xfs: implement optimized fdatasync
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_bit.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_dir2.h"
26 #include "xfs_trans.h"
27 #include "xfs_dmapi.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_bmap.h"
40 #include "xfs_error.h"
41 #include "xfs_rw.h"
42 #include "xfs_vnodeops.h"
43 #include "xfs_da_btree.h"
44 #include "xfs_ioctl.h"
45 #include "xfs_trace.h"
46
47 #include <linux/dcache.h>
48
49 static const struct vm_operations_struct xfs_file_vm_ops;
50
51 /*
52 * xfs_iozero
53 *
54 * xfs_iozero clears the specified range of buffer supplied,
55 * and marks all the affected blocks as valid and modified. If
56 * an affected block is not allocated, it will be allocated. If
57 * an affected block is not completely overwritten, and is not
58 * valid before the operation, it will be read from disk before
59 * being partially zeroed.
60 */
61 STATIC int
62 xfs_iozero(
63 struct xfs_inode *ip, /* inode */
64 loff_t pos, /* offset in file */
65 size_t count) /* size of data to zero */
66 {
67 struct page *page;
68 struct address_space *mapping;
69 int status;
70
71 mapping = VFS_I(ip)->i_mapping;
72 do {
73 unsigned offset, bytes;
74 void *fsdata;
75
76 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
77 bytes = PAGE_CACHE_SIZE - offset;
78 if (bytes > count)
79 bytes = count;
80
81 status = pagecache_write_begin(NULL, mapping, pos, bytes,
82 AOP_FLAG_UNINTERRUPTIBLE,
83 &page, &fsdata);
84 if (status)
85 break;
86
87 zero_user(page, offset, bytes);
88
89 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
90 page, fsdata);
91 WARN_ON(status <= 0); /* can't return less than zero! */
92 pos += bytes;
93 count -= bytes;
94 status = 0;
95 } while (count);
96
97 return (-status);
98 }
99
100 STATIC int
101 xfs_file_fsync(
102 struct file *file,
103 struct dentry *dentry,
104 int datasync)
105 {
106 struct xfs_inode *ip = XFS_I(dentry->d_inode);
107 struct xfs_trans *tp;
108 int error = 0;
109 int log_flushed = 0;
110
111 xfs_itrace_entry(ip);
112
113 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
114 return -XFS_ERROR(EIO);
115
116 xfs_iflags_clear(ip, XFS_ITRUNCATED);
117
118 /*
119 * We always need to make sure that the required inode state is safe on
120 * disk. The inode might be clean but we still might need to force the
121 * log because of committed transactions that haven't hit the disk yet.
122 * Likewise, there could be unflushed non-transactional changes to the
123 * inode core that have to go to disk and this requires us to issue
124 * a synchronous transaction to capture these changes correctly.
125 *
126 * This code relies on the assumption that if the i_update_core field
127 * of the inode is clear and the inode is unpinned then it is clean
128 * and no action is required.
129 */
130 xfs_ilock(ip, XFS_ILOCK_SHARED);
131
132 /*
133 * First check if the VFS inode is marked dirty. All the dirtying
134 * of non-transactional updates no goes through mark_inode_dirty*,
135 * which allows us to distinguish beteeen pure timestamp updates
136 * and i_size updates which need to be caught for fdatasync.
137 * After that also theck for the dirty state in the XFS inode, which
138 * might gets cleared when the inode gets written out via the AIL
139 * or xfs_iflush_cluster.
140 */
141 if (((dentry->d_inode->i_state & I_DIRTY_DATASYNC) ||
142 ((dentry->d_inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
143 ip->i_update_core) {
144 /*
145 * Kick off a transaction to log the inode core to get the
146 * updates. The sync transaction will also force the log.
147 */
148 xfs_iunlock(ip, XFS_ILOCK_SHARED);
149 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_FSYNC_TS);
150 error = xfs_trans_reserve(tp, 0,
151 XFS_FSYNC_TS_LOG_RES(ip->i_mount), 0, 0, 0);
152 if (error) {
153 xfs_trans_cancel(tp, 0);
154 return -error;
155 }
156 xfs_ilock(ip, XFS_ILOCK_EXCL);
157
158 /*
159 * Note - it's possible that we might have pushed ourselves out
160 * of the way during trans_reserve which would flush the inode.
161 * But there's no guarantee that the inode buffer has actually
162 * gone out yet (it's delwri). Plus the buffer could be pinned
163 * anyway if it's part of an inode in another recent
164 * transaction. So we play it safe and fire off the
165 * transaction anyway.
166 */
167 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
168 xfs_trans_ihold(tp, ip);
169 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
170 xfs_trans_set_sync(tp);
171 error = _xfs_trans_commit(tp, 0, &log_flushed);
172
173 xfs_iunlock(ip, XFS_ILOCK_EXCL);
174 } else {
175 /*
176 * Timestamps/size haven't changed since last inode flush or
177 * inode transaction commit. That means either nothing got
178 * written or a transaction committed which caught the updates.
179 * If the latter happened and the transaction hasn't hit the
180 * disk yet, the inode will be still be pinned. If it is,
181 * force the log.
182 */
183 xfs_iunlock(ip, XFS_ILOCK_SHARED);
184 if (xfs_ipincount(ip)) {
185 if (ip->i_itemp->ili_last_lsn) {
186 error = _xfs_log_force_lsn(ip->i_mount,
187 ip->i_itemp->ili_last_lsn,
188 XFS_LOG_SYNC, &log_flushed);
189 } else {
190 error = _xfs_log_force(ip->i_mount,
191 XFS_LOG_SYNC, &log_flushed);
192 }
193 }
194 }
195
196 if (ip->i_mount->m_flags & XFS_MOUNT_BARRIER) {
197 /*
198 * If the log write didn't issue an ordered tag we need
199 * to flush the disk cache for the data device now.
200 */
201 if (!log_flushed)
202 xfs_blkdev_issue_flush(ip->i_mount->m_ddev_targp);
203
204 /*
205 * If this inode is on the RT dev we need to flush that
206 * cache as well.
207 */
208 if (XFS_IS_REALTIME_INODE(ip))
209 xfs_blkdev_issue_flush(ip->i_mount->m_rtdev_targp);
210 }
211
212 return -error;
213 }
214
215 STATIC ssize_t
216 xfs_file_aio_read(
217 struct kiocb *iocb,
218 const struct iovec *iovp,
219 unsigned long nr_segs,
220 loff_t pos)
221 {
222 struct file *file = iocb->ki_filp;
223 struct inode *inode = file->f_mapping->host;
224 struct xfs_inode *ip = XFS_I(inode);
225 struct xfs_mount *mp = ip->i_mount;
226 size_t size = 0;
227 ssize_t ret = 0;
228 int ioflags = 0;
229 xfs_fsize_t n;
230 unsigned long seg;
231
232 XFS_STATS_INC(xs_read_calls);
233
234 BUG_ON(iocb->ki_pos != pos);
235
236 if (unlikely(file->f_flags & O_DIRECT))
237 ioflags |= IO_ISDIRECT;
238 if (file->f_mode & FMODE_NOCMTIME)
239 ioflags |= IO_INVIS;
240
241 /* START copy & waste from filemap.c */
242 for (seg = 0; seg < nr_segs; seg++) {
243 const struct iovec *iv = &iovp[seg];
244
245 /*
246 * If any segment has a negative length, or the cumulative
247 * length ever wraps negative then return -EINVAL.
248 */
249 size += iv->iov_len;
250 if (unlikely((ssize_t)(size|iv->iov_len) < 0))
251 return XFS_ERROR(-EINVAL);
252 }
253 /* END copy & waste from filemap.c */
254
255 if (unlikely(ioflags & IO_ISDIRECT)) {
256 xfs_buftarg_t *target =
257 XFS_IS_REALTIME_INODE(ip) ?
258 mp->m_rtdev_targp : mp->m_ddev_targp;
259 if ((iocb->ki_pos & target->bt_smask) ||
260 (size & target->bt_smask)) {
261 if (iocb->ki_pos == ip->i_size)
262 return 0;
263 return -XFS_ERROR(EINVAL);
264 }
265 }
266
267 n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
268 if (n <= 0 || size == 0)
269 return 0;
270
271 if (n < size)
272 size = n;
273
274 if (XFS_FORCED_SHUTDOWN(mp))
275 return -EIO;
276
277 if (unlikely(ioflags & IO_ISDIRECT))
278 mutex_lock(&inode->i_mutex);
279 xfs_ilock(ip, XFS_IOLOCK_SHARED);
280
281 if (DM_EVENT_ENABLED(ip, DM_EVENT_READ) && !(ioflags & IO_INVIS)) {
282 int dmflags = FILP_DELAY_FLAG(file) | DM_SEM_FLAG_RD(ioflags);
283 int iolock = XFS_IOLOCK_SHARED;
284
285 ret = -XFS_SEND_DATA(mp, DM_EVENT_READ, ip, iocb->ki_pos, size,
286 dmflags, &iolock);
287 if (ret) {
288 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
289 if (unlikely(ioflags & IO_ISDIRECT))
290 mutex_unlock(&inode->i_mutex);
291 return ret;
292 }
293 }
294
295 if (unlikely(ioflags & IO_ISDIRECT)) {
296 if (inode->i_mapping->nrpages) {
297 ret = -xfs_flushinval_pages(ip,
298 (iocb->ki_pos & PAGE_CACHE_MASK),
299 -1, FI_REMAPF_LOCKED);
300 }
301 mutex_unlock(&inode->i_mutex);
302 if (ret) {
303 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
304 return ret;
305 }
306 }
307
308 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
309
310 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
311 if (ret > 0)
312 XFS_STATS_ADD(xs_read_bytes, ret);
313
314 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
315 return ret;
316 }
317
318 STATIC ssize_t
319 xfs_file_splice_read(
320 struct file *infilp,
321 loff_t *ppos,
322 struct pipe_inode_info *pipe,
323 size_t count,
324 unsigned int flags)
325 {
326 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
327 struct xfs_mount *mp = ip->i_mount;
328 int ioflags = 0;
329 ssize_t ret;
330
331 XFS_STATS_INC(xs_read_calls);
332
333 if (infilp->f_mode & FMODE_NOCMTIME)
334 ioflags |= IO_INVIS;
335
336 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
337 return -EIO;
338
339 xfs_ilock(ip, XFS_IOLOCK_SHARED);
340
341 if (DM_EVENT_ENABLED(ip, DM_EVENT_READ) && !(ioflags & IO_INVIS)) {
342 int iolock = XFS_IOLOCK_SHARED;
343 int error;
344
345 error = XFS_SEND_DATA(mp, DM_EVENT_READ, ip, *ppos, count,
346 FILP_DELAY_FLAG(infilp), &iolock);
347 if (error) {
348 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
349 return -error;
350 }
351 }
352
353 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
354
355 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
356 if (ret > 0)
357 XFS_STATS_ADD(xs_read_bytes, ret);
358
359 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
360 return ret;
361 }
362
363 STATIC ssize_t
364 xfs_file_splice_write(
365 struct pipe_inode_info *pipe,
366 struct file *outfilp,
367 loff_t *ppos,
368 size_t count,
369 unsigned int flags)
370 {
371 struct inode *inode = outfilp->f_mapping->host;
372 struct xfs_inode *ip = XFS_I(inode);
373 struct xfs_mount *mp = ip->i_mount;
374 xfs_fsize_t isize, new_size;
375 int ioflags = 0;
376 ssize_t ret;
377
378 XFS_STATS_INC(xs_write_calls);
379
380 if (outfilp->f_mode & FMODE_NOCMTIME)
381 ioflags |= IO_INVIS;
382
383 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
384 return -EIO;
385
386 xfs_ilock(ip, XFS_IOLOCK_EXCL);
387
388 if (DM_EVENT_ENABLED(ip, DM_EVENT_WRITE) && !(ioflags & IO_INVIS)) {
389 int iolock = XFS_IOLOCK_EXCL;
390 int error;
391
392 error = XFS_SEND_DATA(mp, DM_EVENT_WRITE, ip, *ppos, count,
393 FILP_DELAY_FLAG(outfilp), &iolock);
394 if (error) {
395 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
396 return -error;
397 }
398 }
399
400 new_size = *ppos + count;
401
402 xfs_ilock(ip, XFS_ILOCK_EXCL);
403 if (new_size > ip->i_size)
404 ip->i_new_size = new_size;
405 xfs_iunlock(ip, XFS_ILOCK_EXCL);
406
407 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
408
409 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
410 if (ret > 0)
411 XFS_STATS_ADD(xs_write_bytes, ret);
412
413 isize = i_size_read(inode);
414 if (unlikely(ret < 0 && ret != -EFAULT && *ppos > isize))
415 *ppos = isize;
416
417 if (*ppos > ip->i_size) {
418 xfs_ilock(ip, XFS_ILOCK_EXCL);
419 if (*ppos > ip->i_size)
420 ip->i_size = *ppos;
421 xfs_iunlock(ip, XFS_ILOCK_EXCL);
422 }
423
424 if (ip->i_new_size) {
425 xfs_ilock(ip, XFS_ILOCK_EXCL);
426 ip->i_new_size = 0;
427 if (ip->i_d.di_size > ip->i_size)
428 ip->i_d.di_size = ip->i_size;
429 xfs_iunlock(ip, XFS_ILOCK_EXCL);
430 }
431 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
432 return ret;
433 }
434
435 /*
436 * This routine is called to handle zeroing any space in the last
437 * block of the file that is beyond the EOF. We do this since the
438 * size is being increased without writing anything to that block
439 * and we don't want anyone to read the garbage on the disk.
440 */
441 STATIC int /* error (positive) */
442 xfs_zero_last_block(
443 xfs_inode_t *ip,
444 xfs_fsize_t offset,
445 xfs_fsize_t isize)
446 {
447 xfs_fileoff_t last_fsb;
448 xfs_mount_t *mp = ip->i_mount;
449 int nimaps;
450 int zero_offset;
451 int zero_len;
452 int error = 0;
453 xfs_bmbt_irec_t imap;
454
455 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
456
457 zero_offset = XFS_B_FSB_OFFSET(mp, isize);
458 if (zero_offset == 0) {
459 /*
460 * There are no extra bytes in the last block on disk to
461 * zero, so return.
462 */
463 return 0;
464 }
465
466 last_fsb = XFS_B_TO_FSBT(mp, isize);
467 nimaps = 1;
468 error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
469 &nimaps, NULL, NULL);
470 if (error) {
471 return error;
472 }
473 ASSERT(nimaps > 0);
474 /*
475 * If the block underlying isize is just a hole, then there
476 * is nothing to zero.
477 */
478 if (imap.br_startblock == HOLESTARTBLOCK) {
479 return 0;
480 }
481 /*
482 * Zero the part of the last block beyond the EOF, and write it
483 * out sync. We need to drop the ilock while we do this so we
484 * don't deadlock when the buffer cache calls back to us.
485 */
486 xfs_iunlock(ip, XFS_ILOCK_EXCL);
487
488 zero_len = mp->m_sb.sb_blocksize - zero_offset;
489 if (isize + zero_len > offset)
490 zero_len = offset - isize;
491 error = xfs_iozero(ip, isize, zero_len);
492
493 xfs_ilock(ip, XFS_ILOCK_EXCL);
494 ASSERT(error >= 0);
495 return error;
496 }
497
498 /*
499 * Zero any on disk space between the current EOF and the new,
500 * larger EOF. This handles the normal case of zeroing the remainder
501 * of the last block in the file and the unusual case of zeroing blocks
502 * out beyond the size of the file. This second case only happens
503 * with fixed size extents and when the system crashes before the inode
504 * size was updated but after blocks were allocated. If fill is set,
505 * then any holes in the range are filled and zeroed. If not, the holes
506 * are left alone as holes.
507 */
508
509 int /* error (positive) */
510 xfs_zero_eof(
511 xfs_inode_t *ip,
512 xfs_off_t offset, /* starting I/O offset */
513 xfs_fsize_t isize) /* current inode size */
514 {
515 xfs_mount_t *mp = ip->i_mount;
516 xfs_fileoff_t start_zero_fsb;
517 xfs_fileoff_t end_zero_fsb;
518 xfs_fileoff_t zero_count_fsb;
519 xfs_fileoff_t last_fsb;
520 xfs_fileoff_t zero_off;
521 xfs_fsize_t zero_len;
522 int nimaps;
523 int error = 0;
524 xfs_bmbt_irec_t imap;
525
526 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
527 ASSERT(offset > isize);
528
529 /*
530 * First handle zeroing the block on which isize resides.
531 * We only zero a part of that block so it is handled specially.
532 */
533 error = xfs_zero_last_block(ip, offset, isize);
534 if (error) {
535 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
536 return error;
537 }
538
539 /*
540 * Calculate the range between the new size and the old
541 * where blocks needing to be zeroed may exist. To get the
542 * block where the last byte in the file currently resides,
543 * we need to subtract one from the size and truncate back
544 * to a block boundary. We subtract 1 in case the size is
545 * exactly on a block boundary.
546 */
547 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
548 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
549 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
550 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
551 if (last_fsb == end_zero_fsb) {
552 /*
553 * The size was only incremented on its last block.
554 * We took care of that above, so just return.
555 */
556 return 0;
557 }
558
559 ASSERT(start_zero_fsb <= end_zero_fsb);
560 while (start_zero_fsb <= end_zero_fsb) {
561 nimaps = 1;
562 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
563 error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
564 0, NULL, 0, &imap, &nimaps, NULL, NULL);
565 if (error) {
566 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
567 return error;
568 }
569 ASSERT(nimaps > 0);
570
571 if (imap.br_state == XFS_EXT_UNWRITTEN ||
572 imap.br_startblock == HOLESTARTBLOCK) {
573 /*
574 * This loop handles initializing pages that were
575 * partially initialized by the code below this
576 * loop. It basically zeroes the part of the page
577 * that sits on a hole and sets the page as P_HOLE
578 * and calls remapf if it is a mapped file.
579 */
580 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
581 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
582 continue;
583 }
584
585 /*
586 * There are blocks we need to zero.
587 * Drop the inode lock while we're doing the I/O.
588 * We'll still have the iolock to protect us.
589 */
590 xfs_iunlock(ip, XFS_ILOCK_EXCL);
591
592 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
593 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
594
595 if ((zero_off + zero_len) > offset)
596 zero_len = offset - zero_off;
597
598 error = xfs_iozero(ip, zero_off, zero_len);
599 if (error) {
600 goto out_lock;
601 }
602
603 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
604 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
605
606 xfs_ilock(ip, XFS_ILOCK_EXCL);
607 }
608
609 return 0;
610
611 out_lock:
612 xfs_ilock(ip, XFS_ILOCK_EXCL);
613 ASSERT(error >= 0);
614 return error;
615 }
616
617 STATIC ssize_t
618 xfs_file_aio_write(
619 struct kiocb *iocb,
620 const struct iovec *iovp,
621 unsigned long nr_segs,
622 loff_t pos)
623 {
624 struct file *file = iocb->ki_filp;
625 struct address_space *mapping = file->f_mapping;
626 struct inode *inode = mapping->host;
627 struct xfs_inode *ip = XFS_I(inode);
628 struct xfs_mount *mp = ip->i_mount;
629 ssize_t ret = 0, error = 0;
630 int ioflags = 0;
631 xfs_fsize_t isize, new_size;
632 int iolock;
633 int eventsent = 0;
634 size_t ocount = 0, count;
635 int need_i_mutex;
636
637 XFS_STATS_INC(xs_write_calls);
638
639 BUG_ON(iocb->ki_pos != pos);
640
641 if (unlikely(file->f_flags & O_DIRECT))
642 ioflags |= IO_ISDIRECT;
643 if (file->f_mode & FMODE_NOCMTIME)
644 ioflags |= IO_INVIS;
645
646 error = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
647 if (error)
648 return error;
649
650 count = ocount;
651 if (count == 0)
652 return 0;
653
654 xfs_wait_for_freeze(mp, SB_FREEZE_WRITE);
655
656 if (XFS_FORCED_SHUTDOWN(mp))
657 return -EIO;
658
659 relock:
660 if (ioflags & IO_ISDIRECT) {
661 iolock = XFS_IOLOCK_SHARED;
662 need_i_mutex = 0;
663 } else {
664 iolock = XFS_IOLOCK_EXCL;
665 need_i_mutex = 1;
666 mutex_lock(&inode->i_mutex);
667 }
668
669 xfs_ilock(ip, XFS_ILOCK_EXCL|iolock);
670
671 start:
672 error = -generic_write_checks(file, &pos, &count,
673 S_ISBLK(inode->i_mode));
674 if (error) {
675 xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock);
676 goto out_unlock_mutex;
677 }
678
679 if ((DM_EVENT_ENABLED(ip, DM_EVENT_WRITE) &&
680 !(ioflags & IO_INVIS) && !eventsent)) {
681 int dmflags = FILP_DELAY_FLAG(file);
682
683 if (need_i_mutex)
684 dmflags |= DM_FLAGS_IMUX;
685
686 xfs_iunlock(ip, XFS_ILOCK_EXCL);
687 error = XFS_SEND_DATA(ip->i_mount, DM_EVENT_WRITE, ip,
688 pos, count, dmflags, &iolock);
689 if (error) {
690 goto out_unlock_internal;
691 }
692 xfs_ilock(ip, XFS_ILOCK_EXCL);
693 eventsent = 1;
694
695 /*
696 * The iolock was dropped and reacquired in XFS_SEND_DATA
697 * so we have to recheck the size when appending.
698 * We will only "goto start;" once, since having sent the
699 * event prevents another call to XFS_SEND_DATA, which is
700 * what allows the size to change in the first place.
701 */
702 if ((file->f_flags & O_APPEND) && pos != ip->i_size)
703 goto start;
704 }
705
706 if (ioflags & IO_ISDIRECT) {
707 xfs_buftarg_t *target =
708 XFS_IS_REALTIME_INODE(ip) ?
709 mp->m_rtdev_targp : mp->m_ddev_targp;
710
711 if ((pos & target->bt_smask) || (count & target->bt_smask)) {
712 xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock);
713 return XFS_ERROR(-EINVAL);
714 }
715
716 if (!need_i_mutex && (mapping->nrpages || pos > ip->i_size)) {
717 xfs_iunlock(ip, XFS_ILOCK_EXCL|iolock);
718 iolock = XFS_IOLOCK_EXCL;
719 need_i_mutex = 1;
720 mutex_lock(&inode->i_mutex);
721 xfs_ilock(ip, XFS_ILOCK_EXCL|iolock);
722 goto start;
723 }
724 }
725
726 new_size = pos + count;
727 if (new_size > ip->i_size)
728 ip->i_new_size = new_size;
729
730 if (likely(!(ioflags & IO_INVIS)))
731 file_update_time(file);
732
733 /*
734 * If the offset is beyond the size of the file, we have a couple
735 * of things to do. First, if there is already space allocated
736 * we need to either create holes or zero the disk or ...
737 *
738 * If there is a page where the previous size lands, we need
739 * to zero it out up to the new size.
740 */
741
742 if (pos > ip->i_size) {
743 error = xfs_zero_eof(ip, pos, ip->i_size);
744 if (error) {
745 xfs_iunlock(ip, XFS_ILOCK_EXCL);
746 goto out_unlock_internal;
747 }
748 }
749 xfs_iunlock(ip, XFS_ILOCK_EXCL);
750
751 /*
752 * If we're writing the file then make sure to clear the
753 * setuid and setgid bits if the process is not being run
754 * by root. This keeps people from modifying setuid and
755 * setgid binaries.
756 */
757 error = -file_remove_suid(file);
758 if (unlikely(error))
759 goto out_unlock_internal;
760
761 /* We can write back this queue in page reclaim */
762 current->backing_dev_info = mapping->backing_dev_info;
763
764 if ((ioflags & IO_ISDIRECT)) {
765 if (mapping->nrpages) {
766 WARN_ON(need_i_mutex == 0);
767 error = xfs_flushinval_pages(ip,
768 (pos & PAGE_CACHE_MASK),
769 -1, FI_REMAPF_LOCKED);
770 if (error)
771 goto out_unlock_internal;
772 }
773
774 if (need_i_mutex) {
775 /* demote the lock now the cached pages are gone */
776 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
777 mutex_unlock(&inode->i_mutex);
778
779 iolock = XFS_IOLOCK_SHARED;
780 need_i_mutex = 0;
781 }
782
783 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, ioflags);
784 ret = generic_file_direct_write(iocb, iovp,
785 &nr_segs, pos, &iocb->ki_pos, count, ocount);
786
787 /*
788 * direct-io write to a hole: fall through to buffered I/O
789 * for completing the rest of the request.
790 */
791 if (ret >= 0 && ret != count) {
792 XFS_STATS_ADD(xs_write_bytes, ret);
793
794 pos += ret;
795 count -= ret;
796
797 ioflags &= ~IO_ISDIRECT;
798 xfs_iunlock(ip, iolock);
799 goto relock;
800 }
801 } else {
802 int enospc = 0;
803 ssize_t ret2 = 0;
804
805 write_retry:
806 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, ioflags);
807 ret2 = generic_file_buffered_write(iocb, iovp, nr_segs,
808 pos, &iocb->ki_pos, count, ret);
809 /*
810 * if we just got an ENOSPC, flush the inode now we
811 * aren't holding any page locks and retry *once*
812 */
813 if (ret2 == -ENOSPC && !enospc) {
814 error = xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
815 if (error)
816 goto out_unlock_internal;
817 enospc = 1;
818 goto write_retry;
819 }
820 ret = ret2;
821 }
822
823 current->backing_dev_info = NULL;
824
825 isize = i_size_read(inode);
826 if (unlikely(ret < 0 && ret != -EFAULT && iocb->ki_pos > isize))
827 iocb->ki_pos = isize;
828
829 if (iocb->ki_pos > ip->i_size) {
830 xfs_ilock(ip, XFS_ILOCK_EXCL);
831 if (iocb->ki_pos > ip->i_size)
832 ip->i_size = iocb->ki_pos;
833 xfs_iunlock(ip, XFS_ILOCK_EXCL);
834 }
835
836 if (ret == -ENOSPC &&
837 DM_EVENT_ENABLED(ip, DM_EVENT_NOSPACE) && !(ioflags & IO_INVIS)) {
838 xfs_iunlock(ip, iolock);
839 if (need_i_mutex)
840 mutex_unlock(&inode->i_mutex);
841 error = XFS_SEND_NAMESP(ip->i_mount, DM_EVENT_NOSPACE, ip,
842 DM_RIGHT_NULL, ip, DM_RIGHT_NULL, NULL, NULL,
843 0, 0, 0); /* Delay flag intentionally unused */
844 if (need_i_mutex)
845 mutex_lock(&inode->i_mutex);
846 xfs_ilock(ip, iolock);
847 if (error)
848 goto out_unlock_internal;
849 goto start;
850 }
851
852 error = -ret;
853 if (ret <= 0)
854 goto out_unlock_internal;
855
856 XFS_STATS_ADD(xs_write_bytes, ret);
857
858 /* Handle various SYNC-type writes */
859 if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
860 loff_t end = pos + ret - 1;
861 int error2;
862
863 xfs_iunlock(ip, iolock);
864 if (need_i_mutex)
865 mutex_unlock(&inode->i_mutex);
866
867 error2 = filemap_write_and_wait_range(mapping, pos, end);
868 if (!error)
869 error = error2;
870 if (need_i_mutex)
871 mutex_lock(&inode->i_mutex);
872 xfs_ilock(ip, iolock);
873
874 error2 = -xfs_file_fsync(file, file->f_path.dentry,
875 (file->f_flags & __O_SYNC) ? 0 : 1);
876 if (!error)
877 error = error2;
878 }
879
880 out_unlock_internal:
881 if (ip->i_new_size) {
882 xfs_ilock(ip, XFS_ILOCK_EXCL);
883 ip->i_new_size = 0;
884 /*
885 * If this was a direct or synchronous I/O that failed (such
886 * as ENOSPC) then part of the I/O may have been written to
887 * disk before the error occured. In this case the on-disk
888 * file size may have been adjusted beyond the in-memory file
889 * size and now needs to be truncated back.
890 */
891 if (ip->i_d.di_size > ip->i_size)
892 ip->i_d.di_size = ip->i_size;
893 xfs_iunlock(ip, XFS_ILOCK_EXCL);
894 }
895 xfs_iunlock(ip, iolock);
896 out_unlock_mutex:
897 if (need_i_mutex)
898 mutex_unlock(&inode->i_mutex);
899 return -error;
900 }
901
902 STATIC int
903 xfs_file_open(
904 struct inode *inode,
905 struct file *file)
906 {
907 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
908 return -EFBIG;
909 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
910 return -EIO;
911 return 0;
912 }
913
914 STATIC int
915 xfs_dir_open(
916 struct inode *inode,
917 struct file *file)
918 {
919 struct xfs_inode *ip = XFS_I(inode);
920 int mode;
921 int error;
922
923 error = xfs_file_open(inode, file);
924 if (error)
925 return error;
926
927 /*
928 * If there are any blocks, read-ahead block 0 as we're almost
929 * certain to have the next operation be a read there.
930 */
931 mode = xfs_ilock_map_shared(ip);
932 if (ip->i_d.di_nextents > 0)
933 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
934 xfs_iunlock(ip, mode);
935 return 0;
936 }
937
938 STATIC int
939 xfs_file_release(
940 struct inode *inode,
941 struct file *filp)
942 {
943 return -xfs_release(XFS_I(inode));
944 }
945
946 STATIC int
947 xfs_file_readdir(
948 struct file *filp,
949 void *dirent,
950 filldir_t filldir)
951 {
952 struct inode *inode = filp->f_path.dentry->d_inode;
953 xfs_inode_t *ip = XFS_I(inode);
954 int error;
955 size_t bufsize;
956
957 /*
958 * The Linux API doesn't pass down the total size of the buffer
959 * we read into down to the filesystem. With the filldir concept
960 * it's not needed for correct information, but the XFS dir2 leaf
961 * code wants an estimate of the buffer size to calculate it's
962 * readahead window and size the buffers used for mapping to
963 * physical blocks.
964 *
965 * Try to give it an estimate that's good enough, maybe at some
966 * point we can change the ->readdir prototype to include the
967 * buffer size. For now we use the current glibc buffer size.
968 */
969 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
970
971 error = xfs_readdir(ip, dirent, bufsize,
972 (xfs_off_t *)&filp->f_pos, filldir);
973 if (error)
974 return -error;
975 return 0;
976 }
977
978 STATIC int
979 xfs_file_mmap(
980 struct file *filp,
981 struct vm_area_struct *vma)
982 {
983 vma->vm_ops = &xfs_file_vm_ops;
984 vma->vm_flags |= VM_CAN_NONLINEAR;
985
986 file_accessed(filp);
987 return 0;
988 }
989
990 /*
991 * mmap()d file has taken write protection fault and is being made
992 * writable. We can set the page state up correctly for a writable
993 * page, which means we can do correct delalloc accounting (ENOSPC
994 * checking!) and unwritten extent mapping.
995 */
996 STATIC int
997 xfs_vm_page_mkwrite(
998 struct vm_area_struct *vma,
999 struct vm_fault *vmf)
1000 {
1001 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
1002 }
1003
1004 const struct file_operations xfs_file_operations = {
1005 .llseek = generic_file_llseek,
1006 .read = do_sync_read,
1007 .write = do_sync_write,
1008 .aio_read = xfs_file_aio_read,
1009 .aio_write = xfs_file_aio_write,
1010 .splice_read = xfs_file_splice_read,
1011 .splice_write = xfs_file_splice_write,
1012 .unlocked_ioctl = xfs_file_ioctl,
1013 #ifdef CONFIG_COMPAT
1014 .compat_ioctl = xfs_file_compat_ioctl,
1015 #endif
1016 .mmap = xfs_file_mmap,
1017 .open = xfs_file_open,
1018 .release = xfs_file_release,
1019 .fsync = xfs_file_fsync,
1020 #ifdef HAVE_FOP_OPEN_EXEC
1021 .open_exec = xfs_file_open_exec,
1022 #endif
1023 };
1024
1025 const struct file_operations xfs_dir_file_operations = {
1026 .open = xfs_dir_open,
1027 .read = generic_read_dir,
1028 .readdir = xfs_file_readdir,
1029 .llseek = generic_file_llseek,
1030 .unlocked_ioctl = xfs_file_ioctl,
1031 #ifdef CONFIG_COMPAT
1032 .compat_ioctl = xfs_file_compat_ioctl,
1033 #endif
1034 .fsync = xfs_file_fsync,
1035 };
1036
1037 static const struct vm_operations_struct xfs_file_vm_ops = {
1038 .fault = filemap_fault,
1039 .page_mkwrite = xfs_vm_page_mkwrite,
1040 };
This page took 0.056338 seconds and 5 git commands to generate.