fs: move i_count increments into find_inode/find_inode_fast
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_sync.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dinode.h"
31 #include "xfs_error.h"
32 #include "xfs_filestream.h"
33 #include "xfs_vnodeops.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_quota.h"
36 #include "xfs_trace.h"
37 #include "xfs_fsops.h"
38
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41
42 /*
43 * The inode lookup is done in batches to keep the amount of lock traffic and
44 * radix tree lookups to a minimum. The batch size is a trade off between
45 * lookup reduction and stack usage. This is in the reclaim path, so we can't
46 * be too greedy.
47 */
48 #define XFS_LOOKUP_BATCH 32
49
50 STATIC int
51 xfs_inode_ag_walk_grab(
52 struct xfs_inode *ip)
53 {
54 struct inode *inode = VFS_I(ip);
55
56 /* nothing to sync during shutdown */
57 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
58 return EFSCORRUPTED;
59
60 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
61 if (xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
62 return ENOENT;
63
64 /* If we can't grab the inode, it must on it's way to reclaim. */
65 if (!igrab(inode))
66 return ENOENT;
67
68 if (is_bad_inode(inode)) {
69 IRELE(ip);
70 return ENOENT;
71 }
72
73 /* inode is valid */
74 return 0;
75 }
76
77 STATIC int
78 xfs_inode_ag_walk(
79 struct xfs_mount *mp,
80 struct xfs_perag *pag,
81 int (*execute)(struct xfs_inode *ip,
82 struct xfs_perag *pag, int flags),
83 int flags)
84 {
85 uint32_t first_index;
86 int last_error = 0;
87 int skipped;
88 int done;
89 int nr_found;
90
91 restart:
92 done = 0;
93 skipped = 0;
94 first_index = 0;
95 nr_found = 0;
96 do {
97 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
98 int error = 0;
99 int i;
100
101 read_lock(&pag->pag_ici_lock);
102 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
103 (void **)batch, first_index,
104 XFS_LOOKUP_BATCH);
105 if (!nr_found) {
106 read_unlock(&pag->pag_ici_lock);
107 break;
108 }
109
110 /*
111 * Grab the inodes before we drop the lock. if we found
112 * nothing, nr == 0 and the loop will be skipped.
113 */
114 for (i = 0; i < nr_found; i++) {
115 struct xfs_inode *ip = batch[i];
116
117 if (done || xfs_inode_ag_walk_grab(ip))
118 batch[i] = NULL;
119
120 /*
121 * Update the index for the next lookup. Catch overflows
122 * into the next AG range which can occur if we have inodes
123 * in the last block of the AG and we are currently
124 * pointing to the last inode.
125 */
126 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
127 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
128 done = 1;
129 }
130
131 /* unlock now we've grabbed the inodes. */
132 read_unlock(&pag->pag_ici_lock);
133
134 for (i = 0; i < nr_found; i++) {
135 if (!batch[i])
136 continue;
137 error = execute(batch[i], pag, flags);
138 IRELE(batch[i]);
139 if (error == EAGAIN) {
140 skipped++;
141 continue;
142 }
143 if (error && last_error != EFSCORRUPTED)
144 last_error = error;
145 }
146
147 /* bail out if the filesystem is corrupted. */
148 if (error == EFSCORRUPTED)
149 break;
150
151 } while (nr_found && !done);
152
153 if (skipped) {
154 delay(1);
155 goto restart;
156 }
157 return last_error;
158 }
159
160 int
161 xfs_inode_ag_iterator(
162 struct xfs_mount *mp,
163 int (*execute)(struct xfs_inode *ip,
164 struct xfs_perag *pag, int flags),
165 int flags)
166 {
167 struct xfs_perag *pag;
168 int error = 0;
169 int last_error = 0;
170 xfs_agnumber_t ag;
171
172 ag = 0;
173 while ((pag = xfs_perag_get(mp, ag))) {
174 ag = pag->pag_agno + 1;
175 error = xfs_inode_ag_walk(mp, pag, execute, flags);
176 xfs_perag_put(pag);
177 if (error) {
178 last_error = error;
179 if (error == EFSCORRUPTED)
180 break;
181 }
182 }
183 return XFS_ERROR(last_error);
184 }
185
186 STATIC int
187 xfs_sync_inode_data(
188 struct xfs_inode *ip,
189 struct xfs_perag *pag,
190 int flags)
191 {
192 struct inode *inode = VFS_I(ip);
193 struct address_space *mapping = inode->i_mapping;
194 int error = 0;
195
196 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
197 goto out_wait;
198
199 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
200 if (flags & SYNC_TRYLOCK)
201 goto out_wait;
202 xfs_ilock(ip, XFS_IOLOCK_SHARED);
203 }
204
205 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
206 0 : XBF_ASYNC, FI_NONE);
207 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
208
209 out_wait:
210 if (flags & SYNC_WAIT)
211 xfs_ioend_wait(ip);
212 return error;
213 }
214
215 STATIC int
216 xfs_sync_inode_attr(
217 struct xfs_inode *ip,
218 struct xfs_perag *pag,
219 int flags)
220 {
221 int error = 0;
222
223 xfs_ilock(ip, XFS_ILOCK_SHARED);
224 if (xfs_inode_clean(ip))
225 goto out_unlock;
226 if (!xfs_iflock_nowait(ip)) {
227 if (!(flags & SYNC_WAIT))
228 goto out_unlock;
229 xfs_iflock(ip);
230 }
231
232 if (xfs_inode_clean(ip)) {
233 xfs_ifunlock(ip);
234 goto out_unlock;
235 }
236
237 error = xfs_iflush(ip, flags);
238
239 out_unlock:
240 xfs_iunlock(ip, XFS_ILOCK_SHARED);
241 return error;
242 }
243
244 /*
245 * Write out pagecache data for the whole filesystem.
246 */
247 STATIC int
248 xfs_sync_data(
249 struct xfs_mount *mp,
250 int flags)
251 {
252 int error;
253
254 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
255
256 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
257 if (error)
258 return XFS_ERROR(error);
259
260 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
261 return 0;
262 }
263
264 /*
265 * Write out inode metadata (attributes) for the whole filesystem.
266 */
267 STATIC int
268 xfs_sync_attr(
269 struct xfs_mount *mp,
270 int flags)
271 {
272 ASSERT((flags & ~SYNC_WAIT) == 0);
273
274 return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags);
275 }
276
277 STATIC int
278 xfs_sync_fsdata(
279 struct xfs_mount *mp)
280 {
281 struct xfs_buf *bp;
282
283 /*
284 * If the buffer is pinned then push on the log so we won't get stuck
285 * waiting in the write for someone, maybe ourselves, to flush the log.
286 *
287 * Even though we just pushed the log above, we did not have the
288 * superblock buffer locked at that point so it can become pinned in
289 * between there and here.
290 */
291 bp = xfs_getsb(mp, 0);
292 if (XFS_BUF_ISPINNED(bp))
293 xfs_log_force(mp, 0);
294
295 return xfs_bwrite(mp, bp);
296 }
297
298 /*
299 * When remounting a filesystem read-only or freezing the filesystem, we have
300 * two phases to execute. This first phase is syncing the data before we
301 * quiesce the filesystem, and the second is flushing all the inodes out after
302 * we've waited for all the transactions created by the first phase to
303 * complete. The second phase ensures that the inodes are written to their
304 * location on disk rather than just existing in transactions in the log. This
305 * means after a quiesce there is no log replay required to write the inodes to
306 * disk (this is the main difference between a sync and a quiesce).
307 */
308 /*
309 * First stage of freeze - no writers will make progress now we are here,
310 * so we flush delwri and delalloc buffers here, then wait for all I/O to
311 * complete. Data is frozen at that point. Metadata is not frozen,
312 * transactions can still occur here so don't bother flushing the buftarg
313 * because it'll just get dirty again.
314 */
315 int
316 xfs_quiesce_data(
317 struct xfs_mount *mp)
318 {
319 int error, error2 = 0;
320
321 /* push non-blocking */
322 xfs_sync_data(mp, 0);
323 xfs_qm_sync(mp, SYNC_TRYLOCK);
324
325 /* push and block till complete */
326 xfs_sync_data(mp, SYNC_WAIT);
327 xfs_qm_sync(mp, SYNC_WAIT);
328
329 /* write superblock and hoover up shutdown errors */
330 error = xfs_sync_fsdata(mp);
331
332 /* make sure all delwri buffers are written out */
333 xfs_flush_buftarg(mp->m_ddev_targp, 1);
334
335 /* mark the log as covered if needed */
336 if (xfs_log_need_covered(mp))
337 error2 = xfs_fs_log_dummy(mp, SYNC_WAIT);
338
339 /* flush data-only devices */
340 if (mp->m_rtdev_targp)
341 XFS_bflush(mp->m_rtdev_targp);
342
343 return error ? error : error2;
344 }
345
346 STATIC void
347 xfs_quiesce_fs(
348 struct xfs_mount *mp)
349 {
350 int count = 0, pincount;
351
352 xfs_reclaim_inodes(mp, 0);
353 xfs_flush_buftarg(mp->m_ddev_targp, 0);
354
355 /*
356 * This loop must run at least twice. The first instance of the loop
357 * will flush most meta data but that will generate more meta data
358 * (typically directory updates). Which then must be flushed and
359 * logged before we can write the unmount record. We also so sync
360 * reclaim of inodes to catch any that the above delwri flush skipped.
361 */
362 do {
363 xfs_reclaim_inodes(mp, SYNC_WAIT);
364 xfs_sync_attr(mp, SYNC_WAIT);
365 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
366 if (!pincount) {
367 delay(50);
368 count++;
369 }
370 } while (count < 2);
371 }
372
373 /*
374 * Second stage of a quiesce. The data is already synced, now we have to take
375 * care of the metadata. New transactions are already blocked, so we need to
376 * wait for any remaining transactions to drain out before proceding.
377 */
378 void
379 xfs_quiesce_attr(
380 struct xfs_mount *mp)
381 {
382 int error = 0;
383
384 /* wait for all modifications to complete */
385 while (atomic_read(&mp->m_active_trans) > 0)
386 delay(100);
387
388 /* flush inodes and push all remaining buffers out to disk */
389 xfs_quiesce_fs(mp);
390
391 /*
392 * Just warn here till VFS can correctly support
393 * read-only remount without racing.
394 */
395 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
396
397 /* Push the superblock and write an unmount record */
398 error = xfs_log_sbcount(mp, 1);
399 if (error)
400 xfs_fs_cmn_err(CE_WARN, mp,
401 "xfs_attr_quiesce: failed to log sb changes. "
402 "Frozen image may not be consistent.");
403 xfs_log_unmount_write(mp);
404 xfs_unmountfs_writesb(mp);
405 }
406
407 /*
408 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
409 * Doing this has two advantages:
410 * - It saves on stack space, which is tight in certain situations
411 * - It can be used (with care) as a mechanism to avoid deadlocks.
412 * Flushing while allocating in a full filesystem requires both.
413 */
414 STATIC void
415 xfs_syncd_queue_work(
416 struct xfs_mount *mp,
417 void *data,
418 void (*syncer)(struct xfs_mount *, void *),
419 struct completion *completion)
420 {
421 struct xfs_sync_work *work;
422
423 work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
424 INIT_LIST_HEAD(&work->w_list);
425 work->w_syncer = syncer;
426 work->w_data = data;
427 work->w_mount = mp;
428 work->w_completion = completion;
429 spin_lock(&mp->m_sync_lock);
430 list_add_tail(&work->w_list, &mp->m_sync_list);
431 spin_unlock(&mp->m_sync_lock);
432 wake_up_process(mp->m_sync_task);
433 }
434
435 /*
436 * Flush delayed allocate data, attempting to free up reserved space
437 * from existing allocations. At this point a new allocation attempt
438 * has failed with ENOSPC and we are in the process of scratching our
439 * heads, looking about for more room...
440 */
441 STATIC void
442 xfs_flush_inodes_work(
443 struct xfs_mount *mp,
444 void *arg)
445 {
446 struct inode *inode = arg;
447 xfs_sync_data(mp, SYNC_TRYLOCK);
448 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
449 iput(inode);
450 }
451
452 void
453 xfs_flush_inodes(
454 xfs_inode_t *ip)
455 {
456 struct inode *inode = VFS_I(ip);
457 DECLARE_COMPLETION_ONSTACK(completion);
458
459 igrab(inode);
460 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
461 wait_for_completion(&completion);
462 xfs_log_force(ip->i_mount, XFS_LOG_SYNC);
463 }
464
465 /*
466 * Every sync period we need to unpin all items, reclaim inodes and sync
467 * disk quotas. We might need to cover the log to indicate that the
468 * filesystem is idle and not frozen.
469 */
470 STATIC void
471 xfs_sync_worker(
472 struct xfs_mount *mp,
473 void *unused)
474 {
475 int error;
476
477 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
478 xfs_log_force(mp, 0);
479 xfs_reclaim_inodes(mp, 0);
480 /* dgc: errors ignored here */
481 error = xfs_qm_sync(mp, SYNC_TRYLOCK);
482 if (mp->m_super->s_frozen == SB_UNFROZEN &&
483 xfs_log_need_covered(mp))
484 error = xfs_fs_log_dummy(mp, 0);
485 }
486 mp->m_sync_seq++;
487 wake_up(&mp->m_wait_single_sync_task);
488 }
489
490 STATIC int
491 xfssyncd(
492 void *arg)
493 {
494 struct xfs_mount *mp = arg;
495 long timeleft;
496 xfs_sync_work_t *work, *n;
497 LIST_HEAD (tmp);
498
499 set_freezable();
500 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
501 for (;;) {
502 if (list_empty(&mp->m_sync_list))
503 timeleft = schedule_timeout_interruptible(timeleft);
504 /* swsusp */
505 try_to_freeze();
506 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
507 break;
508
509 spin_lock(&mp->m_sync_lock);
510 /*
511 * We can get woken by laptop mode, to do a sync -
512 * that's the (only!) case where the list would be
513 * empty with time remaining.
514 */
515 if (!timeleft || list_empty(&mp->m_sync_list)) {
516 if (!timeleft)
517 timeleft = xfs_syncd_centisecs *
518 msecs_to_jiffies(10);
519 INIT_LIST_HEAD(&mp->m_sync_work.w_list);
520 list_add_tail(&mp->m_sync_work.w_list,
521 &mp->m_sync_list);
522 }
523 list_splice_init(&mp->m_sync_list, &tmp);
524 spin_unlock(&mp->m_sync_lock);
525
526 list_for_each_entry_safe(work, n, &tmp, w_list) {
527 (*work->w_syncer)(mp, work->w_data);
528 list_del(&work->w_list);
529 if (work == &mp->m_sync_work)
530 continue;
531 if (work->w_completion)
532 complete(work->w_completion);
533 kmem_free(work);
534 }
535 }
536
537 return 0;
538 }
539
540 int
541 xfs_syncd_init(
542 struct xfs_mount *mp)
543 {
544 mp->m_sync_work.w_syncer = xfs_sync_worker;
545 mp->m_sync_work.w_mount = mp;
546 mp->m_sync_work.w_completion = NULL;
547 mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd/%s", mp->m_fsname);
548 if (IS_ERR(mp->m_sync_task))
549 return -PTR_ERR(mp->m_sync_task);
550 return 0;
551 }
552
553 void
554 xfs_syncd_stop(
555 struct xfs_mount *mp)
556 {
557 kthread_stop(mp->m_sync_task);
558 }
559
560 void
561 __xfs_inode_set_reclaim_tag(
562 struct xfs_perag *pag,
563 struct xfs_inode *ip)
564 {
565 radix_tree_tag_set(&pag->pag_ici_root,
566 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
567 XFS_ICI_RECLAIM_TAG);
568
569 if (!pag->pag_ici_reclaimable) {
570 /* propagate the reclaim tag up into the perag radix tree */
571 spin_lock(&ip->i_mount->m_perag_lock);
572 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
573 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
574 XFS_ICI_RECLAIM_TAG);
575 spin_unlock(&ip->i_mount->m_perag_lock);
576 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
577 -1, _RET_IP_);
578 }
579 pag->pag_ici_reclaimable++;
580 }
581
582 /*
583 * We set the inode flag atomically with the radix tree tag.
584 * Once we get tag lookups on the radix tree, this inode flag
585 * can go away.
586 */
587 void
588 xfs_inode_set_reclaim_tag(
589 xfs_inode_t *ip)
590 {
591 struct xfs_mount *mp = ip->i_mount;
592 struct xfs_perag *pag;
593
594 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
595 write_lock(&pag->pag_ici_lock);
596 spin_lock(&ip->i_flags_lock);
597 __xfs_inode_set_reclaim_tag(pag, ip);
598 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
599 spin_unlock(&ip->i_flags_lock);
600 write_unlock(&pag->pag_ici_lock);
601 xfs_perag_put(pag);
602 }
603
604 STATIC void
605 __xfs_inode_clear_reclaim(
606 xfs_perag_t *pag,
607 xfs_inode_t *ip)
608 {
609 pag->pag_ici_reclaimable--;
610 if (!pag->pag_ici_reclaimable) {
611 /* clear the reclaim tag from the perag radix tree */
612 spin_lock(&ip->i_mount->m_perag_lock);
613 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
614 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
615 XFS_ICI_RECLAIM_TAG);
616 spin_unlock(&ip->i_mount->m_perag_lock);
617 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
618 -1, _RET_IP_);
619 }
620 }
621
622 void
623 __xfs_inode_clear_reclaim_tag(
624 xfs_mount_t *mp,
625 xfs_perag_t *pag,
626 xfs_inode_t *ip)
627 {
628 radix_tree_tag_clear(&pag->pag_ici_root,
629 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
630 __xfs_inode_clear_reclaim(pag, ip);
631 }
632
633 /*
634 * Grab the inode for reclaim exclusively.
635 * Return 0 if we grabbed it, non-zero otherwise.
636 */
637 STATIC int
638 xfs_reclaim_inode_grab(
639 struct xfs_inode *ip,
640 int flags)
641 {
642
643 /*
644 * do some unlocked checks first to avoid unnecceary lock traffic.
645 * The first is a flush lock check, the second is a already in reclaim
646 * check. Only do these checks if we are not going to block on locks.
647 */
648 if ((flags & SYNC_TRYLOCK) &&
649 (!ip->i_flush.done || __xfs_iflags_test(ip, XFS_IRECLAIM))) {
650 return 1;
651 }
652
653 /*
654 * The radix tree lock here protects a thread in xfs_iget from racing
655 * with us starting reclaim on the inode. Once we have the
656 * XFS_IRECLAIM flag set it will not touch us.
657 */
658 spin_lock(&ip->i_flags_lock);
659 ASSERT_ALWAYS(__xfs_iflags_test(ip, XFS_IRECLAIMABLE));
660 if (__xfs_iflags_test(ip, XFS_IRECLAIM)) {
661 /* ignore as it is already under reclaim */
662 spin_unlock(&ip->i_flags_lock);
663 return 1;
664 }
665 __xfs_iflags_set(ip, XFS_IRECLAIM);
666 spin_unlock(&ip->i_flags_lock);
667 return 0;
668 }
669
670 /*
671 * Inodes in different states need to be treated differently, and the return
672 * value of xfs_iflush is not sufficient to get this right. The following table
673 * lists the inode states and the reclaim actions necessary for non-blocking
674 * reclaim:
675 *
676 *
677 * inode state iflush ret required action
678 * --------------- ---------- ---------------
679 * bad - reclaim
680 * shutdown EIO unpin and reclaim
681 * clean, unpinned 0 reclaim
682 * stale, unpinned 0 reclaim
683 * clean, pinned(*) 0 requeue
684 * stale, pinned EAGAIN requeue
685 * dirty, delwri ok 0 requeue
686 * dirty, delwri blocked EAGAIN requeue
687 * dirty, sync flush 0 reclaim
688 *
689 * (*) dgc: I don't think the clean, pinned state is possible but it gets
690 * handled anyway given the order of checks implemented.
691 *
692 * As can be seen from the table, the return value of xfs_iflush() is not
693 * sufficient to correctly decide the reclaim action here. The checks in
694 * xfs_iflush() might look like duplicates, but they are not.
695 *
696 * Also, because we get the flush lock first, we know that any inode that has
697 * been flushed delwri has had the flush completed by the time we check that
698 * the inode is clean. The clean inode check needs to be done before flushing
699 * the inode delwri otherwise we would loop forever requeuing clean inodes as
700 * we cannot tell apart a successful delwri flush and a clean inode from the
701 * return value of xfs_iflush().
702 *
703 * Note that because the inode is flushed delayed write by background
704 * writeback, the flush lock may already be held here and waiting on it can
705 * result in very long latencies. Hence for sync reclaims, where we wait on the
706 * flush lock, the caller should push out delayed write inodes first before
707 * trying to reclaim them to minimise the amount of time spent waiting. For
708 * background relaim, we just requeue the inode for the next pass.
709 *
710 * Hence the order of actions after gaining the locks should be:
711 * bad => reclaim
712 * shutdown => unpin and reclaim
713 * pinned, delwri => requeue
714 * pinned, sync => unpin
715 * stale => reclaim
716 * clean => reclaim
717 * dirty, delwri => flush and requeue
718 * dirty, sync => flush, wait and reclaim
719 */
720 STATIC int
721 xfs_reclaim_inode(
722 struct xfs_inode *ip,
723 struct xfs_perag *pag,
724 int sync_mode)
725 {
726 int error = 0;
727
728 xfs_ilock(ip, XFS_ILOCK_EXCL);
729 if (!xfs_iflock_nowait(ip)) {
730 if (!(sync_mode & SYNC_WAIT))
731 goto out;
732 xfs_iflock(ip);
733 }
734
735 if (is_bad_inode(VFS_I(ip)))
736 goto reclaim;
737 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
738 xfs_iunpin_wait(ip);
739 goto reclaim;
740 }
741 if (xfs_ipincount(ip)) {
742 if (!(sync_mode & SYNC_WAIT)) {
743 xfs_ifunlock(ip);
744 goto out;
745 }
746 xfs_iunpin_wait(ip);
747 }
748 if (xfs_iflags_test(ip, XFS_ISTALE))
749 goto reclaim;
750 if (xfs_inode_clean(ip))
751 goto reclaim;
752
753 /* Now we have an inode that needs flushing */
754 error = xfs_iflush(ip, sync_mode);
755 if (sync_mode & SYNC_WAIT) {
756 xfs_iflock(ip);
757 goto reclaim;
758 }
759
760 /*
761 * When we have to flush an inode but don't have SYNC_WAIT set, we
762 * flush the inode out using a delwri buffer and wait for the next
763 * call into reclaim to find it in a clean state instead of waiting for
764 * it now. We also don't return errors here - if the error is transient
765 * then the next reclaim pass will flush the inode, and if the error
766 * is permanent then the next sync reclaim will reclaim the inode and
767 * pass on the error.
768 */
769 if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
770 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
771 "inode 0x%llx background reclaim flush failed with %d",
772 (long long)ip->i_ino, error);
773 }
774 out:
775 xfs_iflags_clear(ip, XFS_IRECLAIM);
776 xfs_iunlock(ip, XFS_ILOCK_EXCL);
777 /*
778 * We could return EAGAIN here to make reclaim rescan the inode tree in
779 * a short while. However, this just burns CPU time scanning the tree
780 * waiting for IO to complete and xfssyncd never goes back to the idle
781 * state. Instead, return 0 to let the next scheduled background reclaim
782 * attempt to reclaim the inode again.
783 */
784 return 0;
785
786 reclaim:
787 xfs_ifunlock(ip);
788 xfs_iunlock(ip, XFS_ILOCK_EXCL);
789
790 XFS_STATS_INC(xs_ig_reclaims);
791 /*
792 * Remove the inode from the per-AG radix tree.
793 *
794 * Because radix_tree_delete won't complain even if the item was never
795 * added to the tree assert that it's been there before to catch
796 * problems with the inode life time early on.
797 */
798 write_lock(&pag->pag_ici_lock);
799 if (!radix_tree_delete(&pag->pag_ici_root,
800 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
801 ASSERT(0);
802 __xfs_inode_clear_reclaim(pag, ip);
803 write_unlock(&pag->pag_ici_lock);
804
805 /*
806 * Here we do an (almost) spurious inode lock in order to coordinate
807 * with inode cache radix tree lookups. This is because the lookup
808 * can reference the inodes in the cache without taking references.
809 *
810 * We make that OK here by ensuring that we wait until the inode is
811 * unlocked after the lookup before we go ahead and free it. We get
812 * both the ilock and the iolock because the code may need to drop the
813 * ilock one but will still hold the iolock.
814 */
815 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
816 xfs_qm_dqdetach(ip);
817 xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
818
819 xfs_inode_free(ip);
820 return error;
821
822 }
823
824 /*
825 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
826 * corrupted, we still want to try to reclaim all the inodes. If we don't,
827 * then a shut down during filesystem unmount reclaim walk leak all the
828 * unreclaimed inodes.
829 */
830 int
831 xfs_reclaim_inodes_ag(
832 struct xfs_mount *mp,
833 int flags,
834 int *nr_to_scan)
835 {
836 struct xfs_perag *pag;
837 int error = 0;
838 int last_error = 0;
839 xfs_agnumber_t ag;
840 int trylock = flags & SYNC_TRYLOCK;
841 int skipped;
842
843 restart:
844 ag = 0;
845 skipped = 0;
846 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
847 unsigned long first_index = 0;
848 int done = 0;
849 int nr_found = 0;
850
851 ag = pag->pag_agno + 1;
852
853 if (trylock) {
854 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
855 skipped++;
856 continue;
857 }
858 first_index = pag->pag_ici_reclaim_cursor;
859 } else
860 mutex_lock(&pag->pag_ici_reclaim_lock);
861
862 do {
863 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
864 int i;
865
866 write_lock(&pag->pag_ici_lock);
867 nr_found = radix_tree_gang_lookup_tag(
868 &pag->pag_ici_root,
869 (void **)batch, first_index,
870 XFS_LOOKUP_BATCH,
871 XFS_ICI_RECLAIM_TAG);
872 if (!nr_found) {
873 write_unlock(&pag->pag_ici_lock);
874 break;
875 }
876
877 /*
878 * Grab the inodes before we drop the lock. if we found
879 * nothing, nr == 0 and the loop will be skipped.
880 */
881 for (i = 0; i < nr_found; i++) {
882 struct xfs_inode *ip = batch[i];
883
884 if (done || xfs_reclaim_inode_grab(ip, flags))
885 batch[i] = NULL;
886
887 /*
888 * Update the index for the next lookup. Catch
889 * overflows into the next AG range which can
890 * occur if we have inodes in the last block of
891 * the AG and we are currently pointing to the
892 * last inode.
893 */
894 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
895 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
896 done = 1;
897 }
898
899 /* unlock now we've grabbed the inodes. */
900 write_unlock(&pag->pag_ici_lock);
901
902 for (i = 0; i < nr_found; i++) {
903 if (!batch[i])
904 continue;
905 error = xfs_reclaim_inode(batch[i], pag, flags);
906 if (error && last_error != EFSCORRUPTED)
907 last_error = error;
908 }
909
910 *nr_to_scan -= XFS_LOOKUP_BATCH;
911
912 } while (nr_found && !done && *nr_to_scan > 0);
913
914 if (trylock && !done)
915 pag->pag_ici_reclaim_cursor = first_index;
916 else
917 pag->pag_ici_reclaim_cursor = 0;
918 mutex_unlock(&pag->pag_ici_reclaim_lock);
919 xfs_perag_put(pag);
920 }
921
922 /*
923 * if we skipped any AG, and we still have scan count remaining, do
924 * another pass this time using blocking reclaim semantics (i.e
925 * waiting on the reclaim locks and ignoring the reclaim cursors). This
926 * ensure that when we get more reclaimers than AGs we block rather
927 * than spin trying to execute reclaim.
928 */
929 if (trylock && skipped && *nr_to_scan > 0) {
930 trylock = 0;
931 goto restart;
932 }
933 return XFS_ERROR(last_error);
934 }
935
936 int
937 xfs_reclaim_inodes(
938 xfs_mount_t *mp,
939 int mode)
940 {
941 int nr_to_scan = INT_MAX;
942
943 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
944 }
945
946 /*
947 * Shrinker infrastructure.
948 */
949 static int
950 xfs_reclaim_inode_shrink(
951 struct shrinker *shrink,
952 int nr_to_scan,
953 gfp_t gfp_mask)
954 {
955 struct xfs_mount *mp;
956 struct xfs_perag *pag;
957 xfs_agnumber_t ag;
958 int reclaimable;
959
960 mp = container_of(shrink, struct xfs_mount, m_inode_shrink);
961 if (nr_to_scan) {
962 if (!(gfp_mask & __GFP_FS))
963 return -1;
964
965 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK, &nr_to_scan);
966 /* terminate if we don't exhaust the scan */
967 if (nr_to_scan > 0)
968 return -1;
969 }
970
971 reclaimable = 0;
972 ag = 0;
973 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
974 ag = pag->pag_agno + 1;
975 reclaimable += pag->pag_ici_reclaimable;
976 xfs_perag_put(pag);
977 }
978 return reclaimable;
979 }
980
981 void
982 xfs_inode_shrinker_register(
983 struct xfs_mount *mp)
984 {
985 mp->m_inode_shrink.shrink = xfs_reclaim_inode_shrink;
986 mp->m_inode_shrink.seeks = DEFAULT_SEEKS;
987 register_shrinker(&mp->m_inode_shrink);
988 }
989
990 void
991 xfs_inode_shrinker_unregister(
992 struct xfs_mount *mp)
993 {
994 unregister_shrinker(&mp->m_inode_shrink);
995 }
This page took 0.056016 seconds and 5 git commands to generate.