Merge branches 'tracing/kmemtrace2' and 'tracing/ftrace' into tracing/urgent
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_sync.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_inode.h"
37 #include "xfs_dinode.h"
38 #include "xfs_error.h"
39 #include "xfs_mru_cache.h"
40 #include "xfs_filestream.h"
41 #include "xfs_vnodeops.h"
42 #include "xfs_utils.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_inode_item.h"
45 #include "xfs_rw.h"
46
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49
50 /*
51 * Sync all the inodes in the given AG according to the
52 * direction given by the flags.
53 */
54 STATIC int
55 xfs_sync_inodes_ag(
56 xfs_mount_t *mp,
57 int ag,
58 int flags)
59 {
60 xfs_perag_t *pag = &mp->m_perag[ag];
61 int nr_found;
62 uint32_t first_index = 0;
63 int error = 0;
64 int last_error = 0;
65 int fflag = XFS_B_ASYNC;
66
67 if (flags & SYNC_DELWRI)
68 fflag = XFS_B_DELWRI;
69 if (flags & SYNC_WAIT)
70 fflag = 0; /* synchronous overrides all */
71
72 do {
73 struct inode *inode;
74 xfs_inode_t *ip = NULL;
75 int lock_flags = XFS_ILOCK_SHARED;
76
77 /*
78 * use a gang lookup to find the next inode in the tree
79 * as the tree is sparse and a gang lookup walks to find
80 * the number of objects requested.
81 */
82 read_lock(&pag->pag_ici_lock);
83 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
84 (void**)&ip, first_index, 1);
85
86 if (!nr_found) {
87 read_unlock(&pag->pag_ici_lock);
88 break;
89 }
90
91 /*
92 * Update the index for the next lookup. Catch overflows
93 * into the next AG range which can occur if we have inodes
94 * in the last block of the AG and we are currently
95 * pointing to the last inode.
96 */
97 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
98 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
99 read_unlock(&pag->pag_ici_lock);
100 break;
101 }
102
103 /* nothing to sync during shutdown */
104 if (XFS_FORCED_SHUTDOWN(mp)) {
105 read_unlock(&pag->pag_ici_lock);
106 return 0;
107 }
108
109 /*
110 * If we can't get a reference on the inode, it must be
111 * in reclaim. Leave it for the reclaim code to flush.
112 */
113 inode = VFS_I(ip);
114 if (!igrab(inode)) {
115 read_unlock(&pag->pag_ici_lock);
116 continue;
117 }
118 read_unlock(&pag->pag_ici_lock);
119
120 /* avoid new or bad inodes */
121 if (is_bad_inode(inode) ||
122 xfs_iflags_test(ip, XFS_INEW)) {
123 IRELE(ip);
124 continue;
125 }
126
127 /*
128 * If we have to flush data or wait for I/O completion
129 * we need to hold the iolock.
130 */
131 if ((flags & SYNC_DELWRI) && VN_DIRTY(inode)) {
132 xfs_ilock(ip, XFS_IOLOCK_SHARED);
133 lock_flags |= XFS_IOLOCK_SHARED;
134 error = xfs_flush_pages(ip, 0, -1, fflag, FI_NONE);
135 if (flags & SYNC_IOWAIT)
136 xfs_ioend_wait(ip);
137 }
138 xfs_ilock(ip, XFS_ILOCK_SHARED);
139
140 if ((flags & SYNC_ATTR) && !xfs_inode_clean(ip)) {
141 if (flags & SYNC_WAIT) {
142 xfs_iflock(ip);
143 if (!xfs_inode_clean(ip))
144 error = xfs_iflush(ip, XFS_IFLUSH_SYNC);
145 else
146 xfs_ifunlock(ip);
147 } else if (xfs_iflock_nowait(ip)) {
148 if (!xfs_inode_clean(ip))
149 error = xfs_iflush(ip, XFS_IFLUSH_DELWRI);
150 else
151 xfs_ifunlock(ip);
152 }
153 }
154 xfs_iput(ip, lock_flags);
155
156 if (error)
157 last_error = error;
158 /*
159 * bail out if the filesystem is corrupted.
160 */
161 if (error == EFSCORRUPTED)
162 return XFS_ERROR(error);
163
164 } while (nr_found);
165
166 return last_error;
167 }
168
169 int
170 xfs_sync_inodes(
171 xfs_mount_t *mp,
172 int flags)
173 {
174 int error;
175 int last_error;
176 int i;
177 int lflags = XFS_LOG_FORCE;
178
179 if (mp->m_flags & XFS_MOUNT_RDONLY)
180 return 0;
181 error = 0;
182 last_error = 0;
183
184 if (flags & SYNC_WAIT)
185 lflags |= XFS_LOG_SYNC;
186
187 for (i = 0; i < mp->m_sb.sb_agcount; i++) {
188 if (!mp->m_perag[i].pag_ici_init)
189 continue;
190 error = xfs_sync_inodes_ag(mp, i, flags);
191 if (error)
192 last_error = error;
193 if (error == EFSCORRUPTED)
194 break;
195 }
196 if (flags & SYNC_DELWRI)
197 xfs_log_force(mp, 0, lflags);
198
199 return XFS_ERROR(last_error);
200 }
201
202 STATIC int
203 xfs_commit_dummy_trans(
204 struct xfs_mount *mp,
205 uint log_flags)
206 {
207 struct xfs_inode *ip = mp->m_rootip;
208 struct xfs_trans *tp;
209 int error;
210
211 /*
212 * Put a dummy transaction in the log to tell recovery
213 * that all others are OK.
214 */
215 tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
216 error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
217 if (error) {
218 xfs_trans_cancel(tp, 0);
219 return error;
220 }
221
222 xfs_ilock(ip, XFS_ILOCK_EXCL);
223
224 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
225 xfs_trans_ihold(tp, ip);
226 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
227 /* XXX(hch): ignoring the error here.. */
228 error = xfs_trans_commit(tp, 0);
229
230 xfs_iunlock(ip, XFS_ILOCK_EXCL);
231
232 xfs_log_force(mp, 0, log_flags);
233 return 0;
234 }
235
236 int
237 xfs_sync_fsdata(
238 struct xfs_mount *mp,
239 int flags)
240 {
241 struct xfs_buf *bp;
242 struct xfs_buf_log_item *bip;
243 int error = 0;
244
245 /*
246 * If this is xfssyncd() then only sync the superblock if we can
247 * lock it without sleeping and it is not pinned.
248 */
249 if (flags & SYNC_BDFLUSH) {
250 ASSERT(!(flags & SYNC_WAIT));
251
252 bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
253 if (!bp)
254 goto out;
255
256 bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
257 if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
258 goto out_brelse;
259 } else {
260 bp = xfs_getsb(mp, 0);
261
262 /*
263 * If the buffer is pinned then push on the log so we won't
264 * get stuck waiting in the write for someone, maybe
265 * ourselves, to flush the log.
266 *
267 * Even though we just pushed the log above, we did not have
268 * the superblock buffer locked at that point so it can
269 * become pinned in between there and here.
270 */
271 if (XFS_BUF_ISPINNED(bp))
272 xfs_log_force(mp, 0, XFS_LOG_FORCE);
273 }
274
275
276 if (flags & SYNC_WAIT)
277 XFS_BUF_UNASYNC(bp);
278 else
279 XFS_BUF_ASYNC(bp);
280
281 return xfs_bwrite(mp, bp);
282
283 out_brelse:
284 xfs_buf_relse(bp);
285 out:
286 return error;
287 }
288
289 /*
290 * When remounting a filesystem read-only or freezing the filesystem, we have
291 * two phases to execute. This first phase is syncing the data before we
292 * quiesce the filesystem, and the second is flushing all the inodes out after
293 * we've waited for all the transactions created by the first phase to
294 * complete. The second phase ensures that the inodes are written to their
295 * location on disk rather than just existing in transactions in the log. This
296 * means after a quiesce there is no log replay required to write the inodes to
297 * disk (this is the main difference between a sync and a quiesce).
298 */
299 /*
300 * First stage of freeze - no writers will make progress now we are here,
301 * so we flush delwri and delalloc buffers here, then wait for all I/O to
302 * complete. Data is frozen at that point. Metadata is not frozen,
303 * transactions can still occur here so don't bother flushing the buftarg
304 * because it'll just get dirty again.
305 */
306 int
307 xfs_quiesce_data(
308 struct xfs_mount *mp)
309 {
310 int error;
311
312 /* push non-blocking */
313 xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_BDFLUSH);
314 XFS_QM_DQSYNC(mp, SYNC_BDFLUSH);
315 xfs_filestream_flush(mp);
316
317 /* push and block */
318 xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_WAIT|SYNC_IOWAIT);
319 XFS_QM_DQSYNC(mp, SYNC_WAIT);
320
321 /* write superblock and hoover up shutdown errors */
322 error = xfs_sync_fsdata(mp, 0);
323
324 /* flush data-only devices */
325 if (mp->m_rtdev_targp)
326 XFS_bflush(mp->m_rtdev_targp);
327
328 return error;
329 }
330
331 STATIC void
332 xfs_quiesce_fs(
333 struct xfs_mount *mp)
334 {
335 int count = 0, pincount;
336
337 xfs_flush_buftarg(mp->m_ddev_targp, 0);
338 xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
339
340 /*
341 * This loop must run at least twice. The first instance of the loop
342 * will flush most meta data but that will generate more meta data
343 * (typically directory updates). Which then must be flushed and
344 * logged before we can write the unmount record.
345 */
346 do {
347 xfs_sync_inodes(mp, SYNC_ATTR|SYNC_WAIT);
348 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
349 if (!pincount) {
350 delay(50);
351 count++;
352 }
353 } while (count < 2);
354 }
355
356 /*
357 * Second stage of a quiesce. The data is already synced, now we have to take
358 * care of the metadata. New transactions are already blocked, so we need to
359 * wait for any remaining transactions to drain out before proceding.
360 */
361 void
362 xfs_quiesce_attr(
363 struct xfs_mount *mp)
364 {
365 int error = 0;
366
367 /* wait for all modifications to complete */
368 while (atomic_read(&mp->m_active_trans) > 0)
369 delay(100);
370
371 /* flush inodes and push all remaining buffers out to disk */
372 xfs_quiesce_fs(mp);
373
374 ASSERT_ALWAYS(atomic_read(&mp->m_active_trans) == 0);
375
376 /* Push the superblock and write an unmount record */
377 error = xfs_log_sbcount(mp, 1);
378 if (error)
379 xfs_fs_cmn_err(CE_WARN, mp,
380 "xfs_attr_quiesce: failed to log sb changes. "
381 "Frozen image may not be consistent.");
382 xfs_log_unmount_write(mp);
383 xfs_unmountfs_writesb(mp);
384 }
385
386 /*
387 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
388 * Doing this has two advantages:
389 * - It saves on stack space, which is tight in certain situations
390 * - It can be used (with care) as a mechanism to avoid deadlocks.
391 * Flushing while allocating in a full filesystem requires both.
392 */
393 STATIC void
394 xfs_syncd_queue_work(
395 struct xfs_mount *mp,
396 void *data,
397 void (*syncer)(struct xfs_mount *, void *))
398 {
399 struct bhv_vfs_sync_work *work;
400
401 work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
402 INIT_LIST_HEAD(&work->w_list);
403 work->w_syncer = syncer;
404 work->w_data = data;
405 work->w_mount = mp;
406 spin_lock(&mp->m_sync_lock);
407 list_add_tail(&work->w_list, &mp->m_sync_list);
408 spin_unlock(&mp->m_sync_lock);
409 wake_up_process(mp->m_sync_task);
410 }
411
412 /*
413 * Flush delayed allocate data, attempting to free up reserved space
414 * from existing allocations. At this point a new allocation attempt
415 * has failed with ENOSPC and we are in the process of scratching our
416 * heads, looking about for more room...
417 */
418 STATIC void
419 xfs_flush_inode_work(
420 struct xfs_mount *mp,
421 void *arg)
422 {
423 struct inode *inode = arg;
424 filemap_flush(inode->i_mapping);
425 iput(inode);
426 }
427
428 void
429 xfs_flush_inode(
430 xfs_inode_t *ip)
431 {
432 struct inode *inode = VFS_I(ip);
433
434 igrab(inode);
435 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work);
436 delay(msecs_to_jiffies(500));
437 }
438
439 /*
440 * This is the "bigger hammer" version of xfs_flush_inode_work...
441 * (IOW, "If at first you don't succeed, use a Bigger Hammer").
442 */
443 STATIC void
444 xfs_flush_device_work(
445 struct xfs_mount *mp,
446 void *arg)
447 {
448 struct inode *inode = arg;
449 sync_blockdev(mp->m_super->s_bdev);
450 iput(inode);
451 }
452
453 void
454 xfs_flush_device(
455 xfs_inode_t *ip)
456 {
457 struct inode *inode = VFS_I(ip);
458
459 igrab(inode);
460 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work);
461 delay(msecs_to_jiffies(500));
462 xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
463 }
464
465 /*
466 * Every sync period we need to unpin all items, reclaim inodes, sync
467 * quota and write out the superblock. We might need to cover the log
468 * to indicate it is idle.
469 */
470 STATIC void
471 xfs_sync_worker(
472 struct xfs_mount *mp,
473 void *unused)
474 {
475 int error;
476
477 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
478 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
479 xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
480 /* dgc: errors ignored here */
481 error = XFS_QM_DQSYNC(mp, SYNC_BDFLUSH);
482 error = xfs_sync_fsdata(mp, SYNC_BDFLUSH);
483 if (xfs_log_need_covered(mp))
484 error = xfs_commit_dummy_trans(mp, XFS_LOG_FORCE);
485 }
486 mp->m_sync_seq++;
487 wake_up(&mp->m_wait_single_sync_task);
488 }
489
490 STATIC int
491 xfssyncd(
492 void *arg)
493 {
494 struct xfs_mount *mp = arg;
495 long timeleft;
496 bhv_vfs_sync_work_t *work, *n;
497 LIST_HEAD (tmp);
498
499 set_freezable();
500 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
501 for (;;) {
502 timeleft = schedule_timeout_interruptible(timeleft);
503 /* swsusp */
504 try_to_freeze();
505 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
506 break;
507
508 spin_lock(&mp->m_sync_lock);
509 /*
510 * We can get woken by laptop mode, to do a sync -
511 * that's the (only!) case where the list would be
512 * empty with time remaining.
513 */
514 if (!timeleft || list_empty(&mp->m_sync_list)) {
515 if (!timeleft)
516 timeleft = xfs_syncd_centisecs *
517 msecs_to_jiffies(10);
518 INIT_LIST_HEAD(&mp->m_sync_work.w_list);
519 list_add_tail(&mp->m_sync_work.w_list,
520 &mp->m_sync_list);
521 }
522 list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
523 list_move(&work->w_list, &tmp);
524 spin_unlock(&mp->m_sync_lock);
525
526 list_for_each_entry_safe(work, n, &tmp, w_list) {
527 (*work->w_syncer)(mp, work->w_data);
528 list_del(&work->w_list);
529 if (work == &mp->m_sync_work)
530 continue;
531 kmem_free(work);
532 }
533 }
534
535 return 0;
536 }
537
538 int
539 xfs_syncd_init(
540 struct xfs_mount *mp)
541 {
542 mp->m_sync_work.w_syncer = xfs_sync_worker;
543 mp->m_sync_work.w_mount = mp;
544 mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
545 if (IS_ERR(mp->m_sync_task))
546 return -PTR_ERR(mp->m_sync_task);
547 return 0;
548 }
549
550 void
551 xfs_syncd_stop(
552 struct xfs_mount *mp)
553 {
554 kthread_stop(mp->m_sync_task);
555 }
556
557 int
558 xfs_reclaim_inode(
559 xfs_inode_t *ip,
560 int locked,
561 int sync_mode)
562 {
563 xfs_perag_t *pag = xfs_get_perag(ip->i_mount, ip->i_ino);
564
565 /* The hash lock here protects a thread in xfs_iget_core from
566 * racing with us on linking the inode back with a vnode.
567 * Once we have the XFS_IRECLAIM flag set it will not touch
568 * us.
569 */
570 write_lock(&pag->pag_ici_lock);
571 spin_lock(&ip->i_flags_lock);
572 if (__xfs_iflags_test(ip, XFS_IRECLAIM) ||
573 !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
574 spin_unlock(&ip->i_flags_lock);
575 write_unlock(&pag->pag_ici_lock);
576 if (locked) {
577 xfs_ifunlock(ip);
578 xfs_iunlock(ip, XFS_ILOCK_EXCL);
579 }
580 return 1;
581 }
582 __xfs_iflags_set(ip, XFS_IRECLAIM);
583 spin_unlock(&ip->i_flags_lock);
584 write_unlock(&pag->pag_ici_lock);
585 xfs_put_perag(ip->i_mount, pag);
586
587 /*
588 * If the inode is still dirty, then flush it out. If the inode
589 * is not in the AIL, then it will be OK to flush it delwri as
590 * long as xfs_iflush() does not keep any references to the inode.
591 * We leave that decision up to xfs_iflush() since it has the
592 * knowledge of whether it's OK to simply do a delwri flush of
593 * the inode or whether we need to wait until the inode is
594 * pulled from the AIL.
595 * We get the flush lock regardless, though, just to make sure
596 * we don't free it while it is being flushed.
597 */
598 if (!locked) {
599 xfs_ilock(ip, XFS_ILOCK_EXCL);
600 xfs_iflock(ip);
601 }
602
603 /*
604 * In the case of a forced shutdown we rely on xfs_iflush() to
605 * wait for the inode to be unpinned before returning an error.
606 */
607 if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
608 /* synchronize with xfs_iflush_done */
609 xfs_iflock(ip);
610 xfs_ifunlock(ip);
611 }
612
613 xfs_iunlock(ip, XFS_ILOCK_EXCL);
614 xfs_ireclaim(ip);
615 return 0;
616 }
617
618 /*
619 * We set the inode flag atomically with the radix tree tag.
620 * Once we get tag lookups on the radix tree, this inode flag
621 * can go away.
622 */
623 void
624 xfs_inode_set_reclaim_tag(
625 xfs_inode_t *ip)
626 {
627 xfs_mount_t *mp = ip->i_mount;
628 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
629
630 read_lock(&pag->pag_ici_lock);
631 spin_lock(&ip->i_flags_lock);
632 radix_tree_tag_set(&pag->pag_ici_root,
633 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
634 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
635 spin_unlock(&ip->i_flags_lock);
636 read_unlock(&pag->pag_ici_lock);
637 xfs_put_perag(mp, pag);
638 }
639
640 void
641 __xfs_inode_clear_reclaim_tag(
642 xfs_mount_t *mp,
643 xfs_perag_t *pag,
644 xfs_inode_t *ip)
645 {
646 radix_tree_tag_clear(&pag->pag_ici_root,
647 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
648 }
649
650 void
651 xfs_inode_clear_reclaim_tag(
652 xfs_inode_t *ip)
653 {
654 xfs_mount_t *mp = ip->i_mount;
655 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
656
657 read_lock(&pag->pag_ici_lock);
658 spin_lock(&ip->i_flags_lock);
659 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
660 spin_unlock(&ip->i_flags_lock);
661 read_unlock(&pag->pag_ici_lock);
662 xfs_put_perag(mp, pag);
663 }
664
665
666 STATIC void
667 xfs_reclaim_inodes_ag(
668 xfs_mount_t *mp,
669 int ag,
670 int noblock,
671 int mode)
672 {
673 xfs_inode_t *ip = NULL;
674 xfs_perag_t *pag = &mp->m_perag[ag];
675 int nr_found;
676 uint32_t first_index;
677 int skipped;
678
679 restart:
680 first_index = 0;
681 skipped = 0;
682 do {
683 /*
684 * use a gang lookup to find the next inode in the tree
685 * as the tree is sparse and a gang lookup walks to find
686 * the number of objects requested.
687 */
688 read_lock(&pag->pag_ici_lock);
689 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
690 (void**)&ip, first_index, 1,
691 XFS_ICI_RECLAIM_TAG);
692
693 if (!nr_found) {
694 read_unlock(&pag->pag_ici_lock);
695 break;
696 }
697
698 /*
699 * Update the index for the next lookup. Catch overflows
700 * into the next AG range which can occur if we have inodes
701 * in the last block of the AG and we are currently
702 * pointing to the last inode.
703 */
704 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
705 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
706 read_unlock(&pag->pag_ici_lock);
707 break;
708 }
709
710 /* ignore if already under reclaim */
711 if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
712 read_unlock(&pag->pag_ici_lock);
713 continue;
714 }
715
716 if (noblock) {
717 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
718 read_unlock(&pag->pag_ici_lock);
719 continue;
720 }
721 if (xfs_ipincount(ip) ||
722 !xfs_iflock_nowait(ip)) {
723 xfs_iunlock(ip, XFS_ILOCK_EXCL);
724 read_unlock(&pag->pag_ici_lock);
725 continue;
726 }
727 }
728 read_unlock(&pag->pag_ici_lock);
729
730 /*
731 * hmmm - this is an inode already in reclaim. Do
732 * we even bother catching it here?
733 */
734 if (xfs_reclaim_inode(ip, noblock, mode))
735 skipped++;
736 } while (nr_found);
737
738 if (skipped) {
739 delay(1);
740 goto restart;
741 }
742 return;
743
744 }
745
746 int
747 xfs_reclaim_inodes(
748 xfs_mount_t *mp,
749 int noblock,
750 int mode)
751 {
752 int i;
753
754 for (i = 0; i < mp->m_sb.sb_agcount; i++) {
755 if (!mp->m_perag[i].pag_ici_init)
756 continue;
757 xfs_reclaim_inodes_ag(mp, i, noblock, mode);
758 }
759 return 0;
760 }
761
762
This page took 0.047026 seconds and 5 git commands to generate.