSERT(error >= 0 && error <= 0xffff);
1009 bp->b_error = (unsigned short)error;
1010 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1011 }
1012
1013 int
1014 xfs_bwrite(
1015 struct xfs_mount *mp,
1016 struct xfs_buf *bp)
1017 {
1018 int error;
1019
1020 bp->b_strat = xfs_bdstrat_cb;
1021 bp->b_mount = mp;
1022 bp->b_flags |= XBF_WRITE;
1023 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1024
1025 xfs_buf_delwri_dequeue(bp);
1026 xfs_buf_iostrategy(bp);
1027
1028 error = xfs_buf_iowait(bp);
1029 if (error)
1030 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1031 xfs_buf_relse(bp);
1032 return error;
1033 }
1034
1035 void
1036 xfs_bdwrite(
1037 void *mp,
1038 struct xfs_buf *bp)
1039 {
1040 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1041
1042 bp->b_strat = xfs_bdstrat_cb;
1043 bp->b_mount = mp;
1044
1045 bp->b_flags &= ~XBF_READ;
1046 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1047
1048 xfs_buf_delwri_queue(bp, 1);
1049 }
1050
1051 /*
1052 * Called when we want to stop a buffer from getting written or read.
1053 * We attach the EIO error, muck with its flags, and call biodone
1054 * so that the proper iodone callbacks get called.
1055 */
1056 STATIC int
1057 xfs_bioerror(
1058 xfs_buf_t *bp)
1059 {
1060 #ifdef XFSERRORDEBUG
1061 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1062 #endif
1063
1064 /*
1065 * No need to wait until the buffer is unpinned, we aren't flushing it.
1066 */
1067 XFS_BUF_ERROR(bp, EIO);
1068
1069 /*
1070 * We're calling biodone, so delete XBF_DONE flag.
1071 */
1072 XFS_BUF_UNREAD(bp);
1073 XFS_BUF_UNDELAYWRITE(bp);
1074 XFS_BUF_UNDONE(bp);
1075 XFS_BUF_STALE(bp);
1076
1077 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
1078 xfs_biodone(bp);
1079
1080 return EIO;
1081 }
1082
1083 /*
1084 * Same as xfs_bioerror, except that we are releasing the buffer
1085 * here ourselves, and avoiding the biodone call.
1086 * This is meant for userdata errors; metadata bufs come with
1087 * iodone functions attached, so that we can track down errors.
1088 */
1089 STATIC int
1090 xfs_bioerror_relse(
1091 struct xfs_buf *bp)
1092 {
1093 int64_t fl = XFS_BUF_BFLAGS(bp);
1094 /*
1095 * No need to wait until the buffer is unpinned.
1096 * We aren't flushing it.
1097 *
1098 * chunkhold expects B_DONE to be set, whether
1099 * we actually finish the I/O or not. We don't want to
1100 * change that interface.
1101 */
1102 XFS_BUF_UNREAD(bp);
1103 XFS_BUF_UNDELAYWRITE(bp);
1104 XFS_BUF_DONE(bp);
1105 XFS_BUF_STALE(bp);
1106 XFS_BUF_CLR_IODONE_FUNC(bp);
1107 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
1108 if (!(fl & XBF_ASYNC)) {
1109 /*
1110 * Mark b_error and B_ERROR _both_.
1111 * Lot's of chunkcache code assumes that.
1112 * There's no reason to mark error for
1113 * ASYNC buffers.
1114 */
1115 XFS_BUF_ERROR(bp, EIO);
1116 XFS_BUF_FINISH_IOWAIT(bp);
1117 } else {
1118 xfs_buf_relse(bp);
1119 }
1120
1121 return EIO;
1122 }
1123
1124
1125 /*
1126 * All xfs metadata buffers except log state machine buffers
1127 * get this attached as their b_bdstrat callback function.
1128 * This is so that we can catch a buffer
1129 * after prematurely unpinning it to forcibly shutdown the filesystem.
1130 */
1131 int
1132 xfs_bdstrat_cb(
1133 struct xfs_buf *bp)
1134 {
1135 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1136 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1137 /*
1138 * Metadata write that didn't get logged but
1139 * written delayed anyway. These aren't associated
1140 * with a transaction, and can be ignored.
1141 */
1142 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1143 return xfs_bioerror_relse(bp);
1144 else
1145 return xfs_bioerror(bp);
1146 }
1147
1148 xfs_buf_iorequest(bp);
1149 return 0;
1150 }
1151
1152 /*
1153 * Wrapper around bdstrat so that we can stop data from going to disk in case
1154 * we are shutting down the filesystem. Typically user data goes thru this
1155 * path; one of the exceptions is the superblock.
1156 */
1157 void
1158 xfsbdstrat(
1159 struct xfs_mount *mp,
1160 struct xfs_buf *bp)
1161 {
1162 if (XFS_FORCED_SHUTDOWN(mp)) {
1163 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1164 xfs_bioerror_relse(bp);
1165 return;
1166 }
1167
1168 xfs_buf_iorequest(bp);
1169 }
1170
1171 STATIC void
1172 _xfs_buf_ioend(
1173 xfs_buf_t *bp,
1174 int schedule)
1175 {
1176 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1177 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1178 xfs_buf_ioend(bp, schedule);
1179 }
1180 }
1181
1182 STATIC void
1183 xfs_buf_bio_end_io(
1184 struct bio *bio,
1185 int error)
1186 {
1187 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1188 unsigned int blocksize = bp->b_target->bt_bsize;
1189 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1190
1191 xfs_buf_ioerror(bp, -error);
1192
1193 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1194 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1195
1196 do {
1197 struct page *page = bvec->bv_page;
1198
1199 ASSERT(!PagePrivate(page));
1200 if (unlikely(bp->b_error)) {
1201 if (bp->b_flags & XBF_READ)
1202 ClearPageUptodate(page);
1203 } else if (blocksize >= PAGE_CACHE_SIZE) {
1204 SetPageUptodate(page);
1205 } else if (!PagePrivate(page) &&
1206 (bp->b_flags & _XBF_PAGE_CACHE)) {
1207 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1208 }
1209
1210 if (--bvec >= bio->bi_io_vec)
1211 prefetchw(&bvec->bv_page->flags);
1212
1213 if (bp->b_flags & _XBF_PAGE_LOCKED)
1214 unlock_page(page);
1215 } while (bvec >= bio->bi_io_vec);
1216
1217 _xfs_buf_ioend(bp, 1);
1218 bio_put(bio);
1219 }
1220
1221 STATIC void
1222 _xfs_buf_ioapply(
1223 xfs_buf_t *bp)
1224 {
1225 int rw, map_i, total_nr_pages, nr_pages;
1226 struct bio *bio;
1227 int offset = bp->b_offset;
1228 int size = bp->b_count_desired;
1229 sector_t sector = bp->b_bn;
1230 unsigned int blocksize = bp->b_target->bt_bsize;
1231
1232 total_nr_pages = bp->b_page_count;
1233 map_i = 0;
1234
1235 if (bp->b_flags & XBF_ORDERED) {
1236 ASSERT(!(bp->b_flags & XBF_READ));
1237 rw = WRITE_BARRIER;
1238 } else if (bp->b_flags & XBF_LOG_BUFFER) {
1239 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1240 bp->b_flags &= ~_XBF_RUN_QUEUES;
1241 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1242 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1243 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1244 bp->b_flags &= ~_XBF_RUN_QUEUES;
1245 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1246 } else {
1247 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1248 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1249 }
1250
1251 /* Special code path for reading a sub page size buffer in --
1252 * we populate up the whole page, and hence the other metadata
1253 * in the same page. This optimization is only valid when the
1254 * filesystem block size is not smaller than the page size.
1255 */
1256 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1257 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1258 (XBF_READ|_XBF_PAGE_LOCKED)) &&
1259 (blocksize >= PAGE_CACHE_SIZE)) {
1260 bio = bio_alloc(GFP_NOIO, 1);
1261
1262 bio->bi_bdev = bp->b_target->bt_bdev;
1263 bio->bi_sector = sector - (offset >> BBSHIFT);
1264 bio->bi_end_io = xfs_buf_bio_end_io;
1265 bio->bi_private = bp;
1266
1267 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1268 size = 0;
1269
1270 atomic_inc(&bp->b_io_remaining);
1271
1272 goto submit_io;
1273 }
1274
1275 next_chunk:
1276 atomic_inc(&bp->b_io_remaining);
1277 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1278 if (nr_pages > total_nr_pages)
1279 nr_pages = total_nr_pages;
1280
1281 bio = bio_alloc(GFP_NOIO, nr_pages);
1282 bio->bi_bdev = bp->b_target->bt_bdev;
1283 bio->bi_sector = sector;
1284 bio->bi_end_io = xfs_buf_bio_end_io;
1285 bio->bi_private = bp;
1286
1287 for (; size && nr_pages; nr_pages--, map_i++) {
1288 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1289
1290 if (nbytes > size)
1291 nbytes = size;
1292
1293 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1294 if (rbytes < nbytes)
1295 break;
1296
1297 offset = 0;
1298 sector += nbytes >> BBSHIFT;
1299 size -= nbytes;
1300 total_nr_pages--;
1301 }
1302
1303 submit_io:
1304 if (likely(bio->bi_size)) {
1305 if (xfs_buf_is_vmapped(bp)) {
1306 flush_kernel_vmap_range(bp->b_addr,
1307 xfs_buf_vmap_len(bp));
1308 }
1309 submit_bio(rw, bio);
1310 if (size)
1311 goto next_chunk;
1312 } else {
1313 bio_put(bio);
1314 xfs_buf_ioerror(bp, EIO);
1315 }
1316 }
1317
1318 int
1319 xfs_buf_iorequest(
1320 xfs_buf_t *bp)
1321 {
1322 trace_xfs_buf_iorequest(bp, _RET_IP_);
1323
1324 if (bp->b_flags & XBF_DELWRI) {
1325 xfs_buf_delwri_queue(bp, 1);
1326 return 0;
1327 }
1328
1329 if (bp->b_flags & XBF_WRITE) {
1330 xfs_buf_wait_unpin(bp);
1331 }
1332
1333 xfs_buf_hold(bp);
1334
1335 /* Set the count to 1 initially, this will stop an I/O
1336 * completion callout which happens before we have started
1337 * all the I/O from calling xfs_buf_ioend too early.
1338 */
1339 atomic_set(&bp->b_io_remaining, 1);
1340 _xfs_buf_ioapply(bp);
1341 _xfs_buf_ioend(bp, 0);
1342
1343 xfs_buf_rele(bp);
1344 return 0;
1345 }
1346
1347 /*
1348 * Waits for I/O to complete on the buffer supplied.
1349 * It returns immediately if no I/O is pending.
1350 * It returns the I/O error code, if any, or 0 if there was no error.
1351 */
1352 int
1353 xfs_buf_iowait(
1354 xfs_buf_t *bp)
1355 {
1356 trace_xfs_buf_iowait(bp, _RET_IP_);
1357
1358 if (atomic_read(&bp->b_io_remaining))
1359 blk_run_address_space(bp->b_target->bt_mapping);
1360 wait_for_completion(&bp->b_iowait);
1361
1362 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1363 return bp->b_error;
1364 }
1365
1366 xfs_caddr_t
1367 xfs_buf_offset(
1368 xfs_buf_t *bp,
1369 size_t offset)
1370 {
1371 struct page *page;
1372
1373 if (bp->b_flags & XBF_MAPPED)
1374 return XFS_BUF_PTR(bp) + offset;
1375
1376 offset += bp->b_offset;
1377 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1378 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1379 }
1380
1381 /*
1382 * Move data into or out of a buffer.
1383 */
1384 void
1385 xfs_buf_iomove(
1386 xfs_buf_t *bp, /* buffer to process */
1387 size_t boff, /* starting buffer offset */
1388 size_t bsize, /* length to copy */
1389 void *data, /* data address */
1390 xfs_buf_rw_t mode) /* read/write/zero flag */
1391 {
1392 size_t bend, cpoff, csize;
1393 struct page *page;
1394
1395 bend = boff + bsize;
1396 while (boff < bend) {
1397 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1398 cpoff = xfs_buf_poff(boff + bp->b_offset);
1399 csize = min_t(size_t,
1400 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1401
1402 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1403
1404 switch (mode) {
1405 case XBRW_ZERO:
1406 memset(page_address(page) + cpoff, 0, csize);
1407 break;
1408 case XBRW_READ:
1409 memcpy(data, page_address(page) + cpoff, csize);
1410 break;
1411 case XBRW_WRITE:
1412 memcpy(page_address(page) + cpoff, data, csize);
1413 }
1414
1415 boff += csize;
1416 data += csize;
1417 }
1418 }
1419
1420 /*
1421 * Handling of buffer targets (buftargs).
1422 */
1423
1424 /*
1425 * Wait for any bufs with callbacks that have been submitted but
1426 * have not yet returned... walk the hash list for the target.
1427 */
1428 void
1429 xfs_wait_buftarg(
1430 xfs_buftarg_t *btp)
1431 {
1432 xfs_buf_t *bp, *n;
1433 xfs_bufhash_t *hash;
1434 uint i;
1435
1436 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1437 hash = &btp->bt_hash[i];
1438 again:
1439 spin_lock(&hash->bh_lock);
1440 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1441 ASSERT(btp == bp->b_target);
1442 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1443 spin_unlock(&hash->bh_lock);
1444 /*
1445 * Catch superblock reference count leaks
1446 * immediately
1447 */
1448 BUG_ON(bp->b_bn == 0);
1449 delay(100);
1450 goto again;
1451 }
1452 }
1453 spin_unlock(&hash->bh_lock);
1454 }
1455 }
1456
1457 /*
1458 * Allocate buffer hash table for a given target.
1459 * For devices containing metadata (i.e. not the log/realtime devices)
1460 * we need to allocate a much larger hash table.
1461 */
1462 STATIC void
1463 xfs_alloc_bufhash(
1464 xfs_buftarg_t *btp,
1465 int external)
1466 {
1467 unsigned int i;
1468
1469 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1470 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1471 btp->bt_hash = kmem_zalloc_large((1 << btp->bt_hashshift) *
1472 sizeof(xfs_bufhash_t));
1473 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1474 spin_lock_init(&btp->bt_hash[i].bh_lock);
1475 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1476 }
1477 }
1478
1479 STATIC void
1480 xfs_free_bufhash(
1481 xfs_buftarg_t *btp)
1482 {
1483 kmem_free_large(btp->bt_hash);
1484 btp->bt_hash = NULL;
1485 }
1486
1487 /*
1488 * buftarg list for delwrite queue processing
1489 */
1490 static LIST_HEAD(xfs_buftarg_list);
1491 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1492
1493 STATIC void
1494 xfs_register_buftarg(
1495 xfs_buftarg_t *btp)
1496 {
1497 spin_lock(&xfs_buftarg_lock);
1498 list_add(&btp->bt_list, &xfs_buftarg_list);
1499 spin_unlock(&xfs_buftarg_lock);
1500 }
1501
1502 STATIC void
1503 xfs_unregister_buftarg(
1504 xfs_buftarg_t *btp)
1505 {
1506 spin_lock(&xfs_buftarg_lock);
1507 list_del(&btp->bt_list);
1508 spin_unlock(&xfs_buftarg_lock);
1509 }
1510
1511 void
1512 xfs_free_buftarg(
1513 struct xfs_mount *mp,
1514 struct xfs_buftarg *btp)
1515 {
1516 xfs_flush_buftarg(btp, 1);
1517 if (mp->m_flags & XFS_MOUNT_BARRIER)
1518 xfs_blkdev_issue_flush(btp);
1519 xfs_free_bufhash(btp);
1520 iput(btp->bt_mapping->host);
1521
1522 /* Unregister the buftarg first so that we don't get a
1523 * wakeup finding a non-existent task
1524 */
1525 xfs_unregister_buftarg(btp);
1526 kthread_stop(btp->bt_task);
1527
1528 kmem_free(btp);
1529 }
1530
1531 STATIC int
1532 xfs_setsize_buftarg_flags(
1533 xfs_buftarg_t *btp,
1534 unsigned int blocksize,
1535 unsigned int sectorsize,
1536 int verbose)
1537 {
1538 btp->bt_bsize = blocksize;
1539 btp->bt_sshift = ffs(sectorsize) - 1;
1540 btp->bt_smask = sectorsize - 1;
1541
1542 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1543 printk(KERN_WARNING
1544 "XFS: Cannot set_blocksize to %u on device %s\n",
1545 sectorsize, XFS_BUFTARG_NAME(btp));
1546 return EINVAL;
1547 }
1548
1549 if (verbose &&
1550 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1551 printk(KERN_WARNING
1552 "XFS: %u byte sectors in use on device %s. "
1553 "This is suboptimal; %u or greater is ideal.\n",
1554 sectorsize, XFS_BUFTARG_NAME(btp),
1555 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1556 }
1557
1558 return 0;
1559 }
1560
1561 /*
1562 * When allocating the initial buffer target we have not yet
1563 * read in the superblock, so don't know what sized sectors
1564 * are being used is at this early stage. Play safe.
1565 */
1566 STATIC int
1567 xfs_setsize_buftarg_early(
1568 xfs_buftarg_t *btp,
1569 struct block_device *bdev)
1570 {
1571 return xfs_setsize_buftarg_flags(btp,
1572 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1573 }
1574
1575 int
1576 xfs_setsize_buftarg(
1577 xfs_buftarg_t *btp,
1578 unsigned int blocksize,
1579 unsigned int sectorsize)
1580 {
1581 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1582 }
1583
1584 STATIC int
1585 xfs_mapping_buftarg(
1586 xfs_buftarg_t *btp,
1587 struct block_device *bdev)
1588 {
1589 struct backing_dev_info *bdi;
1590 struct inode *inode;
1591 struct address_space *mapping;
1592 static const struct address_space_operations mapping_aops = {
1593 .sync_page = block_sync_page,
1594 .migratepage = fail_migrate_page,
1595 };
1596
1597 inode = new_inode(bdev->bd_inode->i_sb);
1598 if (!inode) {
1599 printk(KERN_WARNING
1600 "XFS: Cannot allocate mapping inode for device %s\n",
1601 XFS_BUFTARG_NAME(btp));
1602 return ENOMEM;
1603 }
1604 inode->i_mode = S_IFBLK;
1605 inode->i_bdev = bdev;
1606 inode->i_rdev = bdev->bd_dev;
1607 bdi = blk_get_backing_dev_info(bdev);
1608 if (!bdi)
1609 bdi = &default_backing_dev_info;
1610 mapping = &inode->i_data;
1611 mapping->a_ops = &mapping_aops;
1612 mapping->backing_dev_info = bdi;
1613 mapping_set_gfp_mask(mapping, GFP_NOFS);
1614 btp->bt_mapping = mapping;
1615 return 0;
1616 }
1617
1618 STATIC int
1619 xfs_alloc_delwrite_queue(
1620 xfs_buftarg_t *btp,
1621 const char *fsname)
1622 {
1623 int error = 0;
1624
1625 INIT_LIST_HEAD(&btp->bt_list);
1626 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1627 spin_lock_init(&btp->bt_delwrite_lock);
1628 btp->bt_flags = 0;
1629 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1630 if (IS_ERR(btp->bt_task)) {
1631 error = PTR_ERR(btp->bt_task);
1632 goto out_error;
1633 }
1634 xfs_register_buftarg(btp);
1635 out_error:
1636 return error;
1637 }
1638
1639 xfs_buftarg_t *
1640 xfs_alloc_buftarg(
1641 struct block_device *bdev,
1642 int external,
1643 const char *fsname)
1644 {
1645 xfs_buftarg_t *btp;
1646
1647 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1648
1649 btp->bt_dev = bdev->bd_dev;
1650 btp->bt_bdev = bdev;
1651 if (xfs_setsize_buftarg_early(btp, bdev))
1652 goto error;
1653 if (xfs_mapping_buftarg(btp, bdev))
1654 goto error;
1655 if (xfs_alloc_delwrite_queue(btp, fsname))
1656 goto error;
1657 xfs_alloc_bufhash(btp, external);
1658 return btp;
1659
1660 error:
1661 kmem_free(btp);
1662 return NULL;
1663 }
1664
1665
1666 /*
1667 * Delayed write buffer handling
1668 */
1669 STATIC void
1670 xfs_buf_delwri_queue(
1671 xfs_buf_t *bp,
1672 int unlock)
1673 {
1674 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1675 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1676
1677 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1678
1679 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1680
1681 spin_lock(dwlk);
1682 /* If already in the queue, dequeue and place at tail */
1683 if (!list_empty(&bp->b_list)) {
1684 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1685 if (unlock)
1686 atomic_dec(&bp->b_hold);
1687 list_del(&bp->b_list);
1688 }
1689
1690 if (list_empty(dwq)) {
1691 /* start xfsbufd as it is about to have something to do */
1692 wake_up_process(bp->b_target->bt_task);
1693 }
1694
1695 bp->b_flags |= _XBF_DELWRI_Q;
1696 list_add_tail(&bp->b_list, dwq);
1697 bp->b_queuetime = jiffies;
1698 spin_unlock(dwlk);
1699
1700 if (unlock)
1701 xfs_buf_unlock(bp);
1702 }
1703
1704 void
1705 xfs_buf_delwri_dequeue(
1706 xfs_buf_t *bp)
1707 {
1708 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1709 int dequeued = 0;
1710
1711 spin_lock(dwlk);
1712 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1713 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1714 list_del_init(&bp->b_list);
1715 dequeued = 1;
1716 }
1717 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1718 spin_unlock(dwlk);
1719
1720 if (dequeued)
1721 xfs_buf_rele(bp);
1722
1723 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1724 }
1725
1726 /*
1727 * If a delwri buffer needs to be pushed before it has aged out, then promote
1728 * it to the head of the delwri queue so that it will be flushed on the next
1729 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1730 * than the age currently needed to flush the buffer. Hence the next time the
1731 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1732 */
1733 void
1734 xfs_buf_delwri_promote(
1735 struct xfs_buf *bp)
1736 {
1737 struct xfs_buftarg *btp = bp->b_target;
1738 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1739
1740 ASSERT(bp->b_flags & XBF_DELWRI);
1741 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1742
1743 /*
1744 * Check the buffer age before locking the delayed write queue as we
1745 * don't need to promote buffers that are already past the flush age.
1746 */
1747 if (bp->b_queuetime < jiffies - age)
1748 return;
1749 bp->b_queuetime = jiffies - age;
1750 spin_lock(&btp->bt_delwrite_lock);
1751 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1752 spin_unlock(&btp->bt_delwrite_lock);
1753 }
1754
1755 STATIC void
1756 xfs_buf_runall_queues(
1757 struct workqueue_struct *queue)
1758 {
1759 flush_workqueue(queue);
1760 }
1761
1762 STATIC int
1763 xfsbufd_wakeup(
1764 struct shrinker *shrink,
1765 int priority,
1766 gfp_t mask)
1767 {
1768 xfs_buftarg_t *btp;
1769
1770 spin_lock(&xfs_buftarg_lock);
1771 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1772 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1773 continue;
1774 if (list_empty(&btp->bt_delwrite_queue))
1775 continue;
1776 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1777 wake_up_process(btp->bt_task);
1778 }
1779 spin_unlock(&xfs_buftarg_lock);
1780 return 0;
1781 }
1782
1783 /*
1784 * Move as many buffers as specified to the supplied list
1785 * idicating if we skipped any buffers to prevent deadlocks.
1786 */
1787 STATIC int
1788 xfs_buf_delwri_split(
1789 xfs_buftarg_t *target,
1790 struct list_head *list,
1791 unsigned long age)
1792 {
1793 xfs_buf_t *bp, *n;
1794 struct list_head *dwq = &target->bt_delwrite_queue;
1795 spinlock_t *dwlk = &target->bt_delwrite_lock;
1796 int skipped = 0;
1797 int force;
1798
1799 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1800 INIT_LIST_HEAD(list);
1801 spin_lock(dwlk);
1802 list_for_each_entry_safe(bp, n, dwq, b_list) {
1803 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1804 ASSERT(bp->b_flags & XBF_DELWRI);
1805
1806 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1807 if (!force &&
1808 time_before(jiffies, bp->b_queuetime + age)) {
1809 xfs_buf_unlock(bp);
1810 break;
1811 }
1812
1813 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1814 _XBF_RUN_QUEUES);
1815 bp->b_flags |= XBF_WRITE;
1816 list_move_tail(&bp->b_list, list);
1817 } else
1818 skipped++;
1819 }
1820 spin_unlock(dwlk);
1821
1822 return skipped;
1823
1824 }
1825
1826 /*
1827 * Compare function is more complex than it needs to be because
1828 * the return value is only 32 bits and we are doing comparisons
1829 * on 64 bit values
1830 */
1831 static int
1832 xfs_buf_cmp(
1833 void *priv,
1834 struct list_head *a,
1835 struct list_head *b)
1836 {
1837 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1838 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1839 xfs_daddr_t diff;
1840
1841 diff = ap->b_bn - bp->b_bn;
1842 if (diff < 0)
1843 return -1;
1844 if (diff > 0)
1845 return 1;
1846 return 0;
1847 }
1848
1849 void
1850 xfs_buf_delwri_sort(
1851 xfs_buftarg_t *target,
1852 struct list_head *list)
1853 {
1854 list_sort(NULL, list, xfs_buf_cmp);
1855 }
1856
1857 STATIC int
1858 xfsbufd(
1859 void *data)
1860 {
1861 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1862
1863 current->flags |= PF_MEMALLOC;
1864
1865 set_freezable();
1866
1867 do {
1868 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1869 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1870 int count = 0;
1871 struct list_head tmp;
1872
1873 if (unlikely(freezing(current))) {
1874 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1875 refrigerator();
1876 } else {
1877 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1878 }
1879
1880 /* sleep for a long time if there is nothing to do. */
1881 if (list_empty(&target->bt_delwrite_queue))
1882 tout = MAX_SCHEDULE_TIMEOUT;
1883 schedule_timeout_interruptible(tout);
1884
1885 xfs_buf_delwri_split(target, &tmp, age);
1886 list_sort(NULL, &tmp, xfs_buf_cmp);
1887 while (!list_empty(&tmp)) {
1888 struct xfs_buf *bp;
1889 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1890 list_del_init(&bp->b_list);
1891 xfs_buf_iostrategy(bp);
1892 count++;
1893 }
1894 if (count)
1895 blk_run_address_space(target->bt_mapping);
1896
1897 } while (!kthread_should_stop());
1898
1899 return 0;
1900 }
1901
1902 /*
1903 * Go through all incore buffers, and release buffers if they belong to
1904 * the given device. This is used in filesystem error handling to
1905 * preserve the consistency of its metadata.
1906 */
1907 int
1908 xfs_flush_buftarg(
1909 xfs_buftarg_t *target,
1910 int wait)
1911 {
1912 xfs_buf_t *bp;
1913 int pincount = 0;
1914 LIST_HEAD(tmp_list);
1915 LIST_HEAD(wait_list);
1916
1917 xfs_buf_runall_queues(xfsconvertd_workqueue);
1918 xfs_buf_runall_queues(xfsdatad_workqueue);
1919 xfs_buf_runall_queues(xfslogd_workqueue);
1920
1921 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1922 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1923
1924 /*
1925 * Dropped the delayed write list lock, now walk the temporary list.
1926 * All I/O is issued async and then if we need to wait for completion
1927 * we do that after issuing all the IO.
1928 */
1929 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1930 while (!list_empty(&tmp_list)) {
1931 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1932 ASSERT(target == bp->b_target);
1933 list_del_init(&bp->b_list);
1934 if (wait) {
1935 bp->b_flags &= ~XBF_ASYNC;
1936 list_add(&bp->b_list, &wait_list);
1937 }
1938 xfs_buf_iostrategy(bp);
1939 }
1940
1941 if (wait) {
1942 /* Expedite and wait for IO to complete. */
1943 blk_run_address_space(target->bt_mapping);
1944 while (!list_empty(&wait_list)) {
1945 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1946
1947 list_del_init(&bp->b_list);
1948 xfs_iowait(bp);
1949 xfs_buf_relse(bp);
1950 }
1951 }
1952
1953 return pincount;
1954 }
1955
1956 int __init
1957 xfs_buf_init(void)
1958 {
1959 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1960 KM_ZONE_HWALIGN, NULL);
1961 if (!xfs_buf_zone)
1962 goto out;
1963
1964 xfslogd_workqueue = create_workqueue("xfslogd");
1965 if (!xfslogd_workqueue)
1966 goto out_free_buf_zone;
1967
1968 xfsdatad_workqueue = create_workqueue("xfsdatad");
1969 if (!xfsdatad_workqueue)
1970 goto out_destroy_xfslogd_workqueue;
1971
1972 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1973 if (!xfsconvertd_workqueue)
1974 goto out_destroy_xfsdatad_workqueue;
1975
1976 register_shrinker(&xfs_buf_shake);
1977 return 0;
1978
1979 out_destroy_xfsdatad_workqueue:
1980 destroy_workqueue(xfsdatad_workqueue);
1981 out_destroy_xfslogd_workqueue:
1982 destroy_workqueue(xfslogd_workqueue);
1983 out_free_buf_zone:
1984 kmem_zone_destroy(xfs_buf_zone);
1985 out:
1986 return -ENOMEM;
1987 }
1988
1989 void
1990 xfs_buf_terminate(void)
1991 {
1992 unregister_shrinker(&xfs_buf_shake);
1993 destroy_workqueue(xfsconvertd_workqueue);
1994 destroy_workqueue(xfsdatad_workqueue);
1995 destroy_workqueue(xfslogd_workqueue);
1996 kmem_zone_destroy(xfs_buf_zone);
1997 }
1998
1999 #ifdef CONFIG_KDB_MODULES
2000 struct list_head *
2001 xfs_get_buftarg_list(void)
2002 {
2003 return &xfs_buftarg_list;
2004 }
2005 #endif
This page took 0.182201 seconds and 6 git commands to generate.