[XFS] call common xfs vnode-level helpers directly and remove vnode operations
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_clnt.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_attr.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_utils.h"
49 #include "xfs_vnodeops.h"
50 #include "xfs_version.h"
51
52 #include <linux/namei.h>
53 #include <linux/init.h>
54 #include <linux/mount.h>
55 #include <linux/mempool.h>
56 #include <linux/writeback.h>
57 #include <linux/kthread.h>
58 #include <linux/freezer.h>
59
60 static struct quotactl_ops xfs_quotactl_operations;
61 static struct super_operations xfs_super_operations;
62 static kmem_zone_t *xfs_vnode_zone;
63 static kmem_zone_t *xfs_ioend_zone;
64 mempool_t *xfs_ioend_pool;
65
66 STATIC struct xfs_mount_args *
67 xfs_args_allocate(
68 struct super_block *sb,
69 int silent)
70 {
71 struct xfs_mount_args *args;
72
73 args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
74 args->logbufs = args->logbufsize = -1;
75 strncpy(args->fsname, sb->s_id, MAXNAMELEN);
76
77 /* Copy the already-parsed mount(2) flags we're interested in */
78 if (sb->s_flags & MS_DIRSYNC)
79 args->flags |= XFSMNT_DIRSYNC;
80 if (sb->s_flags & MS_SYNCHRONOUS)
81 args->flags |= XFSMNT_WSYNC;
82 if (silent)
83 args->flags |= XFSMNT_QUIET;
84 args->flags |= XFSMNT_32BITINODES;
85
86 return args;
87 }
88
89 __uint64_t
90 xfs_max_file_offset(
91 unsigned int blockshift)
92 {
93 unsigned int pagefactor = 1;
94 unsigned int bitshift = BITS_PER_LONG - 1;
95
96 /* Figure out maximum filesize, on Linux this can depend on
97 * the filesystem blocksize (on 32 bit platforms).
98 * __block_prepare_write does this in an [unsigned] long...
99 * page->index << (PAGE_CACHE_SHIFT - bbits)
100 * So, for page sized blocks (4K on 32 bit platforms),
101 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
102 * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
103 * but for smaller blocksizes it is less (bbits = log2 bsize).
104 * Note1: get_block_t takes a long (implicit cast from above)
105 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
106 * can optionally convert the [unsigned] long from above into
107 * an [unsigned] long long.
108 */
109
110 #if BITS_PER_LONG == 32
111 # if defined(CONFIG_LBD)
112 ASSERT(sizeof(sector_t) == 8);
113 pagefactor = PAGE_CACHE_SIZE;
114 bitshift = BITS_PER_LONG;
115 # else
116 pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
117 # endif
118 #endif
119
120 return (((__uint64_t)pagefactor) << bitshift) - 1;
121 }
122
123 STATIC_INLINE void
124 xfs_set_inodeops(
125 struct inode *inode)
126 {
127 switch (inode->i_mode & S_IFMT) {
128 case S_IFREG:
129 inode->i_op = &xfs_inode_operations;
130 inode->i_fop = &xfs_file_operations;
131 inode->i_mapping->a_ops = &xfs_address_space_operations;
132 break;
133 case S_IFDIR:
134 inode->i_op = &xfs_dir_inode_operations;
135 inode->i_fop = &xfs_dir_file_operations;
136 break;
137 case S_IFLNK:
138 inode->i_op = &xfs_symlink_inode_operations;
139 if (inode->i_blocks)
140 inode->i_mapping->a_ops = &xfs_address_space_operations;
141 break;
142 default:
143 inode->i_op = &xfs_inode_operations;
144 init_special_inode(inode, inode->i_mode, inode->i_rdev);
145 break;
146 }
147 }
148
149 STATIC_INLINE void
150 xfs_revalidate_inode(
151 xfs_mount_t *mp,
152 bhv_vnode_t *vp,
153 xfs_inode_t *ip)
154 {
155 struct inode *inode = vn_to_inode(vp);
156
157 inode->i_mode = ip->i_d.di_mode;
158 inode->i_nlink = ip->i_d.di_nlink;
159 inode->i_uid = ip->i_d.di_uid;
160 inode->i_gid = ip->i_d.di_gid;
161
162 switch (inode->i_mode & S_IFMT) {
163 case S_IFBLK:
164 case S_IFCHR:
165 inode->i_rdev =
166 MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
167 sysv_minor(ip->i_df.if_u2.if_rdev));
168 break;
169 default:
170 inode->i_rdev = 0;
171 break;
172 }
173
174 inode->i_generation = ip->i_d.di_gen;
175 i_size_write(inode, ip->i_d.di_size);
176 inode->i_blocks =
177 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
178 inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
179 inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
180 inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
181 inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
182 inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
183 inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
184 if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
185 inode->i_flags |= S_IMMUTABLE;
186 else
187 inode->i_flags &= ~S_IMMUTABLE;
188 if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
189 inode->i_flags |= S_APPEND;
190 else
191 inode->i_flags &= ~S_APPEND;
192 if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
193 inode->i_flags |= S_SYNC;
194 else
195 inode->i_flags &= ~S_SYNC;
196 if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
197 inode->i_flags |= S_NOATIME;
198 else
199 inode->i_flags &= ~S_NOATIME;
200 vp->v_flag &= ~VMODIFIED;
201 }
202
203 void
204 xfs_initialize_vnode(
205 bhv_desc_t *bdp,
206 bhv_vnode_t *vp,
207 struct xfs_inode *ip,
208 int unlock)
209 {
210 struct inode *inode = vn_to_inode(vp);
211
212 if (!ip->i_vnode) {
213 vp->v_vfsp = bhvtovfs(bdp);
214 ip->i_vnode = vp;
215 inode->i_private = ip;
216 }
217
218 /*
219 * We need to set the ops vectors, and unlock the inode, but if
220 * we have been called during the new inode create process, it is
221 * too early to fill in the Linux inode. We will get called a
222 * second time once the inode is properly set up, and then we can
223 * finish our work.
224 */
225 if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) {
226 xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip);
227 xfs_set_inodeops(inode);
228
229 xfs_iflags_clear(ip, XFS_INEW);
230 barrier();
231
232 unlock_new_inode(inode);
233 }
234 }
235
236 int
237 xfs_blkdev_get(
238 xfs_mount_t *mp,
239 const char *name,
240 struct block_device **bdevp)
241 {
242 int error = 0;
243
244 *bdevp = open_bdev_excl(name, 0, mp);
245 if (IS_ERR(*bdevp)) {
246 error = PTR_ERR(*bdevp);
247 printk("XFS: Invalid device [%s], error=%d\n", name, error);
248 }
249
250 return -error;
251 }
252
253 void
254 xfs_blkdev_put(
255 struct block_device *bdev)
256 {
257 if (bdev)
258 close_bdev_excl(bdev);
259 }
260
261 /*
262 * Try to write out the superblock using barriers.
263 */
264 STATIC int
265 xfs_barrier_test(
266 xfs_mount_t *mp)
267 {
268 xfs_buf_t *sbp = xfs_getsb(mp, 0);
269 int error;
270
271 XFS_BUF_UNDONE(sbp);
272 XFS_BUF_UNREAD(sbp);
273 XFS_BUF_UNDELAYWRITE(sbp);
274 XFS_BUF_WRITE(sbp);
275 XFS_BUF_UNASYNC(sbp);
276 XFS_BUF_ORDERED(sbp);
277
278 xfsbdstrat(mp, sbp);
279 error = xfs_iowait(sbp);
280
281 /*
282 * Clear all the flags we set and possible error state in the
283 * buffer. We only did the write to try out whether barriers
284 * worked and shouldn't leave any traces in the superblock
285 * buffer.
286 */
287 XFS_BUF_DONE(sbp);
288 XFS_BUF_ERROR(sbp, 0);
289 XFS_BUF_UNORDERED(sbp);
290
291 xfs_buf_relse(sbp);
292 return error;
293 }
294
295 void
296 xfs_mountfs_check_barriers(xfs_mount_t *mp)
297 {
298 int error;
299
300 if (mp->m_logdev_targp != mp->m_ddev_targp) {
301 xfs_fs_cmn_err(CE_NOTE, mp,
302 "Disabling barriers, not supported with external log device");
303 mp->m_flags &= ~XFS_MOUNT_BARRIER;
304 return;
305 }
306
307 if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
308 xfs_fs_cmn_err(CE_NOTE, mp,
309 "Disabling barriers, underlying device is readonly");
310 mp->m_flags &= ~XFS_MOUNT_BARRIER;
311 return;
312 }
313
314 error = xfs_barrier_test(mp);
315 if (error) {
316 xfs_fs_cmn_err(CE_NOTE, mp,
317 "Disabling barriers, trial barrier write failed");
318 mp->m_flags &= ~XFS_MOUNT_BARRIER;
319 return;
320 }
321 }
322
323 void
324 xfs_blkdev_issue_flush(
325 xfs_buftarg_t *buftarg)
326 {
327 blkdev_issue_flush(buftarg->bt_bdev, NULL);
328 }
329
330 STATIC struct inode *
331 xfs_fs_alloc_inode(
332 struct super_block *sb)
333 {
334 bhv_vnode_t *vp;
335
336 vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
337 if (unlikely(!vp))
338 return NULL;
339 return vn_to_inode(vp);
340 }
341
342 STATIC void
343 xfs_fs_destroy_inode(
344 struct inode *inode)
345 {
346 kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
347 }
348
349 STATIC void
350 xfs_fs_inode_init_once(
351 void *vnode,
352 kmem_zone_t *zonep,
353 unsigned long flags)
354 {
355 inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
356 }
357
358 STATIC int
359 xfs_init_zones(void)
360 {
361 xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
362 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
363 KM_ZONE_SPREAD,
364 xfs_fs_inode_init_once);
365 if (!xfs_vnode_zone)
366 goto out;
367
368 xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
369 if (!xfs_ioend_zone)
370 goto out_destroy_vnode_zone;
371
372 xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
373 xfs_ioend_zone);
374 if (!xfs_ioend_pool)
375 goto out_free_ioend_zone;
376 return 0;
377
378 out_free_ioend_zone:
379 kmem_zone_destroy(xfs_ioend_zone);
380 out_destroy_vnode_zone:
381 kmem_zone_destroy(xfs_vnode_zone);
382 out:
383 return -ENOMEM;
384 }
385
386 STATIC void
387 xfs_destroy_zones(void)
388 {
389 mempool_destroy(xfs_ioend_pool);
390 kmem_zone_destroy(xfs_vnode_zone);
391 kmem_zone_destroy(xfs_ioend_zone);
392 }
393
394 /*
395 * Attempt to flush the inode, this will actually fail
396 * if the inode is pinned, but we dirty the inode again
397 * at the point when it is unpinned after a log write,
398 * since this is when the inode itself becomes flushable.
399 */
400 STATIC int
401 xfs_fs_write_inode(
402 struct inode *inode,
403 int sync)
404 {
405 int error = 0, flags = FLUSH_INODE;
406
407 vn_trace_entry(vn_from_inode(inode), __FUNCTION__,
408 (inst_t *)__return_address);
409 if (sync) {
410 filemap_fdatawait(inode->i_mapping);
411 flags |= FLUSH_SYNC;
412 }
413 error = xfs_inode_flush(XFS_I(inode), flags);
414 if (error == EAGAIN) {
415 if (sync)
416 error = xfs_inode_flush(XFS_I(inode),
417 flags | FLUSH_LOG);
418 else
419 error = 0;
420 }
421
422 return -error;
423 }
424
425 STATIC void
426 xfs_fs_clear_inode(
427 struct inode *inode)
428 {
429 bhv_vnode_t *vp = vn_from_inode(inode);
430
431 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
432
433 XFS_STATS_INC(vn_rele);
434 XFS_STATS_INC(vn_remove);
435 XFS_STATS_INC(vn_reclaim);
436 XFS_STATS_DEC(vn_active);
437
438 /*
439 * This can happen because xfs_iget_core calls xfs_idestroy if we
440 * find an inode with di_mode == 0 but without IGET_CREATE set.
441 */
442 if (XFS_I(inode))
443 xfs_inactive(XFS_I(inode));
444
445 VN_LOCK(vp);
446 vp->v_flag &= ~VMODIFIED;
447 VN_UNLOCK(vp, 0);
448
449 if (XFS_I(inode))
450 if (xfs_reclaim(XFS_I(inode)))
451 panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, vp);
452
453 ASSERT(XFS_I(inode) == NULL);
454
455 #ifdef XFS_VNODE_TRACE
456 ktrace_free(vp->v_trace);
457 #endif
458 }
459
460 /*
461 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
462 * Doing this has two advantages:
463 * - It saves on stack space, which is tight in certain situations
464 * - It can be used (with care) as a mechanism to avoid deadlocks.
465 * Flushing while allocating in a full filesystem requires both.
466 */
467 STATIC void
468 xfs_syncd_queue_work(
469 struct bhv_vfs *vfs,
470 void *data,
471 void (*syncer)(bhv_vfs_t *, void *))
472 {
473 struct bhv_vfs_sync_work *work;
474
475 work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
476 INIT_LIST_HEAD(&work->w_list);
477 work->w_syncer = syncer;
478 work->w_data = data;
479 work->w_vfs = vfs;
480 spin_lock(&vfs->vfs_sync_lock);
481 list_add_tail(&work->w_list, &vfs->vfs_sync_list);
482 spin_unlock(&vfs->vfs_sync_lock);
483 wake_up_process(vfs->vfs_sync_task);
484 }
485
486 /*
487 * Flush delayed allocate data, attempting to free up reserved space
488 * from existing allocations. At this point a new allocation attempt
489 * has failed with ENOSPC and we are in the process of scratching our
490 * heads, looking about for more room...
491 */
492 STATIC void
493 xfs_flush_inode_work(
494 bhv_vfs_t *vfs,
495 void *inode)
496 {
497 filemap_flush(((struct inode *)inode)->i_mapping);
498 iput((struct inode *)inode);
499 }
500
501 void
502 xfs_flush_inode(
503 xfs_inode_t *ip)
504 {
505 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
506 struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
507
508 igrab(inode);
509 xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
510 delay(msecs_to_jiffies(500));
511 }
512
513 /*
514 * This is the "bigger hammer" version of xfs_flush_inode_work...
515 * (IOW, "If at first you don't succeed, use a Bigger Hammer").
516 */
517 STATIC void
518 xfs_flush_device_work(
519 bhv_vfs_t *vfs,
520 void *inode)
521 {
522 sync_blockdev(vfs->vfs_super->s_bdev);
523 iput((struct inode *)inode);
524 }
525
526 void
527 xfs_flush_device(
528 xfs_inode_t *ip)
529 {
530 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
531 struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
532
533 igrab(inode);
534 xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
535 delay(msecs_to_jiffies(500));
536 xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
537 }
538
539 STATIC void
540 vfs_sync_worker(
541 bhv_vfs_t *vfsp,
542 void *unused)
543 {
544 int error;
545
546 if (!(vfsp->vfs_flag & VFS_RDONLY))
547 error = bhv_vfs_sync(vfsp, SYNC_FSDATA | SYNC_BDFLUSH | \
548 SYNC_ATTR | SYNC_REFCACHE | SYNC_SUPER,
549 NULL);
550 vfsp->vfs_sync_seq++;
551 wake_up(&vfsp->vfs_wait_single_sync_task);
552 }
553
554 STATIC int
555 xfssyncd(
556 void *arg)
557 {
558 long timeleft;
559 bhv_vfs_t *vfsp = (bhv_vfs_t *) arg;
560 bhv_vfs_sync_work_t *work, *n;
561 LIST_HEAD (tmp);
562
563 set_freezable();
564 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
565 for (;;) {
566 timeleft = schedule_timeout_interruptible(timeleft);
567 /* swsusp */
568 try_to_freeze();
569 if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list))
570 break;
571
572 spin_lock(&vfsp->vfs_sync_lock);
573 /*
574 * We can get woken by laptop mode, to do a sync -
575 * that's the (only!) case where the list would be
576 * empty with time remaining.
577 */
578 if (!timeleft || list_empty(&vfsp->vfs_sync_list)) {
579 if (!timeleft)
580 timeleft = xfs_syncd_centisecs *
581 msecs_to_jiffies(10);
582 INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
583 list_add_tail(&vfsp->vfs_sync_work.w_list,
584 &vfsp->vfs_sync_list);
585 }
586 list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
587 list_move(&work->w_list, &tmp);
588 spin_unlock(&vfsp->vfs_sync_lock);
589
590 list_for_each_entry_safe(work, n, &tmp, w_list) {
591 (*work->w_syncer)(vfsp, work->w_data);
592 list_del(&work->w_list);
593 if (work == &vfsp->vfs_sync_work)
594 continue;
595 kmem_free(work, sizeof(struct bhv_vfs_sync_work));
596 }
597 }
598
599 return 0;
600 }
601
602 STATIC int
603 xfs_fs_start_syncd(
604 bhv_vfs_t *vfsp)
605 {
606 vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
607 vfsp->vfs_sync_work.w_vfs = vfsp;
608 vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd");
609 if (IS_ERR(vfsp->vfs_sync_task))
610 return -PTR_ERR(vfsp->vfs_sync_task);
611 return 0;
612 }
613
614 STATIC void
615 xfs_fs_stop_syncd(
616 bhv_vfs_t *vfsp)
617 {
618 kthread_stop(vfsp->vfs_sync_task);
619 }
620
621 STATIC void
622 xfs_fs_put_super(
623 struct super_block *sb)
624 {
625 bhv_vfs_t *vfsp = vfs_from_sb(sb);
626 int error;
627
628 xfs_fs_stop_syncd(vfsp);
629 bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_DELWRI, NULL);
630 error = bhv_vfs_unmount(vfsp, 0, NULL);
631 if (error) {
632 printk("XFS: unmount got error=%d\n", error);
633 printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp);
634 } else {
635 vfs_deallocate(vfsp);
636 }
637 }
638
639 STATIC void
640 xfs_fs_write_super(
641 struct super_block *sb)
642 {
643 if (!(sb->s_flags & MS_RDONLY))
644 bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA, NULL);
645 sb->s_dirt = 0;
646 }
647
648 STATIC int
649 xfs_fs_sync_super(
650 struct super_block *sb,
651 int wait)
652 {
653 bhv_vfs_t *vfsp = vfs_from_sb(sb);
654 int error;
655 int flags;
656
657 if (unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
658 /*
659 * First stage of freeze - no more writers will make progress
660 * now we are here, so we flush delwri and delalloc buffers
661 * here, then wait for all I/O to complete. Data is frozen at
662 * that point. Metadata is not frozen, transactions can still
663 * occur here so don't bother flushing the buftarg (i.e
664 * SYNC_QUIESCE) because it'll just get dirty again.
665 */
666 flags = SYNC_DATA_QUIESCE;
667 } else
668 flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
669
670 error = bhv_vfs_sync(vfsp, flags, NULL);
671 sb->s_dirt = 0;
672
673 if (unlikely(laptop_mode)) {
674 int prev_sync_seq = vfsp->vfs_sync_seq;
675
676 /*
677 * The disk must be active because we're syncing.
678 * We schedule xfssyncd now (now that the disk is
679 * active) instead of later (when it might not be).
680 */
681 wake_up_process(vfsp->vfs_sync_task);
682 /*
683 * We have to wait for the sync iteration to complete.
684 * If we don't, the disk activity caused by the sync
685 * will come after the sync is completed, and that
686 * triggers another sync from laptop mode.
687 */
688 wait_event(vfsp->vfs_wait_single_sync_task,
689 vfsp->vfs_sync_seq != prev_sync_seq);
690 }
691
692 return -error;
693 }
694
695 STATIC int
696 xfs_fs_statfs(
697 struct dentry *dentry,
698 struct kstatfs *statp)
699 {
700 return -bhv_vfs_statvfs(vfs_from_sb(dentry->d_sb), statp,
701 vn_from_inode(dentry->d_inode));
702 }
703
704 STATIC int
705 xfs_fs_remount(
706 struct super_block *sb,
707 int *flags,
708 char *options)
709 {
710 bhv_vfs_t *vfsp = vfs_from_sb(sb);
711 struct xfs_mount_args *args = xfs_args_allocate(sb, 0);
712 int error;
713
714 error = bhv_vfs_parseargs(vfsp, options, args, 1);
715 if (!error)
716 error = bhv_vfs_mntupdate(vfsp, flags, args);
717 kmem_free(args, sizeof(*args));
718 return -error;
719 }
720
721 STATIC void
722 xfs_fs_lockfs(
723 struct super_block *sb)
724 {
725 bhv_vfs_freeze(vfs_from_sb(sb));
726 }
727
728 STATIC int
729 xfs_fs_show_options(
730 struct seq_file *m,
731 struct vfsmount *mnt)
732 {
733 return -bhv_vfs_showargs(vfs_from_sb(mnt->mnt_sb), m);
734 }
735
736 STATIC int
737 xfs_fs_quotasync(
738 struct super_block *sb,
739 int type)
740 {
741 return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XQUOTASYNC, 0, NULL);
742 }
743
744 STATIC int
745 xfs_fs_getxstate(
746 struct super_block *sb,
747 struct fs_quota_stat *fqs)
748 {
749 return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
750 }
751
752 STATIC int
753 xfs_fs_setxstate(
754 struct super_block *sb,
755 unsigned int flags,
756 int op)
757 {
758 return -bhv_vfs_quotactl(vfs_from_sb(sb), op, 0, (caddr_t)&flags);
759 }
760
761 STATIC int
762 xfs_fs_getxquota(
763 struct super_block *sb,
764 int type,
765 qid_t id,
766 struct fs_disk_quota *fdq)
767 {
768 return -bhv_vfs_quotactl(vfs_from_sb(sb),
769 (type == USRQUOTA) ? Q_XGETQUOTA :
770 ((type == GRPQUOTA) ? Q_XGETGQUOTA :
771 Q_XGETPQUOTA), id, (caddr_t)fdq);
772 }
773
774 STATIC int
775 xfs_fs_setxquota(
776 struct super_block *sb,
777 int type,
778 qid_t id,
779 struct fs_disk_quota *fdq)
780 {
781 return -bhv_vfs_quotactl(vfs_from_sb(sb),
782 (type == USRQUOTA) ? Q_XSETQLIM :
783 ((type == GRPQUOTA) ? Q_XSETGQLIM :
784 Q_XSETPQLIM), id, (caddr_t)fdq);
785 }
786
787 STATIC int
788 xfs_fs_fill_super(
789 struct super_block *sb,
790 void *data,
791 int silent)
792 {
793 struct bhv_vnode *rootvp;
794 struct bhv_vfs *vfsp = vfs_allocate(sb);
795 struct xfs_mount_args *args = xfs_args_allocate(sb, silent);
796 struct kstatfs statvfs;
797 int error;
798
799 bhv_insert_all_vfsops(vfsp);
800
801 error = bhv_vfs_parseargs(vfsp, (char *)data, args, 0);
802 if (error) {
803 bhv_remove_all_vfsops(vfsp, 1);
804 goto fail_vfsop;
805 }
806
807 sb_min_blocksize(sb, BBSIZE);
808 sb->s_export_op = &xfs_export_operations;
809 sb->s_qcop = &xfs_quotactl_operations;
810 sb->s_op = &xfs_super_operations;
811
812 error = bhv_vfs_mount(vfsp, args, NULL);
813 if (error) {
814 bhv_remove_all_vfsops(vfsp, 1);
815 goto fail_vfsop;
816 }
817
818 error = bhv_vfs_statvfs(vfsp, &statvfs, NULL);
819 if (error)
820 goto fail_unmount;
821
822 sb->s_dirt = 1;
823 sb->s_magic = statvfs.f_type;
824 sb->s_blocksize = statvfs.f_bsize;
825 sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
826 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
827 sb->s_time_gran = 1;
828 set_posix_acl_flag(sb);
829
830 error = bhv_vfs_root(vfsp, &rootvp);
831 if (error)
832 goto fail_unmount;
833
834 sb->s_root = d_alloc_root(vn_to_inode(rootvp));
835 if (!sb->s_root) {
836 error = ENOMEM;
837 goto fail_vnrele;
838 }
839 if (is_bad_inode(sb->s_root->d_inode)) {
840 error = EINVAL;
841 goto fail_vnrele;
842 }
843 if ((error = xfs_fs_start_syncd(vfsp)))
844 goto fail_vnrele;
845 vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address);
846
847 kmem_free(args, sizeof(*args));
848 return 0;
849
850 fail_vnrele:
851 if (sb->s_root) {
852 dput(sb->s_root);
853 sb->s_root = NULL;
854 } else {
855 VN_RELE(rootvp);
856 }
857
858 fail_unmount:
859 bhv_vfs_unmount(vfsp, 0, NULL);
860
861 fail_vfsop:
862 vfs_deallocate(vfsp);
863 kmem_free(args, sizeof(*args));
864 return -error;
865 }
866
867 STATIC int
868 xfs_fs_get_sb(
869 struct file_system_type *fs_type,
870 int flags,
871 const char *dev_name,
872 void *data,
873 struct vfsmount *mnt)
874 {
875 return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
876 mnt);
877 }
878
879 static struct super_operations xfs_super_operations = {
880 .alloc_inode = xfs_fs_alloc_inode,
881 .destroy_inode = xfs_fs_destroy_inode,
882 .write_inode = xfs_fs_write_inode,
883 .clear_inode = xfs_fs_clear_inode,
884 .put_super = xfs_fs_put_super,
885 .write_super = xfs_fs_write_super,
886 .sync_fs = xfs_fs_sync_super,
887 .write_super_lockfs = xfs_fs_lockfs,
888 .statfs = xfs_fs_statfs,
889 .remount_fs = xfs_fs_remount,
890 .show_options = xfs_fs_show_options,
891 };
892
893 static struct quotactl_ops xfs_quotactl_operations = {
894 .quota_sync = xfs_fs_quotasync,
895 .get_xstate = xfs_fs_getxstate,
896 .set_xstate = xfs_fs_setxstate,
897 .get_xquota = xfs_fs_getxquota,
898 .set_xquota = xfs_fs_setxquota,
899 };
900
901 static struct file_system_type xfs_fs_type = {
902 .owner = THIS_MODULE,
903 .name = "xfs",
904 .get_sb = xfs_fs_get_sb,
905 .kill_sb = kill_block_super,
906 .fs_flags = FS_REQUIRES_DEV,
907 };
908
909
910 STATIC int __init
911 init_xfs_fs( void )
912 {
913 int error;
914 static char message[] __initdata = KERN_INFO \
915 XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
916
917 printk(message);
918
919 ktrace_init(64);
920
921 error = xfs_init_zones();
922 if (error < 0)
923 goto undo_zones;
924
925 error = xfs_buf_init();
926 if (error < 0)
927 goto undo_buffers;
928
929 vn_init();
930 xfs_init();
931 uuid_init();
932 vfs_initquota();
933
934 error = register_filesystem(&xfs_fs_type);
935 if (error)
936 goto undo_register;
937 return 0;
938
939 undo_register:
940 xfs_buf_terminate();
941
942 undo_buffers:
943 xfs_destroy_zones();
944
945 undo_zones:
946 return error;
947 }
948
949 STATIC void __exit
950 exit_xfs_fs( void )
951 {
952 vfs_exitquota();
953 unregister_filesystem(&xfs_fs_type);
954 xfs_cleanup();
955 xfs_buf_terminate();
956 xfs_destroy_zones();
957 ktrace_uninit();
958 }
959
960 module_init(init_xfs_fs);
961 module_exit(exit_xfs_fs);
962
963 MODULE_AUTHOR("Silicon Graphics, Inc.");
964 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
965 MODULE_LICENSE("GPL");
This page took 0.077679 seconds and 5 git commands to generate.