power: bq27xxx_battery: Fix typos and change naming for state of charge functions
[deliverable/linux.git] / fs / xfs / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
40 #include "xfs_sb.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
55 #endif
56
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61 static inline int
62 xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64 {
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73 }
74
75 static inline int
76 xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78 {
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81
82 /*
83 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
84 * b_lru_ref count so that the buffer is freed immediately when the buffer
85 * reference count falls to zero. If the buffer is already on the LRU, we need
86 * to remove the reference that LRU holds on the buffer.
87 *
88 * This prevents build-up of stale buffers on the LRU.
89 */
90 void
91 xfs_buf_stale(
92 struct xfs_buf *bp)
93 {
94 ASSERT(xfs_buf_islocked(bp));
95
96 bp->b_flags |= XBF_STALE;
97
98 /*
99 * Clear the delwri status so that a delwri queue walker will not
100 * flush this buffer to disk now that it is stale. The delwri queue has
101 * a reference to the buffer, so this is safe to do.
102 */
103 bp->b_flags &= ~_XBF_DELWRI_Q;
104
105 spin_lock(&bp->b_lock);
106 atomic_set(&bp->b_lru_ref, 0);
107 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
108 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
109 atomic_dec(&bp->b_hold);
110
111 ASSERT(atomic_read(&bp->b_hold) >= 1);
112 spin_unlock(&bp->b_lock);
113 }
114
115 static int
116 xfs_buf_get_maps(
117 struct xfs_buf *bp,
118 int map_count)
119 {
120 ASSERT(bp->b_maps == NULL);
121 bp->b_map_count = map_count;
122
123 if (map_count == 1) {
124 bp->b_maps = &bp->__b_map;
125 return 0;
126 }
127
128 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
129 KM_NOFS);
130 if (!bp->b_maps)
131 return -ENOMEM;
132 return 0;
133 }
134
135 /*
136 * Frees b_pages if it was allocated.
137 */
138 static void
139 xfs_buf_free_maps(
140 struct xfs_buf *bp)
141 {
142 if (bp->b_maps != &bp->__b_map) {
143 kmem_free(bp->b_maps);
144 bp->b_maps = NULL;
145 }
146 }
147
148 struct xfs_buf *
149 _xfs_buf_alloc(
150 struct xfs_buftarg *target,
151 struct xfs_buf_map *map,
152 int nmaps,
153 xfs_buf_flags_t flags)
154 {
155 struct xfs_buf *bp;
156 int error;
157 int i;
158
159 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
160 if (unlikely(!bp))
161 return NULL;
162
163 /*
164 * We don't want certain flags to appear in b_flags unless they are
165 * specifically set by later operations on the buffer.
166 */
167 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
168
169 atomic_set(&bp->b_hold, 1);
170 atomic_set(&bp->b_lru_ref, 1);
171 init_completion(&bp->b_iowait);
172 INIT_LIST_HEAD(&bp->b_lru);
173 INIT_LIST_HEAD(&bp->b_list);
174 RB_CLEAR_NODE(&bp->b_rbnode);
175 sema_init(&bp->b_sema, 0); /* held, no waiters */
176 spin_lock_init(&bp->b_lock);
177 XB_SET_OWNER(bp);
178 bp->b_target = target;
179 bp->b_flags = flags;
180
181 /*
182 * Set length and io_length to the same value initially.
183 * I/O routines should use io_length, which will be the same in
184 * most cases but may be reset (e.g. XFS recovery).
185 */
186 error = xfs_buf_get_maps(bp, nmaps);
187 if (error) {
188 kmem_zone_free(xfs_buf_zone, bp);
189 return NULL;
190 }
191
192 bp->b_bn = map[0].bm_bn;
193 bp->b_length = 0;
194 for (i = 0; i < nmaps; i++) {
195 bp->b_maps[i].bm_bn = map[i].bm_bn;
196 bp->b_maps[i].bm_len = map[i].bm_len;
197 bp->b_length += map[i].bm_len;
198 }
199 bp->b_io_length = bp->b_length;
200
201 atomic_set(&bp->b_pin_count, 0);
202 init_waitqueue_head(&bp->b_waiters);
203
204 XFS_STATS_INC(xb_create);
205 trace_xfs_buf_init(bp, _RET_IP_);
206
207 return bp;
208 }
209
210 /*
211 * Allocate a page array capable of holding a specified number
212 * of pages, and point the page buf at it.
213 */
214 STATIC int
215 _xfs_buf_get_pages(
216 xfs_buf_t *bp,
217 int page_count)
218 {
219 /* Make sure that we have a page list */
220 if (bp->b_pages == NULL) {
221 bp->b_page_count = page_count;
222 if (page_count <= XB_PAGES) {
223 bp->b_pages = bp->b_page_array;
224 } else {
225 bp->b_pages = kmem_alloc(sizeof(struct page *) *
226 page_count, KM_NOFS);
227 if (bp->b_pages == NULL)
228 return -ENOMEM;
229 }
230 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
231 }
232 return 0;
233 }
234
235 /*
236 * Frees b_pages if it was allocated.
237 */
238 STATIC void
239 _xfs_buf_free_pages(
240 xfs_buf_t *bp)
241 {
242 if (bp->b_pages != bp->b_page_array) {
243 kmem_free(bp->b_pages);
244 bp->b_pages = NULL;
245 }
246 }
247
248 /*
249 * Releases the specified buffer.
250 *
251 * The modification state of any associated pages is left unchanged.
252 * The buffer must not be on any hash - use xfs_buf_rele instead for
253 * hashed and refcounted buffers
254 */
255 void
256 xfs_buf_free(
257 xfs_buf_t *bp)
258 {
259 trace_xfs_buf_free(bp, _RET_IP_);
260
261 ASSERT(list_empty(&bp->b_lru));
262
263 if (bp->b_flags & _XBF_PAGES) {
264 uint i;
265
266 if (xfs_buf_is_vmapped(bp))
267 vm_unmap_ram(bp->b_addr - bp->b_offset,
268 bp->b_page_count);
269
270 for (i = 0; i < bp->b_page_count; i++) {
271 struct page *page = bp->b_pages[i];
272
273 __free_page(page);
274 }
275 } else if (bp->b_flags & _XBF_KMEM)
276 kmem_free(bp->b_addr);
277 _xfs_buf_free_pages(bp);
278 xfs_buf_free_maps(bp);
279 kmem_zone_free(xfs_buf_zone, bp);
280 }
281
282 /*
283 * Allocates all the pages for buffer in question and builds it's page list.
284 */
285 STATIC int
286 xfs_buf_allocate_memory(
287 xfs_buf_t *bp,
288 uint flags)
289 {
290 size_t size;
291 size_t nbytes, offset;
292 gfp_t gfp_mask = xb_to_gfp(flags);
293 unsigned short page_count, i;
294 xfs_off_t start, end;
295 int error;
296
297 /*
298 * for buffers that are contained within a single page, just allocate
299 * the memory from the heap - there's no need for the complexity of
300 * page arrays to keep allocation down to order 0.
301 */
302 size = BBTOB(bp->b_length);
303 if (size < PAGE_SIZE) {
304 bp->b_addr = kmem_alloc(size, KM_NOFS);
305 if (!bp->b_addr) {
306 /* low memory - use alloc_page loop instead */
307 goto use_alloc_page;
308 }
309
310 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
311 ((unsigned long)bp->b_addr & PAGE_MASK)) {
312 /* b_addr spans two pages - use alloc_page instead */
313 kmem_free(bp->b_addr);
314 bp->b_addr = NULL;
315 goto use_alloc_page;
316 }
317 bp->b_offset = offset_in_page(bp->b_addr);
318 bp->b_pages = bp->b_page_array;
319 bp->b_pages[0] = virt_to_page(bp->b_addr);
320 bp->b_page_count = 1;
321 bp->b_flags |= _XBF_KMEM;
322 return 0;
323 }
324
325 use_alloc_page:
326 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
327 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
328 >> PAGE_SHIFT;
329 page_count = end - start;
330 error = _xfs_buf_get_pages(bp, page_count);
331 if (unlikely(error))
332 return error;
333
334 offset = bp->b_offset;
335 bp->b_flags |= _XBF_PAGES;
336
337 for (i = 0; i < bp->b_page_count; i++) {
338 struct page *page;
339 uint retries = 0;
340 retry:
341 page = alloc_page(gfp_mask);
342 if (unlikely(page == NULL)) {
343 if (flags & XBF_READ_AHEAD) {
344 bp->b_page_count = i;
345 error = -ENOMEM;
346 goto out_free_pages;
347 }
348
349 /*
350 * This could deadlock.
351 *
352 * But until all the XFS lowlevel code is revamped to
353 * handle buffer allocation failures we can't do much.
354 */
355 if (!(++retries % 100))
356 xfs_err(NULL,
357 "possible memory allocation deadlock in %s (mode:0x%x)",
358 __func__, gfp_mask);
359
360 XFS_STATS_INC(xb_page_retries);
361 congestion_wait(BLK_RW_ASYNC, HZ/50);
362 goto retry;
363 }
364
365 XFS_STATS_INC(xb_page_found);
366
367 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
368 size -= nbytes;
369 bp->b_pages[i] = page;
370 offset = 0;
371 }
372 return 0;
373
374 out_free_pages:
375 for (i = 0; i < bp->b_page_count; i++)
376 __free_page(bp->b_pages[i]);
377 return error;
378 }
379
380 /*
381 * Map buffer into kernel address-space if necessary.
382 */
383 STATIC int
384 _xfs_buf_map_pages(
385 xfs_buf_t *bp,
386 uint flags)
387 {
388 ASSERT(bp->b_flags & _XBF_PAGES);
389 if (bp->b_page_count == 1) {
390 /* A single page buffer is always mappable */
391 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
392 } else if (flags & XBF_UNMAPPED) {
393 bp->b_addr = NULL;
394 } else {
395 int retried = 0;
396 unsigned noio_flag;
397
398 /*
399 * vm_map_ram() will allocate auxillary structures (e.g.
400 * pagetables) with GFP_KERNEL, yet we are likely to be under
401 * GFP_NOFS context here. Hence we need to tell memory reclaim
402 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
403 * memory reclaim re-entering the filesystem here and
404 * potentially deadlocking.
405 */
406 noio_flag = memalloc_noio_save();
407 do {
408 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
409 -1, PAGE_KERNEL);
410 if (bp->b_addr)
411 break;
412 vm_unmap_aliases();
413 } while (retried++ <= 1);
414 memalloc_noio_restore(noio_flag);
415
416 if (!bp->b_addr)
417 return -ENOMEM;
418 bp->b_addr += bp->b_offset;
419 }
420
421 return 0;
422 }
423
424 /*
425 * Finding and Reading Buffers
426 */
427
428 /*
429 * Look up, and creates if absent, a lockable buffer for
430 * a given range of an inode. The buffer is returned
431 * locked. No I/O is implied by this call.
432 */
433 xfs_buf_t *
434 _xfs_buf_find(
435 struct xfs_buftarg *btp,
436 struct xfs_buf_map *map,
437 int nmaps,
438 xfs_buf_flags_t flags,
439 xfs_buf_t *new_bp)
440 {
441 struct xfs_perag *pag;
442 struct rb_node **rbp;
443 struct rb_node *parent;
444 xfs_buf_t *bp;
445 xfs_daddr_t blkno = map[0].bm_bn;
446 xfs_daddr_t eofs;
447 int numblks = 0;
448 int i;
449
450 for (i = 0; i < nmaps; i++)
451 numblks += map[i].bm_len;
452
453 /* Check for IOs smaller than the sector size / not sector aligned */
454 ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
455 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
456
457 /*
458 * Corrupted block numbers can get through to here, unfortunately, so we
459 * have to check that the buffer falls within the filesystem bounds.
460 */
461 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
462 if (blkno < 0 || blkno >= eofs) {
463 /*
464 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
465 * but none of the higher level infrastructure supports
466 * returning a specific error on buffer lookup failures.
467 */
468 xfs_alert(btp->bt_mount,
469 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
470 __func__, blkno, eofs);
471 WARN_ON(1);
472 return NULL;
473 }
474
475 /* get tree root */
476 pag = xfs_perag_get(btp->bt_mount,
477 xfs_daddr_to_agno(btp->bt_mount, blkno));
478
479 /* walk tree */
480 spin_lock(&pag->pag_buf_lock);
481 rbp = &pag->pag_buf_tree.rb_node;
482 parent = NULL;
483 bp = NULL;
484 while (*rbp) {
485 parent = *rbp;
486 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
487
488 if (blkno < bp->b_bn)
489 rbp = &(*rbp)->rb_left;
490 else if (blkno > bp->b_bn)
491 rbp = &(*rbp)->rb_right;
492 else {
493 /*
494 * found a block number match. If the range doesn't
495 * match, the only way this is allowed is if the buffer
496 * in the cache is stale and the transaction that made
497 * it stale has not yet committed. i.e. we are
498 * reallocating a busy extent. Skip this buffer and
499 * continue searching to the right for an exact match.
500 */
501 if (bp->b_length != numblks) {
502 ASSERT(bp->b_flags & XBF_STALE);
503 rbp = &(*rbp)->rb_right;
504 continue;
505 }
506 atomic_inc(&bp->b_hold);
507 goto found;
508 }
509 }
510
511 /* No match found */
512 if (new_bp) {
513 rb_link_node(&new_bp->b_rbnode, parent, rbp);
514 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
515 /* the buffer keeps the perag reference until it is freed */
516 new_bp->b_pag = pag;
517 spin_unlock(&pag->pag_buf_lock);
518 } else {
519 XFS_STATS_INC(xb_miss_locked);
520 spin_unlock(&pag->pag_buf_lock);
521 xfs_perag_put(pag);
522 }
523 return new_bp;
524
525 found:
526 spin_unlock(&pag->pag_buf_lock);
527 xfs_perag_put(pag);
528
529 if (!xfs_buf_trylock(bp)) {
530 if (flags & XBF_TRYLOCK) {
531 xfs_buf_rele(bp);
532 XFS_STATS_INC(xb_busy_locked);
533 return NULL;
534 }
535 xfs_buf_lock(bp);
536 XFS_STATS_INC(xb_get_locked_waited);
537 }
538
539 /*
540 * if the buffer is stale, clear all the external state associated with
541 * it. We need to keep flags such as how we allocated the buffer memory
542 * intact here.
543 */
544 if (bp->b_flags & XBF_STALE) {
545 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
546 ASSERT(bp->b_iodone == NULL);
547 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
548 bp->b_ops = NULL;
549 }
550
551 trace_xfs_buf_find(bp, flags, _RET_IP_);
552 XFS_STATS_INC(xb_get_locked);
553 return bp;
554 }
555
556 /*
557 * Assembles a buffer covering the specified range. The code is optimised for
558 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
559 * more hits than misses.
560 */
561 struct xfs_buf *
562 xfs_buf_get_map(
563 struct xfs_buftarg *target,
564 struct xfs_buf_map *map,
565 int nmaps,
566 xfs_buf_flags_t flags)
567 {
568 struct xfs_buf *bp;
569 struct xfs_buf *new_bp;
570 int error = 0;
571
572 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
573 if (likely(bp))
574 goto found;
575
576 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
577 if (unlikely(!new_bp))
578 return NULL;
579
580 error = xfs_buf_allocate_memory(new_bp, flags);
581 if (error) {
582 xfs_buf_free(new_bp);
583 return NULL;
584 }
585
586 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
587 if (!bp) {
588 xfs_buf_free(new_bp);
589 return NULL;
590 }
591
592 if (bp != new_bp)
593 xfs_buf_free(new_bp);
594
595 found:
596 if (!bp->b_addr) {
597 error = _xfs_buf_map_pages(bp, flags);
598 if (unlikely(error)) {
599 xfs_warn(target->bt_mount,
600 "%s: failed to map pagesn", __func__);
601 xfs_buf_relse(bp);
602 return NULL;
603 }
604 }
605
606 XFS_STATS_INC(xb_get);
607 trace_xfs_buf_get(bp, flags, _RET_IP_);
608 return bp;
609 }
610
611 STATIC int
612 _xfs_buf_read(
613 xfs_buf_t *bp,
614 xfs_buf_flags_t flags)
615 {
616 ASSERT(!(flags & XBF_WRITE));
617 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
618
619 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
620 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
621
622 if (flags & XBF_ASYNC) {
623 xfs_buf_submit(bp);
624 return 0;
625 }
626 return xfs_buf_submit_wait(bp);
627 }
628
629 xfs_buf_t *
630 xfs_buf_read_map(
631 struct xfs_buftarg *target,
632 struct xfs_buf_map *map,
633 int nmaps,
634 xfs_buf_flags_t flags,
635 const struct xfs_buf_ops *ops)
636 {
637 struct xfs_buf *bp;
638
639 flags |= XBF_READ;
640
641 bp = xfs_buf_get_map(target, map, nmaps, flags);
642 if (bp) {
643 trace_xfs_buf_read(bp, flags, _RET_IP_);
644
645 if (!XFS_BUF_ISDONE(bp)) {
646 XFS_STATS_INC(xb_get_read);
647 bp->b_ops = ops;
648 _xfs_buf_read(bp, flags);
649 } else if (flags & XBF_ASYNC) {
650 /*
651 * Read ahead call which is already satisfied,
652 * drop the buffer
653 */
654 xfs_buf_relse(bp);
655 return NULL;
656 } else {
657 /* We do not want read in the flags */
658 bp->b_flags &= ~XBF_READ;
659 }
660 }
661
662 return bp;
663 }
664
665 /*
666 * If we are not low on memory then do the readahead in a deadlock
667 * safe manner.
668 */
669 void
670 xfs_buf_readahead_map(
671 struct xfs_buftarg *target,
672 struct xfs_buf_map *map,
673 int nmaps,
674 const struct xfs_buf_ops *ops)
675 {
676 if (bdi_read_congested(target->bt_bdi))
677 return;
678
679 xfs_buf_read_map(target, map, nmaps,
680 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
681 }
682
683 /*
684 * Read an uncached buffer from disk. Allocates and returns a locked
685 * buffer containing the disk contents or nothing.
686 */
687 int
688 xfs_buf_read_uncached(
689 struct xfs_buftarg *target,
690 xfs_daddr_t daddr,
691 size_t numblks,
692 int flags,
693 struct xfs_buf **bpp,
694 const struct xfs_buf_ops *ops)
695 {
696 struct xfs_buf *bp;
697
698 *bpp = NULL;
699
700 bp = xfs_buf_get_uncached(target, numblks, flags);
701 if (!bp)
702 return -ENOMEM;
703
704 /* set up the buffer for a read IO */
705 ASSERT(bp->b_map_count == 1);
706 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
707 bp->b_maps[0].bm_bn = daddr;
708 bp->b_flags |= XBF_READ;
709 bp->b_ops = ops;
710
711 xfs_buf_submit_wait(bp);
712 if (bp->b_error) {
713 int error = bp->b_error;
714 xfs_buf_relse(bp);
715 return error;
716 }
717
718 *bpp = bp;
719 return 0;
720 }
721
722 /*
723 * Return a buffer allocated as an empty buffer and associated to external
724 * memory via xfs_buf_associate_memory() back to it's empty state.
725 */
726 void
727 xfs_buf_set_empty(
728 struct xfs_buf *bp,
729 size_t numblks)
730 {
731 if (bp->b_pages)
732 _xfs_buf_free_pages(bp);
733
734 bp->b_pages = NULL;
735 bp->b_page_count = 0;
736 bp->b_addr = NULL;
737 bp->b_length = numblks;
738 bp->b_io_length = numblks;
739
740 ASSERT(bp->b_map_count == 1);
741 bp->b_bn = XFS_BUF_DADDR_NULL;
742 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
743 bp->b_maps[0].bm_len = bp->b_length;
744 }
745
746 static inline struct page *
747 mem_to_page(
748 void *addr)
749 {
750 if ((!is_vmalloc_addr(addr))) {
751 return virt_to_page(addr);
752 } else {
753 return vmalloc_to_page(addr);
754 }
755 }
756
757 int
758 xfs_buf_associate_memory(
759 xfs_buf_t *bp,
760 void *mem,
761 size_t len)
762 {
763 int rval;
764 int i = 0;
765 unsigned long pageaddr;
766 unsigned long offset;
767 size_t buflen;
768 int page_count;
769
770 pageaddr = (unsigned long)mem & PAGE_MASK;
771 offset = (unsigned long)mem - pageaddr;
772 buflen = PAGE_ALIGN(len + offset);
773 page_count = buflen >> PAGE_SHIFT;
774
775 /* Free any previous set of page pointers */
776 if (bp->b_pages)
777 _xfs_buf_free_pages(bp);
778
779 bp->b_pages = NULL;
780 bp->b_addr = mem;
781
782 rval = _xfs_buf_get_pages(bp, page_count);
783 if (rval)
784 return rval;
785
786 bp->b_offset = offset;
787
788 for (i = 0; i < bp->b_page_count; i++) {
789 bp->b_pages[i] = mem_to_page((void *)pageaddr);
790 pageaddr += PAGE_SIZE;
791 }
792
793 bp->b_io_length = BTOBB(len);
794 bp->b_length = BTOBB(buflen);
795
796 return 0;
797 }
798
799 xfs_buf_t *
800 xfs_buf_get_uncached(
801 struct xfs_buftarg *target,
802 size_t numblks,
803 int flags)
804 {
805 unsigned long page_count;
806 int error, i;
807 struct xfs_buf *bp;
808 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
809
810 bp = _xfs_buf_alloc(target, &map, 1, 0);
811 if (unlikely(bp == NULL))
812 goto fail;
813
814 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
815 error = _xfs_buf_get_pages(bp, page_count);
816 if (error)
817 goto fail_free_buf;
818
819 for (i = 0; i < page_count; i++) {
820 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
821 if (!bp->b_pages[i])
822 goto fail_free_mem;
823 }
824 bp->b_flags |= _XBF_PAGES;
825
826 error = _xfs_buf_map_pages(bp, 0);
827 if (unlikely(error)) {
828 xfs_warn(target->bt_mount,
829 "%s: failed to map pages", __func__);
830 goto fail_free_mem;
831 }
832
833 trace_xfs_buf_get_uncached(bp, _RET_IP_);
834 return bp;
835
836 fail_free_mem:
837 while (--i >= 0)
838 __free_page(bp->b_pages[i]);
839 _xfs_buf_free_pages(bp);
840 fail_free_buf:
841 xfs_buf_free_maps(bp);
842 kmem_zone_free(xfs_buf_zone, bp);
843 fail:
844 return NULL;
845 }
846
847 /*
848 * Increment reference count on buffer, to hold the buffer concurrently
849 * with another thread which may release (free) the buffer asynchronously.
850 * Must hold the buffer already to call this function.
851 */
852 void
853 xfs_buf_hold(
854 xfs_buf_t *bp)
855 {
856 trace_xfs_buf_hold(bp, _RET_IP_);
857 atomic_inc(&bp->b_hold);
858 }
859
860 /*
861 * Releases a hold on the specified buffer. If the
862 * the hold count is 1, calls xfs_buf_free.
863 */
864 void
865 xfs_buf_rele(
866 xfs_buf_t *bp)
867 {
868 struct xfs_perag *pag = bp->b_pag;
869
870 trace_xfs_buf_rele(bp, _RET_IP_);
871
872 if (!pag) {
873 ASSERT(list_empty(&bp->b_lru));
874 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
875 if (atomic_dec_and_test(&bp->b_hold))
876 xfs_buf_free(bp);
877 return;
878 }
879
880 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
881
882 ASSERT(atomic_read(&bp->b_hold) > 0);
883 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
884 spin_lock(&bp->b_lock);
885 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
886 /*
887 * If the buffer is added to the LRU take a new
888 * reference to the buffer for the LRU and clear the
889 * (now stale) dispose list state flag
890 */
891 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
892 bp->b_state &= ~XFS_BSTATE_DISPOSE;
893 atomic_inc(&bp->b_hold);
894 }
895 spin_unlock(&bp->b_lock);
896 spin_unlock(&pag->pag_buf_lock);
897 } else {
898 /*
899 * most of the time buffers will already be removed from
900 * the LRU, so optimise that case by checking for the
901 * XFS_BSTATE_DISPOSE flag indicating the last list the
902 * buffer was on was the disposal list
903 */
904 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
905 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
906 } else {
907 ASSERT(list_empty(&bp->b_lru));
908 }
909 spin_unlock(&bp->b_lock);
910
911 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
912 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
913 spin_unlock(&pag->pag_buf_lock);
914 xfs_perag_put(pag);
915 xfs_buf_free(bp);
916 }
917 }
918 }
919
920
921 /*
922 * Lock a buffer object, if it is not already locked.
923 *
924 * If we come across a stale, pinned, locked buffer, we know that we are
925 * being asked to lock a buffer that has been reallocated. Because it is
926 * pinned, we know that the log has not been pushed to disk and hence it
927 * will still be locked. Rather than continuing to have trylock attempts
928 * fail until someone else pushes the log, push it ourselves before
929 * returning. This means that the xfsaild will not get stuck trying
930 * to push on stale inode buffers.
931 */
932 int
933 xfs_buf_trylock(
934 struct xfs_buf *bp)
935 {
936 int locked;
937
938 locked = down_trylock(&bp->b_sema) == 0;
939 if (locked)
940 XB_SET_OWNER(bp);
941
942 trace_xfs_buf_trylock(bp, _RET_IP_);
943 return locked;
944 }
945
946 /*
947 * Lock a buffer object.
948 *
949 * If we come across a stale, pinned, locked buffer, we know that we
950 * are being asked to lock a buffer that has been reallocated. Because
951 * it is pinned, we know that the log has not been pushed to disk and
952 * hence it will still be locked. Rather than sleeping until someone
953 * else pushes the log, push it ourselves before trying to get the lock.
954 */
955 void
956 xfs_buf_lock(
957 struct xfs_buf *bp)
958 {
959 trace_xfs_buf_lock(bp, _RET_IP_);
960
961 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
962 xfs_log_force(bp->b_target->bt_mount, 0);
963 down(&bp->b_sema);
964 XB_SET_OWNER(bp);
965
966 trace_xfs_buf_lock_done(bp, _RET_IP_);
967 }
968
969 void
970 xfs_buf_unlock(
971 struct xfs_buf *bp)
972 {
973 XB_CLEAR_OWNER(bp);
974 up(&bp->b_sema);
975
976 trace_xfs_buf_unlock(bp, _RET_IP_);
977 }
978
979 STATIC void
980 xfs_buf_wait_unpin(
981 xfs_buf_t *bp)
982 {
983 DECLARE_WAITQUEUE (wait, current);
984
985 if (atomic_read(&bp->b_pin_count) == 0)
986 return;
987
988 add_wait_queue(&bp->b_waiters, &wait);
989 for (;;) {
990 set_current_state(TASK_UNINTERRUPTIBLE);
991 if (atomic_read(&bp->b_pin_count) == 0)
992 break;
993 io_schedule();
994 }
995 remove_wait_queue(&bp->b_waiters, &wait);
996 set_current_state(TASK_RUNNING);
997 }
998
999 /*
1000 * Buffer Utility Routines
1001 */
1002
1003 void
1004 xfs_buf_ioend(
1005 struct xfs_buf *bp)
1006 {
1007 bool read = bp->b_flags & XBF_READ;
1008
1009 trace_xfs_buf_iodone(bp, _RET_IP_);
1010
1011 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1012
1013 /*
1014 * Pull in IO completion errors now. We are guaranteed to be running
1015 * single threaded, so we don't need the lock to read b_io_error.
1016 */
1017 if (!bp->b_error && bp->b_io_error)
1018 xfs_buf_ioerror(bp, bp->b_io_error);
1019
1020 /* Only validate buffers that were read without errors */
1021 if (read && !bp->b_error && bp->b_ops) {
1022 ASSERT(!bp->b_iodone);
1023 bp->b_ops->verify_read(bp);
1024 }
1025
1026 if (!bp->b_error)
1027 bp->b_flags |= XBF_DONE;
1028
1029 if (bp->b_iodone)
1030 (*(bp->b_iodone))(bp);
1031 else if (bp->b_flags & XBF_ASYNC)
1032 xfs_buf_relse(bp);
1033 else
1034 complete(&bp->b_iowait);
1035 }
1036
1037 static void
1038 xfs_buf_ioend_work(
1039 struct work_struct *work)
1040 {
1041 struct xfs_buf *bp =
1042 container_of(work, xfs_buf_t, b_ioend_work);
1043
1044 xfs_buf_ioend(bp);
1045 }
1046
1047 void
1048 xfs_buf_ioend_async(
1049 struct xfs_buf *bp)
1050 {
1051 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1052 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1053 }
1054
1055 void
1056 xfs_buf_ioerror(
1057 xfs_buf_t *bp,
1058 int error)
1059 {
1060 ASSERT(error <= 0 && error >= -1000);
1061 bp->b_error = error;
1062 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1063 }
1064
1065 void
1066 xfs_buf_ioerror_alert(
1067 struct xfs_buf *bp,
1068 const char *func)
1069 {
1070 xfs_alert(bp->b_target->bt_mount,
1071 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1072 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1073 }
1074
1075 int
1076 xfs_bwrite(
1077 struct xfs_buf *bp)
1078 {
1079 int error;
1080
1081 ASSERT(xfs_buf_islocked(bp));
1082
1083 bp->b_flags |= XBF_WRITE;
1084 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1085 XBF_WRITE_FAIL | XBF_DONE);
1086
1087 error = xfs_buf_submit_wait(bp);
1088 if (error) {
1089 xfs_force_shutdown(bp->b_target->bt_mount,
1090 SHUTDOWN_META_IO_ERROR);
1091 }
1092 return error;
1093 }
1094
1095 STATIC void
1096 xfs_buf_bio_end_io(
1097 struct bio *bio)
1098 {
1099 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1100
1101 /*
1102 * don't overwrite existing errors - otherwise we can lose errors on
1103 * buffers that require multiple bios to complete.
1104 */
1105 if (bio->bi_error) {
1106 spin_lock(&bp->b_lock);
1107 if (!bp->b_io_error)
1108 bp->b_io_error = bio->bi_error;
1109 spin_unlock(&bp->b_lock);
1110 }
1111
1112 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1113 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1114
1115 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1116 xfs_buf_ioend_async(bp);
1117 bio_put(bio);
1118 }
1119
1120 static void
1121 xfs_buf_ioapply_map(
1122 struct xfs_buf *bp,
1123 int map,
1124 int *buf_offset,
1125 int *count,
1126 int rw)
1127 {
1128 int page_index;
1129 int total_nr_pages = bp->b_page_count;
1130 int nr_pages;
1131 struct bio *bio;
1132 sector_t sector = bp->b_maps[map].bm_bn;
1133 int size;
1134 int offset;
1135
1136 total_nr_pages = bp->b_page_count;
1137
1138 /* skip the pages in the buffer before the start offset */
1139 page_index = 0;
1140 offset = *buf_offset;
1141 while (offset >= PAGE_SIZE) {
1142 page_index++;
1143 offset -= PAGE_SIZE;
1144 }
1145
1146 /*
1147 * Limit the IO size to the length of the current vector, and update the
1148 * remaining IO count for the next time around.
1149 */
1150 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1151 *count -= size;
1152 *buf_offset += size;
1153
1154 next_chunk:
1155 atomic_inc(&bp->b_io_remaining);
1156 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1157 if (nr_pages > total_nr_pages)
1158 nr_pages = total_nr_pages;
1159
1160 bio = bio_alloc(GFP_NOIO, nr_pages);
1161 bio->bi_bdev = bp->b_target->bt_bdev;
1162 bio->bi_iter.bi_sector = sector;
1163 bio->bi_end_io = xfs_buf_bio_end_io;
1164 bio->bi_private = bp;
1165
1166
1167 for (; size && nr_pages; nr_pages--, page_index++) {
1168 int rbytes, nbytes = PAGE_SIZE - offset;
1169
1170 if (nbytes > size)
1171 nbytes = size;
1172
1173 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1174 offset);
1175 if (rbytes < nbytes)
1176 break;
1177
1178 offset = 0;
1179 sector += BTOBB(nbytes);
1180 size -= nbytes;
1181 total_nr_pages--;
1182 }
1183
1184 if (likely(bio->bi_iter.bi_size)) {
1185 if (xfs_buf_is_vmapped(bp)) {
1186 flush_kernel_vmap_range(bp->b_addr,
1187 xfs_buf_vmap_len(bp));
1188 }
1189 submit_bio(rw, bio);
1190 if (size)
1191 goto next_chunk;
1192 } else {
1193 /*
1194 * This is guaranteed not to be the last io reference count
1195 * because the caller (xfs_buf_submit) holds a count itself.
1196 */
1197 atomic_dec(&bp->b_io_remaining);
1198 xfs_buf_ioerror(bp, -EIO);
1199 bio_put(bio);
1200 }
1201
1202 }
1203
1204 STATIC void
1205 _xfs_buf_ioapply(
1206 struct xfs_buf *bp)
1207 {
1208 struct blk_plug plug;
1209 int rw;
1210 int offset;
1211 int size;
1212 int i;
1213
1214 /*
1215 * Make sure we capture only current IO errors rather than stale errors
1216 * left over from previous use of the buffer (e.g. failed readahead).
1217 */
1218 bp->b_error = 0;
1219
1220 /*
1221 * Initialize the I/O completion workqueue if we haven't yet or the
1222 * submitter has not opted to specify a custom one.
1223 */
1224 if (!bp->b_ioend_wq)
1225 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1226
1227 if (bp->b_flags & XBF_WRITE) {
1228 if (bp->b_flags & XBF_SYNCIO)
1229 rw = WRITE_SYNC;
1230 else
1231 rw = WRITE;
1232 if (bp->b_flags & XBF_FUA)
1233 rw |= REQ_FUA;
1234 if (bp->b_flags & XBF_FLUSH)
1235 rw |= REQ_FLUSH;
1236
1237 /*
1238 * Run the write verifier callback function if it exists. If
1239 * this function fails it will mark the buffer with an error and
1240 * the IO should not be dispatched.
1241 */
1242 if (bp->b_ops) {
1243 bp->b_ops->verify_write(bp);
1244 if (bp->b_error) {
1245 xfs_force_shutdown(bp->b_target->bt_mount,
1246 SHUTDOWN_CORRUPT_INCORE);
1247 return;
1248 }
1249 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1250 struct xfs_mount *mp = bp->b_target->bt_mount;
1251
1252 /*
1253 * non-crc filesystems don't attach verifiers during
1254 * log recovery, so don't warn for such filesystems.
1255 */
1256 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1257 xfs_warn(mp,
1258 "%s: no ops on block 0x%llx/0x%x",
1259 __func__, bp->b_bn, bp->b_length);
1260 xfs_hex_dump(bp->b_addr, 64);
1261 dump_stack();
1262 }
1263 }
1264 } else if (bp->b_flags & XBF_READ_AHEAD) {
1265 rw = READA;
1266 } else {
1267 rw = READ;
1268 }
1269
1270 /* we only use the buffer cache for meta-data */
1271 rw |= REQ_META;
1272
1273 /*
1274 * Walk all the vectors issuing IO on them. Set up the initial offset
1275 * into the buffer and the desired IO size before we start -
1276 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1277 * subsequent call.
1278 */
1279 offset = bp->b_offset;
1280 size = BBTOB(bp->b_io_length);
1281 blk_start_plug(&plug);
1282 for (i = 0; i < bp->b_map_count; i++) {
1283 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1284 if (bp->b_error)
1285 break;
1286 if (size <= 0)
1287 break; /* all done */
1288 }
1289 blk_finish_plug(&plug);
1290 }
1291
1292 /*
1293 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1294 * the current reference to the IO. It is not safe to reference the buffer after
1295 * a call to this function unless the caller holds an additional reference
1296 * itself.
1297 */
1298 void
1299 xfs_buf_submit(
1300 struct xfs_buf *bp)
1301 {
1302 trace_xfs_buf_submit(bp, _RET_IP_);
1303
1304 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1305 ASSERT(bp->b_flags & XBF_ASYNC);
1306
1307 /* on shutdown we stale and complete the buffer immediately */
1308 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1309 xfs_buf_ioerror(bp, -EIO);
1310 bp->b_flags &= ~XBF_DONE;
1311 xfs_buf_stale(bp);
1312 xfs_buf_ioend(bp);
1313 return;
1314 }
1315
1316 if (bp->b_flags & XBF_WRITE)
1317 xfs_buf_wait_unpin(bp);
1318
1319 /* clear the internal error state to avoid spurious errors */
1320 bp->b_io_error = 0;
1321
1322 /*
1323 * The caller's reference is released during I/O completion.
1324 * This occurs some time after the last b_io_remaining reference is
1325 * released, so after we drop our Io reference we have to have some
1326 * other reference to ensure the buffer doesn't go away from underneath
1327 * us. Take a direct reference to ensure we have safe access to the
1328 * buffer until we are finished with it.
1329 */
1330 xfs_buf_hold(bp);
1331
1332 /*
1333 * Set the count to 1 initially, this will stop an I/O completion
1334 * callout which happens before we have started all the I/O from calling
1335 * xfs_buf_ioend too early.
1336 */
1337 atomic_set(&bp->b_io_remaining, 1);
1338 _xfs_buf_ioapply(bp);
1339
1340 /*
1341 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1342 * reference we took above. If we drop it to zero, run completion so
1343 * that we don't return to the caller with completion still pending.
1344 */
1345 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1346 if (bp->b_error)
1347 xfs_buf_ioend(bp);
1348 else
1349 xfs_buf_ioend_async(bp);
1350 }
1351
1352 xfs_buf_rele(bp);
1353 /* Note: it is not safe to reference bp now we've dropped our ref */
1354 }
1355
1356 /*
1357 * Synchronous buffer IO submission path, read or write.
1358 */
1359 int
1360 xfs_buf_submit_wait(
1361 struct xfs_buf *bp)
1362 {
1363 int error;
1364
1365 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1366
1367 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1368
1369 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1370 xfs_buf_ioerror(bp, -EIO);
1371 xfs_buf_stale(bp);
1372 bp->b_flags &= ~XBF_DONE;
1373 return -EIO;
1374 }
1375
1376 if (bp->b_flags & XBF_WRITE)
1377 xfs_buf_wait_unpin(bp);
1378
1379 /* clear the internal error state to avoid spurious errors */
1380 bp->b_io_error = 0;
1381
1382 /*
1383 * For synchronous IO, the IO does not inherit the submitters reference
1384 * count, nor the buffer lock. Hence we cannot release the reference we
1385 * are about to take until we've waited for all IO completion to occur,
1386 * including any xfs_buf_ioend_async() work that may be pending.
1387 */
1388 xfs_buf_hold(bp);
1389
1390 /*
1391 * Set the count to 1 initially, this will stop an I/O completion
1392 * callout which happens before we have started all the I/O from calling
1393 * xfs_buf_ioend too early.
1394 */
1395 atomic_set(&bp->b_io_remaining, 1);
1396 _xfs_buf_ioapply(bp);
1397
1398 /*
1399 * make sure we run completion synchronously if it raced with us and is
1400 * already complete.
1401 */
1402 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1403 xfs_buf_ioend(bp);
1404
1405 /* wait for completion before gathering the error from the buffer */
1406 trace_xfs_buf_iowait(bp, _RET_IP_);
1407 wait_for_completion(&bp->b_iowait);
1408 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1409 error = bp->b_error;
1410
1411 /*
1412 * all done now, we can release the hold that keeps the buffer
1413 * referenced for the entire IO.
1414 */
1415 xfs_buf_rele(bp);
1416 return error;
1417 }
1418
1419 void *
1420 xfs_buf_offset(
1421 struct xfs_buf *bp,
1422 size_t offset)
1423 {
1424 struct page *page;
1425
1426 if (bp->b_addr)
1427 return bp->b_addr + offset;
1428
1429 offset += bp->b_offset;
1430 page = bp->b_pages[offset >> PAGE_SHIFT];
1431 return page_address(page) + (offset & (PAGE_SIZE-1));
1432 }
1433
1434 /*
1435 * Move data into or out of a buffer.
1436 */
1437 void
1438 xfs_buf_iomove(
1439 xfs_buf_t *bp, /* buffer to process */
1440 size_t boff, /* starting buffer offset */
1441 size_t bsize, /* length to copy */
1442 void *data, /* data address */
1443 xfs_buf_rw_t mode) /* read/write/zero flag */
1444 {
1445 size_t bend;
1446
1447 bend = boff + bsize;
1448 while (boff < bend) {
1449 struct page *page;
1450 int page_index, page_offset, csize;
1451
1452 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1453 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1454 page = bp->b_pages[page_index];
1455 csize = min_t(size_t, PAGE_SIZE - page_offset,
1456 BBTOB(bp->b_io_length) - boff);
1457
1458 ASSERT((csize + page_offset) <= PAGE_SIZE);
1459
1460 switch (mode) {
1461 case XBRW_ZERO:
1462 memset(page_address(page) + page_offset, 0, csize);
1463 break;
1464 case XBRW_READ:
1465 memcpy(data, page_address(page) + page_offset, csize);
1466 break;
1467 case XBRW_WRITE:
1468 memcpy(page_address(page) + page_offset, data, csize);
1469 }
1470
1471 boff += csize;
1472 data += csize;
1473 }
1474 }
1475
1476 /*
1477 * Handling of buffer targets (buftargs).
1478 */
1479
1480 /*
1481 * Wait for any bufs with callbacks that have been submitted but have not yet
1482 * returned. These buffers will have an elevated hold count, so wait on those
1483 * while freeing all the buffers only held by the LRU.
1484 */
1485 static enum lru_status
1486 xfs_buftarg_wait_rele(
1487 struct list_head *item,
1488 struct list_lru_one *lru,
1489 spinlock_t *lru_lock,
1490 void *arg)
1491
1492 {
1493 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1494 struct list_head *dispose = arg;
1495
1496 if (atomic_read(&bp->b_hold) > 1) {
1497 /* need to wait, so skip it this pass */
1498 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1499 return LRU_SKIP;
1500 }
1501 if (!spin_trylock(&bp->b_lock))
1502 return LRU_SKIP;
1503
1504 /*
1505 * clear the LRU reference count so the buffer doesn't get
1506 * ignored in xfs_buf_rele().
1507 */
1508 atomic_set(&bp->b_lru_ref, 0);
1509 bp->b_state |= XFS_BSTATE_DISPOSE;
1510 list_lru_isolate_move(lru, item, dispose);
1511 spin_unlock(&bp->b_lock);
1512 return LRU_REMOVED;
1513 }
1514
1515 void
1516 xfs_wait_buftarg(
1517 struct xfs_buftarg *btp)
1518 {
1519 LIST_HEAD(dispose);
1520 int loop = 0;
1521
1522 /* loop until there is nothing left on the lru list. */
1523 while (list_lru_count(&btp->bt_lru)) {
1524 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1525 &dispose, LONG_MAX);
1526
1527 while (!list_empty(&dispose)) {
1528 struct xfs_buf *bp;
1529 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1530 list_del_init(&bp->b_lru);
1531 if (bp->b_flags & XBF_WRITE_FAIL) {
1532 xfs_alert(btp->bt_mount,
1533 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1534 (long long)bp->b_bn);
1535 xfs_alert(btp->bt_mount,
1536 "Please run xfs_repair to determine the extent of the problem.");
1537 }
1538 xfs_buf_rele(bp);
1539 }
1540 if (loop++ != 0)
1541 delay(100);
1542 }
1543 }
1544
1545 static enum lru_status
1546 xfs_buftarg_isolate(
1547 struct list_head *item,
1548 struct list_lru_one *lru,
1549 spinlock_t *lru_lock,
1550 void *arg)
1551 {
1552 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1553 struct list_head *dispose = arg;
1554
1555 /*
1556 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1557 * If we fail to get the lock, just skip it.
1558 */
1559 if (!spin_trylock(&bp->b_lock))
1560 return LRU_SKIP;
1561 /*
1562 * Decrement the b_lru_ref count unless the value is already
1563 * zero. If the value is already zero, we need to reclaim the
1564 * buffer, otherwise it gets another trip through the LRU.
1565 */
1566 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1567 spin_unlock(&bp->b_lock);
1568 return LRU_ROTATE;
1569 }
1570
1571 bp->b_state |= XFS_BSTATE_DISPOSE;
1572 list_lru_isolate_move(lru, item, dispose);
1573 spin_unlock(&bp->b_lock);
1574 return LRU_REMOVED;
1575 }
1576
1577 static unsigned long
1578 xfs_buftarg_shrink_scan(
1579 struct shrinker *shrink,
1580 struct shrink_control *sc)
1581 {
1582 struct xfs_buftarg *btp = container_of(shrink,
1583 struct xfs_buftarg, bt_shrinker);
1584 LIST_HEAD(dispose);
1585 unsigned long freed;
1586
1587 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1588 xfs_buftarg_isolate, &dispose);
1589
1590 while (!list_empty(&dispose)) {
1591 struct xfs_buf *bp;
1592 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1593 list_del_init(&bp->b_lru);
1594 xfs_buf_rele(bp);
1595 }
1596
1597 return freed;
1598 }
1599
1600 static unsigned long
1601 xfs_buftarg_shrink_count(
1602 struct shrinker *shrink,
1603 struct shrink_control *sc)
1604 {
1605 struct xfs_buftarg *btp = container_of(shrink,
1606 struct xfs_buftarg, bt_shrinker);
1607 return list_lru_shrink_count(&btp->bt_lru, sc);
1608 }
1609
1610 void
1611 xfs_free_buftarg(
1612 struct xfs_mount *mp,
1613 struct xfs_buftarg *btp)
1614 {
1615 unregister_shrinker(&btp->bt_shrinker);
1616 list_lru_destroy(&btp->bt_lru);
1617
1618 if (mp->m_flags & XFS_MOUNT_BARRIER)
1619 xfs_blkdev_issue_flush(btp);
1620
1621 kmem_free(btp);
1622 }
1623
1624 int
1625 xfs_setsize_buftarg(
1626 xfs_buftarg_t *btp,
1627 unsigned int sectorsize)
1628 {
1629 /* Set up metadata sector size info */
1630 btp->bt_meta_sectorsize = sectorsize;
1631 btp->bt_meta_sectormask = sectorsize - 1;
1632
1633 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1634 char name[BDEVNAME_SIZE];
1635
1636 bdevname(btp->bt_bdev, name);
1637
1638 xfs_warn(btp->bt_mount,
1639 "Cannot set_blocksize to %u on device %s",
1640 sectorsize, name);
1641 return -EINVAL;
1642 }
1643
1644 /* Set up device logical sector size mask */
1645 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1646 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1647
1648 return 0;
1649 }
1650
1651 /*
1652 * When allocating the initial buffer target we have not yet
1653 * read in the superblock, so don't know what sized sectors
1654 * are being used at this early stage. Play safe.
1655 */
1656 STATIC int
1657 xfs_setsize_buftarg_early(
1658 xfs_buftarg_t *btp,
1659 struct block_device *bdev)
1660 {
1661 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1662 }
1663
1664 xfs_buftarg_t *
1665 xfs_alloc_buftarg(
1666 struct xfs_mount *mp,
1667 struct block_device *bdev)
1668 {
1669 xfs_buftarg_t *btp;
1670
1671 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1672
1673 btp->bt_mount = mp;
1674 btp->bt_dev = bdev->bd_dev;
1675 btp->bt_bdev = bdev;
1676 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1677
1678 if (xfs_setsize_buftarg_early(btp, bdev))
1679 goto error;
1680
1681 if (list_lru_init(&btp->bt_lru))
1682 goto error;
1683
1684 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1685 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1686 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1687 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1688 register_shrinker(&btp->bt_shrinker);
1689 return btp;
1690
1691 error:
1692 kmem_free(btp);
1693 return NULL;
1694 }
1695
1696 /*
1697 * Add a buffer to the delayed write list.
1698 *
1699 * This queues a buffer for writeout if it hasn't already been. Note that
1700 * neither this routine nor the buffer list submission functions perform
1701 * any internal synchronization. It is expected that the lists are thread-local
1702 * to the callers.
1703 *
1704 * Returns true if we queued up the buffer, or false if it already had
1705 * been on the buffer list.
1706 */
1707 bool
1708 xfs_buf_delwri_queue(
1709 struct xfs_buf *bp,
1710 struct list_head *list)
1711 {
1712 ASSERT(xfs_buf_islocked(bp));
1713 ASSERT(!(bp->b_flags & XBF_READ));
1714
1715 /*
1716 * If the buffer is already marked delwri it already is queued up
1717 * by someone else for imediate writeout. Just ignore it in that
1718 * case.
1719 */
1720 if (bp->b_flags & _XBF_DELWRI_Q) {
1721 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1722 return false;
1723 }
1724
1725 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1726
1727 /*
1728 * If a buffer gets written out synchronously or marked stale while it
1729 * is on a delwri list we lazily remove it. To do this, the other party
1730 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1731 * It remains referenced and on the list. In a rare corner case it
1732 * might get readded to a delwri list after the synchronous writeout, in
1733 * which case we need just need to re-add the flag here.
1734 */
1735 bp->b_flags |= _XBF_DELWRI_Q;
1736 if (list_empty(&bp->b_list)) {
1737 atomic_inc(&bp->b_hold);
1738 list_add_tail(&bp->b_list, list);
1739 }
1740
1741 return true;
1742 }
1743
1744 /*
1745 * Compare function is more complex than it needs to be because
1746 * the return value is only 32 bits and we are doing comparisons
1747 * on 64 bit values
1748 */
1749 static int
1750 xfs_buf_cmp(
1751 void *priv,
1752 struct list_head *a,
1753 struct list_head *b)
1754 {
1755 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1756 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1757 xfs_daddr_t diff;
1758
1759 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1760 if (diff < 0)
1761 return -1;
1762 if (diff > 0)
1763 return 1;
1764 return 0;
1765 }
1766
1767 static int
1768 __xfs_buf_delwri_submit(
1769 struct list_head *buffer_list,
1770 struct list_head *io_list,
1771 bool wait)
1772 {
1773 struct blk_plug plug;
1774 struct xfs_buf *bp, *n;
1775 int pinned = 0;
1776
1777 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1778 if (!wait) {
1779 if (xfs_buf_ispinned(bp)) {
1780 pinned++;
1781 continue;
1782 }
1783 if (!xfs_buf_trylock(bp))
1784 continue;
1785 } else {
1786 xfs_buf_lock(bp);
1787 }
1788
1789 /*
1790 * Someone else might have written the buffer synchronously or
1791 * marked it stale in the meantime. In that case only the
1792 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1793 * reference and remove it from the list here.
1794 */
1795 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1796 list_del_init(&bp->b_list);
1797 xfs_buf_relse(bp);
1798 continue;
1799 }
1800
1801 list_move_tail(&bp->b_list, io_list);
1802 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1803 }
1804
1805 list_sort(NULL, io_list, xfs_buf_cmp);
1806
1807 blk_start_plug(&plug);
1808 list_for_each_entry_safe(bp, n, io_list, b_list) {
1809 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1810 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1811
1812 /*
1813 * we do all Io submission async. This means if we need to wait
1814 * for IO completion we need to take an extra reference so the
1815 * buffer is still valid on the other side.
1816 */
1817 if (wait)
1818 xfs_buf_hold(bp);
1819 else
1820 list_del_init(&bp->b_list);
1821
1822 xfs_buf_submit(bp);
1823 }
1824 blk_finish_plug(&plug);
1825
1826 return pinned;
1827 }
1828
1829 /*
1830 * Write out a buffer list asynchronously.
1831 *
1832 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1833 * out and not wait for I/O completion on any of the buffers. This interface
1834 * is only safely useable for callers that can track I/O completion by higher
1835 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1836 * function.
1837 */
1838 int
1839 xfs_buf_delwri_submit_nowait(
1840 struct list_head *buffer_list)
1841 {
1842 LIST_HEAD (io_list);
1843 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1844 }
1845
1846 /*
1847 * Write out a buffer list synchronously.
1848 *
1849 * This will take the @buffer_list, write all buffers out and wait for I/O
1850 * completion on all of the buffers. @buffer_list is consumed by the function,
1851 * so callers must have some other way of tracking buffers if they require such
1852 * functionality.
1853 */
1854 int
1855 xfs_buf_delwri_submit(
1856 struct list_head *buffer_list)
1857 {
1858 LIST_HEAD (io_list);
1859 int error = 0, error2;
1860 struct xfs_buf *bp;
1861
1862 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1863
1864 /* Wait for IO to complete. */
1865 while (!list_empty(&io_list)) {
1866 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1867
1868 list_del_init(&bp->b_list);
1869
1870 /* locking the buffer will wait for async IO completion. */
1871 xfs_buf_lock(bp);
1872 error2 = bp->b_error;
1873 xfs_buf_relse(bp);
1874 if (!error)
1875 error = error2;
1876 }
1877
1878 return error;
1879 }
1880
1881 int __init
1882 xfs_buf_init(void)
1883 {
1884 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1885 KM_ZONE_HWALIGN, NULL);
1886 if (!xfs_buf_zone)
1887 goto out;
1888
1889 return 0;
1890
1891 out:
1892 return -ENOMEM;
1893 }
1894
1895 void
1896 xfs_buf_terminate(void)
1897 {
1898 kmem_zone_destroy(xfs_buf_zone);
1899 }
This page took 0.070254 seconds and 5 git commands to generate.