[XFS] call common xfs vfs-level helpers directly and remove vfs operations
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_clnt.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_attr.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_utils.h"
49 #include "xfs_vnodeops.h"
50 #include "xfs_vfsops.h"
51 #include "xfs_version.h"
52
53 #include <linux/namei.h>
54 #include <linux/init.h>
55 #include <linux/mount.h>
56 #include <linux/mempool.h>
57 #include <linux/writeback.h>
58 #include <linux/kthread.h>
59 #include <linux/freezer.h>
60
61 static struct quotactl_ops xfs_quotactl_operations;
62 static struct super_operations xfs_super_operations;
63 static kmem_zone_t *xfs_vnode_zone;
64 static kmem_zone_t *xfs_ioend_zone;
65 mempool_t *xfs_ioend_pool;
66
67 STATIC struct xfs_mount_args *
68 xfs_args_allocate(
69 struct super_block *sb,
70 int silent)
71 {
72 struct xfs_mount_args *args;
73
74 args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
75 args->logbufs = args->logbufsize = -1;
76 strncpy(args->fsname, sb->s_id, MAXNAMELEN);
77
78 /* Copy the already-parsed mount(2) flags we're interested in */
79 if (sb->s_flags & MS_DIRSYNC)
80 args->flags |= XFSMNT_DIRSYNC;
81 if (sb->s_flags & MS_SYNCHRONOUS)
82 args->flags |= XFSMNT_WSYNC;
83 if (silent)
84 args->flags |= XFSMNT_QUIET;
85 args->flags |= XFSMNT_32BITINODES;
86
87 return args;
88 }
89
90 __uint64_t
91 xfs_max_file_offset(
92 unsigned int blockshift)
93 {
94 unsigned int pagefactor = 1;
95 unsigned int bitshift = BITS_PER_LONG - 1;
96
97 /* Figure out maximum filesize, on Linux this can depend on
98 * the filesystem blocksize (on 32 bit platforms).
99 * __block_prepare_write does this in an [unsigned] long...
100 * page->index << (PAGE_CACHE_SHIFT - bbits)
101 * So, for page sized blocks (4K on 32 bit platforms),
102 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
103 * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
104 * but for smaller blocksizes it is less (bbits = log2 bsize).
105 * Note1: get_block_t takes a long (implicit cast from above)
106 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
107 * can optionally convert the [unsigned] long from above into
108 * an [unsigned] long long.
109 */
110
111 #if BITS_PER_LONG == 32
112 # if defined(CONFIG_LBD)
113 ASSERT(sizeof(sector_t) == 8);
114 pagefactor = PAGE_CACHE_SIZE;
115 bitshift = BITS_PER_LONG;
116 # else
117 pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
118 # endif
119 #endif
120
121 return (((__uint64_t)pagefactor) << bitshift) - 1;
122 }
123
124 STATIC_INLINE void
125 xfs_set_inodeops(
126 struct inode *inode)
127 {
128 switch (inode->i_mode & S_IFMT) {
129 case S_IFREG:
130 inode->i_op = &xfs_inode_operations;
131 inode->i_fop = &xfs_file_operations;
132 inode->i_mapping->a_ops = &xfs_address_space_operations;
133 break;
134 case S_IFDIR:
135 inode->i_op = &xfs_dir_inode_operations;
136 inode->i_fop = &xfs_dir_file_operations;
137 break;
138 case S_IFLNK:
139 inode->i_op = &xfs_symlink_inode_operations;
140 if (inode->i_blocks)
141 inode->i_mapping->a_ops = &xfs_address_space_operations;
142 break;
143 default:
144 inode->i_op = &xfs_inode_operations;
145 init_special_inode(inode, inode->i_mode, inode->i_rdev);
146 break;
147 }
148 }
149
150 STATIC_INLINE void
151 xfs_revalidate_inode(
152 xfs_mount_t *mp,
153 bhv_vnode_t *vp,
154 xfs_inode_t *ip)
155 {
156 struct inode *inode = vn_to_inode(vp);
157
158 inode->i_mode = ip->i_d.di_mode;
159 inode->i_nlink = ip->i_d.di_nlink;
160 inode->i_uid = ip->i_d.di_uid;
161 inode->i_gid = ip->i_d.di_gid;
162
163 switch (inode->i_mode & S_IFMT) {
164 case S_IFBLK:
165 case S_IFCHR:
166 inode->i_rdev =
167 MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
168 sysv_minor(ip->i_df.if_u2.if_rdev));
169 break;
170 default:
171 inode->i_rdev = 0;
172 break;
173 }
174
175 inode->i_generation = ip->i_d.di_gen;
176 i_size_write(inode, ip->i_d.di_size);
177 inode->i_blocks =
178 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
179 inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
180 inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
181 inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
182 inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
183 inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
184 inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
185 if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
186 inode->i_flags |= S_IMMUTABLE;
187 else
188 inode->i_flags &= ~S_IMMUTABLE;
189 if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
190 inode->i_flags |= S_APPEND;
191 else
192 inode->i_flags &= ~S_APPEND;
193 if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
194 inode->i_flags |= S_SYNC;
195 else
196 inode->i_flags &= ~S_SYNC;
197 if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
198 inode->i_flags |= S_NOATIME;
199 else
200 inode->i_flags &= ~S_NOATIME;
201 xfs_iflags_clear(ip, XFS_IMODIFIED);
202 }
203
204 void
205 xfs_initialize_vnode(
206 struct xfs_mount *mp,
207 bhv_vnode_t *vp,
208 struct xfs_inode *ip)
209 {
210 struct inode *inode = vn_to_inode(vp);
211
212 if (!ip->i_vnode) {
213 ip->i_vnode = vp;
214 inode->i_private = ip;
215 }
216
217 /*
218 * We need to set the ops vectors, and unlock the inode, but if
219 * we have been called during the new inode create process, it is
220 * too early to fill in the Linux inode. We will get called a
221 * second time once the inode is properly set up, and then we can
222 * finish our work.
223 */
224 if (ip->i_d.di_mode != 0 && (inode->i_state & I_NEW)) {
225 xfs_revalidate_inode(mp, vp, ip);
226 xfs_set_inodeops(inode);
227
228 xfs_iflags_clear(ip, XFS_INEW);
229 barrier();
230
231 unlock_new_inode(inode);
232 }
233 }
234
235 int
236 xfs_blkdev_get(
237 xfs_mount_t *mp,
238 const char *name,
239 struct block_device **bdevp)
240 {
241 int error = 0;
242
243 *bdevp = open_bdev_excl(name, 0, mp);
244 if (IS_ERR(*bdevp)) {
245 error = PTR_ERR(*bdevp);
246 printk("XFS: Invalid device [%s], error=%d\n", name, error);
247 }
248
249 return -error;
250 }
251
252 void
253 xfs_blkdev_put(
254 struct block_device *bdev)
255 {
256 if (bdev)
257 close_bdev_excl(bdev);
258 }
259
260 /*
261 * Try to write out the superblock using barriers.
262 */
263 STATIC int
264 xfs_barrier_test(
265 xfs_mount_t *mp)
266 {
267 xfs_buf_t *sbp = xfs_getsb(mp, 0);
268 int error;
269
270 XFS_BUF_UNDONE(sbp);
271 XFS_BUF_UNREAD(sbp);
272 XFS_BUF_UNDELAYWRITE(sbp);
273 XFS_BUF_WRITE(sbp);
274 XFS_BUF_UNASYNC(sbp);
275 XFS_BUF_ORDERED(sbp);
276
277 xfsbdstrat(mp, sbp);
278 error = xfs_iowait(sbp);
279
280 /*
281 * Clear all the flags we set and possible error state in the
282 * buffer. We only did the write to try out whether barriers
283 * worked and shouldn't leave any traces in the superblock
284 * buffer.
285 */
286 XFS_BUF_DONE(sbp);
287 XFS_BUF_ERROR(sbp, 0);
288 XFS_BUF_UNORDERED(sbp);
289
290 xfs_buf_relse(sbp);
291 return error;
292 }
293
294 void
295 xfs_mountfs_check_barriers(xfs_mount_t *mp)
296 {
297 int error;
298
299 if (mp->m_logdev_targp != mp->m_ddev_targp) {
300 xfs_fs_cmn_err(CE_NOTE, mp,
301 "Disabling barriers, not supported with external log device");
302 mp->m_flags &= ~XFS_MOUNT_BARRIER;
303 return;
304 }
305
306 if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
307 xfs_fs_cmn_err(CE_NOTE, mp,
308 "Disabling barriers, underlying device is readonly");
309 mp->m_flags &= ~XFS_MOUNT_BARRIER;
310 return;
311 }
312
313 error = xfs_barrier_test(mp);
314 if (error) {
315 xfs_fs_cmn_err(CE_NOTE, mp,
316 "Disabling barriers, trial barrier write failed");
317 mp->m_flags &= ~XFS_MOUNT_BARRIER;
318 return;
319 }
320 }
321
322 void
323 xfs_blkdev_issue_flush(
324 xfs_buftarg_t *buftarg)
325 {
326 blkdev_issue_flush(buftarg->bt_bdev, NULL);
327 }
328
329 STATIC struct inode *
330 xfs_fs_alloc_inode(
331 struct super_block *sb)
332 {
333 bhv_vnode_t *vp;
334
335 vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
336 if (unlikely(!vp))
337 return NULL;
338 return vn_to_inode(vp);
339 }
340
341 STATIC void
342 xfs_fs_destroy_inode(
343 struct inode *inode)
344 {
345 kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
346 }
347
348 STATIC void
349 xfs_fs_inode_init_once(
350 void *vnode,
351 kmem_zone_t *zonep,
352 unsigned long flags)
353 {
354 inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
355 }
356
357 STATIC int
358 xfs_init_zones(void)
359 {
360 xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
361 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
362 KM_ZONE_SPREAD,
363 xfs_fs_inode_init_once);
364 if (!xfs_vnode_zone)
365 goto out;
366
367 xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
368 if (!xfs_ioend_zone)
369 goto out_destroy_vnode_zone;
370
371 xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
372 xfs_ioend_zone);
373 if (!xfs_ioend_pool)
374 goto out_free_ioend_zone;
375 return 0;
376
377 out_free_ioend_zone:
378 kmem_zone_destroy(xfs_ioend_zone);
379 out_destroy_vnode_zone:
380 kmem_zone_destroy(xfs_vnode_zone);
381 out:
382 return -ENOMEM;
383 }
384
385 STATIC void
386 xfs_destroy_zones(void)
387 {
388 mempool_destroy(xfs_ioend_pool);
389 kmem_zone_destroy(xfs_vnode_zone);
390 kmem_zone_destroy(xfs_ioend_zone);
391 }
392
393 /*
394 * Attempt to flush the inode, this will actually fail
395 * if the inode is pinned, but we dirty the inode again
396 * at the point when it is unpinned after a log write,
397 * since this is when the inode itself becomes flushable.
398 */
399 STATIC int
400 xfs_fs_write_inode(
401 struct inode *inode,
402 int sync)
403 {
404 int error = 0, flags = FLUSH_INODE;
405
406 vn_trace_entry(XFS_I(inode), __FUNCTION__,
407 (inst_t *)__return_address);
408 if (sync) {
409 filemap_fdatawait(inode->i_mapping);
410 flags |= FLUSH_SYNC;
411 }
412 error = xfs_inode_flush(XFS_I(inode), flags);
413 if (error == EAGAIN) {
414 if (sync)
415 error = xfs_inode_flush(XFS_I(inode),
416 flags | FLUSH_LOG);
417 else
418 error = 0;
419 }
420
421 return -error;
422 }
423
424 STATIC void
425 xfs_fs_clear_inode(
426 struct inode *inode)
427 {
428 xfs_inode_t *ip = XFS_I(inode);
429
430 /*
431 * ip can be null when xfs_iget_core calls xfs_idestroy if we
432 * find an inode with di_mode == 0 but without IGET_CREATE set.
433 */
434 if (ip) {
435 vn_trace_entry(ip, __FUNCTION__, (inst_t *)__return_address);
436
437 XFS_STATS_INC(vn_rele);
438 XFS_STATS_INC(vn_remove);
439 XFS_STATS_INC(vn_reclaim);
440 XFS_STATS_DEC(vn_active);
441
442 xfs_inactive(ip);
443 xfs_iflags_clear(ip, XFS_IMODIFIED);
444 if (xfs_reclaim(ip))
445 panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, inode);
446 }
447
448 ASSERT(XFS_I(inode) == NULL);
449 }
450
451 /*
452 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
453 * Doing this has two advantages:
454 * - It saves on stack space, which is tight in certain situations
455 * - It can be used (with care) as a mechanism to avoid deadlocks.
456 * Flushing while allocating in a full filesystem requires both.
457 */
458 STATIC void
459 xfs_syncd_queue_work(
460 struct bhv_vfs *vfs,
461 void *data,
462 void (*syncer)(bhv_vfs_t *, void *))
463 {
464 struct bhv_vfs_sync_work *work;
465
466 work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
467 INIT_LIST_HEAD(&work->w_list);
468 work->w_syncer = syncer;
469 work->w_data = data;
470 work->w_vfs = vfs;
471 spin_lock(&vfs->vfs_sync_lock);
472 list_add_tail(&work->w_list, &vfs->vfs_sync_list);
473 spin_unlock(&vfs->vfs_sync_lock);
474 wake_up_process(vfs->vfs_sync_task);
475 }
476
477 /*
478 * Flush delayed allocate data, attempting to free up reserved space
479 * from existing allocations. At this point a new allocation attempt
480 * has failed with ENOSPC and we are in the process of scratching our
481 * heads, looking about for more room...
482 */
483 STATIC void
484 xfs_flush_inode_work(
485 bhv_vfs_t *vfs,
486 void *inode)
487 {
488 filemap_flush(((struct inode *)inode)->i_mapping);
489 iput((struct inode *)inode);
490 }
491
492 void
493 xfs_flush_inode(
494 xfs_inode_t *ip)
495 {
496 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
497 struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
498
499 igrab(inode);
500 xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
501 delay(msecs_to_jiffies(500));
502 }
503
504 /*
505 * This is the "bigger hammer" version of xfs_flush_inode_work...
506 * (IOW, "If at first you don't succeed, use a Bigger Hammer").
507 */
508 STATIC void
509 xfs_flush_device_work(
510 bhv_vfs_t *vfs,
511 void *inode)
512 {
513 sync_blockdev(vfs->vfs_super->s_bdev);
514 iput((struct inode *)inode);
515 }
516
517 void
518 xfs_flush_device(
519 xfs_inode_t *ip)
520 {
521 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
522 struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
523
524 igrab(inode);
525 xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
526 delay(msecs_to_jiffies(500));
527 xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
528 }
529
530 STATIC void
531 vfs_sync_worker(
532 bhv_vfs_t *vfsp,
533 void *unused)
534 {
535 int error;
536
537 if (!(vfsp->vfs_flag & VFS_RDONLY))
538 error = xfs_sync(XFS_VFSTOM(vfsp), SYNC_FSDATA | SYNC_BDFLUSH | \
539 SYNC_ATTR | SYNC_REFCACHE | SYNC_SUPER);
540 vfsp->vfs_sync_seq++;
541 wake_up(&vfsp->vfs_wait_single_sync_task);
542 }
543
544 STATIC int
545 xfssyncd(
546 void *arg)
547 {
548 long timeleft;
549 bhv_vfs_t *vfsp = (bhv_vfs_t *) arg;
550 bhv_vfs_sync_work_t *work, *n;
551 LIST_HEAD (tmp);
552
553 set_freezable();
554 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
555 for (;;) {
556 timeleft = schedule_timeout_interruptible(timeleft);
557 /* swsusp */
558 try_to_freeze();
559 if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list))
560 break;
561
562 spin_lock(&vfsp->vfs_sync_lock);
563 /*
564 * We can get woken by laptop mode, to do a sync -
565 * that's the (only!) case where the list would be
566 * empty with time remaining.
567 */
568 if (!timeleft || list_empty(&vfsp->vfs_sync_list)) {
569 if (!timeleft)
570 timeleft = xfs_syncd_centisecs *
571 msecs_to_jiffies(10);
572 INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
573 list_add_tail(&vfsp->vfs_sync_work.w_list,
574 &vfsp->vfs_sync_list);
575 }
576 list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
577 list_move(&work->w_list, &tmp);
578 spin_unlock(&vfsp->vfs_sync_lock);
579
580 list_for_each_entry_safe(work, n, &tmp, w_list) {
581 (*work->w_syncer)(vfsp, work->w_data);
582 list_del(&work->w_list);
583 if (work == &vfsp->vfs_sync_work)
584 continue;
585 kmem_free(work, sizeof(struct bhv_vfs_sync_work));
586 }
587 }
588
589 return 0;
590 }
591
592 STATIC int
593 xfs_fs_start_syncd(
594 bhv_vfs_t *vfsp)
595 {
596 vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
597 vfsp->vfs_sync_work.w_vfs = vfsp;
598 vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd");
599 if (IS_ERR(vfsp->vfs_sync_task))
600 return -PTR_ERR(vfsp->vfs_sync_task);
601 return 0;
602 }
603
604 STATIC void
605 xfs_fs_stop_syncd(
606 bhv_vfs_t *vfsp)
607 {
608 kthread_stop(vfsp->vfs_sync_task);
609 }
610
611 STATIC void
612 xfs_fs_put_super(
613 struct super_block *sb)
614 {
615 bhv_vfs_t *vfsp = vfs_from_sb(sb);
616 struct xfs_mount *mp = XFS_M(sb);
617 int error;
618
619 xfs_fs_stop_syncd(vfsp);
620 xfs_sync(mp, SYNC_ATTR | SYNC_DELWRI);
621 error = xfs_unmount(mp, 0, NULL);
622 if (error) {
623 printk("XFS: unmount got error=%d\n", error);
624 printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp);
625 } else {
626 vfs_deallocate(vfsp);
627 }
628 }
629
630 STATIC void
631 xfs_fs_write_super(
632 struct super_block *sb)
633 {
634 if (!(sb->s_flags & MS_RDONLY))
635 xfs_sync(XFS_M(sb), SYNC_FSDATA);
636 sb->s_dirt = 0;
637 }
638
639 STATIC int
640 xfs_fs_sync_super(
641 struct super_block *sb,
642 int wait)
643 {
644 bhv_vfs_t *vfsp = vfs_from_sb(sb);
645 struct xfs_mount *mp = XFS_M(sb);
646 int error;
647 int flags;
648
649 if (unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
650 /*
651 * First stage of freeze - no more writers will make progress
652 * now we are here, so we flush delwri and delalloc buffers
653 * here, then wait for all I/O to complete. Data is frozen at
654 * that point. Metadata is not frozen, transactions can still
655 * occur here so don't bother flushing the buftarg (i.e
656 * SYNC_QUIESCE) because it'll just get dirty again.
657 */
658 flags = SYNC_DATA_QUIESCE;
659 } else
660 flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
661
662 error = xfs_sync(mp, flags);
663 sb->s_dirt = 0;
664
665 if (unlikely(laptop_mode)) {
666 int prev_sync_seq = vfsp->vfs_sync_seq;
667
668 /*
669 * The disk must be active because we're syncing.
670 * We schedule xfssyncd now (now that the disk is
671 * active) instead of later (when it might not be).
672 */
673 wake_up_process(vfsp->vfs_sync_task);
674 /*
675 * We have to wait for the sync iteration to complete.
676 * If we don't, the disk activity caused by the sync
677 * will come after the sync is completed, and that
678 * triggers another sync from laptop mode.
679 */
680 wait_event(vfsp->vfs_wait_single_sync_task,
681 vfsp->vfs_sync_seq != prev_sync_seq);
682 }
683
684 return -error;
685 }
686
687 STATIC int
688 xfs_fs_statfs(
689 struct dentry *dentry,
690 struct kstatfs *statp)
691 {
692 return -xfs_statvfs(XFS_M(dentry->d_sb), statp,
693 vn_from_inode(dentry->d_inode));
694 }
695
696 STATIC int
697 xfs_fs_remount(
698 struct super_block *sb,
699 int *flags,
700 char *options)
701 {
702 struct xfs_mount *mp = XFS_M(sb);
703 struct xfs_mount_args *args = xfs_args_allocate(sb, 0);
704 int error;
705
706 error = xfs_parseargs(mp, options, args, 1);
707 if (!error)
708 error = xfs_mntupdate(mp, flags, args);
709 kmem_free(args, sizeof(*args));
710 return -error;
711 }
712
713 STATIC void
714 xfs_fs_lockfs(
715 struct super_block *sb)
716 {
717 xfs_freeze(XFS_M(sb));
718 }
719
720 STATIC int
721 xfs_fs_show_options(
722 struct seq_file *m,
723 struct vfsmount *mnt)
724 {
725 return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
726 }
727
728 STATIC int
729 xfs_fs_quotasync(
730 struct super_block *sb,
731 int type)
732 {
733 return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XQUOTASYNC, 0, NULL);
734 }
735
736 STATIC int
737 xfs_fs_getxstate(
738 struct super_block *sb,
739 struct fs_quota_stat *fqs)
740 {
741 return -XFS_QM_QUOTACTL(XFS_M(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
742 }
743
744 STATIC int
745 xfs_fs_setxstate(
746 struct super_block *sb,
747 unsigned int flags,
748 int op)
749 {
750 return -XFS_QM_QUOTACTL(XFS_M(sb), op, 0, (caddr_t)&flags);
751 }
752
753 STATIC int
754 xfs_fs_getxquota(
755 struct super_block *sb,
756 int type,
757 qid_t id,
758 struct fs_disk_quota *fdq)
759 {
760 return -XFS_QM_QUOTACTL(XFS_M(sb),
761 (type == USRQUOTA) ? Q_XGETQUOTA :
762 ((type == GRPQUOTA) ? Q_XGETGQUOTA :
763 Q_XGETPQUOTA), id, (caddr_t)fdq);
764 }
765
766 STATIC int
767 xfs_fs_setxquota(
768 struct super_block *sb,
769 int type,
770 qid_t id,
771 struct fs_disk_quota *fdq)
772 {
773 return -XFS_QM_QUOTACTL(XFS_M(sb),
774 (type == USRQUOTA) ? Q_XSETQLIM :
775 ((type == GRPQUOTA) ? Q_XSETGQLIM :
776 Q_XSETPQLIM), id, (caddr_t)fdq);
777 }
778
779 STATIC int
780 xfs_fs_fill_super(
781 struct super_block *sb,
782 void *data,
783 int silent)
784 {
785 struct inode *rootvp;
786 struct bhv_vfs *vfsp = vfs_allocate(sb);
787 struct xfs_mount *mp = NULL;
788 struct xfs_mount_args *args = xfs_args_allocate(sb, silent);
789 struct kstatfs statvfs;
790 int error;
791
792 mp = xfs_mount_init();
793 mp->m_vfsp = vfsp;
794 vfsp->vfs_mount = mp;
795
796 error = xfs_parseargs(mp, (char *)data, args, 0);
797 if (error)
798 goto fail_vfsop;
799
800 sb_min_blocksize(sb, BBSIZE);
801 sb->s_export_op = &xfs_export_operations;
802 sb->s_qcop = &xfs_quotactl_operations;
803 sb->s_op = &xfs_super_operations;
804
805 error = xfs_mount(mp, args, NULL);
806 if (error)
807 goto fail_vfsop;
808
809 error = xfs_statvfs(mp, &statvfs, NULL);
810 if (error)
811 goto fail_unmount;
812
813 sb->s_dirt = 1;
814 sb->s_magic = statvfs.f_type;
815 sb->s_blocksize = statvfs.f_bsize;
816 sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
817 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
818 sb->s_time_gran = 1;
819 set_posix_acl_flag(sb);
820
821 error = xfs_root(mp, &rootvp);
822 if (error)
823 goto fail_unmount;
824
825 sb->s_root = d_alloc_root(vn_to_inode(rootvp));
826 if (!sb->s_root) {
827 error = ENOMEM;
828 goto fail_vnrele;
829 }
830 if (is_bad_inode(sb->s_root->d_inode)) {
831 error = EINVAL;
832 goto fail_vnrele;
833 }
834 if ((error = xfs_fs_start_syncd(vfsp)))
835 goto fail_vnrele;
836 vn_trace_exit(XFS_I(sb->s_root->d_inode), __FUNCTION__,
837 (inst_t *)__return_address);
838
839 kmem_free(args, sizeof(*args));
840 return 0;
841
842 fail_vnrele:
843 if (sb->s_root) {
844 dput(sb->s_root);
845 sb->s_root = NULL;
846 } else {
847 VN_RELE(rootvp);
848 }
849
850 fail_unmount:
851 xfs_unmount(mp, 0, NULL);
852
853 fail_vfsop:
854 vfs_deallocate(vfsp);
855 kmem_free(args, sizeof(*args));
856 return -error;
857 }
858
859 STATIC int
860 xfs_fs_get_sb(
861 struct file_system_type *fs_type,
862 int flags,
863 const char *dev_name,
864 void *data,
865 struct vfsmount *mnt)
866 {
867 return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
868 mnt);
869 }
870
871 static struct super_operations xfs_super_operations = {
872 .alloc_inode = xfs_fs_alloc_inode,
873 .destroy_inode = xfs_fs_destroy_inode,
874 .write_inode = xfs_fs_write_inode,
875 .clear_inode = xfs_fs_clear_inode,
876 .put_super = xfs_fs_put_super,
877 .write_super = xfs_fs_write_super,
878 .sync_fs = xfs_fs_sync_super,
879 .write_super_lockfs = xfs_fs_lockfs,
880 .statfs = xfs_fs_statfs,
881 .remount_fs = xfs_fs_remount,
882 .show_options = xfs_fs_show_options,
883 };
884
885 static struct quotactl_ops xfs_quotactl_operations = {
886 .quota_sync = xfs_fs_quotasync,
887 .get_xstate = xfs_fs_getxstate,
888 .set_xstate = xfs_fs_setxstate,
889 .get_xquota = xfs_fs_getxquota,
890 .set_xquota = xfs_fs_setxquota,
891 };
892
893 static struct file_system_type xfs_fs_type = {
894 .owner = THIS_MODULE,
895 .name = "xfs",
896 .get_sb = xfs_fs_get_sb,
897 .kill_sb = kill_block_super,
898 .fs_flags = FS_REQUIRES_DEV,
899 };
900
901
902 STATIC int __init
903 init_xfs_fs( void )
904 {
905 int error;
906 static char message[] __initdata = KERN_INFO \
907 XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
908
909 printk(message);
910
911 ktrace_init(64);
912
913 error = xfs_init_zones();
914 if (error < 0)
915 goto undo_zones;
916
917 error = xfs_buf_init();
918 if (error < 0)
919 goto undo_buffers;
920
921 vn_init();
922 xfs_init();
923 uuid_init();
924 vfs_initquota();
925
926 error = register_filesystem(&xfs_fs_type);
927 if (error)
928 goto undo_register;
929 return 0;
930
931 undo_register:
932 xfs_buf_terminate();
933
934 undo_buffers:
935 xfs_destroy_zones();
936
937 undo_zones:
938 return error;
939 }
940
941 STATIC void __exit
942 exit_xfs_fs( void )
943 {
944 vfs_exitquota();
945 unregister_filesystem(&xfs_fs_type);
946 xfs_cleanup();
947 xfs_buf_terminate();
948 xfs_destroy_zones();
949 ktrace_uninit();
950 }
951
952 module_init(init_xfs_fs);
953 module_exit(exit_xfs_fs);
954
955 MODULE_AUTHOR("Silicon Graphics, Inc.");
956 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
957 MODULE_LICENSE("GPL");
This page took 0.061341 seconds and 5 git commands to generate.