xfs: convert buffer verifiers to an ops structure.
[deliverable/linux.git] / fs / xfs / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_sb.h"
38 #include "xfs_log.h"
39 #include "xfs_ag.h"
40 #include "xfs_mount.h"
41 #include "xfs_trace.h"
42
43 static kmem_zone_t *xfs_buf_zone;
44
45 static struct workqueue_struct *xfslogd_workqueue;
46
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
55 #endif
56
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61 static inline int
62 xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64 {
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73 }
74
75 static inline int
76 xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78 {
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81
82 /*
83 * xfs_buf_lru_add - add a buffer to the LRU.
84 *
85 * The LRU takes a new reference to the buffer so that it will only be freed
86 * once the shrinker takes the buffer off the LRU.
87 */
88 STATIC void
89 xfs_buf_lru_add(
90 struct xfs_buf *bp)
91 {
92 struct xfs_buftarg *btp = bp->b_target;
93
94 spin_lock(&btp->bt_lru_lock);
95 if (list_empty(&bp->b_lru)) {
96 atomic_inc(&bp->b_hold);
97 list_add_tail(&bp->b_lru, &btp->bt_lru);
98 btp->bt_lru_nr++;
99 bp->b_lru_flags &= ~_XBF_LRU_DISPOSE;
100 }
101 spin_unlock(&btp->bt_lru_lock);
102 }
103
104 /*
105 * xfs_buf_lru_del - remove a buffer from the LRU
106 *
107 * The unlocked check is safe here because it only occurs when there are not
108 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
109 * to optimise the shrinker removing the buffer from the LRU and calling
110 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
111 * bt_lru_lock.
112 */
113 STATIC void
114 xfs_buf_lru_del(
115 struct xfs_buf *bp)
116 {
117 struct xfs_buftarg *btp = bp->b_target;
118
119 if (list_empty(&bp->b_lru))
120 return;
121
122 spin_lock(&btp->bt_lru_lock);
123 if (!list_empty(&bp->b_lru)) {
124 list_del_init(&bp->b_lru);
125 btp->bt_lru_nr--;
126 }
127 spin_unlock(&btp->bt_lru_lock);
128 }
129
130 /*
131 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
132 * b_lru_ref count so that the buffer is freed immediately when the buffer
133 * reference count falls to zero. If the buffer is already on the LRU, we need
134 * to remove the reference that LRU holds on the buffer.
135 *
136 * This prevents build-up of stale buffers on the LRU.
137 */
138 void
139 xfs_buf_stale(
140 struct xfs_buf *bp)
141 {
142 ASSERT(xfs_buf_islocked(bp));
143
144 bp->b_flags |= XBF_STALE;
145
146 /*
147 * Clear the delwri status so that a delwri queue walker will not
148 * flush this buffer to disk now that it is stale. The delwri queue has
149 * a reference to the buffer, so this is safe to do.
150 */
151 bp->b_flags &= ~_XBF_DELWRI_Q;
152
153 atomic_set(&(bp)->b_lru_ref, 0);
154 if (!list_empty(&bp->b_lru)) {
155 struct xfs_buftarg *btp = bp->b_target;
156
157 spin_lock(&btp->bt_lru_lock);
158 if (!list_empty(&bp->b_lru) &&
159 !(bp->b_lru_flags & _XBF_LRU_DISPOSE)) {
160 list_del_init(&bp->b_lru);
161 btp->bt_lru_nr--;
162 atomic_dec(&bp->b_hold);
163 }
164 spin_unlock(&btp->bt_lru_lock);
165 }
166 ASSERT(atomic_read(&bp->b_hold) >= 1);
167 }
168
169 static int
170 xfs_buf_get_maps(
171 struct xfs_buf *bp,
172 int map_count)
173 {
174 ASSERT(bp->b_maps == NULL);
175 bp->b_map_count = map_count;
176
177 if (map_count == 1) {
178 bp->b_maps = &bp->b_map;
179 return 0;
180 }
181
182 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
183 KM_NOFS);
184 if (!bp->b_maps)
185 return ENOMEM;
186 return 0;
187 }
188
189 /*
190 * Frees b_pages if it was allocated.
191 */
192 static void
193 xfs_buf_free_maps(
194 struct xfs_buf *bp)
195 {
196 if (bp->b_maps != &bp->b_map) {
197 kmem_free(bp->b_maps);
198 bp->b_maps = NULL;
199 }
200 }
201
202 struct xfs_buf *
203 _xfs_buf_alloc(
204 struct xfs_buftarg *target,
205 struct xfs_buf_map *map,
206 int nmaps,
207 xfs_buf_flags_t flags)
208 {
209 struct xfs_buf *bp;
210 int error;
211 int i;
212
213 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
214 if (unlikely(!bp))
215 return NULL;
216
217 /*
218 * We don't want certain flags to appear in b_flags unless they are
219 * specifically set by later operations on the buffer.
220 */
221 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
222
223 atomic_set(&bp->b_hold, 1);
224 atomic_set(&bp->b_lru_ref, 1);
225 init_completion(&bp->b_iowait);
226 INIT_LIST_HEAD(&bp->b_lru);
227 INIT_LIST_HEAD(&bp->b_list);
228 RB_CLEAR_NODE(&bp->b_rbnode);
229 sema_init(&bp->b_sema, 0); /* held, no waiters */
230 XB_SET_OWNER(bp);
231 bp->b_target = target;
232 bp->b_flags = flags;
233
234 /*
235 * Set length and io_length to the same value initially.
236 * I/O routines should use io_length, which will be the same in
237 * most cases but may be reset (e.g. XFS recovery).
238 */
239 error = xfs_buf_get_maps(bp, nmaps);
240 if (error) {
241 kmem_zone_free(xfs_buf_zone, bp);
242 return NULL;
243 }
244
245 bp->b_bn = map[0].bm_bn;
246 bp->b_length = 0;
247 for (i = 0; i < nmaps; i++) {
248 bp->b_maps[i].bm_bn = map[i].bm_bn;
249 bp->b_maps[i].bm_len = map[i].bm_len;
250 bp->b_length += map[i].bm_len;
251 }
252 bp->b_io_length = bp->b_length;
253
254 atomic_set(&bp->b_pin_count, 0);
255 init_waitqueue_head(&bp->b_waiters);
256
257 XFS_STATS_INC(xb_create);
258 trace_xfs_buf_init(bp, _RET_IP_);
259
260 return bp;
261 }
262
263 /*
264 * Allocate a page array capable of holding a specified number
265 * of pages, and point the page buf at it.
266 */
267 STATIC int
268 _xfs_buf_get_pages(
269 xfs_buf_t *bp,
270 int page_count,
271 xfs_buf_flags_t flags)
272 {
273 /* Make sure that we have a page list */
274 if (bp->b_pages == NULL) {
275 bp->b_page_count = page_count;
276 if (page_count <= XB_PAGES) {
277 bp->b_pages = bp->b_page_array;
278 } else {
279 bp->b_pages = kmem_alloc(sizeof(struct page *) *
280 page_count, KM_NOFS);
281 if (bp->b_pages == NULL)
282 return -ENOMEM;
283 }
284 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
285 }
286 return 0;
287 }
288
289 /*
290 * Frees b_pages if it was allocated.
291 */
292 STATIC void
293 _xfs_buf_free_pages(
294 xfs_buf_t *bp)
295 {
296 if (bp->b_pages != bp->b_page_array) {
297 kmem_free(bp->b_pages);
298 bp->b_pages = NULL;
299 }
300 }
301
302 /*
303 * Releases the specified buffer.
304 *
305 * The modification state of any associated pages is left unchanged.
306 * The buffer most not be on any hash - use xfs_buf_rele instead for
307 * hashed and refcounted buffers
308 */
309 void
310 xfs_buf_free(
311 xfs_buf_t *bp)
312 {
313 trace_xfs_buf_free(bp, _RET_IP_);
314
315 ASSERT(list_empty(&bp->b_lru));
316
317 if (bp->b_flags & _XBF_PAGES) {
318 uint i;
319
320 if (xfs_buf_is_vmapped(bp))
321 vm_unmap_ram(bp->b_addr - bp->b_offset,
322 bp->b_page_count);
323
324 for (i = 0; i < bp->b_page_count; i++) {
325 struct page *page = bp->b_pages[i];
326
327 __free_page(page);
328 }
329 } else if (bp->b_flags & _XBF_KMEM)
330 kmem_free(bp->b_addr);
331 _xfs_buf_free_pages(bp);
332 xfs_buf_free_maps(bp);
333 kmem_zone_free(xfs_buf_zone, bp);
334 }
335
336 /*
337 * Allocates all the pages for buffer in question and builds it's page list.
338 */
339 STATIC int
340 xfs_buf_allocate_memory(
341 xfs_buf_t *bp,
342 uint flags)
343 {
344 size_t size;
345 size_t nbytes, offset;
346 gfp_t gfp_mask = xb_to_gfp(flags);
347 unsigned short page_count, i;
348 xfs_off_t start, end;
349 int error;
350
351 /*
352 * for buffers that are contained within a single page, just allocate
353 * the memory from the heap - there's no need for the complexity of
354 * page arrays to keep allocation down to order 0.
355 */
356 size = BBTOB(bp->b_length);
357 if (size < PAGE_SIZE) {
358 bp->b_addr = kmem_alloc(size, KM_NOFS);
359 if (!bp->b_addr) {
360 /* low memory - use alloc_page loop instead */
361 goto use_alloc_page;
362 }
363
364 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
365 ((unsigned long)bp->b_addr & PAGE_MASK)) {
366 /* b_addr spans two pages - use alloc_page instead */
367 kmem_free(bp->b_addr);
368 bp->b_addr = NULL;
369 goto use_alloc_page;
370 }
371 bp->b_offset = offset_in_page(bp->b_addr);
372 bp->b_pages = bp->b_page_array;
373 bp->b_pages[0] = virt_to_page(bp->b_addr);
374 bp->b_page_count = 1;
375 bp->b_flags |= _XBF_KMEM;
376 return 0;
377 }
378
379 use_alloc_page:
380 start = BBTOB(bp->b_map.bm_bn) >> PAGE_SHIFT;
381 end = (BBTOB(bp->b_map.bm_bn + bp->b_length) + PAGE_SIZE - 1)
382 >> PAGE_SHIFT;
383 page_count = end - start;
384 error = _xfs_buf_get_pages(bp, page_count, flags);
385 if (unlikely(error))
386 return error;
387
388 offset = bp->b_offset;
389 bp->b_flags |= _XBF_PAGES;
390
391 for (i = 0; i < bp->b_page_count; i++) {
392 struct page *page;
393 uint retries = 0;
394 retry:
395 page = alloc_page(gfp_mask);
396 if (unlikely(page == NULL)) {
397 if (flags & XBF_READ_AHEAD) {
398 bp->b_page_count = i;
399 error = ENOMEM;
400 goto out_free_pages;
401 }
402
403 /*
404 * This could deadlock.
405 *
406 * But until all the XFS lowlevel code is revamped to
407 * handle buffer allocation failures we can't do much.
408 */
409 if (!(++retries % 100))
410 xfs_err(NULL,
411 "possible memory allocation deadlock in %s (mode:0x%x)",
412 __func__, gfp_mask);
413
414 XFS_STATS_INC(xb_page_retries);
415 congestion_wait(BLK_RW_ASYNC, HZ/50);
416 goto retry;
417 }
418
419 XFS_STATS_INC(xb_page_found);
420
421 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
422 size -= nbytes;
423 bp->b_pages[i] = page;
424 offset = 0;
425 }
426 return 0;
427
428 out_free_pages:
429 for (i = 0; i < bp->b_page_count; i++)
430 __free_page(bp->b_pages[i]);
431 return error;
432 }
433
434 /*
435 * Map buffer into kernel address-space if necessary.
436 */
437 STATIC int
438 _xfs_buf_map_pages(
439 xfs_buf_t *bp,
440 uint flags)
441 {
442 ASSERT(bp->b_flags & _XBF_PAGES);
443 if (bp->b_page_count == 1) {
444 /* A single page buffer is always mappable */
445 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
446 } else if (flags & XBF_UNMAPPED) {
447 bp->b_addr = NULL;
448 } else {
449 int retried = 0;
450
451 do {
452 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
453 -1, PAGE_KERNEL);
454 if (bp->b_addr)
455 break;
456 vm_unmap_aliases();
457 } while (retried++ <= 1);
458
459 if (!bp->b_addr)
460 return -ENOMEM;
461 bp->b_addr += bp->b_offset;
462 }
463
464 return 0;
465 }
466
467 /*
468 * Finding and Reading Buffers
469 */
470
471 /*
472 * Look up, and creates if absent, a lockable buffer for
473 * a given range of an inode. The buffer is returned
474 * locked. No I/O is implied by this call.
475 */
476 xfs_buf_t *
477 _xfs_buf_find(
478 struct xfs_buftarg *btp,
479 struct xfs_buf_map *map,
480 int nmaps,
481 xfs_buf_flags_t flags,
482 xfs_buf_t *new_bp)
483 {
484 size_t numbytes;
485 struct xfs_perag *pag;
486 struct rb_node **rbp;
487 struct rb_node *parent;
488 xfs_buf_t *bp;
489 xfs_daddr_t blkno = map[0].bm_bn;
490 int numblks = 0;
491 int i;
492
493 for (i = 0; i < nmaps; i++)
494 numblks += map[i].bm_len;
495 numbytes = BBTOB(numblks);
496
497 /* Check for IOs smaller than the sector size / not sector aligned */
498 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
499 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
500
501 /* get tree root */
502 pag = xfs_perag_get(btp->bt_mount,
503 xfs_daddr_to_agno(btp->bt_mount, blkno));
504
505 /* walk tree */
506 spin_lock(&pag->pag_buf_lock);
507 rbp = &pag->pag_buf_tree.rb_node;
508 parent = NULL;
509 bp = NULL;
510 while (*rbp) {
511 parent = *rbp;
512 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
513
514 if (blkno < bp->b_bn)
515 rbp = &(*rbp)->rb_left;
516 else if (blkno > bp->b_bn)
517 rbp = &(*rbp)->rb_right;
518 else {
519 /*
520 * found a block number match. If the range doesn't
521 * match, the only way this is allowed is if the buffer
522 * in the cache is stale and the transaction that made
523 * it stale has not yet committed. i.e. we are
524 * reallocating a busy extent. Skip this buffer and
525 * continue searching to the right for an exact match.
526 */
527 if (bp->b_length != numblks) {
528 ASSERT(bp->b_flags & XBF_STALE);
529 rbp = &(*rbp)->rb_right;
530 continue;
531 }
532 atomic_inc(&bp->b_hold);
533 goto found;
534 }
535 }
536
537 /* No match found */
538 if (new_bp) {
539 rb_link_node(&new_bp->b_rbnode, parent, rbp);
540 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
541 /* the buffer keeps the perag reference until it is freed */
542 new_bp->b_pag = pag;
543 spin_unlock(&pag->pag_buf_lock);
544 } else {
545 XFS_STATS_INC(xb_miss_locked);
546 spin_unlock(&pag->pag_buf_lock);
547 xfs_perag_put(pag);
548 }
549 return new_bp;
550
551 found:
552 spin_unlock(&pag->pag_buf_lock);
553 xfs_perag_put(pag);
554
555 if (!xfs_buf_trylock(bp)) {
556 if (flags & XBF_TRYLOCK) {
557 xfs_buf_rele(bp);
558 XFS_STATS_INC(xb_busy_locked);
559 return NULL;
560 }
561 xfs_buf_lock(bp);
562 XFS_STATS_INC(xb_get_locked_waited);
563 }
564
565 /*
566 * if the buffer is stale, clear all the external state associated with
567 * it. We need to keep flags such as how we allocated the buffer memory
568 * intact here.
569 */
570 if (bp->b_flags & XBF_STALE) {
571 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
572 ASSERT(bp->b_iodone == NULL);
573 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
574 bp->b_ops = NULL;
575 }
576
577 trace_xfs_buf_find(bp, flags, _RET_IP_);
578 XFS_STATS_INC(xb_get_locked);
579 return bp;
580 }
581
582 /*
583 * Assembles a buffer covering the specified range. The code is optimised for
584 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
585 * more hits than misses.
586 */
587 struct xfs_buf *
588 xfs_buf_get_map(
589 struct xfs_buftarg *target,
590 struct xfs_buf_map *map,
591 int nmaps,
592 xfs_buf_flags_t flags)
593 {
594 struct xfs_buf *bp;
595 struct xfs_buf *new_bp;
596 int error = 0;
597
598 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
599 if (likely(bp))
600 goto found;
601
602 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
603 if (unlikely(!new_bp))
604 return NULL;
605
606 error = xfs_buf_allocate_memory(new_bp, flags);
607 if (error) {
608 xfs_buf_free(new_bp);
609 return NULL;
610 }
611
612 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
613 if (!bp) {
614 xfs_buf_free(new_bp);
615 return NULL;
616 }
617
618 if (bp != new_bp)
619 xfs_buf_free(new_bp);
620
621 found:
622 if (!bp->b_addr) {
623 error = _xfs_buf_map_pages(bp, flags);
624 if (unlikely(error)) {
625 xfs_warn(target->bt_mount,
626 "%s: failed to map pages\n", __func__);
627 xfs_buf_relse(bp);
628 return NULL;
629 }
630 }
631
632 XFS_STATS_INC(xb_get);
633 trace_xfs_buf_get(bp, flags, _RET_IP_);
634 return bp;
635 }
636
637 STATIC int
638 _xfs_buf_read(
639 xfs_buf_t *bp,
640 xfs_buf_flags_t flags)
641 {
642 ASSERT(!(flags & XBF_WRITE));
643 ASSERT(bp->b_map.bm_bn != XFS_BUF_DADDR_NULL);
644
645 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
646 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
647
648 xfs_buf_iorequest(bp);
649 if (flags & XBF_ASYNC)
650 return 0;
651 return xfs_buf_iowait(bp);
652 }
653
654 xfs_buf_t *
655 xfs_buf_read_map(
656 struct xfs_buftarg *target,
657 struct xfs_buf_map *map,
658 int nmaps,
659 xfs_buf_flags_t flags,
660 const struct xfs_buf_ops *ops)
661 {
662 struct xfs_buf *bp;
663
664 flags |= XBF_READ;
665
666 bp = xfs_buf_get_map(target, map, nmaps, flags);
667 if (bp) {
668 trace_xfs_buf_read(bp, flags, _RET_IP_);
669
670 if (!XFS_BUF_ISDONE(bp)) {
671 XFS_STATS_INC(xb_get_read);
672 bp->b_ops = ops;
673 _xfs_buf_read(bp, flags);
674 } else if (flags & XBF_ASYNC) {
675 /*
676 * Read ahead call which is already satisfied,
677 * drop the buffer
678 */
679 xfs_buf_relse(bp);
680 return NULL;
681 } else {
682 /* We do not want read in the flags */
683 bp->b_flags &= ~XBF_READ;
684 }
685 }
686
687 return bp;
688 }
689
690 /*
691 * If we are not low on memory then do the readahead in a deadlock
692 * safe manner.
693 */
694 void
695 xfs_buf_readahead_map(
696 struct xfs_buftarg *target,
697 struct xfs_buf_map *map,
698 int nmaps,
699 const struct xfs_buf_ops *ops)
700 {
701 if (bdi_read_congested(target->bt_bdi))
702 return;
703
704 xfs_buf_read_map(target, map, nmaps,
705 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
706 }
707
708 /*
709 * Read an uncached buffer from disk. Allocates and returns a locked
710 * buffer containing the disk contents or nothing.
711 */
712 struct xfs_buf *
713 xfs_buf_read_uncached(
714 struct xfs_buftarg *target,
715 xfs_daddr_t daddr,
716 size_t numblks,
717 int flags,
718 const struct xfs_buf_ops *ops)
719 {
720 struct xfs_buf *bp;
721
722 bp = xfs_buf_get_uncached(target, numblks, flags);
723 if (!bp)
724 return NULL;
725
726 /* set up the buffer for a read IO */
727 ASSERT(bp->b_map_count == 1);
728 bp->b_bn = daddr;
729 bp->b_maps[0].bm_bn = daddr;
730 bp->b_flags |= XBF_READ;
731 bp->b_ops = ops;
732
733 xfsbdstrat(target->bt_mount, bp);
734 xfs_buf_iowait(bp);
735 return bp;
736 }
737
738 /*
739 * Return a buffer allocated as an empty buffer and associated to external
740 * memory via xfs_buf_associate_memory() back to it's empty state.
741 */
742 void
743 xfs_buf_set_empty(
744 struct xfs_buf *bp,
745 size_t numblks)
746 {
747 if (bp->b_pages)
748 _xfs_buf_free_pages(bp);
749
750 bp->b_pages = NULL;
751 bp->b_page_count = 0;
752 bp->b_addr = NULL;
753 bp->b_length = numblks;
754 bp->b_io_length = numblks;
755
756 ASSERT(bp->b_map_count == 1);
757 bp->b_bn = XFS_BUF_DADDR_NULL;
758 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
759 bp->b_maps[0].bm_len = bp->b_length;
760 }
761
762 static inline struct page *
763 mem_to_page(
764 void *addr)
765 {
766 if ((!is_vmalloc_addr(addr))) {
767 return virt_to_page(addr);
768 } else {
769 return vmalloc_to_page(addr);
770 }
771 }
772
773 int
774 xfs_buf_associate_memory(
775 xfs_buf_t *bp,
776 void *mem,
777 size_t len)
778 {
779 int rval;
780 int i = 0;
781 unsigned long pageaddr;
782 unsigned long offset;
783 size_t buflen;
784 int page_count;
785
786 pageaddr = (unsigned long)mem & PAGE_MASK;
787 offset = (unsigned long)mem - pageaddr;
788 buflen = PAGE_ALIGN(len + offset);
789 page_count = buflen >> PAGE_SHIFT;
790
791 /* Free any previous set of page pointers */
792 if (bp->b_pages)
793 _xfs_buf_free_pages(bp);
794
795 bp->b_pages = NULL;
796 bp->b_addr = mem;
797
798 rval = _xfs_buf_get_pages(bp, page_count, 0);
799 if (rval)
800 return rval;
801
802 bp->b_offset = offset;
803
804 for (i = 0; i < bp->b_page_count; i++) {
805 bp->b_pages[i] = mem_to_page((void *)pageaddr);
806 pageaddr += PAGE_SIZE;
807 }
808
809 bp->b_io_length = BTOBB(len);
810 bp->b_length = BTOBB(buflen);
811
812 return 0;
813 }
814
815 xfs_buf_t *
816 xfs_buf_get_uncached(
817 struct xfs_buftarg *target,
818 size_t numblks,
819 int flags)
820 {
821 unsigned long page_count;
822 int error, i;
823 struct xfs_buf *bp;
824 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
825
826 bp = _xfs_buf_alloc(target, &map, 1, 0);
827 if (unlikely(bp == NULL))
828 goto fail;
829
830 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
831 error = _xfs_buf_get_pages(bp, page_count, 0);
832 if (error)
833 goto fail_free_buf;
834
835 for (i = 0; i < page_count; i++) {
836 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
837 if (!bp->b_pages[i])
838 goto fail_free_mem;
839 }
840 bp->b_flags |= _XBF_PAGES;
841
842 error = _xfs_buf_map_pages(bp, 0);
843 if (unlikely(error)) {
844 xfs_warn(target->bt_mount,
845 "%s: failed to map pages\n", __func__);
846 goto fail_free_mem;
847 }
848
849 trace_xfs_buf_get_uncached(bp, _RET_IP_);
850 return bp;
851
852 fail_free_mem:
853 while (--i >= 0)
854 __free_page(bp->b_pages[i]);
855 _xfs_buf_free_pages(bp);
856 fail_free_buf:
857 xfs_buf_free_maps(bp);
858 kmem_zone_free(xfs_buf_zone, bp);
859 fail:
860 return NULL;
861 }
862
863 /*
864 * Increment reference count on buffer, to hold the buffer concurrently
865 * with another thread which may release (free) the buffer asynchronously.
866 * Must hold the buffer already to call this function.
867 */
868 void
869 xfs_buf_hold(
870 xfs_buf_t *bp)
871 {
872 trace_xfs_buf_hold(bp, _RET_IP_);
873 atomic_inc(&bp->b_hold);
874 }
875
876 /*
877 * Releases a hold on the specified buffer. If the
878 * the hold count is 1, calls xfs_buf_free.
879 */
880 void
881 xfs_buf_rele(
882 xfs_buf_t *bp)
883 {
884 struct xfs_perag *pag = bp->b_pag;
885
886 trace_xfs_buf_rele(bp, _RET_IP_);
887
888 if (!pag) {
889 ASSERT(list_empty(&bp->b_lru));
890 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
891 if (atomic_dec_and_test(&bp->b_hold))
892 xfs_buf_free(bp);
893 return;
894 }
895
896 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
897
898 ASSERT(atomic_read(&bp->b_hold) > 0);
899 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
900 if (!(bp->b_flags & XBF_STALE) &&
901 atomic_read(&bp->b_lru_ref)) {
902 xfs_buf_lru_add(bp);
903 spin_unlock(&pag->pag_buf_lock);
904 } else {
905 xfs_buf_lru_del(bp);
906 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
907 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
908 spin_unlock(&pag->pag_buf_lock);
909 xfs_perag_put(pag);
910 xfs_buf_free(bp);
911 }
912 }
913 }
914
915
916 /*
917 * Lock a buffer object, if it is not already locked.
918 *
919 * If we come across a stale, pinned, locked buffer, we know that we are
920 * being asked to lock a buffer that has been reallocated. Because it is
921 * pinned, we know that the log has not been pushed to disk and hence it
922 * will still be locked. Rather than continuing to have trylock attempts
923 * fail until someone else pushes the log, push it ourselves before
924 * returning. This means that the xfsaild will not get stuck trying
925 * to push on stale inode buffers.
926 */
927 int
928 xfs_buf_trylock(
929 struct xfs_buf *bp)
930 {
931 int locked;
932
933 locked = down_trylock(&bp->b_sema) == 0;
934 if (locked)
935 XB_SET_OWNER(bp);
936 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
937 xfs_log_force(bp->b_target->bt_mount, 0);
938
939 trace_xfs_buf_trylock(bp, _RET_IP_);
940 return locked;
941 }
942
943 /*
944 * Lock a buffer object.
945 *
946 * If we come across a stale, pinned, locked buffer, we know that we
947 * are being asked to lock a buffer that has been reallocated. Because
948 * it is pinned, we know that the log has not been pushed to disk and
949 * hence it will still be locked. Rather than sleeping until someone
950 * else pushes the log, push it ourselves before trying to get the lock.
951 */
952 void
953 xfs_buf_lock(
954 struct xfs_buf *bp)
955 {
956 trace_xfs_buf_lock(bp, _RET_IP_);
957
958 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
959 xfs_log_force(bp->b_target->bt_mount, 0);
960 down(&bp->b_sema);
961 XB_SET_OWNER(bp);
962
963 trace_xfs_buf_lock_done(bp, _RET_IP_);
964 }
965
966 void
967 xfs_buf_unlock(
968 struct xfs_buf *bp)
969 {
970 XB_CLEAR_OWNER(bp);
971 up(&bp->b_sema);
972
973 trace_xfs_buf_unlock(bp, _RET_IP_);
974 }
975
976 STATIC void
977 xfs_buf_wait_unpin(
978 xfs_buf_t *bp)
979 {
980 DECLARE_WAITQUEUE (wait, current);
981
982 if (atomic_read(&bp->b_pin_count) == 0)
983 return;
984
985 add_wait_queue(&bp->b_waiters, &wait);
986 for (;;) {
987 set_current_state(TASK_UNINTERRUPTIBLE);
988 if (atomic_read(&bp->b_pin_count) == 0)
989 break;
990 io_schedule();
991 }
992 remove_wait_queue(&bp->b_waiters, &wait);
993 set_current_state(TASK_RUNNING);
994 }
995
996 /*
997 * Buffer Utility Routines
998 */
999
1000 STATIC void
1001 xfs_buf_iodone_work(
1002 struct work_struct *work)
1003 {
1004 struct xfs_buf *bp =
1005 container_of(work, xfs_buf_t, b_iodone_work);
1006 bool read = !!(bp->b_flags & XBF_READ);
1007
1008 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1009 if (read && bp->b_ops)
1010 bp->b_ops->verify_read(bp);
1011
1012 if (bp->b_iodone)
1013 (*(bp->b_iodone))(bp);
1014 else if (bp->b_flags & XBF_ASYNC)
1015 xfs_buf_relse(bp);
1016 else {
1017 ASSERT(read && bp->b_ops);
1018 complete(&bp->b_iowait);
1019 }
1020 }
1021
1022 void
1023 xfs_buf_ioend(
1024 struct xfs_buf *bp,
1025 int schedule)
1026 {
1027 bool read = !!(bp->b_flags & XBF_READ);
1028
1029 trace_xfs_buf_iodone(bp, _RET_IP_);
1030
1031 if (bp->b_error == 0)
1032 bp->b_flags |= XBF_DONE;
1033
1034 if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1035 if (schedule) {
1036 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1037 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1038 } else {
1039 xfs_buf_iodone_work(&bp->b_iodone_work);
1040 }
1041 } else {
1042 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1043 complete(&bp->b_iowait);
1044 }
1045 }
1046
1047 void
1048 xfs_buf_ioerror(
1049 xfs_buf_t *bp,
1050 int error)
1051 {
1052 ASSERT(error >= 0 && error <= 0xffff);
1053 bp->b_error = (unsigned short)error;
1054 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1055 }
1056
1057 void
1058 xfs_buf_ioerror_alert(
1059 struct xfs_buf *bp,
1060 const char *func)
1061 {
1062 xfs_alert(bp->b_target->bt_mount,
1063 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1064 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
1065 }
1066
1067 /*
1068 * Called when we want to stop a buffer from getting written or read.
1069 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1070 * so that the proper iodone callbacks get called.
1071 */
1072 STATIC int
1073 xfs_bioerror(
1074 xfs_buf_t *bp)
1075 {
1076 #ifdef XFSERRORDEBUG
1077 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1078 #endif
1079
1080 /*
1081 * No need to wait until the buffer is unpinned, we aren't flushing it.
1082 */
1083 xfs_buf_ioerror(bp, EIO);
1084
1085 /*
1086 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1087 */
1088 XFS_BUF_UNREAD(bp);
1089 XFS_BUF_UNDONE(bp);
1090 xfs_buf_stale(bp);
1091
1092 xfs_buf_ioend(bp, 0);
1093
1094 return EIO;
1095 }
1096
1097 /*
1098 * Same as xfs_bioerror, except that we are releasing the buffer
1099 * here ourselves, and avoiding the xfs_buf_ioend call.
1100 * This is meant for userdata errors; metadata bufs come with
1101 * iodone functions attached, so that we can track down errors.
1102 */
1103 STATIC int
1104 xfs_bioerror_relse(
1105 struct xfs_buf *bp)
1106 {
1107 int64_t fl = bp->b_flags;
1108 /*
1109 * No need to wait until the buffer is unpinned.
1110 * We aren't flushing it.
1111 *
1112 * chunkhold expects B_DONE to be set, whether
1113 * we actually finish the I/O or not. We don't want to
1114 * change that interface.
1115 */
1116 XFS_BUF_UNREAD(bp);
1117 XFS_BUF_DONE(bp);
1118 xfs_buf_stale(bp);
1119 bp->b_iodone = NULL;
1120 if (!(fl & XBF_ASYNC)) {
1121 /*
1122 * Mark b_error and B_ERROR _both_.
1123 * Lot's of chunkcache code assumes that.
1124 * There's no reason to mark error for
1125 * ASYNC buffers.
1126 */
1127 xfs_buf_ioerror(bp, EIO);
1128 complete(&bp->b_iowait);
1129 } else {
1130 xfs_buf_relse(bp);
1131 }
1132
1133 return EIO;
1134 }
1135
1136 STATIC int
1137 xfs_bdstrat_cb(
1138 struct xfs_buf *bp)
1139 {
1140 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1141 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1142 /*
1143 * Metadata write that didn't get logged but
1144 * written delayed anyway. These aren't associated
1145 * with a transaction, and can be ignored.
1146 */
1147 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1148 return xfs_bioerror_relse(bp);
1149 else
1150 return xfs_bioerror(bp);
1151 }
1152
1153 xfs_buf_iorequest(bp);
1154 return 0;
1155 }
1156
1157 int
1158 xfs_bwrite(
1159 struct xfs_buf *bp)
1160 {
1161 int error;
1162
1163 ASSERT(xfs_buf_islocked(bp));
1164
1165 bp->b_flags |= XBF_WRITE;
1166 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1167
1168 xfs_bdstrat_cb(bp);
1169
1170 error = xfs_buf_iowait(bp);
1171 if (error) {
1172 xfs_force_shutdown(bp->b_target->bt_mount,
1173 SHUTDOWN_META_IO_ERROR);
1174 }
1175 return error;
1176 }
1177
1178 /*
1179 * Wrapper around bdstrat so that we can stop data from going to disk in case
1180 * we are shutting down the filesystem. Typically user data goes thru this
1181 * path; one of the exceptions is the superblock.
1182 */
1183 void
1184 xfsbdstrat(
1185 struct xfs_mount *mp,
1186 struct xfs_buf *bp)
1187 {
1188 if (XFS_FORCED_SHUTDOWN(mp)) {
1189 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1190 xfs_bioerror_relse(bp);
1191 return;
1192 }
1193
1194 xfs_buf_iorequest(bp);
1195 }
1196
1197 STATIC void
1198 _xfs_buf_ioend(
1199 xfs_buf_t *bp,
1200 int schedule)
1201 {
1202 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1203 xfs_buf_ioend(bp, schedule);
1204 }
1205
1206 STATIC void
1207 xfs_buf_bio_end_io(
1208 struct bio *bio,
1209 int error)
1210 {
1211 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1212
1213 /*
1214 * don't overwrite existing errors - otherwise we can lose errors on
1215 * buffers that require multiple bios to complete.
1216 */
1217 if (!bp->b_error)
1218 xfs_buf_ioerror(bp, -error);
1219
1220 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1221 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1222
1223 _xfs_buf_ioend(bp, 1);
1224 bio_put(bio);
1225 }
1226
1227 static void
1228 xfs_buf_ioapply_map(
1229 struct xfs_buf *bp,
1230 int map,
1231 int *buf_offset,
1232 int *count,
1233 int rw)
1234 {
1235 int page_index;
1236 int total_nr_pages = bp->b_page_count;
1237 int nr_pages;
1238 struct bio *bio;
1239 sector_t sector = bp->b_maps[map].bm_bn;
1240 int size;
1241 int offset;
1242
1243 total_nr_pages = bp->b_page_count;
1244
1245 /* skip the pages in the buffer before the start offset */
1246 page_index = 0;
1247 offset = *buf_offset;
1248 while (offset >= PAGE_SIZE) {
1249 page_index++;
1250 offset -= PAGE_SIZE;
1251 }
1252
1253 /*
1254 * Limit the IO size to the length of the current vector, and update the
1255 * remaining IO count for the next time around.
1256 */
1257 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1258 *count -= size;
1259 *buf_offset += size;
1260
1261 next_chunk:
1262 atomic_inc(&bp->b_io_remaining);
1263 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1264 if (nr_pages > total_nr_pages)
1265 nr_pages = total_nr_pages;
1266
1267 bio = bio_alloc(GFP_NOIO, nr_pages);
1268 bio->bi_bdev = bp->b_target->bt_bdev;
1269 bio->bi_sector = sector;
1270 bio->bi_end_io = xfs_buf_bio_end_io;
1271 bio->bi_private = bp;
1272
1273
1274 for (; size && nr_pages; nr_pages--, page_index++) {
1275 int rbytes, nbytes = PAGE_SIZE - offset;
1276
1277 if (nbytes > size)
1278 nbytes = size;
1279
1280 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1281 offset);
1282 if (rbytes < nbytes)
1283 break;
1284
1285 offset = 0;
1286 sector += BTOBB(nbytes);
1287 size -= nbytes;
1288 total_nr_pages--;
1289 }
1290
1291 if (likely(bio->bi_size)) {
1292 if (xfs_buf_is_vmapped(bp)) {
1293 flush_kernel_vmap_range(bp->b_addr,
1294 xfs_buf_vmap_len(bp));
1295 }
1296 submit_bio(rw, bio);
1297 if (size)
1298 goto next_chunk;
1299 } else {
1300 /*
1301 * This is guaranteed not to be the last io reference count
1302 * because the caller (xfs_buf_iorequest) holds a count itself.
1303 */
1304 atomic_dec(&bp->b_io_remaining);
1305 xfs_buf_ioerror(bp, EIO);
1306 bio_put(bio);
1307 }
1308
1309 }
1310
1311 STATIC void
1312 _xfs_buf_ioapply(
1313 struct xfs_buf *bp)
1314 {
1315 struct blk_plug plug;
1316 int rw;
1317 int offset;
1318 int size;
1319 int i;
1320
1321 if (bp->b_flags & XBF_WRITE) {
1322 if (bp->b_flags & XBF_SYNCIO)
1323 rw = WRITE_SYNC;
1324 else
1325 rw = WRITE;
1326 if (bp->b_flags & XBF_FUA)
1327 rw |= REQ_FUA;
1328 if (bp->b_flags & XBF_FLUSH)
1329 rw |= REQ_FLUSH;
1330
1331 /*
1332 * Run the write verifier callback function if it exists. If
1333 * this function fails it will mark the buffer with an error and
1334 * the IO should not be dispatched.
1335 */
1336 if (bp->b_ops) {
1337 bp->b_ops->verify_write(bp);
1338 if (bp->b_error) {
1339 xfs_force_shutdown(bp->b_target->bt_mount,
1340 SHUTDOWN_CORRUPT_INCORE);
1341 return;
1342 }
1343 }
1344 } else if (bp->b_flags & XBF_READ_AHEAD) {
1345 rw = READA;
1346 } else {
1347 rw = READ;
1348 }
1349
1350 /* we only use the buffer cache for meta-data */
1351 rw |= REQ_META;
1352
1353 /*
1354 * Walk all the vectors issuing IO on them. Set up the initial offset
1355 * into the buffer and the desired IO size before we start -
1356 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1357 * subsequent call.
1358 */
1359 offset = bp->b_offset;
1360 size = BBTOB(bp->b_io_length);
1361 blk_start_plug(&plug);
1362 for (i = 0; i < bp->b_map_count; i++) {
1363 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1364 if (bp->b_error)
1365 break;
1366 if (size <= 0)
1367 break; /* all done */
1368 }
1369 blk_finish_plug(&plug);
1370 }
1371
1372 void
1373 xfs_buf_iorequest(
1374 xfs_buf_t *bp)
1375 {
1376 trace_xfs_buf_iorequest(bp, _RET_IP_);
1377
1378 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1379
1380 if (bp->b_flags & XBF_WRITE)
1381 xfs_buf_wait_unpin(bp);
1382 xfs_buf_hold(bp);
1383
1384 /* Set the count to 1 initially, this will stop an I/O
1385 * completion callout which happens before we have started
1386 * all the I/O from calling xfs_buf_ioend too early.
1387 */
1388 atomic_set(&bp->b_io_remaining, 1);
1389 _xfs_buf_ioapply(bp);
1390 _xfs_buf_ioend(bp, 1);
1391
1392 xfs_buf_rele(bp);
1393 }
1394
1395 /*
1396 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1397 * no I/O is pending or there is already a pending error on the buffer. It
1398 * returns the I/O error code, if any, or 0 if there was no error.
1399 */
1400 int
1401 xfs_buf_iowait(
1402 xfs_buf_t *bp)
1403 {
1404 trace_xfs_buf_iowait(bp, _RET_IP_);
1405
1406 if (!bp->b_error)
1407 wait_for_completion(&bp->b_iowait);
1408
1409 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1410 return bp->b_error;
1411 }
1412
1413 xfs_caddr_t
1414 xfs_buf_offset(
1415 xfs_buf_t *bp,
1416 size_t offset)
1417 {
1418 struct page *page;
1419
1420 if (bp->b_addr)
1421 return bp->b_addr + offset;
1422
1423 offset += bp->b_offset;
1424 page = bp->b_pages[offset >> PAGE_SHIFT];
1425 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1426 }
1427
1428 /*
1429 * Move data into or out of a buffer.
1430 */
1431 void
1432 xfs_buf_iomove(
1433 xfs_buf_t *bp, /* buffer to process */
1434 size_t boff, /* starting buffer offset */
1435 size_t bsize, /* length to copy */
1436 void *data, /* data address */
1437 xfs_buf_rw_t mode) /* read/write/zero flag */
1438 {
1439 size_t bend;
1440
1441 bend = boff + bsize;
1442 while (boff < bend) {
1443 struct page *page;
1444 int page_index, page_offset, csize;
1445
1446 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1447 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1448 page = bp->b_pages[page_index];
1449 csize = min_t(size_t, PAGE_SIZE - page_offset,
1450 BBTOB(bp->b_io_length) - boff);
1451
1452 ASSERT((csize + page_offset) <= PAGE_SIZE);
1453
1454 switch (mode) {
1455 case XBRW_ZERO:
1456 memset(page_address(page) + page_offset, 0, csize);
1457 break;
1458 case XBRW_READ:
1459 memcpy(data, page_address(page) + page_offset, csize);
1460 break;
1461 case XBRW_WRITE:
1462 memcpy(page_address(page) + page_offset, data, csize);
1463 }
1464
1465 boff += csize;
1466 data += csize;
1467 }
1468 }
1469
1470 /*
1471 * Handling of buffer targets (buftargs).
1472 */
1473
1474 /*
1475 * Wait for any bufs with callbacks that have been submitted but have not yet
1476 * returned. These buffers will have an elevated hold count, so wait on those
1477 * while freeing all the buffers only held by the LRU.
1478 */
1479 void
1480 xfs_wait_buftarg(
1481 struct xfs_buftarg *btp)
1482 {
1483 struct xfs_buf *bp;
1484
1485 restart:
1486 spin_lock(&btp->bt_lru_lock);
1487 while (!list_empty(&btp->bt_lru)) {
1488 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1489 if (atomic_read(&bp->b_hold) > 1) {
1490 spin_unlock(&btp->bt_lru_lock);
1491 delay(100);
1492 goto restart;
1493 }
1494 /*
1495 * clear the LRU reference count so the buffer doesn't get
1496 * ignored in xfs_buf_rele().
1497 */
1498 atomic_set(&bp->b_lru_ref, 0);
1499 spin_unlock(&btp->bt_lru_lock);
1500 xfs_buf_rele(bp);
1501 spin_lock(&btp->bt_lru_lock);
1502 }
1503 spin_unlock(&btp->bt_lru_lock);
1504 }
1505
1506 int
1507 xfs_buftarg_shrink(
1508 struct shrinker *shrink,
1509 struct shrink_control *sc)
1510 {
1511 struct xfs_buftarg *btp = container_of(shrink,
1512 struct xfs_buftarg, bt_shrinker);
1513 struct xfs_buf *bp;
1514 int nr_to_scan = sc->nr_to_scan;
1515 LIST_HEAD(dispose);
1516
1517 if (!nr_to_scan)
1518 return btp->bt_lru_nr;
1519
1520 spin_lock(&btp->bt_lru_lock);
1521 while (!list_empty(&btp->bt_lru)) {
1522 if (nr_to_scan-- <= 0)
1523 break;
1524
1525 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1526
1527 /*
1528 * Decrement the b_lru_ref count unless the value is already
1529 * zero. If the value is already zero, we need to reclaim the
1530 * buffer, otherwise it gets another trip through the LRU.
1531 */
1532 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1533 list_move_tail(&bp->b_lru, &btp->bt_lru);
1534 continue;
1535 }
1536
1537 /*
1538 * remove the buffer from the LRU now to avoid needing another
1539 * lock round trip inside xfs_buf_rele().
1540 */
1541 list_move(&bp->b_lru, &dispose);
1542 btp->bt_lru_nr--;
1543 bp->b_lru_flags |= _XBF_LRU_DISPOSE;
1544 }
1545 spin_unlock(&btp->bt_lru_lock);
1546
1547 while (!list_empty(&dispose)) {
1548 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1549 list_del_init(&bp->b_lru);
1550 xfs_buf_rele(bp);
1551 }
1552
1553 return btp->bt_lru_nr;
1554 }
1555
1556 void
1557 xfs_free_buftarg(
1558 struct xfs_mount *mp,
1559 struct xfs_buftarg *btp)
1560 {
1561 unregister_shrinker(&btp->bt_shrinker);
1562
1563 if (mp->m_flags & XFS_MOUNT_BARRIER)
1564 xfs_blkdev_issue_flush(btp);
1565
1566 kmem_free(btp);
1567 }
1568
1569 STATIC int
1570 xfs_setsize_buftarg_flags(
1571 xfs_buftarg_t *btp,
1572 unsigned int blocksize,
1573 unsigned int sectorsize,
1574 int verbose)
1575 {
1576 btp->bt_bsize = blocksize;
1577 btp->bt_sshift = ffs(sectorsize) - 1;
1578 btp->bt_smask = sectorsize - 1;
1579
1580 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1581 char name[BDEVNAME_SIZE];
1582
1583 bdevname(btp->bt_bdev, name);
1584
1585 xfs_warn(btp->bt_mount,
1586 "Cannot set_blocksize to %u on device %s\n",
1587 sectorsize, name);
1588 return EINVAL;
1589 }
1590
1591 return 0;
1592 }
1593
1594 /*
1595 * When allocating the initial buffer target we have not yet
1596 * read in the superblock, so don't know what sized sectors
1597 * are being used is at this early stage. Play safe.
1598 */
1599 STATIC int
1600 xfs_setsize_buftarg_early(
1601 xfs_buftarg_t *btp,
1602 struct block_device *bdev)
1603 {
1604 return xfs_setsize_buftarg_flags(btp,
1605 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1606 }
1607
1608 int
1609 xfs_setsize_buftarg(
1610 xfs_buftarg_t *btp,
1611 unsigned int blocksize,
1612 unsigned int sectorsize)
1613 {
1614 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1615 }
1616
1617 xfs_buftarg_t *
1618 xfs_alloc_buftarg(
1619 struct xfs_mount *mp,
1620 struct block_device *bdev,
1621 int external,
1622 const char *fsname)
1623 {
1624 xfs_buftarg_t *btp;
1625
1626 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1627
1628 btp->bt_mount = mp;
1629 btp->bt_dev = bdev->bd_dev;
1630 btp->bt_bdev = bdev;
1631 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1632 if (!btp->bt_bdi)
1633 goto error;
1634
1635 INIT_LIST_HEAD(&btp->bt_lru);
1636 spin_lock_init(&btp->bt_lru_lock);
1637 if (xfs_setsize_buftarg_early(btp, bdev))
1638 goto error;
1639 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1640 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1641 register_shrinker(&btp->bt_shrinker);
1642 return btp;
1643
1644 error:
1645 kmem_free(btp);
1646 return NULL;
1647 }
1648
1649 /*
1650 * Add a buffer to the delayed write list.
1651 *
1652 * This queues a buffer for writeout if it hasn't already been. Note that
1653 * neither this routine nor the buffer list submission functions perform
1654 * any internal synchronization. It is expected that the lists are thread-local
1655 * to the callers.
1656 *
1657 * Returns true if we queued up the buffer, or false if it already had
1658 * been on the buffer list.
1659 */
1660 bool
1661 xfs_buf_delwri_queue(
1662 struct xfs_buf *bp,
1663 struct list_head *list)
1664 {
1665 ASSERT(xfs_buf_islocked(bp));
1666 ASSERT(!(bp->b_flags & XBF_READ));
1667
1668 /*
1669 * If the buffer is already marked delwri it already is queued up
1670 * by someone else for imediate writeout. Just ignore it in that
1671 * case.
1672 */
1673 if (bp->b_flags & _XBF_DELWRI_Q) {
1674 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1675 return false;
1676 }
1677
1678 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1679
1680 /*
1681 * If a buffer gets written out synchronously or marked stale while it
1682 * is on a delwri list we lazily remove it. To do this, the other party
1683 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1684 * It remains referenced and on the list. In a rare corner case it
1685 * might get readded to a delwri list after the synchronous writeout, in
1686 * which case we need just need to re-add the flag here.
1687 */
1688 bp->b_flags |= _XBF_DELWRI_Q;
1689 if (list_empty(&bp->b_list)) {
1690 atomic_inc(&bp->b_hold);
1691 list_add_tail(&bp->b_list, list);
1692 }
1693
1694 return true;
1695 }
1696
1697 /*
1698 * Compare function is more complex than it needs to be because
1699 * the return value is only 32 bits and we are doing comparisons
1700 * on 64 bit values
1701 */
1702 static int
1703 xfs_buf_cmp(
1704 void *priv,
1705 struct list_head *a,
1706 struct list_head *b)
1707 {
1708 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1709 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1710 xfs_daddr_t diff;
1711
1712 diff = ap->b_map.bm_bn - bp->b_map.bm_bn;
1713 if (diff < 0)
1714 return -1;
1715 if (diff > 0)
1716 return 1;
1717 return 0;
1718 }
1719
1720 static int
1721 __xfs_buf_delwri_submit(
1722 struct list_head *buffer_list,
1723 struct list_head *io_list,
1724 bool wait)
1725 {
1726 struct blk_plug plug;
1727 struct xfs_buf *bp, *n;
1728 int pinned = 0;
1729
1730 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1731 if (!wait) {
1732 if (xfs_buf_ispinned(bp)) {
1733 pinned++;
1734 continue;
1735 }
1736 if (!xfs_buf_trylock(bp))
1737 continue;
1738 } else {
1739 xfs_buf_lock(bp);
1740 }
1741
1742 /*
1743 * Someone else might have written the buffer synchronously or
1744 * marked it stale in the meantime. In that case only the
1745 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1746 * reference and remove it from the list here.
1747 */
1748 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1749 list_del_init(&bp->b_list);
1750 xfs_buf_relse(bp);
1751 continue;
1752 }
1753
1754 list_move_tail(&bp->b_list, io_list);
1755 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1756 }
1757
1758 list_sort(NULL, io_list, xfs_buf_cmp);
1759
1760 blk_start_plug(&plug);
1761 list_for_each_entry_safe(bp, n, io_list, b_list) {
1762 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1763 bp->b_flags |= XBF_WRITE;
1764
1765 if (!wait) {
1766 bp->b_flags |= XBF_ASYNC;
1767 list_del_init(&bp->b_list);
1768 }
1769 xfs_bdstrat_cb(bp);
1770 }
1771 blk_finish_plug(&plug);
1772
1773 return pinned;
1774 }
1775
1776 /*
1777 * Write out a buffer list asynchronously.
1778 *
1779 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1780 * out and not wait for I/O completion on any of the buffers. This interface
1781 * is only safely useable for callers that can track I/O completion by higher
1782 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1783 * function.
1784 */
1785 int
1786 xfs_buf_delwri_submit_nowait(
1787 struct list_head *buffer_list)
1788 {
1789 LIST_HEAD (io_list);
1790 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1791 }
1792
1793 /*
1794 * Write out a buffer list synchronously.
1795 *
1796 * This will take the @buffer_list, write all buffers out and wait for I/O
1797 * completion on all of the buffers. @buffer_list is consumed by the function,
1798 * so callers must have some other way of tracking buffers if they require such
1799 * functionality.
1800 */
1801 int
1802 xfs_buf_delwri_submit(
1803 struct list_head *buffer_list)
1804 {
1805 LIST_HEAD (io_list);
1806 int error = 0, error2;
1807 struct xfs_buf *bp;
1808
1809 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1810
1811 /* Wait for IO to complete. */
1812 while (!list_empty(&io_list)) {
1813 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1814
1815 list_del_init(&bp->b_list);
1816 error2 = xfs_buf_iowait(bp);
1817 xfs_buf_relse(bp);
1818 if (!error)
1819 error = error2;
1820 }
1821
1822 return error;
1823 }
1824
1825 int __init
1826 xfs_buf_init(void)
1827 {
1828 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1829 KM_ZONE_HWALIGN, NULL);
1830 if (!xfs_buf_zone)
1831 goto out;
1832
1833 xfslogd_workqueue = alloc_workqueue("xfslogd",
1834 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1835 if (!xfslogd_workqueue)
1836 goto out_free_buf_zone;
1837
1838 return 0;
1839
1840 out_free_buf_zone:
1841 kmem_zone_destroy(xfs_buf_zone);
1842 out:
1843 return -ENOMEM;
1844 }
1845
1846 void
1847 xfs_buf_terminate(void)
1848 {
1849 destroy_workqueue(xfslogd_workqueue);
1850 kmem_zone_destroy(xfs_buf_zone);
1851 }
This page took 0.071386 seconds and 5 git commands to generate.