Merge tag 'please-pull-pstore' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl...
[deliverable/linux.git] / fs / xfs / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_trans.h"
28 #include "xfs_inode_item.h"
29 #include "xfs_alloc.h"
30 #include "xfs_error.h"
31 #include "xfs_iomap.h"
32 #include "xfs_trace.h"
33 #include "xfs_bmap.h"
34 #include "xfs_bmap_util.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_dinode.h"
37 #include <linux/aio.h>
38 #include <linux/gfp.h>
39 #include <linux/mpage.h>
40 #include <linux/pagevec.h>
41 #include <linux/writeback.h>
42
43 void
44 xfs_count_page_state(
45 struct page *page,
46 int *delalloc,
47 int *unwritten)
48 {
49 struct buffer_head *bh, *head;
50
51 *delalloc = *unwritten = 0;
52
53 bh = head = page_buffers(page);
54 do {
55 if (buffer_unwritten(bh))
56 (*unwritten) = 1;
57 else if (buffer_delay(bh))
58 (*delalloc) = 1;
59 } while ((bh = bh->b_this_page) != head);
60 }
61
62 STATIC struct block_device *
63 xfs_find_bdev_for_inode(
64 struct inode *inode)
65 {
66 struct xfs_inode *ip = XFS_I(inode);
67 struct xfs_mount *mp = ip->i_mount;
68
69 if (XFS_IS_REALTIME_INODE(ip))
70 return mp->m_rtdev_targp->bt_bdev;
71 else
72 return mp->m_ddev_targp->bt_bdev;
73 }
74
75 /*
76 * We're now finished for good with this ioend structure.
77 * Update the page state via the associated buffer_heads,
78 * release holds on the inode and bio, and finally free
79 * up memory. Do not use the ioend after this.
80 */
81 STATIC void
82 xfs_destroy_ioend(
83 xfs_ioend_t *ioend)
84 {
85 struct buffer_head *bh, *next;
86
87 for (bh = ioend->io_buffer_head; bh; bh = next) {
88 next = bh->b_private;
89 bh->b_end_io(bh, !ioend->io_error);
90 }
91
92 mempool_free(ioend, xfs_ioend_pool);
93 }
94
95 /*
96 * Fast and loose check if this write could update the on-disk inode size.
97 */
98 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
99 {
100 return ioend->io_offset + ioend->io_size >
101 XFS_I(ioend->io_inode)->i_d.di_size;
102 }
103
104 STATIC int
105 xfs_setfilesize_trans_alloc(
106 struct xfs_ioend *ioend)
107 {
108 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
109 struct xfs_trans *tp;
110 int error;
111
112 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
113
114 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
115 if (error) {
116 xfs_trans_cancel(tp, 0);
117 return error;
118 }
119
120 ioend->io_append_trans = tp;
121
122 /*
123 * We may pass freeze protection with a transaction. So tell lockdep
124 * we released it.
125 */
126 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
127 1, _THIS_IP_);
128 /*
129 * We hand off the transaction to the completion thread now, so
130 * clear the flag here.
131 */
132 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
133 return 0;
134 }
135
136 /*
137 * Update on-disk file size now that data has been written to disk.
138 */
139 STATIC int
140 xfs_setfilesize(
141 struct xfs_ioend *ioend)
142 {
143 struct xfs_inode *ip = XFS_I(ioend->io_inode);
144 struct xfs_trans *tp = ioend->io_append_trans;
145 xfs_fsize_t isize;
146
147 /*
148 * The transaction may have been allocated in the I/O submission thread,
149 * thus we need to mark ourselves as beeing in a transaction manually.
150 * Similarly for freeze protection.
151 */
152 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
153 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
154 0, 1, _THIS_IP_);
155
156 xfs_ilock(ip, XFS_ILOCK_EXCL);
157 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
158 if (!isize) {
159 xfs_iunlock(ip, XFS_ILOCK_EXCL);
160 xfs_trans_cancel(tp, 0);
161 return 0;
162 }
163
164 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
165
166 ip->i_d.di_size = isize;
167 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
168 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
169
170 return xfs_trans_commit(tp, 0);
171 }
172
173 /*
174 * Schedule IO completion handling on the final put of an ioend.
175 *
176 * If there is no work to do we might as well call it a day and free the
177 * ioend right now.
178 */
179 STATIC void
180 xfs_finish_ioend(
181 struct xfs_ioend *ioend)
182 {
183 if (atomic_dec_and_test(&ioend->io_remaining)) {
184 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
185
186 if (ioend->io_type == XFS_IO_UNWRITTEN)
187 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
188 else if (ioend->io_append_trans ||
189 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
190 queue_work(mp->m_data_workqueue, &ioend->io_work);
191 else
192 xfs_destroy_ioend(ioend);
193 }
194 }
195
196 /*
197 * IO write completion.
198 */
199 STATIC void
200 xfs_end_io(
201 struct work_struct *work)
202 {
203 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
204 struct xfs_inode *ip = XFS_I(ioend->io_inode);
205 int error = 0;
206
207 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
208 ioend->io_error = -EIO;
209 goto done;
210 }
211 if (ioend->io_error)
212 goto done;
213
214 /*
215 * For unwritten extents we need to issue transactions to convert a
216 * range to normal written extens after the data I/O has finished.
217 */
218 if (ioend->io_type == XFS_IO_UNWRITTEN) {
219 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
220 ioend->io_size);
221 } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
222 /*
223 * For direct I/O we do not know if we need to allocate blocks
224 * or not so we can't preallocate an append transaction as that
225 * results in nested reservations and log space deadlocks. Hence
226 * allocate the transaction here. While this is sub-optimal and
227 * can block IO completion for some time, we're stuck with doing
228 * it this way until we can pass the ioend to the direct IO
229 * allocation callbacks and avoid nesting that way.
230 */
231 error = xfs_setfilesize_trans_alloc(ioend);
232 if (error)
233 goto done;
234 error = xfs_setfilesize(ioend);
235 } else if (ioend->io_append_trans) {
236 error = xfs_setfilesize(ioend);
237 } else {
238 ASSERT(!xfs_ioend_is_append(ioend));
239 }
240
241 done:
242 if (error)
243 ioend->io_error = error;
244 xfs_destroy_ioend(ioend);
245 }
246
247 /*
248 * Call IO completion handling in caller context on the final put of an ioend.
249 */
250 STATIC void
251 xfs_finish_ioend_sync(
252 struct xfs_ioend *ioend)
253 {
254 if (atomic_dec_and_test(&ioend->io_remaining))
255 xfs_end_io(&ioend->io_work);
256 }
257
258 /*
259 * Allocate and initialise an IO completion structure.
260 * We need to track unwritten extent write completion here initially.
261 * We'll need to extend this for updating the ondisk inode size later
262 * (vs. incore size).
263 */
264 STATIC xfs_ioend_t *
265 xfs_alloc_ioend(
266 struct inode *inode,
267 unsigned int type)
268 {
269 xfs_ioend_t *ioend;
270
271 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
272
273 /*
274 * Set the count to 1 initially, which will prevent an I/O
275 * completion callback from happening before we have started
276 * all the I/O from calling the completion routine too early.
277 */
278 atomic_set(&ioend->io_remaining, 1);
279 ioend->io_isdirect = 0;
280 ioend->io_error = 0;
281 ioend->io_list = NULL;
282 ioend->io_type = type;
283 ioend->io_inode = inode;
284 ioend->io_buffer_head = NULL;
285 ioend->io_buffer_tail = NULL;
286 ioend->io_offset = 0;
287 ioend->io_size = 0;
288 ioend->io_append_trans = NULL;
289
290 INIT_WORK(&ioend->io_work, xfs_end_io);
291 return ioend;
292 }
293
294 STATIC int
295 xfs_map_blocks(
296 struct inode *inode,
297 loff_t offset,
298 struct xfs_bmbt_irec *imap,
299 int type,
300 int nonblocking)
301 {
302 struct xfs_inode *ip = XFS_I(inode);
303 struct xfs_mount *mp = ip->i_mount;
304 ssize_t count = 1 << inode->i_blkbits;
305 xfs_fileoff_t offset_fsb, end_fsb;
306 int error = 0;
307 int bmapi_flags = XFS_BMAPI_ENTIRE;
308 int nimaps = 1;
309
310 if (XFS_FORCED_SHUTDOWN(mp))
311 return -EIO;
312
313 if (type == XFS_IO_UNWRITTEN)
314 bmapi_flags |= XFS_BMAPI_IGSTATE;
315
316 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
317 if (nonblocking)
318 return -EAGAIN;
319 xfs_ilock(ip, XFS_ILOCK_SHARED);
320 }
321
322 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
323 (ip->i_df.if_flags & XFS_IFEXTENTS));
324 ASSERT(offset <= mp->m_super->s_maxbytes);
325
326 if (offset + count > mp->m_super->s_maxbytes)
327 count = mp->m_super->s_maxbytes - offset;
328 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
329 offset_fsb = XFS_B_TO_FSBT(mp, offset);
330 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
331 imap, &nimaps, bmapi_flags);
332 xfs_iunlock(ip, XFS_ILOCK_SHARED);
333
334 if (error)
335 return error;
336
337 if (type == XFS_IO_DELALLOC &&
338 (!nimaps || isnullstartblock(imap->br_startblock))) {
339 error = xfs_iomap_write_allocate(ip, offset, imap);
340 if (!error)
341 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
342 return error;
343 }
344
345 #ifdef DEBUG
346 if (type == XFS_IO_UNWRITTEN) {
347 ASSERT(nimaps);
348 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
349 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
350 }
351 #endif
352 if (nimaps)
353 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
354 return 0;
355 }
356
357 STATIC int
358 xfs_imap_valid(
359 struct inode *inode,
360 struct xfs_bmbt_irec *imap,
361 xfs_off_t offset)
362 {
363 offset >>= inode->i_blkbits;
364
365 return offset >= imap->br_startoff &&
366 offset < imap->br_startoff + imap->br_blockcount;
367 }
368
369 /*
370 * BIO completion handler for buffered IO.
371 */
372 STATIC void
373 xfs_end_bio(
374 struct bio *bio,
375 int error)
376 {
377 xfs_ioend_t *ioend = bio->bi_private;
378
379 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
380 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
381
382 /* Toss bio and pass work off to an xfsdatad thread */
383 bio->bi_private = NULL;
384 bio->bi_end_io = NULL;
385 bio_put(bio);
386
387 xfs_finish_ioend(ioend);
388 }
389
390 STATIC void
391 xfs_submit_ioend_bio(
392 struct writeback_control *wbc,
393 xfs_ioend_t *ioend,
394 struct bio *bio)
395 {
396 atomic_inc(&ioend->io_remaining);
397 bio->bi_private = ioend;
398 bio->bi_end_io = xfs_end_bio;
399 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
400 }
401
402 STATIC struct bio *
403 xfs_alloc_ioend_bio(
404 struct buffer_head *bh)
405 {
406 int nvecs = bio_get_nr_vecs(bh->b_bdev);
407 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
408
409 ASSERT(bio->bi_private == NULL);
410 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
411 bio->bi_bdev = bh->b_bdev;
412 return bio;
413 }
414
415 STATIC void
416 xfs_start_buffer_writeback(
417 struct buffer_head *bh)
418 {
419 ASSERT(buffer_mapped(bh));
420 ASSERT(buffer_locked(bh));
421 ASSERT(!buffer_delay(bh));
422 ASSERT(!buffer_unwritten(bh));
423
424 mark_buffer_async_write(bh);
425 set_buffer_uptodate(bh);
426 clear_buffer_dirty(bh);
427 }
428
429 STATIC void
430 xfs_start_page_writeback(
431 struct page *page,
432 int clear_dirty,
433 int buffers)
434 {
435 ASSERT(PageLocked(page));
436 ASSERT(!PageWriteback(page));
437
438 /*
439 * if the page was not fully cleaned, we need to ensure that the higher
440 * layers come back to it correctly. That means we need to keep the page
441 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
442 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
443 * write this page in this writeback sweep will be made.
444 */
445 if (clear_dirty) {
446 clear_page_dirty_for_io(page);
447 set_page_writeback(page);
448 } else
449 set_page_writeback_keepwrite(page);
450
451 unlock_page(page);
452
453 /* If no buffers on the page are to be written, finish it here */
454 if (!buffers)
455 end_page_writeback(page);
456 }
457
458 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
459 {
460 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
461 }
462
463 /*
464 * Submit all of the bios for all of the ioends we have saved up, covering the
465 * initial writepage page and also any probed pages.
466 *
467 * Because we may have multiple ioends spanning a page, we need to start
468 * writeback on all the buffers before we submit them for I/O. If we mark the
469 * buffers as we got, then we can end up with a page that only has buffers
470 * marked async write and I/O complete on can occur before we mark the other
471 * buffers async write.
472 *
473 * The end result of this is that we trip a bug in end_page_writeback() because
474 * we call it twice for the one page as the code in end_buffer_async_write()
475 * assumes that all buffers on the page are started at the same time.
476 *
477 * The fix is two passes across the ioend list - one to start writeback on the
478 * buffer_heads, and then submit them for I/O on the second pass.
479 *
480 * If @fail is non-zero, it means that we have a situation where some part of
481 * the submission process has failed after we have marked paged for writeback
482 * and unlocked them. In this situation, we need to fail the ioend chain rather
483 * than submit it to IO. This typically only happens on a filesystem shutdown.
484 */
485 STATIC void
486 xfs_submit_ioend(
487 struct writeback_control *wbc,
488 xfs_ioend_t *ioend,
489 int fail)
490 {
491 xfs_ioend_t *head = ioend;
492 xfs_ioend_t *next;
493 struct buffer_head *bh;
494 struct bio *bio;
495 sector_t lastblock = 0;
496
497 /* Pass 1 - start writeback */
498 do {
499 next = ioend->io_list;
500 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
501 xfs_start_buffer_writeback(bh);
502 } while ((ioend = next) != NULL);
503
504 /* Pass 2 - submit I/O */
505 ioend = head;
506 do {
507 next = ioend->io_list;
508 bio = NULL;
509
510 /*
511 * If we are failing the IO now, just mark the ioend with an
512 * error and finish it. This will run IO completion immediately
513 * as there is only one reference to the ioend at this point in
514 * time.
515 */
516 if (fail) {
517 ioend->io_error = fail;
518 xfs_finish_ioend(ioend);
519 continue;
520 }
521
522 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
523
524 if (!bio) {
525 retry:
526 bio = xfs_alloc_ioend_bio(bh);
527 } else if (bh->b_blocknr != lastblock + 1) {
528 xfs_submit_ioend_bio(wbc, ioend, bio);
529 goto retry;
530 }
531
532 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
533 xfs_submit_ioend_bio(wbc, ioend, bio);
534 goto retry;
535 }
536
537 lastblock = bh->b_blocknr;
538 }
539 if (bio)
540 xfs_submit_ioend_bio(wbc, ioend, bio);
541 xfs_finish_ioend(ioend);
542 } while ((ioend = next) != NULL);
543 }
544
545 /*
546 * Cancel submission of all buffer_heads so far in this endio.
547 * Toss the endio too. Only ever called for the initial page
548 * in a writepage request, so only ever one page.
549 */
550 STATIC void
551 xfs_cancel_ioend(
552 xfs_ioend_t *ioend)
553 {
554 xfs_ioend_t *next;
555 struct buffer_head *bh, *next_bh;
556
557 do {
558 next = ioend->io_list;
559 bh = ioend->io_buffer_head;
560 do {
561 next_bh = bh->b_private;
562 clear_buffer_async_write(bh);
563 /*
564 * The unwritten flag is cleared when added to the
565 * ioend. We're not submitting for I/O so mark the
566 * buffer unwritten again for next time around.
567 */
568 if (ioend->io_type == XFS_IO_UNWRITTEN)
569 set_buffer_unwritten(bh);
570 unlock_buffer(bh);
571 } while ((bh = next_bh) != NULL);
572
573 mempool_free(ioend, xfs_ioend_pool);
574 } while ((ioend = next) != NULL);
575 }
576
577 /*
578 * Test to see if we've been building up a completion structure for
579 * earlier buffers -- if so, we try to append to this ioend if we
580 * can, otherwise we finish off any current ioend and start another.
581 * Return true if we've finished the given ioend.
582 */
583 STATIC void
584 xfs_add_to_ioend(
585 struct inode *inode,
586 struct buffer_head *bh,
587 xfs_off_t offset,
588 unsigned int type,
589 xfs_ioend_t **result,
590 int need_ioend)
591 {
592 xfs_ioend_t *ioend = *result;
593
594 if (!ioend || need_ioend || type != ioend->io_type) {
595 xfs_ioend_t *previous = *result;
596
597 ioend = xfs_alloc_ioend(inode, type);
598 ioend->io_offset = offset;
599 ioend->io_buffer_head = bh;
600 ioend->io_buffer_tail = bh;
601 if (previous)
602 previous->io_list = ioend;
603 *result = ioend;
604 } else {
605 ioend->io_buffer_tail->b_private = bh;
606 ioend->io_buffer_tail = bh;
607 }
608
609 bh->b_private = NULL;
610 ioend->io_size += bh->b_size;
611 }
612
613 STATIC void
614 xfs_map_buffer(
615 struct inode *inode,
616 struct buffer_head *bh,
617 struct xfs_bmbt_irec *imap,
618 xfs_off_t offset)
619 {
620 sector_t bn;
621 struct xfs_mount *m = XFS_I(inode)->i_mount;
622 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
623 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
624
625 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
626 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
627
628 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
629 ((offset - iomap_offset) >> inode->i_blkbits);
630
631 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
632
633 bh->b_blocknr = bn;
634 set_buffer_mapped(bh);
635 }
636
637 STATIC void
638 xfs_map_at_offset(
639 struct inode *inode,
640 struct buffer_head *bh,
641 struct xfs_bmbt_irec *imap,
642 xfs_off_t offset)
643 {
644 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
645 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
646
647 xfs_map_buffer(inode, bh, imap, offset);
648 set_buffer_mapped(bh);
649 clear_buffer_delay(bh);
650 clear_buffer_unwritten(bh);
651 }
652
653 /*
654 * Test if a given page contains at least one buffer of a given @type.
655 * If @check_all_buffers is true, then we walk all the buffers in the page to
656 * try to find one of the type passed in. If it is not set, then the caller only
657 * needs to check the first buffer on the page for a match.
658 */
659 STATIC bool
660 xfs_check_page_type(
661 struct page *page,
662 unsigned int type,
663 bool check_all_buffers)
664 {
665 struct buffer_head *bh;
666 struct buffer_head *head;
667
668 if (PageWriteback(page))
669 return false;
670 if (!page->mapping)
671 return false;
672 if (!page_has_buffers(page))
673 return false;
674
675 bh = head = page_buffers(page);
676 do {
677 if (buffer_unwritten(bh)) {
678 if (type == XFS_IO_UNWRITTEN)
679 return true;
680 } else if (buffer_delay(bh)) {
681 if (type == XFS_IO_DELALLOC)
682 return true;
683 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
684 if (type == XFS_IO_OVERWRITE)
685 return true;
686 }
687
688 /* If we are only checking the first buffer, we are done now. */
689 if (!check_all_buffers)
690 break;
691 } while ((bh = bh->b_this_page) != head);
692
693 return false;
694 }
695
696 /*
697 * Allocate & map buffers for page given the extent map. Write it out.
698 * except for the original page of a writepage, this is called on
699 * delalloc/unwritten pages only, for the original page it is possible
700 * that the page has no mapping at all.
701 */
702 STATIC int
703 xfs_convert_page(
704 struct inode *inode,
705 struct page *page,
706 loff_t tindex,
707 struct xfs_bmbt_irec *imap,
708 xfs_ioend_t **ioendp,
709 struct writeback_control *wbc)
710 {
711 struct buffer_head *bh, *head;
712 xfs_off_t end_offset;
713 unsigned long p_offset;
714 unsigned int type;
715 int len, page_dirty;
716 int count = 0, done = 0, uptodate = 1;
717 xfs_off_t offset = page_offset(page);
718
719 if (page->index != tindex)
720 goto fail;
721 if (!trylock_page(page))
722 goto fail;
723 if (PageWriteback(page))
724 goto fail_unlock_page;
725 if (page->mapping != inode->i_mapping)
726 goto fail_unlock_page;
727 if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
728 goto fail_unlock_page;
729
730 /*
731 * page_dirty is initially a count of buffers on the page before
732 * EOF and is decremented as we move each into a cleanable state.
733 *
734 * Derivation:
735 *
736 * End offset is the highest offset that this page should represent.
737 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
738 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
739 * hence give us the correct page_dirty count. On any other page,
740 * it will be zero and in that case we need page_dirty to be the
741 * count of buffers on the page.
742 */
743 end_offset = min_t(unsigned long long,
744 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
745 i_size_read(inode));
746
747 /*
748 * If the current map does not span the entire page we are about to try
749 * to write, then give up. The only way we can write a page that spans
750 * multiple mappings in a single writeback iteration is via the
751 * xfs_vm_writepage() function. Data integrity writeback requires the
752 * entire page to be written in a single attempt, otherwise the part of
753 * the page we don't write here doesn't get written as part of the data
754 * integrity sync.
755 *
756 * For normal writeback, we also don't attempt to write partial pages
757 * here as it simply means that write_cache_pages() will see it under
758 * writeback and ignore the page until some point in the future, at
759 * which time this will be the only page in the file that needs
760 * writeback. Hence for more optimal IO patterns, we should always
761 * avoid partial page writeback due to multiple mappings on a page here.
762 */
763 if (!xfs_imap_valid(inode, imap, end_offset))
764 goto fail_unlock_page;
765
766 len = 1 << inode->i_blkbits;
767 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
768 PAGE_CACHE_SIZE);
769 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
770 page_dirty = p_offset / len;
771
772 /*
773 * The moment we find a buffer that doesn't match our current type
774 * specification or can't be written, abort the loop and start
775 * writeback. As per the above xfs_imap_valid() check, only
776 * xfs_vm_writepage() can handle partial page writeback fully - we are
777 * limited here to the buffers that are contiguous with the current
778 * ioend, and hence a buffer we can't write breaks that contiguity and
779 * we have to defer the rest of the IO to xfs_vm_writepage().
780 */
781 bh = head = page_buffers(page);
782 do {
783 if (offset >= end_offset)
784 break;
785 if (!buffer_uptodate(bh))
786 uptodate = 0;
787 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
788 done = 1;
789 break;
790 }
791
792 if (buffer_unwritten(bh) || buffer_delay(bh) ||
793 buffer_mapped(bh)) {
794 if (buffer_unwritten(bh))
795 type = XFS_IO_UNWRITTEN;
796 else if (buffer_delay(bh))
797 type = XFS_IO_DELALLOC;
798 else
799 type = XFS_IO_OVERWRITE;
800
801 /*
802 * imap should always be valid because of the above
803 * partial page end_offset check on the imap.
804 */
805 ASSERT(xfs_imap_valid(inode, imap, offset));
806
807 lock_buffer(bh);
808 if (type != XFS_IO_OVERWRITE)
809 xfs_map_at_offset(inode, bh, imap, offset);
810 xfs_add_to_ioend(inode, bh, offset, type,
811 ioendp, done);
812
813 page_dirty--;
814 count++;
815 } else {
816 done = 1;
817 break;
818 }
819 } while (offset += len, (bh = bh->b_this_page) != head);
820
821 if (uptodate && bh == head)
822 SetPageUptodate(page);
823
824 if (count) {
825 if (--wbc->nr_to_write <= 0 &&
826 wbc->sync_mode == WB_SYNC_NONE)
827 done = 1;
828 }
829 xfs_start_page_writeback(page, !page_dirty, count);
830
831 return done;
832 fail_unlock_page:
833 unlock_page(page);
834 fail:
835 return 1;
836 }
837
838 /*
839 * Convert & write out a cluster of pages in the same extent as defined
840 * by mp and following the start page.
841 */
842 STATIC void
843 xfs_cluster_write(
844 struct inode *inode,
845 pgoff_t tindex,
846 struct xfs_bmbt_irec *imap,
847 xfs_ioend_t **ioendp,
848 struct writeback_control *wbc,
849 pgoff_t tlast)
850 {
851 struct pagevec pvec;
852 int done = 0, i;
853
854 pagevec_init(&pvec, 0);
855 while (!done && tindex <= tlast) {
856 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
857
858 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
859 break;
860
861 for (i = 0; i < pagevec_count(&pvec); i++) {
862 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
863 imap, ioendp, wbc);
864 if (done)
865 break;
866 }
867
868 pagevec_release(&pvec);
869 cond_resched();
870 }
871 }
872
873 STATIC void
874 xfs_vm_invalidatepage(
875 struct page *page,
876 unsigned int offset,
877 unsigned int length)
878 {
879 trace_xfs_invalidatepage(page->mapping->host, page, offset,
880 length);
881 block_invalidatepage(page, offset, length);
882 }
883
884 /*
885 * If the page has delalloc buffers on it, we need to punch them out before we
886 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
887 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
888 * is done on that same region - the delalloc extent is returned when none is
889 * supposed to be there.
890 *
891 * We prevent this by truncating away the delalloc regions on the page before
892 * invalidating it. Because they are delalloc, we can do this without needing a
893 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
894 * truncation without a transaction as there is no space left for block
895 * reservation (typically why we see a ENOSPC in writeback).
896 *
897 * This is not a performance critical path, so for now just do the punching a
898 * buffer head at a time.
899 */
900 STATIC void
901 xfs_aops_discard_page(
902 struct page *page)
903 {
904 struct inode *inode = page->mapping->host;
905 struct xfs_inode *ip = XFS_I(inode);
906 struct buffer_head *bh, *head;
907 loff_t offset = page_offset(page);
908
909 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
910 goto out_invalidate;
911
912 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
913 goto out_invalidate;
914
915 xfs_alert(ip->i_mount,
916 "page discard on page %p, inode 0x%llx, offset %llu.",
917 page, ip->i_ino, offset);
918
919 xfs_ilock(ip, XFS_ILOCK_EXCL);
920 bh = head = page_buffers(page);
921 do {
922 int error;
923 xfs_fileoff_t start_fsb;
924
925 if (!buffer_delay(bh))
926 goto next_buffer;
927
928 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
929 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
930 if (error) {
931 /* something screwed, just bail */
932 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
933 xfs_alert(ip->i_mount,
934 "page discard unable to remove delalloc mapping.");
935 }
936 break;
937 }
938 next_buffer:
939 offset += 1 << inode->i_blkbits;
940
941 } while ((bh = bh->b_this_page) != head);
942
943 xfs_iunlock(ip, XFS_ILOCK_EXCL);
944 out_invalidate:
945 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
946 return;
947 }
948
949 /*
950 * Write out a dirty page.
951 *
952 * For delalloc space on the page we need to allocate space and flush it.
953 * For unwritten space on the page we need to start the conversion to
954 * regular allocated space.
955 * For any other dirty buffer heads on the page we should flush them.
956 */
957 STATIC int
958 xfs_vm_writepage(
959 struct page *page,
960 struct writeback_control *wbc)
961 {
962 struct inode *inode = page->mapping->host;
963 struct buffer_head *bh, *head;
964 struct xfs_bmbt_irec imap;
965 xfs_ioend_t *ioend = NULL, *iohead = NULL;
966 loff_t offset;
967 unsigned int type;
968 __uint64_t end_offset;
969 pgoff_t end_index, last_index;
970 ssize_t len;
971 int err, imap_valid = 0, uptodate = 1;
972 int count = 0;
973 int nonblocking = 0;
974
975 trace_xfs_writepage(inode, page, 0, 0);
976
977 ASSERT(page_has_buffers(page));
978
979 /*
980 * Refuse to write the page out if we are called from reclaim context.
981 *
982 * This avoids stack overflows when called from deeply used stacks in
983 * random callers for direct reclaim or memcg reclaim. We explicitly
984 * allow reclaim from kswapd as the stack usage there is relatively low.
985 *
986 * This should never happen except in the case of a VM regression so
987 * warn about it.
988 */
989 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
990 PF_MEMALLOC))
991 goto redirty;
992
993 /*
994 * Given that we do not allow direct reclaim to call us, we should
995 * never be called while in a filesystem transaction.
996 */
997 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
998 goto redirty;
999
1000 /* Is this page beyond the end of the file? */
1001 offset = i_size_read(inode);
1002 end_index = offset >> PAGE_CACHE_SHIFT;
1003 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1004
1005 /*
1006 * The page index is less than the end_index, adjust the end_offset
1007 * to the highest offset that this page should represent.
1008 * -----------------------------------------------------
1009 * | file mapping | <EOF> |
1010 * -----------------------------------------------------
1011 * | Page ... | Page N-2 | Page N-1 | Page N | |
1012 * ^--------------------------------^----------|--------
1013 * | desired writeback range | see else |
1014 * ---------------------------------^------------------|
1015 */
1016 if (page->index < end_index)
1017 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
1018 else {
1019 /*
1020 * Check whether the page to write out is beyond or straddles
1021 * i_size or not.
1022 * -------------------------------------------------------
1023 * | file mapping | <EOF> |
1024 * -------------------------------------------------------
1025 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1026 * ^--------------------------------^-----------|---------
1027 * | | Straddles |
1028 * ---------------------------------^-----------|--------|
1029 */
1030 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1031
1032 /*
1033 * Skip the page if it is fully outside i_size, e.g. due to a
1034 * truncate operation that is in progress. We must redirty the
1035 * page so that reclaim stops reclaiming it. Otherwise
1036 * xfs_vm_releasepage() is called on it and gets confused.
1037 *
1038 * Note that the end_index is unsigned long, it would overflow
1039 * if the given offset is greater than 16TB on 32-bit system
1040 * and if we do check the page is fully outside i_size or not
1041 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1042 * will be evaluated to 0. Hence this page will be redirtied
1043 * and be written out repeatedly which would result in an
1044 * infinite loop, the user program that perform this operation
1045 * will hang. Instead, we can verify this situation by checking
1046 * if the page to write is totally beyond the i_size or if it's
1047 * offset is just equal to the EOF.
1048 */
1049 if (page->index > end_index ||
1050 (page->index == end_index && offset_into_page == 0))
1051 goto redirty;
1052
1053 /*
1054 * The page straddles i_size. It must be zeroed out on each
1055 * and every writepage invocation because it may be mmapped.
1056 * "A file is mapped in multiples of the page size. For a file
1057 * that is not a multiple of the page size, the remaining
1058 * memory is zeroed when mapped, and writes to that region are
1059 * not written out to the file."
1060 */
1061 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1062
1063 /* Adjust the end_offset to the end of file */
1064 end_offset = offset;
1065 }
1066
1067 len = 1 << inode->i_blkbits;
1068
1069 bh = head = page_buffers(page);
1070 offset = page_offset(page);
1071 type = XFS_IO_OVERWRITE;
1072
1073 if (wbc->sync_mode == WB_SYNC_NONE)
1074 nonblocking = 1;
1075
1076 do {
1077 int new_ioend = 0;
1078
1079 if (offset >= end_offset)
1080 break;
1081 if (!buffer_uptodate(bh))
1082 uptodate = 0;
1083
1084 /*
1085 * set_page_dirty dirties all buffers in a page, independent
1086 * of their state. The dirty state however is entirely
1087 * meaningless for holes (!mapped && uptodate), so skip
1088 * buffers covering holes here.
1089 */
1090 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1091 imap_valid = 0;
1092 continue;
1093 }
1094
1095 if (buffer_unwritten(bh)) {
1096 if (type != XFS_IO_UNWRITTEN) {
1097 type = XFS_IO_UNWRITTEN;
1098 imap_valid = 0;
1099 }
1100 } else if (buffer_delay(bh)) {
1101 if (type != XFS_IO_DELALLOC) {
1102 type = XFS_IO_DELALLOC;
1103 imap_valid = 0;
1104 }
1105 } else if (buffer_uptodate(bh)) {
1106 if (type != XFS_IO_OVERWRITE) {
1107 type = XFS_IO_OVERWRITE;
1108 imap_valid = 0;
1109 }
1110 } else {
1111 if (PageUptodate(page))
1112 ASSERT(buffer_mapped(bh));
1113 /*
1114 * This buffer is not uptodate and will not be
1115 * written to disk. Ensure that we will put any
1116 * subsequent writeable buffers into a new
1117 * ioend.
1118 */
1119 imap_valid = 0;
1120 continue;
1121 }
1122
1123 if (imap_valid)
1124 imap_valid = xfs_imap_valid(inode, &imap, offset);
1125 if (!imap_valid) {
1126 /*
1127 * If we didn't have a valid mapping then we need to
1128 * put the new mapping into a separate ioend structure.
1129 * This ensures non-contiguous extents always have
1130 * separate ioends, which is particularly important
1131 * for unwritten extent conversion at I/O completion
1132 * time.
1133 */
1134 new_ioend = 1;
1135 err = xfs_map_blocks(inode, offset, &imap, type,
1136 nonblocking);
1137 if (err)
1138 goto error;
1139 imap_valid = xfs_imap_valid(inode, &imap, offset);
1140 }
1141 if (imap_valid) {
1142 lock_buffer(bh);
1143 if (type != XFS_IO_OVERWRITE)
1144 xfs_map_at_offset(inode, bh, &imap, offset);
1145 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1146 new_ioend);
1147 count++;
1148 }
1149
1150 if (!iohead)
1151 iohead = ioend;
1152
1153 } while (offset += len, ((bh = bh->b_this_page) != head));
1154
1155 if (uptodate && bh == head)
1156 SetPageUptodate(page);
1157
1158 xfs_start_page_writeback(page, 1, count);
1159
1160 /* if there is no IO to be submitted for this page, we are done */
1161 if (!ioend)
1162 return 0;
1163
1164 ASSERT(iohead);
1165
1166 /*
1167 * Any errors from this point onwards need tobe reported through the IO
1168 * completion path as we have marked the initial page as under writeback
1169 * and unlocked it.
1170 */
1171 if (imap_valid) {
1172 xfs_off_t end_index;
1173
1174 end_index = imap.br_startoff + imap.br_blockcount;
1175
1176 /* to bytes */
1177 end_index <<= inode->i_blkbits;
1178
1179 /* to pages */
1180 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1181
1182 /* check against file size */
1183 if (end_index > last_index)
1184 end_index = last_index;
1185
1186 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1187 wbc, end_index);
1188 }
1189
1190
1191 /*
1192 * Reserve log space if we might write beyond the on-disk inode size.
1193 */
1194 err = 0;
1195 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1196 err = xfs_setfilesize_trans_alloc(ioend);
1197
1198 xfs_submit_ioend(wbc, iohead, err);
1199
1200 return 0;
1201
1202 error:
1203 if (iohead)
1204 xfs_cancel_ioend(iohead);
1205
1206 if (err == -EAGAIN)
1207 goto redirty;
1208
1209 xfs_aops_discard_page(page);
1210 ClearPageUptodate(page);
1211 unlock_page(page);
1212 return err;
1213
1214 redirty:
1215 redirty_page_for_writepage(wbc, page);
1216 unlock_page(page);
1217 return 0;
1218 }
1219
1220 STATIC int
1221 xfs_vm_writepages(
1222 struct address_space *mapping,
1223 struct writeback_control *wbc)
1224 {
1225 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1226 return generic_writepages(mapping, wbc);
1227 }
1228
1229 /*
1230 * Called to move a page into cleanable state - and from there
1231 * to be released. The page should already be clean. We always
1232 * have buffer heads in this call.
1233 *
1234 * Returns 1 if the page is ok to release, 0 otherwise.
1235 */
1236 STATIC int
1237 xfs_vm_releasepage(
1238 struct page *page,
1239 gfp_t gfp_mask)
1240 {
1241 int delalloc, unwritten;
1242
1243 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1244
1245 xfs_count_page_state(page, &delalloc, &unwritten);
1246
1247 if (WARN_ON_ONCE(delalloc))
1248 return 0;
1249 if (WARN_ON_ONCE(unwritten))
1250 return 0;
1251
1252 return try_to_free_buffers(page);
1253 }
1254
1255 STATIC int
1256 __xfs_get_blocks(
1257 struct inode *inode,
1258 sector_t iblock,
1259 struct buffer_head *bh_result,
1260 int create,
1261 int direct)
1262 {
1263 struct xfs_inode *ip = XFS_I(inode);
1264 struct xfs_mount *mp = ip->i_mount;
1265 xfs_fileoff_t offset_fsb, end_fsb;
1266 int error = 0;
1267 int lockmode = 0;
1268 struct xfs_bmbt_irec imap;
1269 int nimaps = 1;
1270 xfs_off_t offset;
1271 ssize_t size;
1272 int new = 0;
1273
1274 if (XFS_FORCED_SHUTDOWN(mp))
1275 return -EIO;
1276
1277 offset = (xfs_off_t)iblock << inode->i_blkbits;
1278 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1279 size = bh_result->b_size;
1280
1281 if (!create && direct && offset >= i_size_read(inode))
1282 return 0;
1283
1284 /*
1285 * Direct I/O is usually done on preallocated files, so try getting
1286 * a block mapping without an exclusive lock first. For buffered
1287 * writes we already have the exclusive iolock anyway, so avoiding
1288 * a lock roundtrip here by taking the ilock exclusive from the
1289 * beginning is a useful micro optimization.
1290 */
1291 if (create && !direct) {
1292 lockmode = XFS_ILOCK_EXCL;
1293 xfs_ilock(ip, lockmode);
1294 } else {
1295 lockmode = xfs_ilock_data_map_shared(ip);
1296 }
1297
1298 ASSERT(offset <= mp->m_super->s_maxbytes);
1299 if (offset + size > mp->m_super->s_maxbytes)
1300 size = mp->m_super->s_maxbytes - offset;
1301 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1302 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1303
1304 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1305 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1306 if (error)
1307 goto out_unlock;
1308
1309 if (create &&
1310 (!nimaps ||
1311 (imap.br_startblock == HOLESTARTBLOCK ||
1312 imap.br_startblock == DELAYSTARTBLOCK))) {
1313 if (direct || xfs_get_extsz_hint(ip)) {
1314 /*
1315 * Drop the ilock in preparation for starting the block
1316 * allocation transaction. It will be retaken
1317 * exclusively inside xfs_iomap_write_direct for the
1318 * actual allocation.
1319 */
1320 xfs_iunlock(ip, lockmode);
1321 error = xfs_iomap_write_direct(ip, offset, size,
1322 &imap, nimaps);
1323 if (error)
1324 return error;
1325 new = 1;
1326 } else {
1327 /*
1328 * Delalloc reservations do not require a transaction,
1329 * we can go on without dropping the lock here. If we
1330 * are allocating a new delalloc block, make sure that
1331 * we set the new flag so that we mark the buffer new so
1332 * that we know that it is newly allocated if the write
1333 * fails.
1334 */
1335 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1336 new = 1;
1337 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1338 if (error)
1339 goto out_unlock;
1340
1341 xfs_iunlock(ip, lockmode);
1342 }
1343
1344 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1345 } else if (nimaps) {
1346 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1347 xfs_iunlock(ip, lockmode);
1348 } else {
1349 trace_xfs_get_blocks_notfound(ip, offset, size);
1350 goto out_unlock;
1351 }
1352
1353 if (imap.br_startblock != HOLESTARTBLOCK &&
1354 imap.br_startblock != DELAYSTARTBLOCK) {
1355 /*
1356 * For unwritten extents do not report a disk address on
1357 * the read case (treat as if we're reading into a hole).
1358 */
1359 if (create || !ISUNWRITTEN(&imap))
1360 xfs_map_buffer(inode, bh_result, &imap, offset);
1361 if (create && ISUNWRITTEN(&imap)) {
1362 if (direct) {
1363 bh_result->b_private = inode;
1364 set_buffer_defer_completion(bh_result);
1365 }
1366 set_buffer_unwritten(bh_result);
1367 }
1368 }
1369
1370 /*
1371 * If this is a realtime file, data may be on a different device.
1372 * to that pointed to from the buffer_head b_bdev currently.
1373 */
1374 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1375
1376 /*
1377 * If we previously allocated a block out beyond eof and we are now
1378 * coming back to use it then we will need to flag it as new even if it
1379 * has a disk address.
1380 *
1381 * With sub-block writes into unwritten extents we also need to mark
1382 * the buffer as new so that the unwritten parts of the buffer gets
1383 * correctly zeroed.
1384 */
1385 if (create &&
1386 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1387 (offset >= i_size_read(inode)) ||
1388 (new || ISUNWRITTEN(&imap))))
1389 set_buffer_new(bh_result);
1390
1391 if (imap.br_startblock == DELAYSTARTBLOCK) {
1392 BUG_ON(direct);
1393 if (create) {
1394 set_buffer_uptodate(bh_result);
1395 set_buffer_mapped(bh_result);
1396 set_buffer_delay(bh_result);
1397 }
1398 }
1399
1400 /*
1401 * If this is O_DIRECT or the mpage code calling tell them how large
1402 * the mapping is, so that we can avoid repeated get_blocks calls.
1403 *
1404 * If the mapping spans EOF, then we have to break the mapping up as the
1405 * mapping for blocks beyond EOF must be marked new so that sub block
1406 * regions can be correctly zeroed. We can't do this for mappings within
1407 * EOF unless the mapping was just allocated or is unwritten, otherwise
1408 * the callers would overwrite existing data with zeros. Hence we have
1409 * to split the mapping into a range up to and including EOF, and a
1410 * second mapping for beyond EOF.
1411 */
1412 if (direct || size > (1 << inode->i_blkbits)) {
1413 xfs_off_t mapping_size;
1414
1415 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1416 mapping_size <<= inode->i_blkbits;
1417
1418 ASSERT(mapping_size > 0);
1419 if (mapping_size > size)
1420 mapping_size = size;
1421 if (offset < i_size_read(inode) &&
1422 offset + mapping_size >= i_size_read(inode)) {
1423 /* limit mapping to block that spans EOF */
1424 mapping_size = roundup_64(i_size_read(inode) - offset,
1425 1 << inode->i_blkbits);
1426 }
1427 if (mapping_size > LONG_MAX)
1428 mapping_size = LONG_MAX;
1429
1430 bh_result->b_size = mapping_size;
1431 }
1432
1433 return 0;
1434
1435 out_unlock:
1436 xfs_iunlock(ip, lockmode);
1437 return error;
1438 }
1439
1440 int
1441 xfs_get_blocks(
1442 struct inode *inode,
1443 sector_t iblock,
1444 struct buffer_head *bh_result,
1445 int create)
1446 {
1447 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1448 }
1449
1450 STATIC int
1451 xfs_get_blocks_direct(
1452 struct inode *inode,
1453 sector_t iblock,
1454 struct buffer_head *bh_result,
1455 int create)
1456 {
1457 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1458 }
1459
1460 /*
1461 * Complete a direct I/O write request.
1462 *
1463 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1464 * need to issue a transaction to convert the range from unwritten to written
1465 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1466 * to do this and we are done. But in case this was a successful AIO
1467 * request this handler is called from interrupt context, from which we
1468 * can't start transactions. In that case offload the I/O completion to
1469 * the workqueues we also use for buffered I/O completion.
1470 */
1471 STATIC void
1472 xfs_end_io_direct_write(
1473 struct kiocb *iocb,
1474 loff_t offset,
1475 ssize_t size,
1476 void *private)
1477 {
1478 struct xfs_ioend *ioend = iocb->private;
1479
1480 /*
1481 * While the generic direct I/O code updates the inode size, it does
1482 * so only after the end_io handler is called, which means our
1483 * end_io handler thinks the on-disk size is outside the in-core
1484 * size. To prevent this just update it a little bit earlier here.
1485 */
1486 if (offset + size > i_size_read(ioend->io_inode))
1487 i_size_write(ioend->io_inode, offset + size);
1488
1489 /*
1490 * blockdev_direct_IO can return an error even after the I/O
1491 * completion handler was called. Thus we need to protect
1492 * against double-freeing.
1493 */
1494 iocb->private = NULL;
1495
1496 ioend->io_offset = offset;
1497 ioend->io_size = size;
1498 if (private && size > 0)
1499 ioend->io_type = XFS_IO_UNWRITTEN;
1500
1501 xfs_finish_ioend_sync(ioend);
1502 }
1503
1504 STATIC ssize_t
1505 xfs_vm_direct_IO(
1506 int rw,
1507 struct kiocb *iocb,
1508 struct iov_iter *iter,
1509 loff_t offset)
1510 {
1511 struct inode *inode = iocb->ki_filp->f_mapping->host;
1512 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1513 struct xfs_ioend *ioend = NULL;
1514 ssize_t ret;
1515
1516 if (rw & WRITE) {
1517 size_t size = iov_iter_count(iter);
1518
1519 /*
1520 * We cannot preallocate a size update transaction here as we
1521 * don't know whether allocation is necessary or not. Hence we
1522 * can only tell IO completion that one is necessary if we are
1523 * not doing unwritten extent conversion.
1524 */
1525 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
1526 if (offset + size > XFS_I(inode)->i_d.di_size)
1527 ioend->io_isdirect = 1;
1528
1529 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iter,
1530 offset, xfs_get_blocks_direct,
1531 xfs_end_io_direct_write, NULL,
1532 DIO_ASYNC_EXTEND);
1533 if (ret != -EIOCBQUEUED && iocb->private)
1534 goto out_destroy_ioend;
1535 } else {
1536 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iter,
1537 offset, xfs_get_blocks_direct,
1538 NULL, NULL, 0);
1539 }
1540
1541 return ret;
1542
1543 out_destroy_ioend:
1544 xfs_destroy_ioend(ioend);
1545 return ret;
1546 }
1547
1548 /*
1549 * Punch out the delalloc blocks we have already allocated.
1550 *
1551 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1552 * as the page is still locked at this point.
1553 */
1554 STATIC void
1555 xfs_vm_kill_delalloc_range(
1556 struct inode *inode,
1557 loff_t start,
1558 loff_t end)
1559 {
1560 struct xfs_inode *ip = XFS_I(inode);
1561 xfs_fileoff_t start_fsb;
1562 xfs_fileoff_t end_fsb;
1563 int error;
1564
1565 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1566 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1567 if (end_fsb <= start_fsb)
1568 return;
1569
1570 xfs_ilock(ip, XFS_ILOCK_EXCL);
1571 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1572 end_fsb - start_fsb);
1573 if (error) {
1574 /* something screwed, just bail */
1575 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1576 xfs_alert(ip->i_mount,
1577 "xfs_vm_write_failed: unable to clean up ino %lld",
1578 ip->i_ino);
1579 }
1580 }
1581 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1582 }
1583
1584 STATIC void
1585 xfs_vm_write_failed(
1586 struct inode *inode,
1587 struct page *page,
1588 loff_t pos,
1589 unsigned len)
1590 {
1591 loff_t block_offset;
1592 loff_t block_start;
1593 loff_t block_end;
1594 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1595 loff_t to = from + len;
1596 struct buffer_head *bh, *head;
1597
1598 /*
1599 * The request pos offset might be 32 or 64 bit, this is all fine
1600 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1601 * platform, the high 32-bit will be masked off if we evaluate the
1602 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1603 * 0xfffff000 as an unsigned long, hence the result is incorrect
1604 * which could cause the following ASSERT failed in most cases.
1605 * In order to avoid this, we can evaluate the block_offset of the
1606 * start of the page by using shifts rather than masks the mismatch
1607 * problem.
1608 */
1609 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1610
1611 ASSERT(block_offset + from == pos);
1612
1613 head = page_buffers(page);
1614 block_start = 0;
1615 for (bh = head; bh != head || !block_start;
1616 bh = bh->b_this_page, block_start = block_end,
1617 block_offset += bh->b_size) {
1618 block_end = block_start + bh->b_size;
1619
1620 /* skip buffers before the write */
1621 if (block_end <= from)
1622 continue;
1623
1624 /* if the buffer is after the write, we're done */
1625 if (block_start >= to)
1626 break;
1627
1628 if (!buffer_delay(bh))
1629 continue;
1630
1631 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1632 continue;
1633
1634 xfs_vm_kill_delalloc_range(inode, block_offset,
1635 block_offset + bh->b_size);
1636
1637 /*
1638 * This buffer does not contain data anymore. make sure anyone
1639 * who finds it knows that for certain.
1640 */
1641 clear_buffer_delay(bh);
1642 clear_buffer_uptodate(bh);
1643 clear_buffer_mapped(bh);
1644 clear_buffer_new(bh);
1645 clear_buffer_dirty(bh);
1646 }
1647
1648 }
1649
1650 /*
1651 * This used to call block_write_begin(), but it unlocks and releases the page
1652 * on error, and we need that page to be able to punch stale delalloc blocks out
1653 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1654 * the appropriate point.
1655 */
1656 STATIC int
1657 xfs_vm_write_begin(
1658 struct file *file,
1659 struct address_space *mapping,
1660 loff_t pos,
1661 unsigned len,
1662 unsigned flags,
1663 struct page **pagep,
1664 void **fsdata)
1665 {
1666 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1667 struct page *page;
1668 int status;
1669
1670 ASSERT(len <= PAGE_CACHE_SIZE);
1671
1672 page = grab_cache_page_write_begin(mapping, index, flags);
1673 if (!page)
1674 return -ENOMEM;
1675
1676 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1677 if (unlikely(status)) {
1678 struct inode *inode = mapping->host;
1679 size_t isize = i_size_read(inode);
1680
1681 xfs_vm_write_failed(inode, page, pos, len);
1682 unlock_page(page);
1683
1684 /*
1685 * If the write is beyond EOF, we only want to kill blocks
1686 * allocated in this write, not blocks that were previously
1687 * written successfully.
1688 */
1689 if (pos + len > isize) {
1690 ssize_t start = max_t(ssize_t, pos, isize);
1691
1692 truncate_pagecache_range(inode, start, pos + len);
1693 }
1694
1695 page_cache_release(page);
1696 page = NULL;
1697 }
1698
1699 *pagep = page;
1700 return status;
1701 }
1702
1703 /*
1704 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1705 * this specific write because they will never be written. Previous writes
1706 * beyond EOF where block allocation succeeded do not need to be trashed, so
1707 * only new blocks from this write should be trashed. For blocks within
1708 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1709 * written with all the other valid data.
1710 */
1711 STATIC int
1712 xfs_vm_write_end(
1713 struct file *file,
1714 struct address_space *mapping,
1715 loff_t pos,
1716 unsigned len,
1717 unsigned copied,
1718 struct page *page,
1719 void *fsdata)
1720 {
1721 int ret;
1722
1723 ASSERT(len <= PAGE_CACHE_SIZE);
1724
1725 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1726 if (unlikely(ret < len)) {
1727 struct inode *inode = mapping->host;
1728 size_t isize = i_size_read(inode);
1729 loff_t to = pos + len;
1730
1731 if (to > isize) {
1732 /* only kill blocks in this write beyond EOF */
1733 if (pos > isize)
1734 isize = pos;
1735 xfs_vm_kill_delalloc_range(inode, isize, to);
1736 truncate_pagecache_range(inode, isize, to);
1737 }
1738 }
1739 return ret;
1740 }
1741
1742 STATIC sector_t
1743 xfs_vm_bmap(
1744 struct address_space *mapping,
1745 sector_t block)
1746 {
1747 struct inode *inode = (struct inode *)mapping->host;
1748 struct xfs_inode *ip = XFS_I(inode);
1749
1750 trace_xfs_vm_bmap(XFS_I(inode));
1751 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1752 filemap_write_and_wait(mapping);
1753 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1754 return generic_block_bmap(mapping, block, xfs_get_blocks);
1755 }
1756
1757 STATIC int
1758 xfs_vm_readpage(
1759 struct file *unused,
1760 struct page *page)
1761 {
1762 return mpage_readpage(page, xfs_get_blocks);
1763 }
1764
1765 STATIC int
1766 xfs_vm_readpages(
1767 struct file *unused,
1768 struct address_space *mapping,
1769 struct list_head *pages,
1770 unsigned nr_pages)
1771 {
1772 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1773 }
1774
1775 /*
1776 * This is basically a copy of __set_page_dirty_buffers() with one
1777 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1778 * dirty, we'll never be able to clean them because we don't write buffers
1779 * beyond EOF, and that means we can't invalidate pages that span EOF
1780 * that have been marked dirty. Further, the dirty state can leak into
1781 * the file interior if the file is extended, resulting in all sorts of
1782 * bad things happening as the state does not match the underlying data.
1783 *
1784 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1785 * this only exist because of bufferheads and how the generic code manages them.
1786 */
1787 STATIC int
1788 xfs_vm_set_page_dirty(
1789 struct page *page)
1790 {
1791 struct address_space *mapping = page->mapping;
1792 struct inode *inode = mapping->host;
1793 loff_t end_offset;
1794 loff_t offset;
1795 int newly_dirty;
1796
1797 if (unlikely(!mapping))
1798 return !TestSetPageDirty(page);
1799
1800 end_offset = i_size_read(inode);
1801 offset = page_offset(page);
1802
1803 spin_lock(&mapping->private_lock);
1804 if (page_has_buffers(page)) {
1805 struct buffer_head *head = page_buffers(page);
1806 struct buffer_head *bh = head;
1807
1808 do {
1809 if (offset < end_offset)
1810 set_buffer_dirty(bh);
1811 bh = bh->b_this_page;
1812 offset += 1 << inode->i_blkbits;
1813 } while (bh != head);
1814 }
1815 newly_dirty = !TestSetPageDirty(page);
1816 spin_unlock(&mapping->private_lock);
1817
1818 if (newly_dirty) {
1819 /* sigh - __set_page_dirty() is static, so copy it here, too */
1820 unsigned long flags;
1821
1822 spin_lock_irqsave(&mapping->tree_lock, flags);
1823 if (page->mapping) { /* Race with truncate? */
1824 WARN_ON_ONCE(!PageUptodate(page));
1825 account_page_dirtied(page, mapping);
1826 radix_tree_tag_set(&mapping->page_tree,
1827 page_index(page), PAGECACHE_TAG_DIRTY);
1828 }
1829 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1830 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1831 }
1832 return newly_dirty;
1833 }
1834
1835 const struct address_space_operations xfs_address_space_operations = {
1836 .readpage = xfs_vm_readpage,
1837 .readpages = xfs_vm_readpages,
1838 .writepage = xfs_vm_writepage,
1839 .writepages = xfs_vm_writepages,
1840 .set_page_dirty = xfs_vm_set_page_dirty,
1841 .releasepage = xfs_vm_releasepage,
1842 .invalidatepage = xfs_vm_invalidatepage,
1843 .write_begin = xfs_vm_write_begin,
1844 .write_end = xfs_vm_write_end,
1845 .bmap = xfs_vm_bmap,
1846 .direct_IO = xfs_vm_direct_IO,
1847 .migratepage = buffer_migrate_page,
1848 .is_partially_uptodate = block_is_partially_uptodate,
1849 .error_remove_page = generic_error_remove_page,
1850 };
This page took 0.070757 seconds and 5 git commands to generate.