[XFS] kill the v_flag member in struct bhv_vnode
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_clnt.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_attr.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_utils.h"
49 #include "xfs_vnodeops.h"
50 #include "xfs_version.h"
51
52 #include <linux/namei.h>
53 #include <linux/init.h>
54 #include <linux/mount.h>
55 #include <linux/mempool.h>
56 #include <linux/writeback.h>
57 #include <linux/kthread.h>
58 #include <linux/freezer.h>
59
60 static struct quotactl_ops xfs_quotactl_operations;
61 static struct super_operations xfs_super_operations;
62 static kmem_zone_t *xfs_vnode_zone;
63 static kmem_zone_t *xfs_ioend_zone;
64 mempool_t *xfs_ioend_pool;
65
66 STATIC struct xfs_mount_args *
67 xfs_args_allocate(
68 struct super_block *sb,
69 int silent)
70 {
71 struct xfs_mount_args *args;
72
73 args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
74 args->logbufs = args->logbufsize = -1;
75 strncpy(args->fsname, sb->s_id, MAXNAMELEN);
76
77 /* Copy the already-parsed mount(2) flags we're interested in */
78 if (sb->s_flags & MS_DIRSYNC)
79 args->flags |= XFSMNT_DIRSYNC;
80 if (sb->s_flags & MS_SYNCHRONOUS)
81 args->flags |= XFSMNT_WSYNC;
82 if (silent)
83 args->flags |= XFSMNT_QUIET;
84 args->flags |= XFSMNT_32BITINODES;
85
86 return args;
87 }
88
89 __uint64_t
90 xfs_max_file_offset(
91 unsigned int blockshift)
92 {
93 unsigned int pagefactor = 1;
94 unsigned int bitshift = BITS_PER_LONG - 1;
95
96 /* Figure out maximum filesize, on Linux this can depend on
97 * the filesystem blocksize (on 32 bit platforms).
98 * __block_prepare_write does this in an [unsigned] long...
99 * page->index << (PAGE_CACHE_SHIFT - bbits)
100 * So, for page sized blocks (4K on 32 bit platforms),
101 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
102 * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
103 * but for smaller blocksizes it is less (bbits = log2 bsize).
104 * Note1: get_block_t takes a long (implicit cast from above)
105 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
106 * can optionally convert the [unsigned] long from above into
107 * an [unsigned] long long.
108 */
109
110 #if BITS_PER_LONG == 32
111 # if defined(CONFIG_LBD)
112 ASSERT(sizeof(sector_t) == 8);
113 pagefactor = PAGE_CACHE_SIZE;
114 bitshift = BITS_PER_LONG;
115 # else
116 pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
117 # endif
118 #endif
119
120 return (((__uint64_t)pagefactor) << bitshift) - 1;
121 }
122
123 STATIC_INLINE void
124 xfs_set_inodeops(
125 struct inode *inode)
126 {
127 switch (inode->i_mode & S_IFMT) {
128 case S_IFREG:
129 inode->i_op = &xfs_inode_operations;
130 inode->i_fop = &xfs_file_operations;
131 inode->i_mapping->a_ops = &xfs_address_space_operations;
132 break;
133 case S_IFDIR:
134 inode->i_op = &xfs_dir_inode_operations;
135 inode->i_fop = &xfs_dir_file_operations;
136 break;
137 case S_IFLNK:
138 inode->i_op = &xfs_symlink_inode_operations;
139 if (inode->i_blocks)
140 inode->i_mapping->a_ops = &xfs_address_space_operations;
141 break;
142 default:
143 inode->i_op = &xfs_inode_operations;
144 init_special_inode(inode, inode->i_mode, inode->i_rdev);
145 break;
146 }
147 }
148
149 STATIC_INLINE void
150 xfs_revalidate_inode(
151 xfs_mount_t *mp,
152 bhv_vnode_t *vp,
153 xfs_inode_t *ip)
154 {
155 struct inode *inode = vn_to_inode(vp);
156
157 inode->i_mode = ip->i_d.di_mode;
158 inode->i_nlink = ip->i_d.di_nlink;
159 inode->i_uid = ip->i_d.di_uid;
160 inode->i_gid = ip->i_d.di_gid;
161
162 switch (inode->i_mode & S_IFMT) {
163 case S_IFBLK:
164 case S_IFCHR:
165 inode->i_rdev =
166 MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
167 sysv_minor(ip->i_df.if_u2.if_rdev));
168 break;
169 default:
170 inode->i_rdev = 0;
171 break;
172 }
173
174 inode->i_generation = ip->i_d.di_gen;
175 i_size_write(inode, ip->i_d.di_size);
176 inode->i_blocks =
177 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
178 inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
179 inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
180 inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
181 inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
182 inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
183 inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
184 if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
185 inode->i_flags |= S_IMMUTABLE;
186 else
187 inode->i_flags &= ~S_IMMUTABLE;
188 if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
189 inode->i_flags |= S_APPEND;
190 else
191 inode->i_flags &= ~S_APPEND;
192 if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
193 inode->i_flags |= S_SYNC;
194 else
195 inode->i_flags &= ~S_SYNC;
196 if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
197 inode->i_flags |= S_NOATIME;
198 else
199 inode->i_flags &= ~S_NOATIME;
200 xfs_iflags_clear(ip, XFS_IMODIFIED);
201 }
202
203 void
204 xfs_initialize_vnode(
205 bhv_desc_t *bdp,
206 bhv_vnode_t *vp,
207 struct xfs_inode *ip,
208 int unlock)
209 {
210 struct inode *inode = vn_to_inode(vp);
211
212 if (!ip->i_vnode) {
213 ip->i_vnode = vp;
214 inode->i_private = ip;
215 }
216
217 /*
218 * We need to set the ops vectors, and unlock the inode, but if
219 * we have been called during the new inode create process, it is
220 * too early to fill in the Linux inode. We will get called a
221 * second time once the inode is properly set up, and then we can
222 * finish our work.
223 */
224 if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) {
225 xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip);
226 xfs_set_inodeops(inode);
227
228 xfs_iflags_clear(ip, XFS_INEW);
229 barrier();
230
231 unlock_new_inode(inode);
232 }
233 }
234
235 int
236 xfs_blkdev_get(
237 xfs_mount_t *mp,
238 const char *name,
239 struct block_device **bdevp)
240 {
241 int error = 0;
242
243 *bdevp = open_bdev_excl(name, 0, mp);
244 if (IS_ERR(*bdevp)) {
245 error = PTR_ERR(*bdevp);
246 printk("XFS: Invalid device [%s], error=%d\n", name, error);
247 }
248
249 return -error;
250 }
251
252 void
253 xfs_blkdev_put(
254 struct block_device *bdev)
255 {
256 if (bdev)
257 close_bdev_excl(bdev);
258 }
259
260 /*
261 * Try to write out the superblock using barriers.
262 */
263 STATIC int
264 xfs_barrier_test(
265 xfs_mount_t *mp)
266 {
267 xfs_buf_t *sbp = xfs_getsb(mp, 0);
268 int error;
269
270 XFS_BUF_UNDONE(sbp);
271 XFS_BUF_UNREAD(sbp);
272 XFS_BUF_UNDELAYWRITE(sbp);
273 XFS_BUF_WRITE(sbp);
274 XFS_BUF_UNASYNC(sbp);
275 XFS_BUF_ORDERED(sbp);
276
277 xfsbdstrat(mp, sbp);
278 error = xfs_iowait(sbp);
279
280 /*
281 * Clear all the flags we set and possible error state in the
282 * buffer. We only did the write to try out whether barriers
283 * worked and shouldn't leave any traces in the superblock
284 * buffer.
285 */
286 XFS_BUF_DONE(sbp);
287 XFS_BUF_ERROR(sbp, 0);
288 XFS_BUF_UNORDERED(sbp);
289
290 xfs_buf_relse(sbp);
291 return error;
292 }
293
294 void
295 xfs_mountfs_check_barriers(xfs_mount_t *mp)
296 {
297 int error;
298
299 if (mp->m_logdev_targp != mp->m_ddev_targp) {
300 xfs_fs_cmn_err(CE_NOTE, mp,
301 "Disabling barriers, not supported with external log device");
302 mp->m_flags &= ~XFS_MOUNT_BARRIER;
303 return;
304 }
305
306 if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
307 xfs_fs_cmn_err(CE_NOTE, mp,
308 "Disabling barriers, underlying device is readonly");
309 mp->m_flags &= ~XFS_MOUNT_BARRIER;
310 return;
311 }
312
313 error = xfs_barrier_test(mp);
314 if (error) {
315 xfs_fs_cmn_err(CE_NOTE, mp,
316 "Disabling barriers, trial barrier write failed");
317 mp->m_flags &= ~XFS_MOUNT_BARRIER;
318 return;
319 }
320 }
321
322 void
323 xfs_blkdev_issue_flush(
324 xfs_buftarg_t *buftarg)
325 {
326 blkdev_issue_flush(buftarg->bt_bdev, NULL);
327 }
328
329 STATIC struct inode *
330 xfs_fs_alloc_inode(
331 struct super_block *sb)
332 {
333 bhv_vnode_t *vp;
334
335 vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
336 if (unlikely(!vp))
337 return NULL;
338 return vn_to_inode(vp);
339 }
340
341 STATIC void
342 xfs_fs_destroy_inode(
343 struct inode *inode)
344 {
345 kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
346 }
347
348 STATIC void
349 xfs_fs_inode_init_once(
350 void *vnode,
351 kmem_zone_t *zonep,
352 unsigned long flags)
353 {
354 inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
355 }
356
357 STATIC int
358 xfs_init_zones(void)
359 {
360 xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
361 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
362 KM_ZONE_SPREAD,
363 xfs_fs_inode_init_once);
364 if (!xfs_vnode_zone)
365 goto out;
366
367 xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
368 if (!xfs_ioend_zone)
369 goto out_destroy_vnode_zone;
370
371 xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
372 xfs_ioend_zone);
373 if (!xfs_ioend_pool)
374 goto out_free_ioend_zone;
375 return 0;
376
377 out_free_ioend_zone:
378 kmem_zone_destroy(xfs_ioend_zone);
379 out_destroy_vnode_zone:
380 kmem_zone_destroy(xfs_vnode_zone);
381 out:
382 return -ENOMEM;
383 }
384
385 STATIC void
386 xfs_destroy_zones(void)
387 {
388 mempool_destroy(xfs_ioend_pool);
389 kmem_zone_destroy(xfs_vnode_zone);
390 kmem_zone_destroy(xfs_ioend_zone);
391 }
392
393 /*
394 * Attempt to flush the inode, this will actually fail
395 * if the inode is pinned, but we dirty the inode again
396 * at the point when it is unpinned after a log write,
397 * since this is when the inode itself becomes flushable.
398 */
399 STATIC int
400 xfs_fs_write_inode(
401 struct inode *inode,
402 int sync)
403 {
404 int error = 0, flags = FLUSH_INODE;
405
406 vn_trace_entry(vn_from_inode(inode), __FUNCTION__,
407 (inst_t *)__return_address);
408 if (sync) {
409 filemap_fdatawait(inode->i_mapping);
410 flags |= FLUSH_SYNC;
411 }
412 error = xfs_inode_flush(XFS_I(inode), flags);
413 if (error == EAGAIN) {
414 if (sync)
415 error = xfs_inode_flush(XFS_I(inode),
416 flags | FLUSH_LOG);
417 else
418 error = 0;
419 }
420
421 return -error;
422 }
423
424 STATIC void
425 xfs_fs_clear_inode(
426 struct inode *inode)
427 {
428 bhv_vnode_t *vp = vn_from_inode(inode);
429
430 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
431
432 XFS_STATS_INC(vn_rele);
433 XFS_STATS_INC(vn_remove);
434 XFS_STATS_INC(vn_reclaim);
435 XFS_STATS_DEC(vn_active);
436
437 /*
438 * This can happen because xfs_iget_core calls xfs_idestroy if we
439 * find an inode with di_mode == 0 but without IGET_CREATE set.
440 */
441 if (XFS_I(inode))
442 xfs_inactive(XFS_I(inode));
443
444
445 if (XFS_I(inode)) {
446 xfs_iflags_clear(XFS_I(inode), XFS_IMODIFIED);
447 if (xfs_reclaim(XFS_I(inode)))
448 panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, vp);
449 }
450
451 ASSERT(XFS_I(inode) == NULL);
452
453 #ifdef XFS_VNODE_TRACE
454 ktrace_free(vp->v_trace);
455 #endif
456 }
457
458 /*
459 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
460 * Doing this has two advantages:
461 * - It saves on stack space, which is tight in certain situations
462 * - It can be used (with care) as a mechanism to avoid deadlocks.
463 * Flushing while allocating in a full filesystem requires both.
464 */
465 STATIC void
466 xfs_syncd_queue_work(
467 struct bhv_vfs *vfs,
468 void *data,
469 void (*syncer)(bhv_vfs_t *, void *))
470 {
471 struct bhv_vfs_sync_work *work;
472
473 work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
474 INIT_LIST_HEAD(&work->w_list);
475 work->w_syncer = syncer;
476 work->w_data = data;
477 work->w_vfs = vfs;
478 spin_lock(&vfs->vfs_sync_lock);
479 list_add_tail(&work->w_list, &vfs->vfs_sync_list);
480 spin_unlock(&vfs->vfs_sync_lock);
481 wake_up_process(vfs->vfs_sync_task);
482 }
483
484 /*
485 * Flush delayed allocate data, attempting to free up reserved space
486 * from existing allocations. At this point a new allocation attempt
487 * has failed with ENOSPC and we are in the process of scratching our
488 * heads, looking about for more room...
489 */
490 STATIC void
491 xfs_flush_inode_work(
492 bhv_vfs_t *vfs,
493 void *inode)
494 {
495 filemap_flush(((struct inode *)inode)->i_mapping);
496 iput((struct inode *)inode);
497 }
498
499 void
500 xfs_flush_inode(
501 xfs_inode_t *ip)
502 {
503 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
504 struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
505
506 igrab(inode);
507 xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
508 delay(msecs_to_jiffies(500));
509 }
510
511 /*
512 * This is the "bigger hammer" version of xfs_flush_inode_work...
513 * (IOW, "If at first you don't succeed, use a Bigger Hammer").
514 */
515 STATIC void
516 xfs_flush_device_work(
517 bhv_vfs_t *vfs,
518 void *inode)
519 {
520 sync_blockdev(vfs->vfs_super->s_bdev);
521 iput((struct inode *)inode);
522 }
523
524 void
525 xfs_flush_device(
526 xfs_inode_t *ip)
527 {
528 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
529 struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
530
531 igrab(inode);
532 xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
533 delay(msecs_to_jiffies(500));
534 xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
535 }
536
537 STATIC void
538 vfs_sync_worker(
539 bhv_vfs_t *vfsp,
540 void *unused)
541 {
542 int error;
543
544 if (!(vfsp->vfs_flag & VFS_RDONLY))
545 error = bhv_vfs_sync(vfsp, SYNC_FSDATA | SYNC_BDFLUSH | \
546 SYNC_ATTR | SYNC_REFCACHE | SYNC_SUPER,
547 NULL);
548 vfsp->vfs_sync_seq++;
549 wake_up(&vfsp->vfs_wait_single_sync_task);
550 }
551
552 STATIC int
553 xfssyncd(
554 void *arg)
555 {
556 long timeleft;
557 bhv_vfs_t *vfsp = (bhv_vfs_t *) arg;
558 bhv_vfs_sync_work_t *work, *n;
559 LIST_HEAD (tmp);
560
561 set_freezable();
562 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
563 for (;;) {
564 timeleft = schedule_timeout_interruptible(timeleft);
565 /* swsusp */
566 try_to_freeze();
567 if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list))
568 break;
569
570 spin_lock(&vfsp->vfs_sync_lock);
571 /*
572 * We can get woken by laptop mode, to do a sync -
573 * that's the (only!) case where the list would be
574 * empty with time remaining.
575 */
576 if (!timeleft || list_empty(&vfsp->vfs_sync_list)) {
577 if (!timeleft)
578 timeleft = xfs_syncd_centisecs *
579 msecs_to_jiffies(10);
580 INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
581 list_add_tail(&vfsp->vfs_sync_work.w_list,
582 &vfsp->vfs_sync_list);
583 }
584 list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
585 list_move(&work->w_list, &tmp);
586 spin_unlock(&vfsp->vfs_sync_lock);
587
588 list_for_each_entry_safe(work, n, &tmp, w_list) {
589 (*work->w_syncer)(vfsp, work->w_data);
590 list_del(&work->w_list);
591 if (work == &vfsp->vfs_sync_work)
592 continue;
593 kmem_free(work, sizeof(struct bhv_vfs_sync_work));
594 }
595 }
596
597 return 0;
598 }
599
600 STATIC int
601 xfs_fs_start_syncd(
602 bhv_vfs_t *vfsp)
603 {
604 vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
605 vfsp->vfs_sync_work.w_vfs = vfsp;
606 vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd");
607 if (IS_ERR(vfsp->vfs_sync_task))
608 return -PTR_ERR(vfsp->vfs_sync_task);
609 return 0;
610 }
611
612 STATIC void
613 xfs_fs_stop_syncd(
614 bhv_vfs_t *vfsp)
615 {
616 kthread_stop(vfsp->vfs_sync_task);
617 }
618
619 STATIC void
620 xfs_fs_put_super(
621 struct super_block *sb)
622 {
623 bhv_vfs_t *vfsp = vfs_from_sb(sb);
624 int error;
625
626 xfs_fs_stop_syncd(vfsp);
627 bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_DELWRI, NULL);
628 error = bhv_vfs_unmount(vfsp, 0, NULL);
629 if (error) {
630 printk("XFS: unmount got error=%d\n", error);
631 printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp);
632 } else {
633 vfs_deallocate(vfsp);
634 }
635 }
636
637 STATIC void
638 xfs_fs_write_super(
639 struct super_block *sb)
640 {
641 if (!(sb->s_flags & MS_RDONLY))
642 bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA, NULL);
643 sb->s_dirt = 0;
644 }
645
646 STATIC int
647 xfs_fs_sync_super(
648 struct super_block *sb,
649 int wait)
650 {
651 bhv_vfs_t *vfsp = vfs_from_sb(sb);
652 int error;
653 int flags;
654
655 if (unlikely(sb->s_frozen == SB_FREEZE_WRITE)) {
656 /*
657 * First stage of freeze - no more writers will make progress
658 * now we are here, so we flush delwri and delalloc buffers
659 * here, then wait for all I/O to complete. Data is frozen at
660 * that point. Metadata is not frozen, transactions can still
661 * occur here so don't bother flushing the buftarg (i.e
662 * SYNC_QUIESCE) because it'll just get dirty again.
663 */
664 flags = SYNC_DATA_QUIESCE;
665 } else
666 flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
667
668 error = bhv_vfs_sync(vfsp, flags, NULL);
669 sb->s_dirt = 0;
670
671 if (unlikely(laptop_mode)) {
672 int prev_sync_seq = vfsp->vfs_sync_seq;
673
674 /*
675 * The disk must be active because we're syncing.
676 * We schedule xfssyncd now (now that the disk is
677 * active) instead of later (when it might not be).
678 */
679 wake_up_process(vfsp->vfs_sync_task);
680 /*
681 * We have to wait for the sync iteration to complete.
682 * If we don't, the disk activity caused by the sync
683 * will come after the sync is completed, and that
684 * triggers another sync from laptop mode.
685 */
686 wait_event(vfsp->vfs_wait_single_sync_task,
687 vfsp->vfs_sync_seq != prev_sync_seq);
688 }
689
690 return -error;
691 }
692
693 STATIC int
694 xfs_fs_statfs(
695 struct dentry *dentry,
696 struct kstatfs *statp)
697 {
698 return -bhv_vfs_statvfs(vfs_from_sb(dentry->d_sb), statp,
699 vn_from_inode(dentry->d_inode));
700 }
701
702 STATIC int
703 xfs_fs_remount(
704 struct super_block *sb,
705 int *flags,
706 char *options)
707 {
708 bhv_vfs_t *vfsp = vfs_from_sb(sb);
709 struct xfs_mount_args *args = xfs_args_allocate(sb, 0);
710 int error;
711
712 error = bhv_vfs_parseargs(vfsp, options, args, 1);
713 if (!error)
714 error = bhv_vfs_mntupdate(vfsp, flags, args);
715 kmem_free(args, sizeof(*args));
716 return -error;
717 }
718
719 STATIC void
720 xfs_fs_lockfs(
721 struct super_block *sb)
722 {
723 bhv_vfs_freeze(vfs_from_sb(sb));
724 }
725
726 STATIC int
727 xfs_fs_show_options(
728 struct seq_file *m,
729 struct vfsmount *mnt)
730 {
731 return -bhv_vfs_showargs(vfs_from_sb(mnt->mnt_sb), m);
732 }
733
734 STATIC int
735 xfs_fs_quotasync(
736 struct super_block *sb,
737 int type)
738 {
739 return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XQUOTASYNC, 0, NULL);
740 }
741
742 STATIC int
743 xfs_fs_getxstate(
744 struct super_block *sb,
745 struct fs_quota_stat *fqs)
746 {
747 return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
748 }
749
750 STATIC int
751 xfs_fs_setxstate(
752 struct super_block *sb,
753 unsigned int flags,
754 int op)
755 {
756 return -bhv_vfs_quotactl(vfs_from_sb(sb), op, 0, (caddr_t)&flags);
757 }
758
759 STATIC int
760 xfs_fs_getxquota(
761 struct super_block *sb,
762 int type,
763 qid_t id,
764 struct fs_disk_quota *fdq)
765 {
766 return -bhv_vfs_quotactl(vfs_from_sb(sb),
767 (type == USRQUOTA) ? Q_XGETQUOTA :
768 ((type == GRPQUOTA) ? Q_XGETGQUOTA :
769 Q_XGETPQUOTA), id, (caddr_t)fdq);
770 }
771
772 STATIC int
773 xfs_fs_setxquota(
774 struct super_block *sb,
775 int type,
776 qid_t id,
777 struct fs_disk_quota *fdq)
778 {
779 return -bhv_vfs_quotactl(vfs_from_sb(sb),
780 (type == USRQUOTA) ? Q_XSETQLIM :
781 ((type == GRPQUOTA) ? Q_XSETGQLIM :
782 Q_XSETPQLIM), id, (caddr_t)fdq);
783 }
784
785 STATIC int
786 xfs_fs_fill_super(
787 struct super_block *sb,
788 void *data,
789 int silent)
790 {
791 struct bhv_vnode *rootvp;
792 struct bhv_vfs *vfsp = vfs_allocate(sb);
793 struct xfs_mount_args *args = xfs_args_allocate(sb, silent);
794 struct kstatfs statvfs;
795 int error;
796
797 bhv_insert_all_vfsops(vfsp);
798
799 error = bhv_vfs_parseargs(vfsp, (char *)data, args, 0);
800 if (error) {
801 bhv_remove_all_vfsops(vfsp, 1);
802 goto fail_vfsop;
803 }
804
805 sb_min_blocksize(sb, BBSIZE);
806 sb->s_export_op = &xfs_export_operations;
807 sb->s_qcop = &xfs_quotactl_operations;
808 sb->s_op = &xfs_super_operations;
809
810 error = bhv_vfs_mount(vfsp, args, NULL);
811 if (error) {
812 bhv_remove_all_vfsops(vfsp, 1);
813 goto fail_vfsop;
814 }
815
816 error = bhv_vfs_statvfs(vfsp, &statvfs, NULL);
817 if (error)
818 goto fail_unmount;
819
820 sb->s_dirt = 1;
821 sb->s_magic = statvfs.f_type;
822 sb->s_blocksize = statvfs.f_bsize;
823 sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
824 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
825 sb->s_time_gran = 1;
826 set_posix_acl_flag(sb);
827
828 error = bhv_vfs_root(vfsp, &rootvp);
829 if (error)
830 goto fail_unmount;
831
832 sb->s_root = d_alloc_root(vn_to_inode(rootvp));
833 if (!sb->s_root) {
834 error = ENOMEM;
835 goto fail_vnrele;
836 }
837 if (is_bad_inode(sb->s_root->d_inode)) {
838 error = EINVAL;
839 goto fail_vnrele;
840 }
841 if ((error = xfs_fs_start_syncd(vfsp)))
842 goto fail_vnrele;
843 vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address);
844
845 kmem_free(args, sizeof(*args));
846 return 0;
847
848 fail_vnrele:
849 if (sb->s_root) {
850 dput(sb->s_root);
851 sb->s_root = NULL;
852 } else {
853 VN_RELE(rootvp);
854 }
855
856 fail_unmount:
857 bhv_vfs_unmount(vfsp, 0, NULL);
858
859 fail_vfsop:
860 vfs_deallocate(vfsp);
861 kmem_free(args, sizeof(*args));
862 return -error;
863 }
864
865 STATIC int
866 xfs_fs_get_sb(
867 struct file_system_type *fs_type,
868 int flags,
869 const char *dev_name,
870 void *data,
871 struct vfsmount *mnt)
872 {
873 return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
874 mnt);
875 }
876
877 static struct super_operations xfs_super_operations = {
878 .alloc_inode = xfs_fs_alloc_inode,
879 .destroy_inode = xfs_fs_destroy_inode,
880 .write_inode = xfs_fs_write_inode,
881 .clear_inode = xfs_fs_clear_inode,
882 .put_super = xfs_fs_put_super,
883 .write_super = xfs_fs_write_super,
884 .sync_fs = xfs_fs_sync_super,
885 .write_super_lockfs = xfs_fs_lockfs,
886 .statfs = xfs_fs_statfs,
887 .remount_fs = xfs_fs_remount,
888 .show_options = xfs_fs_show_options,
889 };
890
891 static struct quotactl_ops xfs_quotactl_operations = {
892 .quota_sync = xfs_fs_quotasync,
893 .get_xstate = xfs_fs_getxstate,
894 .set_xstate = xfs_fs_setxstate,
895 .get_xquota = xfs_fs_getxquota,
896 .set_xquota = xfs_fs_setxquota,
897 };
898
899 static struct file_system_type xfs_fs_type = {
900 .owner = THIS_MODULE,
901 .name = "xfs",
902 .get_sb = xfs_fs_get_sb,
903 .kill_sb = kill_block_super,
904 .fs_flags = FS_REQUIRES_DEV,
905 };
906
907
908 STATIC int __init
909 init_xfs_fs( void )
910 {
911 int error;
912 static char message[] __initdata = KERN_INFO \
913 XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
914
915 printk(message);
916
917 ktrace_init(64);
918
919 error = xfs_init_zones();
920 if (error < 0)
921 goto undo_zones;
922
923 error = xfs_buf_init();
924 if (error < 0)
925 goto undo_buffers;
926
927 vn_init();
928 xfs_init();
929 uuid_init();
930 vfs_initquota();
931
932 error = register_filesystem(&xfs_fs_type);
933 if (error)
934 goto undo_register;
935 return 0;
936
937 undo_register:
938 xfs_buf_terminate();
939
940 undo_buffers:
941 xfs_destroy_zones();
942
943 undo_zones:
944 return error;
945 }
946
947 STATIC void __exit
948 exit_xfs_fs( void )
949 {
950 vfs_exitquota();
951 unregister_filesystem(&xfs_fs_type);
952 xfs_cleanup();
953 xfs_buf_terminate();
954 xfs_destroy_zones();
955 ktrace_uninit();
956 }
957
958 module_init(init_xfs_fs);
959 module_exit(exit_xfs_fs);
960
961 MODULE_AUTHOR("Silicon Graphics, Inc.");
962 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
963 MODULE_LICENSE("GPL");
This page took 0.051146 seconds and 5 git commands to generate.