Linux 4.5-rc2
[deliverable/linux.git] / fs / xfs / xfs_bmap_util.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * Copyright (c) 2012 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_shared.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_bit.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_trans.h"
31 #include "xfs_extfree_item.h"
32 #include "xfs_alloc.h"
33 #include "xfs_bmap.h"
34 #include "xfs_bmap_util.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_rtalloc.h"
37 #include "xfs_error.h"
38 #include "xfs_quota.h"
39 #include "xfs_trans_space.h"
40 #include "xfs_trace.h"
41 #include "xfs_icache.h"
42 #include "xfs_log.h"
43
44 /* Kernel only BMAP related definitions and functions */
45
46 /*
47 * Convert the given file system block to a disk block. We have to treat it
48 * differently based on whether the file is a real time file or not, because the
49 * bmap code does.
50 */
51 xfs_daddr_t
52 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
53 {
54 return (XFS_IS_REALTIME_INODE(ip) ? \
55 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \
56 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb)));
57 }
58
59 /*
60 * Routine to zero an extent on disk allocated to the specific inode.
61 *
62 * The VFS functions take a linearised filesystem block offset, so we have to
63 * convert the sparse xfs fsb to the right format first.
64 * VFS types are real funky, too.
65 */
66 int
67 xfs_zero_extent(
68 struct xfs_inode *ip,
69 xfs_fsblock_t start_fsb,
70 xfs_off_t count_fsb)
71 {
72 struct xfs_mount *mp = ip->i_mount;
73 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb);
74 sector_t block = XFS_BB_TO_FSBT(mp, sector);
75 ssize_t size = XFS_FSB_TO_B(mp, count_fsb);
76
77 if (IS_DAX(VFS_I(ip)))
78 return dax_clear_blocks(VFS_I(ip), block, size);
79
80 /*
81 * let the block layer decide on the fastest method of
82 * implementing the zeroing.
83 */
84 return sb_issue_zeroout(mp->m_super, block, count_fsb, GFP_NOFS);
85
86 }
87
88 /*
89 * Routine to be called at transaction's end by xfs_bmapi, xfs_bunmapi
90 * caller. Frees all the extents that need freeing, which must be done
91 * last due to locking considerations. We never free any extents in
92 * the first transaction.
93 *
94 * If an inode *ip is provided, rejoin it to the transaction if
95 * the transaction was committed.
96 */
97 int /* error */
98 xfs_bmap_finish(
99 struct xfs_trans **tp, /* transaction pointer addr */
100 struct xfs_bmap_free *flist, /* i/o: list extents to free */
101 struct xfs_inode *ip)
102 {
103 struct xfs_efd_log_item *efd; /* extent free data */
104 struct xfs_efi_log_item *efi; /* extent free intention */
105 int error; /* error return value */
106 int committed;/* xact committed or not */
107 struct xfs_bmap_free_item *free; /* free extent item */
108 struct xfs_bmap_free_item *next; /* next item on free list */
109
110 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
111 if (flist->xbf_count == 0)
112 return 0;
113
114 efi = xfs_trans_get_efi(*tp, flist->xbf_count);
115 for (free = flist->xbf_first; free; free = free->xbfi_next)
116 xfs_trans_log_efi_extent(*tp, efi, free->xbfi_startblock,
117 free->xbfi_blockcount);
118
119 error = __xfs_trans_roll(tp, ip, &committed);
120 if (error) {
121 /*
122 * If the transaction was committed, drop the EFD reference
123 * since we're bailing out of here. The other reference is
124 * dropped when the EFI hits the AIL.
125 *
126 * If the transaction was not committed, the EFI is freed by the
127 * EFI item unlock handler on abort. Also, we have a new
128 * transaction so we should return committed=1 even though we're
129 * returning an error.
130 */
131 if (committed) {
132 xfs_efi_release(efi);
133 xfs_force_shutdown((*tp)->t_mountp,
134 (error == -EFSCORRUPTED) ?
135 SHUTDOWN_CORRUPT_INCORE :
136 SHUTDOWN_META_IO_ERROR);
137 }
138 return error;
139 }
140
141 /*
142 * Get an EFD and free each extent in the list, logging to the EFD in
143 * the process. The remaining bmap free list is cleaned up by the caller
144 * on error.
145 */
146 efd = xfs_trans_get_efd(*tp, efi, flist->xbf_count);
147 for (free = flist->xbf_first; free != NULL; free = next) {
148 next = free->xbfi_next;
149
150 error = xfs_trans_free_extent(*tp, efd, free->xbfi_startblock,
151 free->xbfi_blockcount);
152 if (error)
153 return error;
154
155 xfs_bmap_del_free(flist, NULL, free);
156 }
157
158 return 0;
159 }
160
161 int
162 xfs_bmap_rtalloc(
163 struct xfs_bmalloca *ap) /* bmap alloc argument struct */
164 {
165 xfs_alloctype_t atype = 0; /* type for allocation routines */
166 int error; /* error return value */
167 xfs_mount_t *mp; /* mount point structure */
168 xfs_extlen_t prod = 0; /* product factor for allocators */
169 xfs_extlen_t ralen = 0; /* realtime allocation length */
170 xfs_extlen_t align; /* minimum allocation alignment */
171 xfs_rtblock_t rtb;
172
173 mp = ap->ip->i_mount;
174 align = xfs_get_extsz_hint(ap->ip);
175 prod = align / mp->m_sb.sb_rextsize;
176 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev,
177 align, 1, ap->eof, 0,
178 ap->conv, &ap->offset, &ap->length);
179 if (error)
180 return error;
181 ASSERT(ap->length);
182 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0);
183
184 /*
185 * If the offset & length are not perfectly aligned
186 * then kill prod, it will just get us in trouble.
187 */
188 if (do_mod(ap->offset, align) || ap->length % align)
189 prod = 1;
190 /*
191 * Set ralen to be the actual requested length in rtextents.
192 */
193 ralen = ap->length / mp->m_sb.sb_rextsize;
194 /*
195 * If the old value was close enough to MAXEXTLEN that
196 * we rounded up to it, cut it back so it's valid again.
197 * Note that if it's a really large request (bigger than
198 * MAXEXTLEN), we don't hear about that number, and can't
199 * adjust the starting point to match it.
200 */
201 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN)
202 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize;
203
204 /*
205 * Lock out other modifications to the RT bitmap inode.
206 */
207 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL);
208 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL);
209
210 /*
211 * If it's an allocation to an empty file at offset 0,
212 * pick an extent that will space things out in the rt area.
213 */
214 if (ap->eof && ap->offset == 0) {
215 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */
216
217 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx);
218 if (error)
219 return error;
220 ap->blkno = rtx * mp->m_sb.sb_rextsize;
221 } else {
222 ap->blkno = 0;
223 }
224
225 xfs_bmap_adjacent(ap);
226
227 /*
228 * Realtime allocation, done through xfs_rtallocate_extent.
229 */
230 atype = ap->blkno == 0 ? XFS_ALLOCTYPE_ANY_AG : XFS_ALLOCTYPE_NEAR_BNO;
231 do_div(ap->blkno, mp->m_sb.sb_rextsize);
232 rtb = ap->blkno;
233 ap->length = ralen;
234 if ((error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length,
235 &ralen, atype, ap->wasdel, prod, &rtb)))
236 return error;
237 if (rtb == NULLFSBLOCK && prod > 1 &&
238 (error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1,
239 ap->length, &ralen, atype,
240 ap->wasdel, 1, &rtb)))
241 return error;
242 ap->blkno = rtb;
243 if (ap->blkno != NULLFSBLOCK) {
244 ap->blkno *= mp->m_sb.sb_rextsize;
245 ralen *= mp->m_sb.sb_rextsize;
246 ap->length = ralen;
247 ap->ip->i_d.di_nblocks += ralen;
248 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE);
249 if (ap->wasdel)
250 ap->ip->i_delayed_blks -= ralen;
251 /*
252 * Adjust the disk quota also. This was reserved
253 * earlier.
254 */
255 xfs_trans_mod_dquot_byino(ap->tp, ap->ip,
256 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT :
257 XFS_TRANS_DQ_RTBCOUNT, (long) ralen);
258
259 /* Zero the extent if we were asked to do so */
260 if (ap->userdata & XFS_ALLOC_USERDATA_ZERO) {
261 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length);
262 if (error)
263 return error;
264 }
265 } else {
266 ap->length = 0;
267 }
268 return 0;
269 }
270
271 /*
272 * Check if the endoff is outside the last extent. If so the caller will grow
273 * the allocation to a stripe unit boundary. All offsets are considered outside
274 * the end of file for an empty fork, so 1 is returned in *eof in that case.
275 */
276 int
277 xfs_bmap_eof(
278 struct xfs_inode *ip,
279 xfs_fileoff_t endoff,
280 int whichfork,
281 int *eof)
282 {
283 struct xfs_bmbt_irec rec;
284 int error;
285
286 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof);
287 if (error || *eof)
288 return error;
289
290 *eof = endoff >= rec.br_startoff + rec.br_blockcount;
291 return 0;
292 }
293
294 /*
295 * Extent tree block counting routines.
296 */
297
298 /*
299 * Count leaf blocks given a range of extent records.
300 */
301 STATIC void
302 xfs_bmap_count_leaves(
303 xfs_ifork_t *ifp,
304 xfs_extnum_t idx,
305 int numrecs,
306 int *count)
307 {
308 int b;
309
310 for (b = 0; b < numrecs; b++) {
311 xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, idx + b);
312 *count += xfs_bmbt_get_blockcount(frp);
313 }
314 }
315
316 /*
317 * Count leaf blocks given a range of extent records originally
318 * in btree format.
319 */
320 STATIC void
321 xfs_bmap_disk_count_leaves(
322 struct xfs_mount *mp,
323 struct xfs_btree_block *block,
324 int numrecs,
325 int *count)
326 {
327 int b;
328 xfs_bmbt_rec_t *frp;
329
330 for (b = 1; b <= numrecs; b++) {
331 frp = XFS_BMBT_REC_ADDR(mp, block, b);
332 *count += xfs_bmbt_disk_get_blockcount(frp);
333 }
334 }
335
336 /*
337 * Recursively walks each level of a btree
338 * to count total fsblocks in use.
339 */
340 STATIC int /* error */
341 xfs_bmap_count_tree(
342 xfs_mount_t *mp, /* file system mount point */
343 xfs_trans_t *tp, /* transaction pointer */
344 xfs_ifork_t *ifp, /* inode fork pointer */
345 xfs_fsblock_t blockno, /* file system block number */
346 int levelin, /* level in btree */
347 int *count) /* Count of blocks */
348 {
349 int error;
350 xfs_buf_t *bp, *nbp;
351 int level = levelin;
352 __be64 *pp;
353 xfs_fsblock_t bno = blockno;
354 xfs_fsblock_t nextbno;
355 struct xfs_btree_block *block, *nextblock;
356 int numrecs;
357
358 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF,
359 &xfs_bmbt_buf_ops);
360 if (error)
361 return error;
362 *count += 1;
363 block = XFS_BUF_TO_BLOCK(bp);
364
365 if (--level) {
366 /* Not at node above leaves, count this level of nodes */
367 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
368 while (nextbno != NULLFSBLOCK) {
369 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp,
370 XFS_BMAP_BTREE_REF,
371 &xfs_bmbt_buf_ops);
372 if (error)
373 return error;
374 *count += 1;
375 nextblock = XFS_BUF_TO_BLOCK(nbp);
376 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib);
377 xfs_trans_brelse(tp, nbp);
378 }
379
380 /* Dive to the next level */
381 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
382 bno = be64_to_cpu(*pp);
383 if (unlikely((error =
384 xfs_bmap_count_tree(mp, tp, ifp, bno, level, count)) < 0)) {
385 xfs_trans_brelse(tp, bp);
386 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)",
387 XFS_ERRLEVEL_LOW, mp);
388 return -EFSCORRUPTED;
389 }
390 xfs_trans_brelse(tp, bp);
391 } else {
392 /* count all level 1 nodes and their leaves */
393 for (;;) {
394 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
395 numrecs = be16_to_cpu(block->bb_numrecs);
396 xfs_bmap_disk_count_leaves(mp, block, numrecs, count);
397 xfs_trans_brelse(tp, bp);
398 if (nextbno == NULLFSBLOCK)
399 break;
400 bno = nextbno;
401 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp,
402 XFS_BMAP_BTREE_REF,
403 &xfs_bmbt_buf_ops);
404 if (error)
405 return error;
406 *count += 1;
407 block = XFS_BUF_TO_BLOCK(bp);
408 }
409 }
410 return 0;
411 }
412
413 /*
414 * Count fsblocks of the given fork.
415 */
416 int /* error */
417 xfs_bmap_count_blocks(
418 xfs_trans_t *tp, /* transaction pointer */
419 xfs_inode_t *ip, /* incore inode */
420 int whichfork, /* data or attr fork */
421 int *count) /* out: count of blocks */
422 {
423 struct xfs_btree_block *block; /* current btree block */
424 xfs_fsblock_t bno; /* block # of "block" */
425 xfs_ifork_t *ifp; /* fork structure */
426 int level; /* btree level, for checking */
427 xfs_mount_t *mp; /* file system mount structure */
428 __be64 *pp; /* pointer to block address */
429
430 bno = NULLFSBLOCK;
431 mp = ip->i_mount;
432 ifp = XFS_IFORK_PTR(ip, whichfork);
433 if ( XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_EXTENTS ) {
434 xfs_bmap_count_leaves(ifp, 0,
435 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t),
436 count);
437 return 0;
438 }
439
440 /*
441 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out.
442 */
443 block = ifp->if_broot;
444 level = be16_to_cpu(block->bb_level);
445 ASSERT(level > 0);
446 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes);
447 bno = be64_to_cpu(*pp);
448 ASSERT(bno != NULLFSBLOCK);
449 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount);
450 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks);
451
452 if (unlikely(xfs_bmap_count_tree(mp, tp, ifp, bno, level, count) < 0)) {
453 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW,
454 mp);
455 return -EFSCORRUPTED;
456 }
457
458 return 0;
459 }
460
461 /*
462 * returns 1 for success, 0 if we failed to map the extent.
463 */
464 STATIC int
465 xfs_getbmapx_fix_eof_hole(
466 xfs_inode_t *ip, /* xfs incore inode pointer */
467 struct getbmapx *out, /* output structure */
468 int prealloced, /* this is a file with
469 * preallocated data space */
470 __int64_t end, /* last block requested */
471 xfs_fsblock_t startblock)
472 {
473 __int64_t fixlen;
474 xfs_mount_t *mp; /* file system mount point */
475 xfs_ifork_t *ifp; /* inode fork pointer */
476 xfs_extnum_t lastx; /* last extent pointer */
477 xfs_fileoff_t fileblock;
478
479 if (startblock == HOLESTARTBLOCK) {
480 mp = ip->i_mount;
481 out->bmv_block = -1;
482 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
483 fixlen -= out->bmv_offset;
484 if (prealloced && out->bmv_offset + out->bmv_length == end) {
485 /* Came to hole at EOF. Trim it. */
486 if (fixlen <= 0)
487 return 0;
488 out->bmv_length = fixlen;
489 }
490 } else {
491 if (startblock == DELAYSTARTBLOCK)
492 out->bmv_block = -2;
493 else
494 out->bmv_block = xfs_fsb_to_db(ip, startblock);
495 fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset);
496 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
497 if (xfs_iext_bno_to_ext(ifp, fileblock, &lastx) &&
498 (lastx == (ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t))-1))
499 out->bmv_oflags |= BMV_OF_LAST;
500 }
501
502 return 1;
503 }
504
505 /*
506 * Get inode's extents as described in bmv, and format for output.
507 * Calls formatter to fill the user's buffer until all extents
508 * are mapped, until the passed-in bmv->bmv_count slots have
509 * been filled, or until the formatter short-circuits the loop,
510 * if it is tracking filled-in extents on its own.
511 */
512 int /* error code */
513 xfs_getbmap(
514 xfs_inode_t *ip,
515 struct getbmapx *bmv, /* user bmap structure */
516 xfs_bmap_format_t formatter, /* format to user */
517 void *arg) /* formatter arg */
518 {
519 __int64_t bmvend; /* last block requested */
520 int error = 0; /* return value */
521 __int64_t fixlen; /* length for -1 case */
522 int i; /* extent number */
523 int lock; /* lock state */
524 xfs_bmbt_irec_t *map; /* buffer for user's data */
525 xfs_mount_t *mp; /* file system mount point */
526 int nex; /* # of user extents can do */
527 int nexleft; /* # of user extents left */
528 int subnex; /* # of bmapi's can do */
529 int nmap; /* number of map entries */
530 struct getbmapx *out; /* output structure */
531 int whichfork; /* data or attr fork */
532 int prealloced; /* this is a file with
533 * preallocated data space */
534 int iflags; /* interface flags */
535 int bmapi_flags; /* flags for xfs_bmapi */
536 int cur_ext = 0;
537
538 mp = ip->i_mount;
539 iflags = bmv->bmv_iflags;
540 whichfork = iflags & BMV_IF_ATTRFORK ? XFS_ATTR_FORK : XFS_DATA_FORK;
541
542 if (whichfork == XFS_ATTR_FORK) {
543 if (XFS_IFORK_Q(ip)) {
544 if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS &&
545 ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE &&
546 ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
547 return -EINVAL;
548 } else if (unlikely(
549 ip->i_d.di_aformat != 0 &&
550 ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) {
551 XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW,
552 ip->i_mount);
553 return -EFSCORRUPTED;
554 }
555
556 prealloced = 0;
557 fixlen = 1LL << 32;
558 } else {
559 if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS &&
560 ip->i_d.di_format != XFS_DINODE_FMT_BTREE &&
561 ip->i_d.di_format != XFS_DINODE_FMT_LOCAL)
562 return -EINVAL;
563
564 if (xfs_get_extsz_hint(ip) ||
565 ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){
566 prealloced = 1;
567 fixlen = mp->m_super->s_maxbytes;
568 } else {
569 prealloced = 0;
570 fixlen = XFS_ISIZE(ip);
571 }
572 }
573
574 if (bmv->bmv_length == -1) {
575 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen));
576 bmv->bmv_length =
577 max_t(__int64_t, fixlen - bmv->bmv_offset, 0);
578 } else if (bmv->bmv_length == 0) {
579 bmv->bmv_entries = 0;
580 return 0;
581 } else if (bmv->bmv_length < 0) {
582 return -EINVAL;
583 }
584
585 nex = bmv->bmv_count - 1;
586 if (nex <= 0)
587 return -EINVAL;
588 bmvend = bmv->bmv_offset + bmv->bmv_length;
589
590
591 if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx))
592 return -ENOMEM;
593 out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0);
594 if (!out)
595 return -ENOMEM;
596
597 xfs_ilock(ip, XFS_IOLOCK_SHARED);
598 if (whichfork == XFS_DATA_FORK) {
599 if (!(iflags & BMV_IF_DELALLOC) &&
600 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
601 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
602 if (error)
603 goto out_unlock_iolock;
604
605 /*
606 * Even after flushing the inode, there can still be
607 * delalloc blocks on the inode beyond EOF due to
608 * speculative preallocation. These are not removed
609 * until the release function is called or the inode
610 * is inactivated. Hence we cannot assert here that
611 * ip->i_delayed_blks == 0.
612 */
613 }
614
615 lock = xfs_ilock_data_map_shared(ip);
616 } else {
617 lock = xfs_ilock_attr_map_shared(ip);
618 }
619
620 /*
621 * Don't let nex be bigger than the number of extents
622 * we can have assuming alternating holes and real extents.
623 */
624 if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1)
625 nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1;
626
627 bmapi_flags = xfs_bmapi_aflag(whichfork);
628 if (!(iflags & BMV_IF_PREALLOC))
629 bmapi_flags |= XFS_BMAPI_IGSTATE;
630
631 /*
632 * Allocate enough space to handle "subnex" maps at a time.
633 */
634 error = -ENOMEM;
635 subnex = 16;
636 map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS);
637 if (!map)
638 goto out_unlock_ilock;
639
640 bmv->bmv_entries = 0;
641
642 if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 &&
643 (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) {
644 error = 0;
645 goto out_free_map;
646 }
647
648 nexleft = nex;
649
650 do {
651 nmap = (nexleft > subnex) ? subnex : nexleft;
652 error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset),
653 XFS_BB_TO_FSB(mp, bmv->bmv_length),
654 map, &nmap, bmapi_flags);
655 if (error)
656 goto out_free_map;
657 ASSERT(nmap <= subnex);
658
659 for (i = 0; i < nmap && nexleft && bmv->bmv_length; i++) {
660 out[cur_ext].bmv_oflags = 0;
661 if (map[i].br_state == XFS_EXT_UNWRITTEN)
662 out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC;
663 else if (map[i].br_startblock == DELAYSTARTBLOCK)
664 out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC;
665 out[cur_ext].bmv_offset =
666 XFS_FSB_TO_BB(mp, map[i].br_startoff);
667 out[cur_ext].bmv_length =
668 XFS_FSB_TO_BB(mp, map[i].br_blockcount);
669 out[cur_ext].bmv_unused1 = 0;
670 out[cur_ext].bmv_unused2 = 0;
671
672 /*
673 * delayed allocation extents that start beyond EOF can
674 * occur due to speculative EOF allocation when the
675 * delalloc extent is larger than the largest freespace
676 * extent at conversion time. These extents cannot be
677 * converted by data writeback, so can exist here even
678 * if we are not supposed to be finding delalloc
679 * extents.
680 */
681 if (map[i].br_startblock == DELAYSTARTBLOCK &&
682 map[i].br_startoff <= XFS_B_TO_FSB(mp, XFS_ISIZE(ip)))
683 ASSERT((iflags & BMV_IF_DELALLOC) != 0);
684
685 if (map[i].br_startblock == HOLESTARTBLOCK &&
686 whichfork == XFS_ATTR_FORK) {
687 /* came to the end of attribute fork */
688 out[cur_ext].bmv_oflags |= BMV_OF_LAST;
689 goto out_free_map;
690 }
691
692 if (!xfs_getbmapx_fix_eof_hole(ip, &out[cur_ext],
693 prealloced, bmvend,
694 map[i].br_startblock))
695 goto out_free_map;
696
697 bmv->bmv_offset =
698 out[cur_ext].bmv_offset +
699 out[cur_ext].bmv_length;
700 bmv->bmv_length =
701 max_t(__int64_t, 0, bmvend - bmv->bmv_offset);
702
703 /*
704 * In case we don't want to return the hole,
705 * don't increase cur_ext so that we can reuse
706 * it in the next loop.
707 */
708 if ((iflags & BMV_IF_NO_HOLES) &&
709 map[i].br_startblock == HOLESTARTBLOCK) {
710 memset(&out[cur_ext], 0, sizeof(out[cur_ext]));
711 continue;
712 }
713
714 nexleft--;
715 bmv->bmv_entries++;
716 cur_ext++;
717 }
718 } while (nmap && nexleft && bmv->bmv_length);
719
720 out_free_map:
721 kmem_free(map);
722 out_unlock_ilock:
723 xfs_iunlock(ip, lock);
724 out_unlock_iolock:
725 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
726
727 for (i = 0; i < cur_ext; i++) {
728 int full = 0; /* user array is full */
729
730 /* format results & advance arg */
731 error = formatter(&arg, &out[i], &full);
732 if (error || full)
733 break;
734 }
735
736 kmem_free(out);
737 return error;
738 }
739
740 /*
741 * dead simple method of punching delalyed allocation blocks from a range in
742 * the inode. Walks a block at a time so will be slow, but is only executed in
743 * rare error cases so the overhead is not critical. This will always punch out
744 * both the start and end blocks, even if the ranges only partially overlap
745 * them, so it is up to the caller to ensure that partial blocks are not
746 * passed in.
747 */
748 int
749 xfs_bmap_punch_delalloc_range(
750 struct xfs_inode *ip,
751 xfs_fileoff_t start_fsb,
752 xfs_fileoff_t length)
753 {
754 xfs_fileoff_t remaining = length;
755 int error = 0;
756
757 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
758
759 do {
760 int done;
761 xfs_bmbt_irec_t imap;
762 int nimaps = 1;
763 xfs_fsblock_t firstblock;
764 xfs_bmap_free_t flist;
765
766 /*
767 * Map the range first and check that it is a delalloc extent
768 * before trying to unmap the range. Otherwise we will be
769 * trying to remove a real extent (which requires a
770 * transaction) or a hole, which is probably a bad idea...
771 */
772 error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps,
773 XFS_BMAPI_ENTIRE);
774
775 if (error) {
776 /* something screwed, just bail */
777 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
778 xfs_alert(ip->i_mount,
779 "Failed delalloc mapping lookup ino %lld fsb %lld.",
780 ip->i_ino, start_fsb);
781 }
782 break;
783 }
784 if (!nimaps) {
785 /* nothing there */
786 goto next_block;
787 }
788 if (imap.br_startblock != DELAYSTARTBLOCK) {
789 /* been converted, ignore */
790 goto next_block;
791 }
792 WARN_ON(imap.br_blockcount == 0);
793
794 /*
795 * Note: while we initialise the firstblock/flist pair, they
796 * should never be used because blocks should never be
797 * allocated or freed for a delalloc extent and hence we need
798 * don't cancel or finish them after the xfs_bunmapi() call.
799 */
800 xfs_bmap_init(&flist, &firstblock);
801 error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock,
802 &flist, &done);
803 if (error)
804 break;
805
806 ASSERT(!flist.xbf_count && !flist.xbf_first);
807 next_block:
808 start_fsb++;
809 remaining--;
810 } while(remaining > 0);
811
812 return error;
813 }
814
815 /*
816 * Test whether it is appropriate to check an inode for and free post EOF
817 * blocks. The 'force' parameter determines whether we should also consider
818 * regular files that are marked preallocated or append-only.
819 */
820 bool
821 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
822 {
823 /* prealloc/delalloc exists only on regular files */
824 if (!S_ISREG(ip->i_d.di_mode))
825 return false;
826
827 /*
828 * Zero sized files with no cached pages and delalloc blocks will not
829 * have speculative prealloc/delalloc blocks to remove.
830 */
831 if (VFS_I(ip)->i_size == 0 &&
832 VFS_I(ip)->i_mapping->nrpages == 0 &&
833 ip->i_delayed_blks == 0)
834 return false;
835
836 /* If we haven't read in the extent list, then don't do it now. */
837 if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
838 return false;
839
840 /*
841 * Do not free real preallocated or append-only files unless the file
842 * has delalloc blocks and we are forced to remove them.
843 */
844 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
845 if (!force || ip->i_delayed_blks == 0)
846 return false;
847
848 return true;
849 }
850
851 /*
852 * This is called by xfs_inactive to free any blocks beyond eof
853 * when the link count isn't zero and by xfs_dm_punch_hole() when
854 * punching a hole to EOF.
855 */
856 int
857 xfs_free_eofblocks(
858 xfs_mount_t *mp,
859 xfs_inode_t *ip,
860 bool need_iolock)
861 {
862 xfs_trans_t *tp;
863 int error;
864 xfs_fileoff_t end_fsb;
865 xfs_fileoff_t last_fsb;
866 xfs_filblks_t map_len;
867 int nimaps;
868 xfs_bmbt_irec_t imap;
869
870 /*
871 * Figure out if there are any blocks beyond the end
872 * of the file. If not, then there is nothing to do.
873 */
874 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
875 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
876 if (last_fsb <= end_fsb)
877 return 0;
878 map_len = last_fsb - end_fsb;
879
880 nimaps = 1;
881 xfs_ilock(ip, XFS_ILOCK_SHARED);
882 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0);
883 xfs_iunlock(ip, XFS_ILOCK_SHARED);
884
885 if (!error && (nimaps != 0) &&
886 (imap.br_startblock != HOLESTARTBLOCK ||
887 ip->i_delayed_blks)) {
888 /*
889 * Attach the dquots to the inode up front.
890 */
891 error = xfs_qm_dqattach(ip, 0);
892 if (error)
893 return error;
894
895 /*
896 * There are blocks after the end of file.
897 * Free them up now by truncating the file to
898 * its current size.
899 */
900 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
901
902 if (need_iolock) {
903 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
904 xfs_trans_cancel(tp);
905 return -EAGAIN;
906 }
907 }
908
909 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
910 if (error) {
911 ASSERT(XFS_FORCED_SHUTDOWN(mp));
912 xfs_trans_cancel(tp);
913 if (need_iolock)
914 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
915 return error;
916 }
917
918 xfs_ilock(ip, XFS_ILOCK_EXCL);
919 xfs_trans_ijoin(tp, ip, 0);
920
921 /*
922 * Do not update the on-disk file size. If we update the
923 * on-disk file size and then the system crashes before the
924 * contents of the file are flushed to disk then the files
925 * may be full of holes (ie NULL files bug).
926 */
927 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK,
928 XFS_ISIZE(ip));
929 if (error) {
930 /*
931 * If we get an error at this point we simply don't
932 * bother truncating the file.
933 */
934 xfs_trans_cancel(tp);
935 } else {
936 error = xfs_trans_commit(tp);
937 if (!error)
938 xfs_inode_clear_eofblocks_tag(ip);
939 }
940
941 xfs_iunlock(ip, XFS_ILOCK_EXCL);
942 if (need_iolock)
943 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
944 }
945 return error;
946 }
947
948 int
949 xfs_alloc_file_space(
950 struct xfs_inode *ip,
951 xfs_off_t offset,
952 xfs_off_t len,
953 int alloc_type)
954 {
955 xfs_mount_t *mp = ip->i_mount;
956 xfs_off_t count;
957 xfs_filblks_t allocated_fsb;
958 xfs_filblks_t allocatesize_fsb;
959 xfs_extlen_t extsz, temp;
960 xfs_fileoff_t startoffset_fsb;
961 xfs_fsblock_t firstfsb;
962 int nimaps;
963 int quota_flag;
964 int rt;
965 xfs_trans_t *tp;
966 xfs_bmbt_irec_t imaps[1], *imapp;
967 xfs_bmap_free_t free_list;
968 uint qblocks, resblks, resrtextents;
969 int error;
970
971 trace_xfs_alloc_file_space(ip);
972
973 if (XFS_FORCED_SHUTDOWN(mp))
974 return -EIO;
975
976 error = xfs_qm_dqattach(ip, 0);
977 if (error)
978 return error;
979
980 if (len <= 0)
981 return -EINVAL;
982
983 rt = XFS_IS_REALTIME_INODE(ip);
984 extsz = xfs_get_extsz_hint(ip);
985
986 count = len;
987 imapp = &imaps[0];
988 nimaps = 1;
989 startoffset_fsb = XFS_B_TO_FSBT(mp, offset);
990 allocatesize_fsb = XFS_B_TO_FSB(mp, count);
991
992 /*
993 * Allocate file space until done or until there is an error
994 */
995 while (allocatesize_fsb && !error) {
996 xfs_fileoff_t s, e;
997
998 /*
999 * Determine space reservations for data/realtime.
1000 */
1001 if (unlikely(extsz)) {
1002 s = startoffset_fsb;
1003 do_div(s, extsz);
1004 s *= extsz;
1005 e = startoffset_fsb + allocatesize_fsb;
1006 if ((temp = do_mod(startoffset_fsb, extsz)))
1007 e += temp;
1008 if ((temp = do_mod(e, extsz)))
1009 e += extsz - temp;
1010 } else {
1011 s = 0;
1012 e = allocatesize_fsb;
1013 }
1014
1015 /*
1016 * The transaction reservation is limited to a 32-bit block
1017 * count, hence we need to limit the number of blocks we are
1018 * trying to reserve to avoid an overflow. We can't allocate
1019 * more than @nimaps extents, and an extent is limited on disk
1020 * to MAXEXTLEN (21 bits), so use that to enforce the limit.
1021 */
1022 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps));
1023 if (unlikely(rt)) {
1024 resrtextents = qblocks = resblks;
1025 resrtextents /= mp->m_sb.sb_rextsize;
1026 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1027 quota_flag = XFS_QMOPT_RES_RTBLKS;
1028 } else {
1029 resrtextents = 0;
1030 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
1031 quota_flag = XFS_QMOPT_RES_REGBLKS;
1032 }
1033
1034 /*
1035 * Allocate and setup the transaction.
1036 */
1037 tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT);
1038 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write,
1039 resblks, resrtextents);
1040 /*
1041 * Check for running out of space
1042 */
1043 if (error) {
1044 /*
1045 * Free the transaction structure.
1046 */
1047 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1048 xfs_trans_cancel(tp);
1049 break;
1050 }
1051 xfs_ilock(ip, XFS_ILOCK_EXCL);
1052 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks,
1053 0, quota_flag);
1054 if (error)
1055 goto error1;
1056
1057 xfs_trans_ijoin(tp, ip, 0);
1058
1059 xfs_bmap_init(&free_list, &firstfsb);
1060 error = xfs_bmapi_write(tp, ip, startoffset_fsb,
1061 allocatesize_fsb, alloc_type, &firstfsb,
1062 resblks, imapp, &nimaps, &free_list);
1063 if (error)
1064 goto error0;
1065
1066 /*
1067 * Complete the transaction
1068 */
1069 error = xfs_bmap_finish(&tp, &free_list, NULL);
1070 if (error)
1071 goto error0;
1072
1073 error = xfs_trans_commit(tp);
1074 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1075 if (error)
1076 break;
1077
1078 allocated_fsb = imapp->br_blockcount;
1079
1080 if (nimaps == 0) {
1081 error = -ENOSPC;
1082 break;
1083 }
1084
1085 startoffset_fsb += allocated_fsb;
1086 allocatesize_fsb -= allocated_fsb;
1087 }
1088
1089 return error;
1090
1091 error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */
1092 xfs_bmap_cancel(&free_list);
1093 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
1094
1095 error1: /* Just cancel transaction */
1096 xfs_trans_cancel(tp);
1097 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1098 return error;
1099 }
1100
1101 /*
1102 * Zero file bytes between startoff and endoff inclusive.
1103 * The iolock is held exclusive and no blocks are buffered.
1104 *
1105 * This function is used by xfs_free_file_space() to zero
1106 * partial blocks when the range to free is not block aligned.
1107 * When unreserving space with boundaries that are not block
1108 * aligned we round up the start and round down the end
1109 * boundaries and then use this function to zero the parts of
1110 * the blocks that got dropped during the rounding.
1111 */
1112 STATIC int
1113 xfs_zero_remaining_bytes(
1114 xfs_inode_t *ip,
1115 xfs_off_t startoff,
1116 xfs_off_t endoff)
1117 {
1118 xfs_bmbt_irec_t imap;
1119 xfs_fileoff_t offset_fsb;
1120 xfs_off_t lastoffset;
1121 xfs_off_t offset;
1122 xfs_buf_t *bp;
1123 xfs_mount_t *mp = ip->i_mount;
1124 int nimap;
1125 int error = 0;
1126
1127 /*
1128 * Avoid doing I/O beyond eof - it's not necessary
1129 * since nothing can read beyond eof. The space will
1130 * be zeroed when the file is extended anyway.
1131 */
1132 if (startoff >= XFS_ISIZE(ip))
1133 return 0;
1134
1135 if (endoff > XFS_ISIZE(ip))
1136 endoff = XFS_ISIZE(ip);
1137
1138 for (offset = startoff; offset <= endoff; offset = lastoffset + 1) {
1139 uint lock_mode;
1140
1141 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1142 nimap = 1;
1143
1144 lock_mode = xfs_ilock_data_map_shared(ip);
1145 error = xfs_bmapi_read(ip, offset_fsb, 1, &imap, &nimap, 0);
1146 xfs_iunlock(ip, lock_mode);
1147
1148 if (error || nimap < 1)
1149 break;
1150 ASSERT(imap.br_blockcount >= 1);
1151 ASSERT(imap.br_startoff == offset_fsb);
1152 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1153
1154 if (imap.br_startblock == HOLESTARTBLOCK ||
1155 imap.br_state == XFS_EXT_UNWRITTEN) {
1156 /* skip the entire extent */
1157 lastoffset = XFS_FSB_TO_B(mp, imap.br_startoff +
1158 imap.br_blockcount) - 1;
1159 continue;
1160 }
1161
1162 lastoffset = XFS_FSB_TO_B(mp, imap.br_startoff + 1) - 1;
1163 if (lastoffset > endoff)
1164 lastoffset = endoff;
1165
1166 /* DAX can just zero the backing device directly */
1167 if (IS_DAX(VFS_I(ip))) {
1168 error = dax_zero_page_range(VFS_I(ip), offset,
1169 lastoffset - offset + 1,
1170 xfs_get_blocks_direct);
1171 if (error)
1172 return error;
1173 continue;
1174 }
1175
1176 error = xfs_buf_read_uncached(XFS_IS_REALTIME_INODE(ip) ?
1177 mp->m_rtdev_targp : mp->m_ddev_targp,
1178 xfs_fsb_to_db(ip, imap.br_startblock),
1179 BTOBB(mp->m_sb.sb_blocksize),
1180 0, &bp, NULL);
1181 if (error)
1182 return error;
1183
1184 memset(bp->b_addr +
1185 (offset - XFS_FSB_TO_B(mp, imap.br_startoff)),
1186 0, lastoffset - offset + 1);
1187
1188 error = xfs_bwrite(bp);
1189 xfs_buf_relse(bp);
1190 if (error)
1191 return error;
1192 }
1193 return error;
1194 }
1195
1196 int
1197 xfs_free_file_space(
1198 struct xfs_inode *ip,
1199 xfs_off_t offset,
1200 xfs_off_t len)
1201 {
1202 int done;
1203 xfs_fileoff_t endoffset_fsb;
1204 int error;
1205 xfs_fsblock_t firstfsb;
1206 xfs_bmap_free_t free_list;
1207 xfs_bmbt_irec_t imap;
1208 xfs_off_t ioffset;
1209 xfs_off_t iendoffset;
1210 xfs_extlen_t mod=0;
1211 xfs_mount_t *mp;
1212 int nimap;
1213 uint resblks;
1214 xfs_off_t rounding;
1215 int rt;
1216 xfs_fileoff_t startoffset_fsb;
1217 xfs_trans_t *tp;
1218
1219 mp = ip->i_mount;
1220
1221 trace_xfs_free_file_space(ip);
1222
1223 error = xfs_qm_dqattach(ip, 0);
1224 if (error)
1225 return error;
1226
1227 error = 0;
1228 if (len <= 0) /* if nothing being freed */
1229 return error;
1230 rt = XFS_IS_REALTIME_INODE(ip);
1231 startoffset_fsb = XFS_B_TO_FSB(mp, offset);
1232 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
1233
1234 /* wait for the completion of any pending DIOs */
1235 inode_dio_wait(VFS_I(ip));
1236
1237 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_CACHE_SIZE);
1238 ioffset = round_down(offset, rounding);
1239 iendoffset = round_up(offset + len, rounding) - 1;
1240 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, ioffset,
1241 iendoffset);
1242 if (error)
1243 goto out;
1244 truncate_pagecache_range(VFS_I(ip), ioffset, iendoffset);
1245
1246 /*
1247 * Need to zero the stuff we're not freeing, on disk.
1248 * If it's a realtime file & can't use unwritten extents then we
1249 * actually need to zero the extent edges. Otherwise xfs_bunmapi
1250 * will take care of it for us.
1251 */
1252 if (rt && !xfs_sb_version_hasextflgbit(&mp->m_sb)) {
1253 nimap = 1;
1254 error = xfs_bmapi_read(ip, startoffset_fsb, 1,
1255 &imap, &nimap, 0);
1256 if (error)
1257 goto out;
1258 ASSERT(nimap == 0 || nimap == 1);
1259 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1260 xfs_daddr_t block;
1261
1262 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1263 block = imap.br_startblock;
1264 mod = do_div(block, mp->m_sb.sb_rextsize);
1265 if (mod)
1266 startoffset_fsb += mp->m_sb.sb_rextsize - mod;
1267 }
1268 nimap = 1;
1269 error = xfs_bmapi_read(ip, endoffset_fsb - 1, 1,
1270 &imap, &nimap, 0);
1271 if (error)
1272 goto out;
1273 ASSERT(nimap == 0 || nimap == 1);
1274 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1275 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1276 mod++;
1277 if (mod && (mod != mp->m_sb.sb_rextsize))
1278 endoffset_fsb -= mod;
1279 }
1280 }
1281 if ((done = (endoffset_fsb <= startoffset_fsb)))
1282 /*
1283 * One contiguous piece to clear
1284 */
1285 error = xfs_zero_remaining_bytes(ip, offset, offset + len - 1);
1286 else {
1287 /*
1288 * Some full blocks, possibly two pieces to clear
1289 */
1290 if (offset < XFS_FSB_TO_B(mp, startoffset_fsb))
1291 error = xfs_zero_remaining_bytes(ip, offset,
1292 XFS_FSB_TO_B(mp, startoffset_fsb) - 1);
1293 if (!error &&
1294 XFS_FSB_TO_B(mp, endoffset_fsb) < offset + len)
1295 error = xfs_zero_remaining_bytes(ip,
1296 XFS_FSB_TO_B(mp, endoffset_fsb),
1297 offset + len - 1);
1298 }
1299
1300 /*
1301 * free file space until done or until there is an error
1302 */
1303 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1304 while (!error && !done) {
1305
1306 /*
1307 * allocate and setup the transaction. Allow this
1308 * transaction to dip into the reserve blocks to ensure
1309 * the freeing of the space succeeds at ENOSPC.
1310 */
1311 tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT);
1312 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write, resblks, 0);
1313
1314 /*
1315 * check for running out of space
1316 */
1317 if (error) {
1318 /*
1319 * Free the transaction structure.
1320 */
1321 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1322 xfs_trans_cancel(tp);
1323 break;
1324 }
1325 xfs_ilock(ip, XFS_ILOCK_EXCL);
1326 error = xfs_trans_reserve_quota(tp, mp,
1327 ip->i_udquot, ip->i_gdquot, ip->i_pdquot,
1328 resblks, 0, XFS_QMOPT_RES_REGBLKS);
1329 if (error)
1330 goto error1;
1331
1332 xfs_trans_ijoin(tp, ip, 0);
1333
1334 /*
1335 * issue the bunmapi() call to free the blocks
1336 */
1337 xfs_bmap_init(&free_list, &firstfsb);
1338 error = xfs_bunmapi(tp, ip, startoffset_fsb,
1339 endoffset_fsb - startoffset_fsb,
1340 0, 2, &firstfsb, &free_list, &done);
1341 if (error)
1342 goto error0;
1343
1344 /*
1345 * complete the transaction
1346 */
1347 error = xfs_bmap_finish(&tp, &free_list, NULL);
1348 if (error)
1349 goto error0;
1350
1351 error = xfs_trans_commit(tp);
1352 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1353 }
1354
1355 out:
1356 return error;
1357
1358 error0:
1359 xfs_bmap_cancel(&free_list);
1360 error1:
1361 xfs_trans_cancel(tp);
1362 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1363 goto out;
1364 }
1365
1366 /*
1367 * Preallocate and zero a range of a file. This mechanism has the allocation
1368 * semantics of fallocate and in addition converts data in the range to zeroes.
1369 */
1370 int
1371 xfs_zero_file_space(
1372 struct xfs_inode *ip,
1373 xfs_off_t offset,
1374 xfs_off_t len)
1375 {
1376 struct xfs_mount *mp = ip->i_mount;
1377 uint blksize;
1378 int error;
1379
1380 trace_xfs_zero_file_space(ip);
1381
1382 blksize = 1 << mp->m_sb.sb_blocklog;
1383
1384 /*
1385 * Punch a hole and prealloc the range. We use hole punch rather than
1386 * unwritten extent conversion for two reasons:
1387 *
1388 * 1.) Hole punch handles partial block zeroing for us.
1389 *
1390 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued
1391 * by virtue of the hole punch.
1392 */
1393 error = xfs_free_file_space(ip, offset, len);
1394 if (error)
1395 goto out;
1396
1397 error = xfs_alloc_file_space(ip, round_down(offset, blksize),
1398 round_up(offset + len, blksize) -
1399 round_down(offset, blksize),
1400 XFS_BMAPI_PREALLOC);
1401 out:
1402 return error;
1403
1404 }
1405
1406 /*
1407 * @next_fsb will keep track of the extent currently undergoing shift.
1408 * @stop_fsb will keep track of the extent at which we have to stop.
1409 * If we are shifting left, we will start with block (offset + len) and
1410 * shift each extent till last extent.
1411 * If we are shifting right, we will start with last extent inside file space
1412 * and continue until we reach the block corresponding to offset.
1413 */
1414 static int
1415 xfs_shift_file_space(
1416 struct xfs_inode *ip,
1417 xfs_off_t offset,
1418 xfs_off_t len,
1419 enum shift_direction direction)
1420 {
1421 int done = 0;
1422 struct xfs_mount *mp = ip->i_mount;
1423 struct xfs_trans *tp;
1424 int error;
1425 struct xfs_bmap_free free_list;
1426 xfs_fsblock_t first_block;
1427 xfs_fileoff_t stop_fsb;
1428 xfs_fileoff_t next_fsb;
1429 xfs_fileoff_t shift_fsb;
1430
1431 ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT);
1432
1433 if (direction == SHIFT_LEFT) {
1434 next_fsb = XFS_B_TO_FSB(mp, offset + len);
1435 stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size);
1436 } else {
1437 /*
1438 * If right shift, delegate the work of initialization of
1439 * next_fsb to xfs_bmap_shift_extent as it has ilock held.
1440 */
1441 next_fsb = NULLFSBLOCK;
1442 stop_fsb = XFS_B_TO_FSB(mp, offset);
1443 }
1444
1445 shift_fsb = XFS_B_TO_FSB(mp, len);
1446
1447 /*
1448 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
1449 * into the accessible region of the file.
1450 */
1451 if (xfs_can_free_eofblocks(ip, true)) {
1452 error = xfs_free_eofblocks(mp, ip, false);
1453 if (error)
1454 return error;
1455 }
1456
1457 /*
1458 * Writeback and invalidate cache for the remainder of the file as we're
1459 * about to shift down every extent from offset to EOF.
1460 */
1461 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
1462 offset, -1);
1463 if (error)
1464 return error;
1465 error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
1466 offset >> PAGE_CACHE_SHIFT, -1);
1467 if (error)
1468 return error;
1469
1470 /*
1471 * The extent shiting code works on extent granularity. So, if
1472 * stop_fsb is not the starting block of extent, we need to split
1473 * the extent at stop_fsb.
1474 */
1475 if (direction == SHIFT_RIGHT) {
1476 error = xfs_bmap_split_extent(ip, stop_fsb);
1477 if (error)
1478 return error;
1479 }
1480
1481 while (!error && !done) {
1482 tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT);
1483 /*
1484 * We would need to reserve permanent block for transaction.
1485 * This will come into picture when after shifting extent into
1486 * hole we found that adjacent extents can be merged which
1487 * may lead to freeing of a block during record update.
1488 */
1489 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write,
1490 XFS_DIOSTRAT_SPACE_RES(mp, 0), 0);
1491 if (error) {
1492 xfs_trans_cancel(tp);
1493 break;
1494 }
1495
1496 xfs_ilock(ip, XFS_ILOCK_EXCL);
1497 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot,
1498 ip->i_gdquot, ip->i_pdquot,
1499 XFS_DIOSTRAT_SPACE_RES(mp, 0), 0,
1500 XFS_QMOPT_RES_REGBLKS);
1501 if (error)
1502 goto out_trans_cancel;
1503
1504 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1505
1506 xfs_bmap_init(&free_list, &first_block);
1507
1508 /*
1509 * We are using the write transaction in which max 2 bmbt
1510 * updates are allowed
1511 */
1512 error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb,
1513 &done, stop_fsb, &first_block, &free_list,
1514 direction, XFS_BMAP_MAX_SHIFT_EXTENTS);
1515 if (error)
1516 goto out_bmap_cancel;
1517
1518 error = xfs_bmap_finish(&tp, &free_list, NULL);
1519 if (error)
1520 goto out_bmap_cancel;
1521
1522 error = xfs_trans_commit(tp);
1523 }
1524
1525 return error;
1526
1527 out_bmap_cancel:
1528 xfs_bmap_cancel(&free_list);
1529 out_trans_cancel:
1530 xfs_trans_cancel(tp);
1531 return error;
1532 }
1533
1534 /*
1535 * xfs_collapse_file_space()
1536 * This routine frees disk space and shift extent for the given file.
1537 * The first thing we do is to free data blocks in the specified range
1538 * by calling xfs_free_file_space(). It would also sync dirty data
1539 * and invalidate page cache over the region on which collapse range
1540 * is working. And Shift extent records to the left to cover a hole.
1541 * RETURNS:
1542 * 0 on success
1543 * errno on error
1544 *
1545 */
1546 int
1547 xfs_collapse_file_space(
1548 struct xfs_inode *ip,
1549 xfs_off_t offset,
1550 xfs_off_t len)
1551 {
1552 int error;
1553
1554 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1555 trace_xfs_collapse_file_space(ip);
1556
1557 error = xfs_free_file_space(ip, offset, len);
1558 if (error)
1559 return error;
1560
1561 return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT);
1562 }
1563
1564 /*
1565 * xfs_insert_file_space()
1566 * This routine create hole space by shifting extents for the given file.
1567 * The first thing we do is to sync dirty data and invalidate page cache
1568 * over the region on which insert range is working. And split an extent
1569 * to two extents at given offset by calling xfs_bmap_split_extent.
1570 * And shift all extent records which are laying between [offset,
1571 * last allocated extent] to the right to reserve hole range.
1572 * RETURNS:
1573 * 0 on success
1574 * errno on error
1575 */
1576 int
1577 xfs_insert_file_space(
1578 struct xfs_inode *ip,
1579 loff_t offset,
1580 loff_t len)
1581 {
1582 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1583 trace_xfs_insert_file_space(ip);
1584
1585 return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT);
1586 }
1587
1588 /*
1589 * We need to check that the format of the data fork in the temporary inode is
1590 * valid for the target inode before doing the swap. This is not a problem with
1591 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1592 * data fork depending on the space the attribute fork is taking so we can get
1593 * invalid formats on the target inode.
1594 *
1595 * E.g. target has space for 7 extents in extent format, temp inode only has
1596 * space for 6. If we defragment down to 7 extents, then the tmp format is a
1597 * btree, but when swapped it needs to be in extent format. Hence we can't just
1598 * blindly swap data forks on attr2 filesystems.
1599 *
1600 * Note that we check the swap in both directions so that we don't end up with
1601 * a corrupt temporary inode, either.
1602 *
1603 * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1604 * inode will prevent this situation from occurring, so all we do here is
1605 * reject and log the attempt. basically we are putting the responsibility on
1606 * userspace to get this right.
1607 */
1608 static int
1609 xfs_swap_extents_check_format(
1610 xfs_inode_t *ip, /* target inode */
1611 xfs_inode_t *tip) /* tmp inode */
1612 {
1613
1614 /* Should never get a local format */
1615 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL ||
1616 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL)
1617 return -EINVAL;
1618
1619 /*
1620 * if the target inode has less extents that then temporary inode then
1621 * why did userspace call us?
1622 */
1623 if (ip->i_d.di_nextents < tip->i_d.di_nextents)
1624 return -EINVAL;
1625
1626 /*
1627 * if the target inode is in extent form and the temp inode is in btree
1628 * form then we will end up with the target inode in the wrong format
1629 * as we already know there are less extents in the temp inode.
1630 */
1631 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1632 tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1633 return -EINVAL;
1634
1635 /* Check temp in extent form to max in target */
1636 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1637 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) >
1638 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1639 return -EINVAL;
1640
1641 /* Check target in extent form to max in temp */
1642 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1643 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) >
1644 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1645 return -EINVAL;
1646
1647 /*
1648 * If we are in a btree format, check that the temp root block will fit
1649 * in the target and that it has enough extents to be in btree format
1650 * in the target.
1651 *
1652 * Note that we have to be careful to allow btree->extent conversions
1653 * (a common defrag case) which will occur when the temp inode is in
1654 * extent format...
1655 */
1656 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1657 if (XFS_IFORK_BOFF(ip) &&
1658 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip))
1659 return -EINVAL;
1660 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <=
1661 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1662 return -EINVAL;
1663 }
1664
1665 /* Reciprocal target->temp btree format checks */
1666 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1667 if (XFS_IFORK_BOFF(tip) &&
1668 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip))
1669 return -EINVAL;
1670 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <=
1671 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1672 return -EINVAL;
1673 }
1674
1675 return 0;
1676 }
1677
1678 static int
1679 xfs_swap_extent_flush(
1680 struct xfs_inode *ip)
1681 {
1682 int error;
1683
1684 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1685 if (error)
1686 return error;
1687 truncate_pagecache_range(VFS_I(ip), 0, -1);
1688
1689 /* Verify O_DIRECT for ftmp */
1690 if (VFS_I(ip)->i_mapping->nrpages)
1691 return -EINVAL;
1692 return 0;
1693 }
1694
1695 int
1696 xfs_swap_extents(
1697 xfs_inode_t *ip, /* target inode */
1698 xfs_inode_t *tip, /* tmp inode */
1699 xfs_swapext_t *sxp)
1700 {
1701 xfs_mount_t *mp = ip->i_mount;
1702 xfs_trans_t *tp;
1703 xfs_bstat_t *sbp = &sxp->sx_stat;
1704 xfs_ifork_t *tempifp, *ifp, *tifp;
1705 int src_log_flags, target_log_flags;
1706 int error = 0;
1707 int aforkblks = 0;
1708 int taforkblks = 0;
1709 __uint64_t tmp;
1710 int lock_flags;
1711
1712 tempifp = kmem_alloc(sizeof(xfs_ifork_t), KM_MAYFAIL);
1713 if (!tempifp) {
1714 error = -ENOMEM;
1715 goto out;
1716 }
1717
1718 /*
1719 * Lock the inodes against other IO, page faults and truncate to
1720 * begin with. Then we can ensure the inodes are flushed and have no
1721 * page cache safely. Once we have done this we can take the ilocks and
1722 * do the rest of the checks.
1723 */
1724 lock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1725 xfs_lock_two_inodes(ip, tip, XFS_IOLOCK_EXCL);
1726 xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL);
1727
1728 /* Verify that both files have the same format */
1729 if ((ip->i_d.di_mode & S_IFMT) != (tip->i_d.di_mode & S_IFMT)) {
1730 error = -EINVAL;
1731 goto out_unlock;
1732 }
1733
1734 /* Verify both files are either real-time or non-realtime */
1735 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
1736 error = -EINVAL;
1737 goto out_unlock;
1738 }
1739
1740 error = xfs_swap_extent_flush(ip);
1741 if (error)
1742 goto out_unlock;
1743 error = xfs_swap_extent_flush(tip);
1744 if (error)
1745 goto out_unlock;
1746
1747 tp = xfs_trans_alloc(mp, XFS_TRANS_SWAPEXT);
1748 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ichange, 0, 0);
1749 if (error) {
1750 xfs_trans_cancel(tp);
1751 goto out_unlock;
1752 }
1753
1754 /*
1755 * Lock and join the inodes to the tansaction so that transaction commit
1756 * or cancel will unlock the inodes from this point onwards.
1757 */
1758 xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL);
1759 lock_flags |= XFS_ILOCK_EXCL;
1760 xfs_trans_ijoin(tp, ip, lock_flags);
1761 xfs_trans_ijoin(tp, tip, lock_flags);
1762
1763
1764 /* Verify all data are being swapped */
1765 if (sxp->sx_offset != 0 ||
1766 sxp->sx_length != ip->i_d.di_size ||
1767 sxp->sx_length != tip->i_d.di_size) {
1768 error = -EFAULT;
1769 goto out_trans_cancel;
1770 }
1771
1772 trace_xfs_swap_extent_before(ip, 0);
1773 trace_xfs_swap_extent_before(tip, 1);
1774
1775 /* check inode formats now that data is flushed */
1776 error = xfs_swap_extents_check_format(ip, tip);
1777 if (error) {
1778 xfs_notice(mp,
1779 "%s: inode 0x%llx format is incompatible for exchanging.",
1780 __func__, ip->i_ino);
1781 goto out_trans_cancel;
1782 }
1783
1784 /*
1785 * Compare the current change & modify times with that
1786 * passed in. If they differ, we abort this swap.
1787 * This is the mechanism used to ensure the calling
1788 * process that the file was not changed out from
1789 * under it.
1790 */
1791 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) ||
1792 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) ||
1793 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) ||
1794 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) {
1795 error = -EBUSY;
1796 goto out_trans_cancel;
1797 }
1798 /*
1799 * Count the number of extended attribute blocks
1800 */
1801 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) &&
1802 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1803 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &aforkblks);
1804 if (error)
1805 goto out_trans_cancel;
1806 }
1807 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) &&
1808 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1809 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK,
1810 &taforkblks);
1811 if (error)
1812 goto out_trans_cancel;
1813 }
1814
1815 /*
1816 * Before we've swapped the forks, lets set the owners of the forks
1817 * appropriately. We have to do this as we are demand paging the btree
1818 * buffers, and so the validation done on read will expect the owner
1819 * field to be correctly set. Once we change the owners, we can swap the
1820 * inode forks.
1821 *
1822 * Note the trickiness in setting the log flags - we set the owner log
1823 * flag on the opposite inode (i.e. the inode we are setting the new
1824 * owner to be) because once we swap the forks and log that, log
1825 * recovery is going to see the fork as owned by the swapped inode,
1826 * not the pre-swapped inodes.
1827 */
1828 src_log_flags = XFS_ILOG_CORE;
1829 target_log_flags = XFS_ILOG_CORE;
1830 if (ip->i_d.di_version == 3 &&
1831 ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1832 target_log_flags |= XFS_ILOG_DOWNER;
1833 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK,
1834 tip->i_ino, NULL);
1835 if (error)
1836 goto out_trans_cancel;
1837 }
1838
1839 if (tip->i_d.di_version == 3 &&
1840 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1841 src_log_flags |= XFS_ILOG_DOWNER;
1842 error = xfs_bmbt_change_owner(tp, tip, XFS_DATA_FORK,
1843 ip->i_ino, NULL);
1844 if (error)
1845 goto out_trans_cancel;
1846 }
1847
1848 /*
1849 * Swap the data forks of the inodes
1850 */
1851 ifp = &ip->i_df;
1852 tifp = &tip->i_df;
1853 *tempifp = *ifp; /* struct copy */
1854 *ifp = *tifp; /* struct copy */
1855 *tifp = *tempifp; /* struct copy */
1856
1857 /*
1858 * Fix the on-disk inode values
1859 */
1860 tmp = (__uint64_t)ip->i_d.di_nblocks;
1861 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks;
1862 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks;
1863
1864 tmp = (__uint64_t) ip->i_d.di_nextents;
1865 ip->i_d.di_nextents = tip->i_d.di_nextents;
1866 tip->i_d.di_nextents = tmp;
1867
1868 tmp = (__uint64_t) ip->i_d.di_format;
1869 ip->i_d.di_format = tip->i_d.di_format;
1870 tip->i_d.di_format = tmp;
1871
1872 /*
1873 * The extents in the source inode could still contain speculative
1874 * preallocation beyond EOF (e.g. the file is open but not modified
1875 * while defrag is in progress). In that case, we need to copy over the
1876 * number of delalloc blocks the data fork in the source inode is
1877 * tracking beyond EOF so that when the fork is truncated away when the
1878 * temporary inode is unlinked we don't underrun the i_delayed_blks
1879 * counter on that inode.
1880 */
1881 ASSERT(tip->i_delayed_blks == 0);
1882 tip->i_delayed_blks = ip->i_delayed_blks;
1883 ip->i_delayed_blks = 0;
1884
1885 switch (ip->i_d.di_format) {
1886 case XFS_DINODE_FMT_EXTENTS:
1887 /* If the extents fit in the inode, fix the
1888 * pointer. Otherwise it's already NULL or
1889 * pointing to the extent.
1890 */
1891 if (ip->i_d.di_nextents <= XFS_INLINE_EXTS) {
1892 ifp->if_u1.if_extents =
1893 ifp->if_u2.if_inline_ext;
1894 }
1895 src_log_flags |= XFS_ILOG_DEXT;
1896 break;
1897 case XFS_DINODE_FMT_BTREE:
1898 ASSERT(ip->i_d.di_version < 3 ||
1899 (src_log_flags & XFS_ILOG_DOWNER));
1900 src_log_flags |= XFS_ILOG_DBROOT;
1901 break;
1902 }
1903
1904 switch (tip->i_d.di_format) {
1905 case XFS_DINODE_FMT_EXTENTS:
1906 /* If the extents fit in the inode, fix the
1907 * pointer. Otherwise it's already NULL or
1908 * pointing to the extent.
1909 */
1910 if (tip->i_d.di_nextents <= XFS_INLINE_EXTS) {
1911 tifp->if_u1.if_extents =
1912 tifp->if_u2.if_inline_ext;
1913 }
1914 target_log_flags |= XFS_ILOG_DEXT;
1915 break;
1916 case XFS_DINODE_FMT_BTREE:
1917 target_log_flags |= XFS_ILOG_DBROOT;
1918 ASSERT(tip->i_d.di_version < 3 ||
1919 (target_log_flags & XFS_ILOG_DOWNER));
1920 break;
1921 }
1922
1923 xfs_trans_log_inode(tp, ip, src_log_flags);
1924 xfs_trans_log_inode(tp, tip, target_log_flags);
1925
1926 /*
1927 * If this is a synchronous mount, make sure that the
1928 * transaction goes to disk before returning to the user.
1929 */
1930 if (mp->m_flags & XFS_MOUNT_WSYNC)
1931 xfs_trans_set_sync(tp);
1932
1933 error = xfs_trans_commit(tp);
1934
1935 trace_xfs_swap_extent_after(ip, 0);
1936 trace_xfs_swap_extent_after(tip, 1);
1937 out:
1938 kmem_free(tempifp);
1939 return error;
1940
1941 out_unlock:
1942 xfs_iunlock(ip, lock_flags);
1943 xfs_iunlock(tip, lock_flags);
1944 goto out;
1945
1946 out_trans_cancel:
1947 xfs_trans_cancel(tp);
1948 goto out;
1949 }
This page took 0.1027 seconds and 5 git commands to generate.