xfs: create xfs_bmap_util.[ch]
[deliverable/linux.git] / fs / xfs / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_log.h"
20 #include "xfs_sb.h"
21 #include "xfs_ag.h"
22 #include "xfs_trans.h"
23 #include "xfs_mount.h"
24 #include "xfs_bmap_btree.h"
25 #include "xfs_dinode.h"
26 #include "xfs_inode.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_alloc.h"
29 #include "xfs_error.h"
30 #include "xfs_iomap.h"
31 #include "xfs_vnodeops.h"
32 #include "xfs_trace.h"
33 #include "xfs_bmap.h"
34 #include "xfs_bmap_util.h"
35 #include <linux/aio.h>
36 #include <linux/gfp.h>
37 #include <linux/mpage.h>
38 #include <linux/pagevec.h>
39 #include <linux/writeback.h>
40
41 void
42 xfs_count_page_state(
43 struct page *page,
44 int *delalloc,
45 int *unwritten)
46 {
47 struct buffer_head *bh, *head;
48
49 *delalloc = *unwritten = 0;
50
51 bh = head = page_buffers(page);
52 do {
53 if (buffer_unwritten(bh))
54 (*unwritten) = 1;
55 else if (buffer_delay(bh))
56 (*delalloc) = 1;
57 } while ((bh = bh->b_this_page) != head);
58 }
59
60 STATIC struct block_device *
61 xfs_find_bdev_for_inode(
62 struct inode *inode)
63 {
64 struct xfs_inode *ip = XFS_I(inode);
65 struct xfs_mount *mp = ip->i_mount;
66
67 if (XFS_IS_REALTIME_INODE(ip))
68 return mp->m_rtdev_targp->bt_bdev;
69 else
70 return mp->m_ddev_targp->bt_bdev;
71 }
72
73 /*
74 * We're now finished for good with this ioend structure.
75 * Update the page state via the associated buffer_heads,
76 * release holds on the inode and bio, and finally free
77 * up memory. Do not use the ioend after this.
78 */
79 STATIC void
80 xfs_destroy_ioend(
81 xfs_ioend_t *ioend)
82 {
83 struct buffer_head *bh, *next;
84
85 for (bh = ioend->io_buffer_head; bh; bh = next) {
86 next = bh->b_private;
87 bh->b_end_io(bh, !ioend->io_error);
88 }
89
90 if (ioend->io_iocb) {
91 inode_dio_done(ioend->io_inode);
92 if (ioend->io_isasync) {
93 aio_complete(ioend->io_iocb, ioend->io_error ?
94 ioend->io_error : ioend->io_result, 0);
95 }
96 }
97
98 mempool_free(ioend, xfs_ioend_pool);
99 }
100
101 /*
102 * Fast and loose check if this write could update the on-disk inode size.
103 */
104 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
105 {
106 return ioend->io_offset + ioend->io_size >
107 XFS_I(ioend->io_inode)->i_d.di_size;
108 }
109
110 STATIC int
111 xfs_setfilesize_trans_alloc(
112 struct xfs_ioend *ioend)
113 {
114 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
115 struct xfs_trans *tp;
116 int error;
117
118 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
119
120 error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
121 if (error) {
122 xfs_trans_cancel(tp, 0);
123 return error;
124 }
125
126 ioend->io_append_trans = tp;
127
128 /*
129 * We may pass freeze protection with a transaction. So tell lockdep
130 * we released it.
131 */
132 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
133 1, _THIS_IP_);
134 /*
135 * We hand off the transaction to the completion thread now, so
136 * clear the flag here.
137 */
138 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
139 return 0;
140 }
141
142 /*
143 * Update on-disk file size now that data has been written to disk.
144 */
145 STATIC int
146 xfs_setfilesize(
147 struct xfs_ioend *ioend)
148 {
149 struct xfs_inode *ip = XFS_I(ioend->io_inode);
150 struct xfs_trans *tp = ioend->io_append_trans;
151 xfs_fsize_t isize;
152
153 /*
154 * The transaction may have been allocated in the I/O submission thread,
155 * thus we need to mark ourselves as beeing in a transaction manually.
156 * Similarly for freeze protection.
157 */
158 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
159 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
160 0, 1, _THIS_IP_);
161
162 xfs_ilock(ip, XFS_ILOCK_EXCL);
163 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
164 if (!isize) {
165 xfs_iunlock(ip, XFS_ILOCK_EXCL);
166 xfs_trans_cancel(tp, 0);
167 return 0;
168 }
169
170 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
171
172 ip->i_d.di_size = isize;
173 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
174 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
175
176 return xfs_trans_commit(tp, 0);
177 }
178
179 /*
180 * Schedule IO completion handling on the final put of an ioend.
181 *
182 * If there is no work to do we might as well call it a day and free the
183 * ioend right now.
184 */
185 STATIC void
186 xfs_finish_ioend(
187 struct xfs_ioend *ioend)
188 {
189 if (atomic_dec_and_test(&ioend->io_remaining)) {
190 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
191
192 if (ioend->io_type == XFS_IO_UNWRITTEN)
193 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
194 else if (ioend->io_append_trans ||
195 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
196 queue_work(mp->m_data_workqueue, &ioend->io_work);
197 else
198 xfs_destroy_ioend(ioend);
199 }
200 }
201
202 /*
203 * IO write completion.
204 */
205 STATIC void
206 xfs_end_io(
207 struct work_struct *work)
208 {
209 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
210 struct xfs_inode *ip = XFS_I(ioend->io_inode);
211 int error = 0;
212
213 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
214 ioend->io_error = -EIO;
215 goto done;
216 }
217 if (ioend->io_error)
218 goto done;
219
220 /*
221 * For unwritten extents we need to issue transactions to convert a
222 * range to normal written extens after the data I/O has finished.
223 */
224 if (ioend->io_type == XFS_IO_UNWRITTEN) {
225 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
226 ioend->io_size);
227 } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
228 /*
229 * For direct I/O we do not know if we need to allocate blocks
230 * or not so we can't preallocate an append transaction as that
231 * results in nested reservations and log space deadlocks. Hence
232 * allocate the transaction here. While this is sub-optimal and
233 * can block IO completion for some time, we're stuck with doing
234 * it this way until we can pass the ioend to the direct IO
235 * allocation callbacks and avoid nesting that way.
236 */
237 error = xfs_setfilesize_trans_alloc(ioend);
238 if (error)
239 goto done;
240 error = xfs_setfilesize(ioend);
241 } else if (ioend->io_append_trans) {
242 error = xfs_setfilesize(ioend);
243 } else {
244 ASSERT(!xfs_ioend_is_append(ioend));
245 }
246
247 done:
248 if (error)
249 ioend->io_error = -error;
250 xfs_destroy_ioend(ioend);
251 }
252
253 /*
254 * Call IO completion handling in caller context on the final put of an ioend.
255 */
256 STATIC void
257 xfs_finish_ioend_sync(
258 struct xfs_ioend *ioend)
259 {
260 if (atomic_dec_and_test(&ioend->io_remaining))
261 xfs_end_io(&ioend->io_work);
262 }
263
264 /*
265 * Allocate and initialise an IO completion structure.
266 * We need to track unwritten extent write completion here initially.
267 * We'll need to extend this for updating the ondisk inode size later
268 * (vs. incore size).
269 */
270 STATIC xfs_ioend_t *
271 xfs_alloc_ioend(
272 struct inode *inode,
273 unsigned int type)
274 {
275 xfs_ioend_t *ioend;
276
277 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
278
279 /*
280 * Set the count to 1 initially, which will prevent an I/O
281 * completion callback from happening before we have started
282 * all the I/O from calling the completion routine too early.
283 */
284 atomic_set(&ioend->io_remaining, 1);
285 ioend->io_isasync = 0;
286 ioend->io_isdirect = 0;
287 ioend->io_error = 0;
288 ioend->io_list = NULL;
289 ioend->io_type = type;
290 ioend->io_inode = inode;
291 ioend->io_buffer_head = NULL;
292 ioend->io_buffer_tail = NULL;
293 ioend->io_offset = 0;
294 ioend->io_size = 0;
295 ioend->io_iocb = NULL;
296 ioend->io_result = 0;
297 ioend->io_append_trans = NULL;
298
299 INIT_WORK(&ioend->io_work, xfs_end_io);
300 return ioend;
301 }
302
303 STATIC int
304 xfs_map_blocks(
305 struct inode *inode,
306 loff_t offset,
307 struct xfs_bmbt_irec *imap,
308 int type,
309 int nonblocking)
310 {
311 struct xfs_inode *ip = XFS_I(inode);
312 struct xfs_mount *mp = ip->i_mount;
313 ssize_t count = 1 << inode->i_blkbits;
314 xfs_fileoff_t offset_fsb, end_fsb;
315 int error = 0;
316 int bmapi_flags = XFS_BMAPI_ENTIRE;
317 int nimaps = 1;
318
319 if (XFS_FORCED_SHUTDOWN(mp))
320 return -XFS_ERROR(EIO);
321
322 if (type == XFS_IO_UNWRITTEN)
323 bmapi_flags |= XFS_BMAPI_IGSTATE;
324
325 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
326 if (nonblocking)
327 return -XFS_ERROR(EAGAIN);
328 xfs_ilock(ip, XFS_ILOCK_SHARED);
329 }
330
331 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
332 (ip->i_df.if_flags & XFS_IFEXTENTS));
333 ASSERT(offset <= mp->m_super->s_maxbytes);
334
335 if (offset + count > mp->m_super->s_maxbytes)
336 count = mp->m_super->s_maxbytes - offset;
337 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
338 offset_fsb = XFS_B_TO_FSBT(mp, offset);
339 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
340 imap, &nimaps, bmapi_flags);
341 xfs_iunlock(ip, XFS_ILOCK_SHARED);
342
343 if (error)
344 return -XFS_ERROR(error);
345
346 if (type == XFS_IO_DELALLOC &&
347 (!nimaps || isnullstartblock(imap->br_startblock))) {
348 error = xfs_iomap_write_allocate(ip, offset, count, imap);
349 if (!error)
350 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
351 return -XFS_ERROR(error);
352 }
353
354 #ifdef DEBUG
355 if (type == XFS_IO_UNWRITTEN) {
356 ASSERT(nimaps);
357 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
358 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
359 }
360 #endif
361 if (nimaps)
362 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
363 return 0;
364 }
365
366 STATIC int
367 xfs_imap_valid(
368 struct inode *inode,
369 struct xfs_bmbt_irec *imap,
370 xfs_off_t offset)
371 {
372 offset >>= inode->i_blkbits;
373
374 return offset >= imap->br_startoff &&
375 offset < imap->br_startoff + imap->br_blockcount;
376 }
377
378 /*
379 * BIO completion handler for buffered IO.
380 */
381 STATIC void
382 xfs_end_bio(
383 struct bio *bio,
384 int error)
385 {
386 xfs_ioend_t *ioend = bio->bi_private;
387
388 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
389 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
390
391 /* Toss bio and pass work off to an xfsdatad thread */
392 bio->bi_private = NULL;
393 bio->bi_end_io = NULL;
394 bio_put(bio);
395
396 xfs_finish_ioend(ioend);
397 }
398
399 STATIC void
400 xfs_submit_ioend_bio(
401 struct writeback_control *wbc,
402 xfs_ioend_t *ioend,
403 struct bio *bio)
404 {
405 atomic_inc(&ioend->io_remaining);
406 bio->bi_private = ioend;
407 bio->bi_end_io = xfs_end_bio;
408 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
409 }
410
411 STATIC struct bio *
412 xfs_alloc_ioend_bio(
413 struct buffer_head *bh)
414 {
415 int nvecs = bio_get_nr_vecs(bh->b_bdev);
416 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
417
418 ASSERT(bio->bi_private == NULL);
419 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
420 bio->bi_bdev = bh->b_bdev;
421 return bio;
422 }
423
424 STATIC void
425 xfs_start_buffer_writeback(
426 struct buffer_head *bh)
427 {
428 ASSERT(buffer_mapped(bh));
429 ASSERT(buffer_locked(bh));
430 ASSERT(!buffer_delay(bh));
431 ASSERT(!buffer_unwritten(bh));
432
433 mark_buffer_async_write(bh);
434 set_buffer_uptodate(bh);
435 clear_buffer_dirty(bh);
436 }
437
438 STATIC void
439 xfs_start_page_writeback(
440 struct page *page,
441 int clear_dirty,
442 int buffers)
443 {
444 ASSERT(PageLocked(page));
445 ASSERT(!PageWriteback(page));
446 if (clear_dirty)
447 clear_page_dirty_for_io(page);
448 set_page_writeback(page);
449 unlock_page(page);
450 /* If no buffers on the page are to be written, finish it here */
451 if (!buffers)
452 end_page_writeback(page);
453 }
454
455 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
456 {
457 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
458 }
459
460 /*
461 * Submit all of the bios for all of the ioends we have saved up, covering the
462 * initial writepage page and also any probed pages.
463 *
464 * Because we may have multiple ioends spanning a page, we need to start
465 * writeback on all the buffers before we submit them for I/O. If we mark the
466 * buffers as we got, then we can end up with a page that only has buffers
467 * marked async write and I/O complete on can occur before we mark the other
468 * buffers async write.
469 *
470 * The end result of this is that we trip a bug in end_page_writeback() because
471 * we call it twice for the one page as the code in end_buffer_async_write()
472 * assumes that all buffers on the page are started at the same time.
473 *
474 * The fix is two passes across the ioend list - one to start writeback on the
475 * buffer_heads, and then submit them for I/O on the second pass.
476 *
477 * If @fail is non-zero, it means that we have a situation where some part of
478 * the submission process has failed after we have marked paged for writeback
479 * and unlocked them. In this situation, we need to fail the ioend chain rather
480 * than submit it to IO. This typically only happens on a filesystem shutdown.
481 */
482 STATIC void
483 xfs_submit_ioend(
484 struct writeback_control *wbc,
485 xfs_ioend_t *ioend,
486 int fail)
487 {
488 xfs_ioend_t *head = ioend;
489 xfs_ioend_t *next;
490 struct buffer_head *bh;
491 struct bio *bio;
492 sector_t lastblock = 0;
493
494 /* Pass 1 - start writeback */
495 do {
496 next = ioend->io_list;
497 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
498 xfs_start_buffer_writeback(bh);
499 } while ((ioend = next) != NULL);
500
501 /* Pass 2 - submit I/O */
502 ioend = head;
503 do {
504 next = ioend->io_list;
505 bio = NULL;
506
507 /*
508 * If we are failing the IO now, just mark the ioend with an
509 * error and finish it. This will run IO completion immediately
510 * as there is only one reference to the ioend at this point in
511 * time.
512 */
513 if (fail) {
514 ioend->io_error = -fail;
515 xfs_finish_ioend(ioend);
516 continue;
517 }
518
519 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
520
521 if (!bio) {
522 retry:
523 bio = xfs_alloc_ioend_bio(bh);
524 } else if (bh->b_blocknr != lastblock + 1) {
525 xfs_submit_ioend_bio(wbc, ioend, bio);
526 goto retry;
527 }
528
529 if (bio_add_buffer(bio, bh) != bh->b_size) {
530 xfs_submit_ioend_bio(wbc, ioend, bio);
531 goto retry;
532 }
533
534 lastblock = bh->b_blocknr;
535 }
536 if (bio)
537 xfs_submit_ioend_bio(wbc, ioend, bio);
538 xfs_finish_ioend(ioend);
539 } while ((ioend = next) != NULL);
540 }
541
542 /*
543 * Cancel submission of all buffer_heads so far in this endio.
544 * Toss the endio too. Only ever called for the initial page
545 * in a writepage request, so only ever one page.
546 */
547 STATIC void
548 xfs_cancel_ioend(
549 xfs_ioend_t *ioend)
550 {
551 xfs_ioend_t *next;
552 struct buffer_head *bh, *next_bh;
553
554 do {
555 next = ioend->io_list;
556 bh = ioend->io_buffer_head;
557 do {
558 next_bh = bh->b_private;
559 clear_buffer_async_write(bh);
560 unlock_buffer(bh);
561 } while ((bh = next_bh) != NULL);
562
563 mempool_free(ioend, xfs_ioend_pool);
564 } while ((ioend = next) != NULL);
565 }
566
567 /*
568 * Test to see if we've been building up a completion structure for
569 * earlier buffers -- if so, we try to append to this ioend if we
570 * can, otherwise we finish off any current ioend and start another.
571 * Return true if we've finished the given ioend.
572 */
573 STATIC void
574 xfs_add_to_ioend(
575 struct inode *inode,
576 struct buffer_head *bh,
577 xfs_off_t offset,
578 unsigned int type,
579 xfs_ioend_t **result,
580 int need_ioend)
581 {
582 xfs_ioend_t *ioend = *result;
583
584 if (!ioend || need_ioend || type != ioend->io_type) {
585 xfs_ioend_t *previous = *result;
586
587 ioend = xfs_alloc_ioend(inode, type);
588 ioend->io_offset = offset;
589 ioend->io_buffer_head = bh;
590 ioend->io_buffer_tail = bh;
591 if (previous)
592 previous->io_list = ioend;
593 *result = ioend;
594 } else {
595 ioend->io_buffer_tail->b_private = bh;
596 ioend->io_buffer_tail = bh;
597 }
598
599 bh->b_private = NULL;
600 ioend->io_size += bh->b_size;
601 }
602
603 STATIC void
604 xfs_map_buffer(
605 struct inode *inode,
606 struct buffer_head *bh,
607 struct xfs_bmbt_irec *imap,
608 xfs_off_t offset)
609 {
610 sector_t bn;
611 struct xfs_mount *m = XFS_I(inode)->i_mount;
612 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
613 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
614
615 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
616 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
617
618 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
619 ((offset - iomap_offset) >> inode->i_blkbits);
620
621 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
622
623 bh->b_blocknr = bn;
624 set_buffer_mapped(bh);
625 }
626
627 STATIC void
628 xfs_map_at_offset(
629 struct inode *inode,
630 struct buffer_head *bh,
631 struct xfs_bmbt_irec *imap,
632 xfs_off_t offset)
633 {
634 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
635 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
636
637 xfs_map_buffer(inode, bh, imap, offset);
638 set_buffer_mapped(bh);
639 clear_buffer_delay(bh);
640 clear_buffer_unwritten(bh);
641 }
642
643 /*
644 * Test if a given page is suitable for writing as part of an unwritten
645 * or delayed allocate extent.
646 */
647 STATIC int
648 xfs_check_page_type(
649 struct page *page,
650 unsigned int type)
651 {
652 if (PageWriteback(page))
653 return 0;
654
655 if (page->mapping && page_has_buffers(page)) {
656 struct buffer_head *bh, *head;
657 int acceptable = 0;
658
659 bh = head = page_buffers(page);
660 do {
661 if (buffer_unwritten(bh))
662 acceptable += (type == XFS_IO_UNWRITTEN);
663 else if (buffer_delay(bh))
664 acceptable += (type == XFS_IO_DELALLOC);
665 else if (buffer_dirty(bh) && buffer_mapped(bh))
666 acceptable += (type == XFS_IO_OVERWRITE);
667 else
668 break;
669 } while ((bh = bh->b_this_page) != head);
670
671 if (acceptable)
672 return 1;
673 }
674
675 return 0;
676 }
677
678 /*
679 * Allocate & map buffers for page given the extent map. Write it out.
680 * except for the original page of a writepage, this is called on
681 * delalloc/unwritten pages only, for the original page it is possible
682 * that the page has no mapping at all.
683 */
684 STATIC int
685 xfs_convert_page(
686 struct inode *inode,
687 struct page *page,
688 loff_t tindex,
689 struct xfs_bmbt_irec *imap,
690 xfs_ioend_t **ioendp,
691 struct writeback_control *wbc)
692 {
693 struct buffer_head *bh, *head;
694 xfs_off_t end_offset;
695 unsigned long p_offset;
696 unsigned int type;
697 int len, page_dirty;
698 int count = 0, done = 0, uptodate = 1;
699 xfs_off_t offset = page_offset(page);
700
701 if (page->index != tindex)
702 goto fail;
703 if (!trylock_page(page))
704 goto fail;
705 if (PageWriteback(page))
706 goto fail_unlock_page;
707 if (page->mapping != inode->i_mapping)
708 goto fail_unlock_page;
709 if (!xfs_check_page_type(page, (*ioendp)->io_type))
710 goto fail_unlock_page;
711
712 /*
713 * page_dirty is initially a count of buffers on the page before
714 * EOF and is decremented as we move each into a cleanable state.
715 *
716 * Derivation:
717 *
718 * End offset is the highest offset that this page should represent.
719 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
720 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
721 * hence give us the correct page_dirty count. On any other page,
722 * it will be zero and in that case we need page_dirty to be the
723 * count of buffers on the page.
724 */
725 end_offset = min_t(unsigned long long,
726 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
727 i_size_read(inode));
728
729 /*
730 * If the current map does not span the entire page we are about to try
731 * to write, then give up. The only way we can write a page that spans
732 * multiple mappings in a single writeback iteration is via the
733 * xfs_vm_writepage() function. Data integrity writeback requires the
734 * entire page to be written in a single attempt, otherwise the part of
735 * the page we don't write here doesn't get written as part of the data
736 * integrity sync.
737 *
738 * For normal writeback, we also don't attempt to write partial pages
739 * here as it simply means that write_cache_pages() will see it under
740 * writeback and ignore the page until some point in the future, at
741 * which time this will be the only page in the file that needs
742 * writeback. Hence for more optimal IO patterns, we should always
743 * avoid partial page writeback due to multiple mappings on a page here.
744 */
745 if (!xfs_imap_valid(inode, imap, end_offset))
746 goto fail_unlock_page;
747
748 len = 1 << inode->i_blkbits;
749 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
750 PAGE_CACHE_SIZE);
751 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
752 page_dirty = p_offset / len;
753
754 bh = head = page_buffers(page);
755 do {
756 if (offset >= end_offset)
757 break;
758 if (!buffer_uptodate(bh))
759 uptodate = 0;
760 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
761 done = 1;
762 continue;
763 }
764
765 if (buffer_unwritten(bh) || buffer_delay(bh) ||
766 buffer_mapped(bh)) {
767 if (buffer_unwritten(bh))
768 type = XFS_IO_UNWRITTEN;
769 else if (buffer_delay(bh))
770 type = XFS_IO_DELALLOC;
771 else
772 type = XFS_IO_OVERWRITE;
773
774 if (!xfs_imap_valid(inode, imap, offset)) {
775 done = 1;
776 continue;
777 }
778
779 lock_buffer(bh);
780 if (type != XFS_IO_OVERWRITE)
781 xfs_map_at_offset(inode, bh, imap, offset);
782 xfs_add_to_ioend(inode, bh, offset, type,
783 ioendp, done);
784
785 page_dirty--;
786 count++;
787 } else {
788 done = 1;
789 }
790 } while (offset += len, (bh = bh->b_this_page) != head);
791
792 if (uptodate && bh == head)
793 SetPageUptodate(page);
794
795 if (count) {
796 if (--wbc->nr_to_write <= 0 &&
797 wbc->sync_mode == WB_SYNC_NONE)
798 done = 1;
799 }
800 xfs_start_page_writeback(page, !page_dirty, count);
801
802 return done;
803 fail_unlock_page:
804 unlock_page(page);
805 fail:
806 return 1;
807 }
808
809 /*
810 * Convert & write out a cluster of pages in the same extent as defined
811 * by mp and following the start page.
812 */
813 STATIC void
814 xfs_cluster_write(
815 struct inode *inode,
816 pgoff_t tindex,
817 struct xfs_bmbt_irec *imap,
818 xfs_ioend_t **ioendp,
819 struct writeback_control *wbc,
820 pgoff_t tlast)
821 {
822 struct pagevec pvec;
823 int done = 0, i;
824
825 pagevec_init(&pvec, 0);
826 while (!done && tindex <= tlast) {
827 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
828
829 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
830 break;
831
832 for (i = 0; i < pagevec_count(&pvec); i++) {
833 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
834 imap, ioendp, wbc);
835 if (done)
836 break;
837 }
838
839 pagevec_release(&pvec);
840 cond_resched();
841 }
842 }
843
844 STATIC void
845 xfs_vm_invalidatepage(
846 struct page *page,
847 unsigned int offset,
848 unsigned int length)
849 {
850 trace_xfs_invalidatepage(page->mapping->host, page, offset,
851 length);
852 block_invalidatepage(page, offset, length);
853 }
854
855 /*
856 * If the page has delalloc buffers on it, we need to punch them out before we
857 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
858 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
859 * is done on that same region - the delalloc extent is returned when none is
860 * supposed to be there.
861 *
862 * We prevent this by truncating away the delalloc regions on the page before
863 * invalidating it. Because they are delalloc, we can do this without needing a
864 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
865 * truncation without a transaction as there is no space left for block
866 * reservation (typically why we see a ENOSPC in writeback).
867 *
868 * This is not a performance critical path, so for now just do the punching a
869 * buffer head at a time.
870 */
871 STATIC void
872 xfs_aops_discard_page(
873 struct page *page)
874 {
875 struct inode *inode = page->mapping->host;
876 struct xfs_inode *ip = XFS_I(inode);
877 struct buffer_head *bh, *head;
878 loff_t offset = page_offset(page);
879
880 if (!xfs_check_page_type(page, XFS_IO_DELALLOC))
881 goto out_invalidate;
882
883 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
884 goto out_invalidate;
885
886 xfs_alert(ip->i_mount,
887 "page discard on page %p, inode 0x%llx, offset %llu.",
888 page, ip->i_ino, offset);
889
890 xfs_ilock(ip, XFS_ILOCK_EXCL);
891 bh = head = page_buffers(page);
892 do {
893 int error;
894 xfs_fileoff_t start_fsb;
895
896 if (!buffer_delay(bh))
897 goto next_buffer;
898
899 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
900 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
901 if (error) {
902 /* something screwed, just bail */
903 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
904 xfs_alert(ip->i_mount,
905 "page discard unable to remove delalloc mapping.");
906 }
907 break;
908 }
909 next_buffer:
910 offset += 1 << inode->i_blkbits;
911
912 } while ((bh = bh->b_this_page) != head);
913
914 xfs_iunlock(ip, XFS_ILOCK_EXCL);
915 out_invalidate:
916 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
917 return;
918 }
919
920 /*
921 * Write out a dirty page.
922 *
923 * For delalloc space on the page we need to allocate space and flush it.
924 * For unwritten space on the page we need to start the conversion to
925 * regular allocated space.
926 * For any other dirty buffer heads on the page we should flush them.
927 */
928 STATIC int
929 xfs_vm_writepage(
930 struct page *page,
931 struct writeback_control *wbc)
932 {
933 struct inode *inode = page->mapping->host;
934 struct buffer_head *bh, *head;
935 struct xfs_bmbt_irec imap;
936 xfs_ioend_t *ioend = NULL, *iohead = NULL;
937 loff_t offset;
938 unsigned int type;
939 __uint64_t end_offset;
940 pgoff_t end_index, last_index;
941 ssize_t len;
942 int err, imap_valid = 0, uptodate = 1;
943 int count = 0;
944 int nonblocking = 0;
945
946 trace_xfs_writepage(inode, page, 0, 0);
947
948 ASSERT(page_has_buffers(page));
949
950 /*
951 * Refuse to write the page out if we are called from reclaim context.
952 *
953 * This avoids stack overflows when called from deeply used stacks in
954 * random callers for direct reclaim or memcg reclaim. We explicitly
955 * allow reclaim from kswapd as the stack usage there is relatively low.
956 *
957 * This should never happen except in the case of a VM regression so
958 * warn about it.
959 */
960 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
961 PF_MEMALLOC))
962 goto redirty;
963
964 /*
965 * Given that we do not allow direct reclaim to call us, we should
966 * never be called while in a filesystem transaction.
967 */
968 if (WARN_ON(current->flags & PF_FSTRANS))
969 goto redirty;
970
971 /* Is this page beyond the end of the file? */
972 offset = i_size_read(inode);
973 end_index = offset >> PAGE_CACHE_SHIFT;
974 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
975 if (page->index >= end_index) {
976 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
977
978 /*
979 * Skip the page if it is fully outside i_size, e.g. due to a
980 * truncate operation that is in progress. We must redirty the
981 * page so that reclaim stops reclaiming it. Otherwise
982 * xfs_vm_releasepage() is called on it and gets confused.
983 */
984 if (page->index >= end_index + 1 || offset_into_page == 0)
985 goto redirty;
986
987 /*
988 * The page straddles i_size. It must be zeroed out on each
989 * and every writepage invocation because it may be mmapped.
990 * "A file is mapped in multiples of the page size. For a file
991 * that is not a multiple of the page size, the remaining
992 * memory is zeroed when mapped, and writes to that region are
993 * not written out to the file."
994 */
995 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
996 }
997
998 end_offset = min_t(unsigned long long,
999 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
1000 offset);
1001 len = 1 << inode->i_blkbits;
1002
1003 bh = head = page_buffers(page);
1004 offset = page_offset(page);
1005 type = XFS_IO_OVERWRITE;
1006
1007 if (wbc->sync_mode == WB_SYNC_NONE)
1008 nonblocking = 1;
1009
1010 do {
1011 int new_ioend = 0;
1012
1013 if (offset >= end_offset)
1014 break;
1015 if (!buffer_uptodate(bh))
1016 uptodate = 0;
1017
1018 /*
1019 * set_page_dirty dirties all buffers in a page, independent
1020 * of their state. The dirty state however is entirely
1021 * meaningless for holes (!mapped && uptodate), so skip
1022 * buffers covering holes here.
1023 */
1024 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1025 imap_valid = 0;
1026 continue;
1027 }
1028
1029 if (buffer_unwritten(bh)) {
1030 if (type != XFS_IO_UNWRITTEN) {
1031 type = XFS_IO_UNWRITTEN;
1032 imap_valid = 0;
1033 }
1034 } else if (buffer_delay(bh)) {
1035 if (type != XFS_IO_DELALLOC) {
1036 type = XFS_IO_DELALLOC;
1037 imap_valid = 0;
1038 }
1039 } else if (buffer_uptodate(bh)) {
1040 if (type != XFS_IO_OVERWRITE) {
1041 type = XFS_IO_OVERWRITE;
1042 imap_valid = 0;
1043 }
1044 } else {
1045 if (PageUptodate(page))
1046 ASSERT(buffer_mapped(bh));
1047 /*
1048 * This buffer is not uptodate and will not be
1049 * written to disk. Ensure that we will put any
1050 * subsequent writeable buffers into a new
1051 * ioend.
1052 */
1053 imap_valid = 0;
1054 continue;
1055 }
1056
1057 if (imap_valid)
1058 imap_valid = xfs_imap_valid(inode, &imap, offset);
1059 if (!imap_valid) {
1060 /*
1061 * If we didn't have a valid mapping then we need to
1062 * put the new mapping into a separate ioend structure.
1063 * This ensures non-contiguous extents always have
1064 * separate ioends, which is particularly important
1065 * for unwritten extent conversion at I/O completion
1066 * time.
1067 */
1068 new_ioend = 1;
1069 err = xfs_map_blocks(inode, offset, &imap, type,
1070 nonblocking);
1071 if (err)
1072 goto error;
1073 imap_valid = xfs_imap_valid(inode, &imap, offset);
1074 }
1075 if (imap_valid) {
1076 lock_buffer(bh);
1077 if (type != XFS_IO_OVERWRITE)
1078 xfs_map_at_offset(inode, bh, &imap, offset);
1079 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1080 new_ioend);
1081 count++;
1082 }
1083
1084 if (!iohead)
1085 iohead = ioend;
1086
1087 } while (offset += len, ((bh = bh->b_this_page) != head));
1088
1089 if (uptodate && bh == head)
1090 SetPageUptodate(page);
1091
1092 xfs_start_page_writeback(page, 1, count);
1093
1094 /* if there is no IO to be submitted for this page, we are done */
1095 if (!ioend)
1096 return 0;
1097
1098 ASSERT(iohead);
1099
1100 /*
1101 * Any errors from this point onwards need tobe reported through the IO
1102 * completion path as we have marked the initial page as under writeback
1103 * and unlocked it.
1104 */
1105 if (imap_valid) {
1106 xfs_off_t end_index;
1107
1108 end_index = imap.br_startoff + imap.br_blockcount;
1109
1110 /* to bytes */
1111 end_index <<= inode->i_blkbits;
1112
1113 /* to pages */
1114 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1115
1116 /* check against file size */
1117 if (end_index > last_index)
1118 end_index = last_index;
1119
1120 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1121 wbc, end_index);
1122 }
1123
1124
1125 /*
1126 * Reserve log space if we might write beyond the on-disk inode size.
1127 */
1128 err = 0;
1129 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1130 err = xfs_setfilesize_trans_alloc(ioend);
1131
1132 xfs_submit_ioend(wbc, iohead, err);
1133
1134 return 0;
1135
1136 error:
1137 if (iohead)
1138 xfs_cancel_ioend(iohead);
1139
1140 if (err == -EAGAIN)
1141 goto redirty;
1142
1143 xfs_aops_discard_page(page);
1144 ClearPageUptodate(page);
1145 unlock_page(page);
1146 return err;
1147
1148 redirty:
1149 redirty_page_for_writepage(wbc, page);
1150 unlock_page(page);
1151 return 0;
1152 }
1153
1154 STATIC int
1155 xfs_vm_writepages(
1156 struct address_space *mapping,
1157 struct writeback_control *wbc)
1158 {
1159 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1160 return generic_writepages(mapping, wbc);
1161 }
1162
1163 /*
1164 * Called to move a page into cleanable state - and from there
1165 * to be released. The page should already be clean. We always
1166 * have buffer heads in this call.
1167 *
1168 * Returns 1 if the page is ok to release, 0 otherwise.
1169 */
1170 STATIC int
1171 xfs_vm_releasepage(
1172 struct page *page,
1173 gfp_t gfp_mask)
1174 {
1175 int delalloc, unwritten;
1176
1177 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1178
1179 xfs_count_page_state(page, &delalloc, &unwritten);
1180
1181 if (WARN_ON(delalloc))
1182 return 0;
1183 if (WARN_ON(unwritten))
1184 return 0;
1185
1186 return try_to_free_buffers(page);
1187 }
1188
1189 STATIC int
1190 __xfs_get_blocks(
1191 struct inode *inode,
1192 sector_t iblock,
1193 struct buffer_head *bh_result,
1194 int create,
1195 int direct)
1196 {
1197 struct xfs_inode *ip = XFS_I(inode);
1198 struct xfs_mount *mp = ip->i_mount;
1199 xfs_fileoff_t offset_fsb, end_fsb;
1200 int error = 0;
1201 int lockmode = 0;
1202 struct xfs_bmbt_irec imap;
1203 int nimaps = 1;
1204 xfs_off_t offset;
1205 ssize_t size;
1206 int new = 0;
1207
1208 if (XFS_FORCED_SHUTDOWN(mp))
1209 return -XFS_ERROR(EIO);
1210
1211 offset = (xfs_off_t)iblock << inode->i_blkbits;
1212 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1213 size = bh_result->b_size;
1214
1215 if (!create && direct && offset >= i_size_read(inode))
1216 return 0;
1217
1218 /*
1219 * Direct I/O is usually done on preallocated files, so try getting
1220 * a block mapping without an exclusive lock first. For buffered
1221 * writes we already have the exclusive iolock anyway, so avoiding
1222 * a lock roundtrip here by taking the ilock exclusive from the
1223 * beginning is a useful micro optimization.
1224 */
1225 if (create && !direct) {
1226 lockmode = XFS_ILOCK_EXCL;
1227 xfs_ilock(ip, lockmode);
1228 } else {
1229 lockmode = xfs_ilock_map_shared(ip);
1230 }
1231
1232 ASSERT(offset <= mp->m_super->s_maxbytes);
1233 if (offset + size > mp->m_super->s_maxbytes)
1234 size = mp->m_super->s_maxbytes - offset;
1235 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1236 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1237
1238 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1239 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1240 if (error)
1241 goto out_unlock;
1242
1243 if (create &&
1244 (!nimaps ||
1245 (imap.br_startblock == HOLESTARTBLOCK ||
1246 imap.br_startblock == DELAYSTARTBLOCK))) {
1247 if (direct || xfs_get_extsz_hint(ip)) {
1248 /*
1249 * Drop the ilock in preparation for starting the block
1250 * allocation transaction. It will be retaken
1251 * exclusively inside xfs_iomap_write_direct for the
1252 * actual allocation.
1253 */
1254 xfs_iunlock(ip, lockmode);
1255 error = xfs_iomap_write_direct(ip, offset, size,
1256 &imap, nimaps);
1257 if (error)
1258 return -error;
1259 new = 1;
1260 } else {
1261 /*
1262 * Delalloc reservations do not require a transaction,
1263 * we can go on without dropping the lock here. If we
1264 * are allocating a new delalloc block, make sure that
1265 * we set the new flag so that we mark the buffer new so
1266 * that we know that it is newly allocated if the write
1267 * fails.
1268 */
1269 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1270 new = 1;
1271 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1272 if (error)
1273 goto out_unlock;
1274
1275 xfs_iunlock(ip, lockmode);
1276 }
1277
1278 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1279 } else if (nimaps) {
1280 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1281 xfs_iunlock(ip, lockmode);
1282 } else {
1283 trace_xfs_get_blocks_notfound(ip, offset, size);
1284 goto out_unlock;
1285 }
1286
1287 if (imap.br_startblock != HOLESTARTBLOCK &&
1288 imap.br_startblock != DELAYSTARTBLOCK) {
1289 /*
1290 * For unwritten extents do not report a disk address on
1291 * the read case (treat as if we're reading into a hole).
1292 */
1293 if (create || !ISUNWRITTEN(&imap))
1294 xfs_map_buffer(inode, bh_result, &imap, offset);
1295 if (create && ISUNWRITTEN(&imap)) {
1296 if (direct)
1297 bh_result->b_private = inode;
1298 set_buffer_unwritten(bh_result);
1299 }
1300 }
1301
1302 /*
1303 * If this is a realtime file, data may be on a different device.
1304 * to that pointed to from the buffer_head b_bdev currently.
1305 */
1306 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1307
1308 /*
1309 * If we previously allocated a block out beyond eof and we are now
1310 * coming back to use it then we will need to flag it as new even if it
1311 * has a disk address.
1312 *
1313 * With sub-block writes into unwritten extents we also need to mark
1314 * the buffer as new so that the unwritten parts of the buffer gets
1315 * correctly zeroed.
1316 */
1317 if (create &&
1318 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1319 (offset >= i_size_read(inode)) ||
1320 (new || ISUNWRITTEN(&imap))))
1321 set_buffer_new(bh_result);
1322
1323 if (imap.br_startblock == DELAYSTARTBLOCK) {
1324 BUG_ON(direct);
1325 if (create) {
1326 set_buffer_uptodate(bh_result);
1327 set_buffer_mapped(bh_result);
1328 set_buffer_delay(bh_result);
1329 }
1330 }
1331
1332 /*
1333 * If this is O_DIRECT or the mpage code calling tell them how large
1334 * the mapping is, so that we can avoid repeated get_blocks calls.
1335 */
1336 if (direct || size > (1 << inode->i_blkbits)) {
1337 xfs_off_t mapping_size;
1338
1339 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1340 mapping_size <<= inode->i_blkbits;
1341
1342 ASSERT(mapping_size > 0);
1343 if (mapping_size > size)
1344 mapping_size = size;
1345 if (mapping_size > LONG_MAX)
1346 mapping_size = LONG_MAX;
1347
1348 bh_result->b_size = mapping_size;
1349 }
1350
1351 return 0;
1352
1353 out_unlock:
1354 xfs_iunlock(ip, lockmode);
1355 return -error;
1356 }
1357
1358 int
1359 xfs_get_blocks(
1360 struct inode *inode,
1361 sector_t iblock,
1362 struct buffer_head *bh_result,
1363 int create)
1364 {
1365 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1366 }
1367
1368 STATIC int
1369 xfs_get_blocks_direct(
1370 struct inode *inode,
1371 sector_t iblock,
1372 struct buffer_head *bh_result,
1373 int create)
1374 {
1375 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1376 }
1377
1378 /*
1379 * Complete a direct I/O write request.
1380 *
1381 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1382 * need to issue a transaction to convert the range from unwritten to written
1383 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1384 * to do this and we are done. But in case this was a successful AIO
1385 * request this handler is called from interrupt context, from which we
1386 * can't start transactions. In that case offload the I/O completion to
1387 * the workqueues we also use for buffered I/O completion.
1388 */
1389 STATIC void
1390 xfs_end_io_direct_write(
1391 struct kiocb *iocb,
1392 loff_t offset,
1393 ssize_t size,
1394 void *private,
1395 int ret,
1396 bool is_async)
1397 {
1398 struct xfs_ioend *ioend = iocb->private;
1399
1400 /*
1401 * While the generic direct I/O code updates the inode size, it does
1402 * so only after the end_io handler is called, which means our
1403 * end_io handler thinks the on-disk size is outside the in-core
1404 * size. To prevent this just update it a little bit earlier here.
1405 */
1406 if (offset + size > i_size_read(ioend->io_inode))
1407 i_size_write(ioend->io_inode, offset + size);
1408
1409 /*
1410 * blockdev_direct_IO can return an error even after the I/O
1411 * completion handler was called. Thus we need to protect
1412 * against double-freeing.
1413 */
1414 iocb->private = NULL;
1415
1416 ioend->io_offset = offset;
1417 ioend->io_size = size;
1418 ioend->io_iocb = iocb;
1419 ioend->io_result = ret;
1420 if (private && size > 0)
1421 ioend->io_type = XFS_IO_UNWRITTEN;
1422
1423 if (is_async) {
1424 ioend->io_isasync = 1;
1425 xfs_finish_ioend(ioend);
1426 } else {
1427 xfs_finish_ioend_sync(ioend);
1428 }
1429 }
1430
1431 STATIC ssize_t
1432 xfs_vm_direct_IO(
1433 int rw,
1434 struct kiocb *iocb,
1435 const struct iovec *iov,
1436 loff_t offset,
1437 unsigned long nr_segs)
1438 {
1439 struct inode *inode = iocb->ki_filp->f_mapping->host;
1440 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1441 struct xfs_ioend *ioend = NULL;
1442 ssize_t ret;
1443
1444 if (rw & WRITE) {
1445 size_t size = iov_length(iov, nr_segs);
1446
1447 /*
1448 * We cannot preallocate a size update transaction here as we
1449 * don't know whether allocation is necessary or not. Hence we
1450 * can only tell IO completion that one is necessary if we are
1451 * not doing unwritten extent conversion.
1452 */
1453 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
1454 if (offset + size > XFS_I(inode)->i_d.di_size)
1455 ioend->io_isdirect = 1;
1456
1457 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1458 offset, nr_segs,
1459 xfs_get_blocks_direct,
1460 xfs_end_io_direct_write, NULL, 0);
1461 if (ret != -EIOCBQUEUED && iocb->private)
1462 goto out_destroy_ioend;
1463 } else {
1464 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1465 offset, nr_segs,
1466 xfs_get_blocks_direct,
1467 NULL, NULL, 0);
1468 }
1469
1470 return ret;
1471
1472 out_destroy_ioend:
1473 xfs_destroy_ioend(ioend);
1474 return ret;
1475 }
1476
1477 /*
1478 * Punch out the delalloc blocks we have already allocated.
1479 *
1480 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1481 * as the page is still locked at this point.
1482 */
1483 STATIC void
1484 xfs_vm_kill_delalloc_range(
1485 struct inode *inode,
1486 loff_t start,
1487 loff_t end)
1488 {
1489 struct xfs_inode *ip = XFS_I(inode);
1490 xfs_fileoff_t start_fsb;
1491 xfs_fileoff_t end_fsb;
1492 int error;
1493
1494 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1495 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1496 if (end_fsb <= start_fsb)
1497 return;
1498
1499 xfs_ilock(ip, XFS_ILOCK_EXCL);
1500 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1501 end_fsb - start_fsb);
1502 if (error) {
1503 /* something screwed, just bail */
1504 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1505 xfs_alert(ip->i_mount,
1506 "xfs_vm_write_failed: unable to clean up ino %lld",
1507 ip->i_ino);
1508 }
1509 }
1510 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1511 }
1512
1513 STATIC void
1514 xfs_vm_write_failed(
1515 struct inode *inode,
1516 struct page *page,
1517 loff_t pos,
1518 unsigned len)
1519 {
1520 loff_t block_offset;
1521 loff_t block_start;
1522 loff_t block_end;
1523 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1524 loff_t to = from + len;
1525 struct buffer_head *bh, *head;
1526
1527 /*
1528 * The request pos offset might be 32 or 64 bit, this is all fine
1529 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1530 * platform, the high 32-bit will be masked off if we evaluate the
1531 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1532 * 0xfffff000 as an unsigned long, hence the result is incorrect
1533 * which could cause the following ASSERT failed in most cases.
1534 * In order to avoid this, we can evaluate the block_offset of the
1535 * start of the page by using shifts rather than masks the mismatch
1536 * problem.
1537 */
1538 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1539
1540 ASSERT(block_offset + from == pos);
1541
1542 head = page_buffers(page);
1543 block_start = 0;
1544 for (bh = head; bh != head || !block_start;
1545 bh = bh->b_this_page, block_start = block_end,
1546 block_offset += bh->b_size) {
1547 block_end = block_start + bh->b_size;
1548
1549 /* skip buffers before the write */
1550 if (block_end <= from)
1551 continue;
1552
1553 /* if the buffer is after the write, we're done */
1554 if (block_start >= to)
1555 break;
1556
1557 if (!buffer_delay(bh))
1558 continue;
1559
1560 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1561 continue;
1562
1563 xfs_vm_kill_delalloc_range(inode, block_offset,
1564 block_offset + bh->b_size);
1565 }
1566
1567 }
1568
1569 /*
1570 * This used to call block_write_begin(), but it unlocks and releases the page
1571 * on error, and we need that page to be able to punch stale delalloc blocks out
1572 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1573 * the appropriate point.
1574 */
1575 STATIC int
1576 xfs_vm_write_begin(
1577 struct file *file,
1578 struct address_space *mapping,
1579 loff_t pos,
1580 unsigned len,
1581 unsigned flags,
1582 struct page **pagep,
1583 void **fsdata)
1584 {
1585 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1586 struct page *page;
1587 int status;
1588
1589 ASSERT(len <= PAGE_CACHE_SIZE);
1590
1591 page = grab_cache_page_write_begin(mapping, index,
1592 flags | AOP_FLAG_NOFS);
1593 if (!page)
1594 return -ENOMEM;
1595
1596 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1597 if (unlikely(status)) {
1598 struct inode *inode = mapping->host;
1599
1600 xfs_vm_write_failed(inode, page, pos, len);
1601 unlock_page(page);
1602
1603 if (pos + len > i_size_read(inode))
1604 truncate_pagecache(inode, pos + len, i_size_read(inode));
1605
1606 page_cache_release(page);
1607 page = NULL;
1608 }
1609
1610 *pagep = page;
1611 return status;
1612 }
1613
1614 /*
1615 * On failure, we only need to kill delalloc blocks beyond EOF because they
1616 * will never be written. For blocks within EOF, generic_write_end() zeros them
1617 * so they are safe to leave alone and be written with all the other valid data.
1618 */
1619 STATIC int
1620 xfs_vm_write_end(
1621 struct file *file,
1622 struct address_space *mapping,
1623 loff_t pos,
1624 unsigned len,
1625 unsigned copied,
1626 struct page *page,
1627 void *fsdata)
1628 {
1629 int ret;
1630
1631 ASSERT(len <= PAGE_CACHE_SIZE);
1632
1633 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1634 if (unlikely(ret < len)) {
1635 struct inode *inode = mapping->host;
1636 size_t isize = i_size_read(inode);
1637 loff_t to = pos + len;
1638
1639 if (to > isize) {
1640 truncate_pagecache(inode, to, isize);
1641 xfs_vm_kill_delalloc_range(inode, isize, to);
1642 }
1643 }
1644 return ret;
1645 }
1646
1647 STATIC sector_t
1648 xfs_vm_bmap(
1649 struct address_space *mapping,
1650 sector_t block)
1651 {
1652 struct inode *inode = (struct inode *)mapping->host;
1653 struct xfs_inode *ip = XFS_I(inode);
1654
1655 trace_xfs_vm_bmap(XFS_I(inode));
1656 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1657 filemap_write_and_wait(mapping);
1658 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1659 return generic_block_bmap(mapping, block, xfs_get_blocks);
1660 }
1661
1662 STATIC int
1663 xfs_vm_readpage(
1664 struct file *unused,
1665 struct page *page)
1666 {
1667 return mpage_readpage(page, xfs_get_blocks);
1668 }
1669
1670 STATIC int
1671 xfs_vm_readpages(
1672 struct file *unused,
1673 struct address_space *mapping,
1674 struct list_head *pages,
1675 unsigned nr_pages)
1676 {
1677 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1678 }
1679
1680 const struct address_space_operations xfs_address_space_operations = {
1681 .readpage = xfs_vm_readpage,
1682 .readpages = xfs_vm_readpages,
1683 .writepage = xfs_vm_writepage,
1684 .writepages = xfs_vm_writepages,
1685 .releasepage = xfs_vm_releasepage,
1686 .invalidatepage = xfs_vm_invalidatepage,
1687 .write_begin = xfs_vm_write_begin,
1688 .write_end = xfs_vm_write_end,
1689 .bmap = xfs_vm_bmap,
1690 .direct_IO = xfs_vm_direct_IO,
1691 .migratepage = buffer_migrate_page,
1692 .is_partially_uptodate = block_is_partially_uptodate,
1693 .error_remove_page = generic_error_remove_page,
1694 };
This page took 0.100639 seconds and 5 git commands to generate.