xfs: fix race while discarding buffers [V4]
[deliverable/linux.git] / fs / xfs / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_sb.h"
38 #include "xfs_log.h"
39 #include "xfs_ag.h"
40 #include "xfs_mount.h"
41 #include "xfs_trace.h"
42
43 static kmem_zone_t *xfs_buf_zone;
44
45 static struct workqueue_struct *xfslogd_workqueue;
46
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
55 #endif
56
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61 static inline int
62 xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64 {
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73 }
74
75 static inline int
76 xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78 {
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81
82 /*
83 * xfs_buf_lru_add - add a buffer to the LRU.
84 *
85 * The LRU takes a new reference to the buffer so that it will only be freed
86 * once the shrinker takes the buffer off the LRU.
87 */
88 STATIC void
89 xfs_buf_lru_add(
90 struct xfs_buf *bp)
91 {
92 struct xfs_buftarg *btp = bp->b_target;
93
94 spin_lock(&btp->bt_lru_lock);
95 if (list_empty(&bp->b_lru)) {
96 atomic_inc(&bp->b_hold);
97 list_add_tail(&bp->b_lru, &btp->bt_lru);
98 btp->bt_lru_nr++;
99 bp->b_lru_flags &= ~_XBF_LRU_DISPOSE;
100 }
101 spin_unlock(&btp->bt_lru_lock);
102 }
103
104 /*
105 * xfs_buf_lru_del - remove a buffer from the LRU
106 *
107 * The unlocked check is safe here because it only occurs when there are not
108 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
109 * to optimise the shrinker removing the buffer from the LRU and calling
110 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
111 * bt_lru_lock.
112 */
113 STATIC void
114 xfs_buf_lru_del(
115 struct xfs_buf *bp)
116 {
117 struct xfs_buftarg *btp = bp->b_target;
118
119 if (list_empty(&bp->b_lru))
120 return;
121
122 spin_lock(&btp->bt_lru_lock);
123 if (!list_empty(&bp->b_lru)) {
124 list_del_init(&bp->b_lru);
125 btp->bt_lru_nr--;
126 }
127 spin_unlock(&btp->bt_lru_lock);
128 }
129
130 /*
131 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
132 * b_lru_ref count so that the buffer is freed immediately when the buffer
133 * reference count falls to zero. If the buffer is already on the LRU, we need
134 * to remove the reference that LRU holds on the buffer.
135 *
136 * This prevents build-up of stale buffers on the LRU.
137 */
138 void
139 xfs_buf_stale(
140 struct xfs_buf *bp)
141 {
142 ASSERT(xfs_buf_islocked(bp));
143
144 bp->b_flags |= XBF_STALE;
145
146 /*
147 * Clear the delwri status so that a delwri queue walker will not
148 * flush this buffer to disk now that it is stale. The delwri queue has
149 * a reference to the buffer, so this is safe to do.
150 */
151 bp->b_flags &= ~_XBF_DELWRI_Q;
152
153 atomic_set(&(bp)->b_lru_ref, 0);
154 if (!list_empty(&bp->b_lru)) {
155 struct xfs_buftarg *btp = bp->b_target;
156
157 spin_lock(&btp->bt_lru_lock);
158 if (!list_empty(&bp->b_lru) &&
159 !(bp->b_lru_flags & _XBF_LRU_DISPOSE)) {
160 list_del_init(&bp->b_lru);
161 btp->bt_lru_nr--;
162 atomic_dec(&bp->b_hold);
163 }
164 spin_unlock(&btp->bt_lru_lock);
165 }
166 ASSERT(atomic_read(&bp->b_hold) >= 1);
167 }
168
169 static int
170 xfs_buf_get_maps(
171 struct xfs_buf *bp,
172 int map_count)
173 {
174 ASSERT(bp->b_maps == NULL);
175 bp->b_map_count = map_count;
176
177 if (map_count == 1) {
178 bp->b_maps = &bp->b_map;
179 return 0;
180 }
181
182 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
183 KM_NOFS);
184 if (!bp->b_maps)
185 return ENOMEM;
186 return 0;
187 }
188
189 /*
190 * Frees b_pages if it was allocated.
191 */
192 static void
193 xfs_buf_free_maps(
194 struct xfs_buf *bp)
195 {
196 if (bp->b_maps != &bp->b_map) {
197 kmem_free(bp->b_maps);
198 bp->b_maps = NULL;
199 }
200 }
201
202 struct xfs_buf *
203 _xfs_buf_alloc(
204 struct xfs_buftarg *target,
205 struct xfs_buf_map *map,
206 int nmaps,
207 xfs_buf_flags_t flags)
208 {
209 struct xfs_buf *bp;
210 int error;
211 int i;
212
213 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
214 if (unlikely(!bp))
215 return NULL;
216
217 /*
218 * We don't want certain flags to appear in b_flags unless they are
219 * specifically set by later operations on the buffer.
220 */
221 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
222
223 atomic_set(&bp->b_hold, 1);
224 atomic_set(&bp->b_lru_ref, 1);
225 init_completion(&bp->b_iowait);
226 INIT_LIST_HEAD(&bp->b_lru);
227 INIT_LIST_HEAD(&bp->b_list);
228 RB_CLEAR_NODE(&bp->b_rbnode);
229 sema_init(&bp->b_sema, 0); /* held, no waiters */
230 XB_SET_OWNER(bp);
231 bp->b_target = target;
232 bp->b_flags = flags;
233
234 /*
235 * Set length and io_length to the same value initially.
236 * I/O routines should use io_length, which will be the same in
237 * most cases but may be reset (e.g. XFS recovery).
238 */
239 error = xfs_buf_get_maps(bp, nmaps);
240 if (error) {
241 kmem_zone_free(xfs_buf_zone, bp);
242 return NULL;
243 }
244
245 bp->b_bn = map[0].bm_bn;
246 bp->b_length = 0;
247 for (i = 0; i < nmaps; i++) {
248 bp->b_maps[i].bm_bn = map[i].bm_bn;
249 bp->b_maps[i].bm_len = map[i].bm_len;
250 bp->b_length += map[i].bm_len;
251 }
252 bp->b_io_length = bp->b_length;
253
254 atomic_set(&bp->b_pin_count, 0);
255 init_waitqueue_head(&bp->b_waiters);
256
257 XFS_STATS_INC(xb_create);
258 trace_xfs_buf_init(bp, _RET_IP_);
259
260 return bp;
261 }
262
263 /*
264 * Allocate a page array capable of holding a specified number
265 * of pages, and point the page buf at it.
266 */
267 STATIC int
268 _xfs_buf_get_pages(
269 xfs_buf_t *bp,
270 int page_count,
271 xfs_buf_flags_t flags)
272 {
273 /* Make sure that we have a page list */
274 if (bp->b_pages == NULL) {
275 bp->b_page_count = page_count;
276 if (page_count <= XB_PAGES) {
277 bp->b_pages = bp->b_page_array;
278 } else {
279 bp->b_pages = kmem_alloc(sizeof(struct page *) *
280 page_count, KM_NOFS);
281 if (bp->b_pages == NULL)
282 return -ENOMEM;
283 }
284 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
285 }
286 return 0;
287 }
288
289 /*
290 * Frees b_pages if it was allocated.
291 */
292 STATIC void
293 _xfs_buf_free_pages(
294 xfs_buf_t *bp)
295 {
296 if (bp->b_pages != bp->b_page_array) {
297 kmem_free(bp->b_pages);
298 bp->b_pages = NULL;
299 }
300 }
301
302 /*
303 * Releases the specified buffer.
304 *
305 * The modification state of any associated pages is left unchanged.
306 * The buffer most not be on any hash - use xfs_buf_rele instead for
307 * hashed and refcounted buffers
308 */
309 void
310 xfs_buf_free(
311 xfs_buf_t *bp)
312 {
313 trace_xfs_buf_free(bp, _RET_IP_);
314
315 ASSERT(list_empty(&bp->b_lru));
316
317 if (bp->b_flags & _XBF_PAGES) {
318 uint i;
319
320 if (xfs_buf_is_vmapped(bp))
321 vm_unmap_ram(bp->b_addr - bp->b_offset,
322 bp->b_page_count);
323
324 for (i = 0; i < bp->b_page_count; i++) {
325 struct page *page = bp->b_pages[i];
326
327 __free_page(page);
328 }
329 } else if (bp->b_flags & _XBF_KMEM)
330 kmem_free(bp->b_addr);
331 _xfs_buf_free_pages(bp);
332 xfs_buf_free_maps(bp);
333 kmem_zone_free(xfs_buf_zone, bp);
334 }
335
336 /*
337 * Allocates all the pages for buffer in question and builds it's page list.
338 */
339 STATIC int
340 xfs_buf_allocate_memory(
341 xfs_buf_t *bp,
342 uint flags)
343 {
344 size_t size;
345 size_t nbytes, offset;
346 gfp_t gfp_mask = xb_to_gfp(flags);
347 unsigned short page_count, i;
348 xfs_off_t start, end;
349 int error;
350
351 /*
352 * for buffers that are contained within a single page, just allocate
353 * the memory from the heap - there's no need for the complexity of
354 * page arrays to keep allocation down to order 0.
355 */
356 size = BBTOB(bp->b_length);
357 if (size < PAGE_SIZE) {
358 bp->b_addr = kmem_alloc(size, KM_NOFS);
359 if (!bp->b_addr) {
360 /* low memory - use alloc_page loop instead */
361 goto use_alloc_page;
362 }
363
364 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
365 ((unsigned long)bp->b_addr & PAGE_MASK)) {
366 /* b_addr spans two pages - use alloc_page instead */
367 kmem_free(bp->b_addr);
368 bp->b_addr = NULL;
369 goto use_alloc_page;
370 }
371 bp->b_offset = offset_in_page(bp->b_addr);
372 bp->b_pages = bp->b_page_array;
373 bp->b_pages[0] = virt_to_page(bp->b_addr);
374 bp->b_page_count = 1;
375 bp->b_flags |= _XBF_KMEM;
376 return 0;
377 }
378
379 use_alloc_page:
380 start = BBTOB(bp->b_map.bm_bn) >> PAGE_SHIFT;
381 end = (BBTOB(bp->b_map.bm_bn + bp->b_length) + PAGE_SIZE - 1)
382 >> PAGE_SHIFT;
383 page_count = end - start;
384 error = _xfs_buf_get_pages(bp, page_count, flags);
385 if (unlikely(error))
386 return error;
387
388 offset = bp->b_offset;
389 bp->b_flags |= _XBF_PAGES;
390
391 for (i = 0; i < bp->b_page_count; i++) {
392 struct page *page;
393 uint retries = 0;
394 retry:
395 page = alloc_page(gfp_mask);
396 if (unlikely(page == NULL)) {
397 if (flags & XBF_READ_AHEAD) {
398 bp->b_page_count = i;
399 error = ENOMEM;
400 goto out_free_pages;
401 }
402
403 /*
404 * This could deadlock.
405 *
406 * But until all the XFS lowlevel code is revamped to
407 * handle buffer allocation failures we can't do much.
408 */
409 if (!(++retries % 100))
410 xfs_err(NULL,
411 "possible memory allocation deadlock in %s (mode:0x%x)",
412 __func__, gfp_mask);
413
414 XFS_STATS_INC(xb_page_retries);
415 congestion_wait(BLK_RW_ASYNC, HZ/50);
416 goto retry;
417 }
418
419 XFS_STATS_INC(xb_page_found);
420
421 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
422 size -= nbytes;
423 bp->b_pages[i] = page;
424 offset = 0;
425 }
426 return 0;
427
428 out_free_pages:
429 for (i = 0; i < bp->b_page_count; i++)
430 __free_page(bp->b_pages[i]);
431 return error;
432 }
433
434 /*
435 * Map buffer into kernel address-space if necessary.
436 */
437 STATIC int
438 _xfs_buf_map_pages(
439 xfs_buf_t *bp,
440 uint flags)
441 {
442 ASSERT(bp->b_flags & _XBF_PAGES);
443 if (bp->b_page_count == 1) {
444 /* A single page buffer is always mappable */
445 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
446 } else if (flags & XBF_UNMAPPED) {
447 bp->b_addr = NULL;
448 } else {
449 int retried = 0;
450
451 do {
452 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
453 -1, PAGE_KERNEL);
454 if (bp->b_addr)
455 break;
456 vm_unmap_aliases();
457 } while (retried++ <= 1);
458
459 if (!bp->b_addr)
460 return -ENOMEM;
461 bp->b_addr += bp->b_offset;
462 }
463
464 return 0;
465 }
466
467 /*
468 * Finding and Reading Buffers
469 */
470
471 /*
472 * Look up, and creates if absent, a lockable buffer for
473 * a given range of an inode. The buffer is returned
474 * locked. No I/O is implied by this call.
475 */
476 xfs_buf_t *
477 _xfs_buf_find(
478 struct xfs_buftarg *btp,
479 struct xfs_buf_map *map,
480 int nmaps,
481 xfs_buf_flags_t flags,
482 xfs_buf_t *new_bp)
483 {
484 size_t numbytes;
485 struct xfs_perag *pag;
486 struct rb_node **rbp;
487 struct rb_node *parent;
488 xfs_buf_t *bp;
489 xfs_daddr_t blkno = map[0].bm_bn;
490 int numblks = 0;
491 int i;
492
493 for (i = 0; i < nmaps; i++)
494 numblks += map[i].bm_len;
495 numbytes = BBTOB(numblks);
496
497 /* Check for IOs smaller than the sector size / not sector aligned */
498 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
499 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
500
501 /* get tree root */
502 pag = xfs_perag_get(btp->bt_mount,
503 xfs_daddr_to_agno(btp->bt_mount, blkno));
504
505 /* walk tree */
506 spin_lock(&pag->pag_buf_lock);
507 rbp = &pag->pag_buf_tree.rb_node;
508 parent = NULL;
509 bp = NULL;
510 while (*rbp) {
511 parent = *rbp;
512 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
513
514 if (blkno < bp->b_bn)
515 rbp = &(*rbp)->rb_left;
516 else if (blkno > bp->b_bn)
517 rbp = &(*rbp)->rb_right;
518 else {
519 /*
520 * found a block number match. If the range doesn't
521 * match, the only way this is allowed is if the buffer
522 * in the cache is stale and the transaction that made
523 * it stale has not yet committed. i.e. we are
524 * reallocating a busy extent. Skip this buffer and
525 * continue searching to the right for an exact match.
526 */
527 if (bp->b_length != numblks) {
528 ASSERT(bp->b_flags & XBF_STALE);
529 rbp = &(*rbp)->rb_right;
530 continue;
531 }
532 atomic_inc(&bp->b_hold);
533 goto found;
534 }
535 }
536
537 /* No match found */
538 if (new_bp) {
539 rb_link_node(&new_bp->b_rbnode, parent, rbp);
540 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
541 /* the buffer keeps the perag reference until it is freed */
542 new_bp->b_pag = pag;
543 spin_unlock(&pag->pag_buf_lock);
544 } else {
545 XFS_STATS_INC(xb_miss_locked);
546 spin_unlock(&pag->pag_buf_lock);
547 xfs_perag_put(pag);
548 }
549 return new_bp;
550
551 found:
552 spin_unlock(&pag->pag_buf_lock);
553 xfs_perag_put(pag);
554
555 if (!xfs_buf_trylock(bp)) {
556 if (flags & XBF_TRYLOCK) {
557 xfs_buf_rele(bp);
558 XFS_STATS_INC(xb_busy_locked);
559 return NULL;
560 }
561 xfs_buf_lock(bp);
562 XFS_STATS_INC(xb_get_locked_waited);
563 }
564
565 /*
566 * if the buffer is stale, clear all the external state associated with
567 * it. We need to keep flags such as how we allocated the buffer memory
568 * intact here.
569 */
570 if (bp->b_flags & XBF_STALE) {
571 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
572 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
573 }
574
575 trace_xfs_buf_find(bp, flags, _RET_IP_);
576 XFS_STATS_INC(xb_get_locked);
577 return bp;
578 }
579
580 /*
581 * Assembles a buffer covering the specified range. The code is optimised for
582 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
583 * more hits than misses.
584 */
585 struct xfs_buf *
586 xfs_buf_get_map(
587 struct xfs_buftarg *target,
588 struct xfs_buf_map *map,
589 int nmaps,
590 xfs_buf_flags_t flags)
591 {
592 struct xfs_buf *bp;
593 struct xfs_buf *new_bp;
594 int error = 0;
595
596 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
597 if (likely(bp))
598 goto found;
599
600 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
601 if (unlikely(!new_bp))
602 return NULL;
603
604 error = xfs_buf_allocate_memory(new_bp, flags);
605 if (error) {
606 xfs_buf_free(new_bp);
607 return NULL;
608 }
609
610 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
611 if (!bp) {
612 xfs_buf_free(new_bp);
613 return NULL;
614 }
615
616 if (bp != new_bp)
617 xfs_buf_free(new_bp);
618
619 found:
620 if (!bp->b_addr) {
621 error = _xfs_buf_map_pages(bp, flags);
622 if (unlikely(error)) {
623 xfs_warn(target->bt_mount,
624 "%s: failed to map pages\n", __func__);
625 xfs_buf_relse(bp);
626 return NULL;
627 }
628 }
629
630 XFS_STATS_INC(xb_get);
631 trace_xfs_buf_get(bp, flags, _RET_IP_);
632 return bp;
633 }
634
635 STATIC int
636 _xfs_buf_read(
637 xfs_buf_t *bp,
638 xfs_buf_flags_t flags)
639 {
640 ASSERT(!(flags & XBF_WRITE));
641 ASSERT(bp->b_map.bm_bn != XFS_BUF_DADDR_NULL);
642
643 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
644 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
645
646 xfs_buf_iorequest(bp);
647 if (flags & XBF_ASYNC)
648 return 0;
649 return xfs_buf_iowait(bp);
650 }
651
652 xfs_buf_t *
653 xfs_buf_read_map(
654 struct xfs_buftarg *target,
655 struct xfs_buf_map *map,
656 int nmaps,
657 xfs_buf_flags_t flags)
658 {
659 struct xfs_buf *bp;
660
661 flags |= XBF_READ;
662
663 bp = xfs_buf_get_map(target, map, nmaps, flags);
664 if (bp) {
665 trace_xfs_buf_read(bp, flags, _RET_IP_);
666
667 if (!XFS_BUF_ISDONE(bp)) {
668 XFS_STATS_INC(xb_get_read);
669 _xfs_buf_read(bp, flags);
670 } else if (flags & XBF_ASYNC) {
671 /*
672 * Read ahead call which is already satisfied,
673 * drop the buffer
674 */
675 xfs_buf_relse(bp);
676 return NULL;
677 } else {
678 /* We do not want read in the flags */
679 bp->b_flags &= ~XBF_READ;
680 }
681 }
682
683 return bp;
684 }
685
686 /*
687 * If we are not low on memory then do the readahead in a deadlock
688 * safe manner.
689 */
690 void
691 xfs_buf_readahead_map(
692 struct xfs_buftarg *target,
693 struct xfs_buf_map *map,
694 int nmaps)
695 {
696 if (bdi_read_congested(target->bt_bdi))
697 return;
698
699 xfs_buf_read_map(target, map, nmaps,
700 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
701 }
702
703 /*
704 * Read an uncached buffer from disk. Allocates and returns a locked
705 * buffer containing the disk contents or nothing.
706 */
707 struct xfs_buf *
708 xfs_buf_read_uncached(
709 struct xfs_buftarg *target,
710 xfs_daddr_t daddr,
711 size_t numblks,
712 int flags)
713 {
714 xfs_buf_t *bp;
715 int error;
716
717 bp = xfs_buf_get_uncached(target, numblks, flags);
718 if (!bp)
719 return NULL;
720
721 /* set up the buffer for a read IO */
722 ASSERT(bp->b_map_count == 1);
723 bp->b_bn = daddr;
724 bp->b_maps[0].bm_bn = daddr;
725 bp->b_flags |= XBF_READ;
726
727 xfsbdstrat(target->bt_mount, bp);
728 error = xfs_buf_iowait(bp);
729 if (error) {
730 xfs_buf_relse(bp);
731 return NULL;
732 }
733 return bp;
734 }
735
736 /*
737 * Return a buffer allocated as an empty buffer and associated to external
738 * memory via xfs_buf_associate_memory() back to it's empty state.
739 */
740 void
741 xfs_buf_set_empty(
742 struct xfs_buf *bp,
743 size_t numblks)
744 {
745 if (bp->b_pages)
746 _xfs_buf_free_pages(bp);
747
748 bp->b_pages = NULL;
749 bp->b_page_count = 0;
750 bp->b_addr = NULL;
751 bp->b_length = numblks;
752 bp->b_io_length = numblks;
753
754 ASSERT(bp->b_map_count == 1);
755 bp->b_bn = XFS_BUF_DADDR_NULL;
756 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
757 bp->b_maps[0].bm_len = bp->b_length;
758 }
759
760 static inline struct page *
761 mem_to_page(
762 void *addr)
763 {
764 if ((!is_vmalloc_addr(addr))) {
765 return virt_to_page(addr);
766 } else {
767 return vmalloc_to_page(addr);
768 }
769 }
770
771 int
772 xfs_buf_associate_memory(
773 xfs_buf_t *bp,
774 void *mem,
775 size_t len)
776 {
777 int rval;
778 int i = 0;
779 unsigned long pageaddr;
780 unsigned long offset;
781 size_t buflen;
782 int page_count;
783
784 pageaddr = (unsigned long)mem & PAGE_MASK;
785 offset = (unsigned long)mem - pageaddr;
786 buflen = PAGE_ALIGN(len + offset);
787 page_count = buflen >> PAGE_SHIFT;
788
789 /* Free any previous set of page pointers */
790 if (bp->b_pages)
791 _xfs_buf_free_pages(bp);
792
793 bp->b_pages = NULL;
794 bp->b_addr = mem;
795
796 rval = _xfs_buf_get_pages(bp, page_count, 0);
797 if (rval)
798 return rval;
799
800 bp->b_offset = offset;
801
802 for (i = 0; i < bp->b_page_count; i++) {
803 bp->b_pages[i] = mem_to_page((void *)pageaddr);
804 pageaddr += PAGE_SIZE;
805 }
806
807 bp->b_io_length = BTOBB(len);
808 bp->b_length = BTOBB(buflen);
809
810 return 0;
811 }
812
813 xfs_buf_t *
814 xfs_buf_get_uncached(
815 struct xfs_buftarg *target,
816 size_t numblks,
817 int flags)
818 {
819 unsigned long page_count;
820 int error, i;
821 struct xfs_buf *bp;
822 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
823
824 bp = _xfs_buf_alloc(target, &map, 1, 0);
825 if (unlikely(bp == NULL))
826 goto fail;
827
828 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
829 error = _xfs_buf_get_pages(bp, page_count, 0);
830 if (error)
831 goto fail_free_buf;
832
833 for (i = 0; i < page_count; i++) {
834 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
835 if (!bp->b_pages[i])
836 goto fail_free_mem;
837 }
838 bp->b_flags |= _XBF_PAGES;
839
840 error = _xfs_buf_map_pages(bp, 0);
841 if (unlikely(error)) {
842 xfs_warn(target->bt_mount,
843 "%s: failed to map pages\n", __func__);
844 goto fail_free_mem;
845 }
846
847 trace_xfs_buf_get_uncached(bp, _RET_IP_);
848 return bp;
849
850 fail_free_mem:
851 while (--i >= 0)
852 __free_page(bp->b_pages[i]);
853 _xfs_buf_free_pages(bp);
854 fail_free_buf:
855 xfs_buf_free_maps(bp);
856 kmem_zone_free(xfs_buf_zone, bp);
857 fail:
858 return NULL;
859 }
860
861 /*
862 * Increment reference count on buffer, to hold the buffer concurrently
863 * with another thread which may release (free) the buffer asynchronously.
864 * Must hold the buffer already to call this function.
865 */
866 void
867 xfs_buf_hold(
868 xfs_buf_t *bp)
869 {
870 trace_xfs_buf_hold(bp, _RET_IP_);
871 atomic_inc(&bp->b_hold);
872 }
873
874 /*
875 * Releases a hold on the specified buffer. If the
876 * the hold count is 1, calls xfs_buf_free.
877 */
878 void
879 xfs_buf_rele(
880 xfs_buf_t *bp)
881 {
882 struct xfs_perag *pag = bp->b_pag;
883
884 trace_xfs_buf_rele(bp, _RET_IP_);
885
886 if (!pag) {
887 ASSERT(list_empty(&bp->b_lru));
888 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
889 if (atomic_dec_and_test(&bp->b_hold))
890 xfs_buf_free(bp);
891 return;
892 }
893
894 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
895
896 ASSERT(atomic_read(&bp->b_hold) > 0);
897 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
898 if (!(bp->b_flags & XBF_STALE) &&
899 atomic_read(&bp->b_lru_ref)) {
900 xfs_buf_lru_add(bp);
901 spin_unlock(&pag->pag_buf_lock);
902 } else {
903 xfs_buf_lru_del(bp);
904 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
905 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
906 spin_unlock(&pag->pag_buf_lock);
907 xfs_perag_put(pag);
908 xfs_buf_free(bp);
909 }
910 }
911 }
912
913
914 /*
915 * Lock a buffer object, if it is not already locked.
916 *
917 * If we come across a stale, pinned, locked buffer, we know that we are
918 * being asked to lock a buffer that has been reallocated. Because it is
919 * pinned, we know that the log has not been pushed to disk and hence it
920 * will still be locked. Rather than continuing to have trylock attempts
921 * fail until someone else pushes the log, push it ourselves before
922 * returning. This means that the xfsaild will not get stuck trying
923 * to push on stale inode buffers.
924 */
925 int
926 xfs_buf_trylock(
927 struct xfs_buf *bp)
928 {
929 int locked;
930
931 locked = down_trylock(&bp->b_sema) == 0;
932 if (locked)
933 XB_SET_OWNER(bp);
934 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
935 xfs_log_force(bp->b_target->bt_mount, 0);
936
937 trace_xfs_buf_trylock(bp, _RET_IP_);
938 return locked;
939 }
940
941 /*
942 * Lock a buffer object.
943 *
944 * If we come across a stale, pinned, locked buffer, we know that we
945 * are being asked to lock a buffer that has been reallocated. Because
946 * it is pinned, we know that the log has not been pushed to disk and
947 * hence it will still be locked. Rather than sleeping until someone
948 * else pushes the log, push it ourselves before trying to get the lock.
949 */
950 void
951 xfs_buf_lock(
952 struct xfs_buf *bp)
953 {
954 trace_xfs_buf_lock(bp, _RET_IP_);
955
956 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
957 xfs_log_force(bp->b_target->bt_mount, 0);
958 down(&bp->b_sema);
959 XB_SET_OWNER(bp);
960
961 trace_xfs_buf_lock_done(bp, _RET_IP_);
962 }
963
964 void
965 xfs_buf_unlock(
966 struct xfs_buf *bp)
967 {
968 XB_CLEAR_OWNER(bp);
969 up(&bp->b_sema);
970
971 trace_xfs_buf_unlock(bp, _RET_IP_);
972 }
973
974 STATIC void
975 xfs_buf_wait_unpin(
976 xfs_buf_t *bp)
977 {
978 DECLARE_WAITQUEUE (wait, current);
979
980 if (atomic_read(&bp->b_pin_count) == 0)
981 return;
982
983 add_wait_queue(&bp->b_waiters, &wait);
984 for (;;) {
985 set_current_state(TASK_UNINTERRUPTIBLE);
986 if (atomic_read(&bp->b_pin_count) == 0)
987 break;
988 io_schedule();
989 }
990 remove_wait_queue(&bp->b_waiters, &wait);
991 set_current_state(TASK_RUNNING);
992 }
993
994 /*
995 * Buffer Utility Routines
996 */
997
998 STATIC void
999 xfs_buf_iodone_work(
1000 struct work_struct *work)
1001 {
1002 xfs_buf_t *bp =
1003 container_of(work, xfs_buf_t, b_iodone_work);
1004
1005 if (bp->b_iodone)
1006 (*(bp->b_iodone))(bp);
1007 else if (bp->b_flags & XBF_ASYNC)
1008 xfs_buf_relse(bp);
1009 }
1010
1011 void
1012 xfs_buf_ioend(
1013 xfs_buf_t *bp,
1014 int schedule)
1015 {
1016 trace_xfs_buf_iodone(bp, _RET_IP_);
1017
1018 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1019 if (bp->b_error == 0)
1020 bp->b_flags |= XBF_DONE;
1021
1022 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1023 if (schedule) {
1024 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1025 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1026 } else {
1027 xfs_buf_iodone_work(&bp->b_iodone_work);
1028 }
1029 } else {
1030 complete(&bp->b_iowait);
1031 }
1032 }
1033
1034 void
1035 xfs_buf_ioerror(
1036 xfs_buf_t *bp,
1037 int error)
1038 {
1039 ASSERT(error >= 0 && error <= 0xffff);
1040 bp->b_error = (unsigned short)error;
1041 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1042 }
1043
1044 void
1045 xfs_buf_ioerror_alert(
1046 struct xfs_buf *bp,
1047 const char *func)
1048 {
1049 xfs_alert(bp->b_target->bt_mount,
1050 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1051 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
1052 }
1053
1054 /*
1055 * Called when we want to stop a buffer from getting written or read.
1056 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1057 * so that the proper iodone callbacks get called.
1058 */
1059 STATIC int
1060 xfs_bioerror(
1061 xfs_buf_t *bp)
1062 {
1063 #ifdef XFSERRORDEBUG
1064 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1065 #endif
1066
1067 /*
1068 * No need to wait until the buffer is unpinned, we aren't flushing it.
1069 */
1070 xfs_buf_ioerror(bp, EIO);
1071
1072 /*
1073 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1074 */
1075 XFS_BUF_UNREAD(bp);
1076 XFS_BUF_UNDONE(bp);
1077 xfs_buf_stale(bp);
1078
1079 xfs_buf_ioend(bp, 0);
1080
1081 return EIO;
1082 }
1083
1084 /*
1085 * Same as xfs_bioerror, except that we are releasing the buffer
1086 * here ourselves, and avoiding the xfs_buf_ioend call.
1087 * This is meant for userdata errors; metadata bufs come with
1088 * iodone functions attached, so that we can track down errors.
1089 */
1090 STATIC int
1091 xfs_bioerror_relse(
1092 struct xfs_buf *bp)
1093 {
1094 int64_t fl = bp->b_flags;
1095 /*
1096 * No need to wait until the buffer is unpinned.
1097 * We aren't flushing it.
1098 *
1099 * chunkhold expects B_DONE to be set, whether
1100 * we actually finish the I/O or not. We don't want to
1101 * change that interface.
1102 */
1103 XFS_BUF_UNREAD(bp);
1104 XFS_BUF_DONE(bp);
1105 xfs_buf_stale(bp);
1106 bp->b_iodone = NULL;
1107 if (!(fl & XBF_ASYNC)) {
1108 /*
1109 * Mark b_error and B_ERROR _both_.
1110 * Lot's of chunkcache code assumes that.
1111 * There's no reason to mark error for
1112 * ASYNC buffers.
1113 */
1114 xfs_buf_ioerror(bp, EIO);
1115 complete(&bp->b_iowait);
1116 } else {
1117 xfs_buf_relse(bp);
1118 }
1119
1120 return EIO;
1121 }
1122
1123 STATIC int
1124 xfs_bdstrat_cb(
1125 struct xfs_buf *bp)
1126 {
1127 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1128 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1129 /*
1130 * Metadata write that didn't get logged but
1131 * written delayed anyway. These aren't associated
1132 * with a transaction, and can be ignored.
1133 */
1134 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1135 return xfs_bioerror_relse(bp);
1136 else
1137 return xfs_bioerror(bp);
1138 }
1139
1140 xfs_buf_iorequest(bp);
1141 return 0;
1142 }
1143
1144 int
1145 xfs_bwrite(
1146 struct xfs_buf *bp)
1147 {
1148 int error;
1149
1150 ASSERT(xfs_buf_islocked(bp));
1151
1152 bp->b_flags |= XBF_WRITE;
1153 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1154
1155 xfs_bdstrat_cb(bp);
1156
1157 error = xfs_buf_iowait(bp);
1158 if (error) {
1159 xfs_force_shutdown(bp->b_target->bt_mount,
1160 SHUTDOWN_META_IO_ERROR);
1161 }
1162 return error;
1163 }
1164
1165 /*
1166 * Wrapper around bdstrat so that we can stop data from going to disk in case
1167 * we are shutting down the filesystem. Typically user data goes thru this
1168 * path; one of the exceptions is the superblock.
1169 */
1170 void
1171 xfsbdstrat(
1172 struct xfs_mount *mp,
1173 struct xfs_buf *bp)
1174 {
1175 if (XFS_FORCED_SHUTDOWN(mp)) {
1176 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1177 xfs_bioerror_relse(bp);
1178 return;
1179 }
1180
1181 xfs_buf_iorequest(bp);
1182 }
1183
1184 STATIC void
1185 _xfs_buf_ioend(
1186 xfs_buf_t *bp,
1187 int schedule)
1188 {
1189 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1190 xfs_buf_ioend(bp, schedule);
1191 }
1192
1193 STATIC void
1194 xfs_buf_bio_end_io(
1195 struct bio *bio,
1196 int error)
1197 {
1198 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1199
1200 xfs_buf_ioerror(bp, -error);
1201
1202 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1203 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1204
1205 _xfs_buf_ioend(bp, 1);
1206 bio_put(bio);
1207 }
1208
1209 static void
1210 xfs_buf_ioapply_map(
1211 struct xfs_buf *bp,
1212 int map,
1213 int *buf_offset,
1214 int *count,
1215 int rw)
1216 {
1217 int page_index;
1218 int total_nr_pages = bp->b_page_count;
1219 int nr_pages;
1220 struct bio *bio;
1221 sector_t sector = bp->b_maps[map].bm_bn;
1222 int size;
1223 int offset;
1224
1225 total_nr_pages = bp->b_page_count;
1226
1227 /* skip the pages in the buffer before the start offset */
1228 page_index = 0;
1229 offset = *buf_offset;
1230 while (offset >= PAGE_SIZE) {
1231 page_index++;
1232 offset -= PAGE_SIZE;
1233 }
1234
1235 /*
1236 * Limit the IO size to the length of the current vector, and update the
1237 * remaining IO count for the next time around.
1238 */
1239 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1240 *count -= size;
1241 *buf_offset += size;
1242
1243 next_chunk:
1244 atomic_inc(&bp->b_io_remaining);
1245 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1246 if (nr_pages > total_nr_pages)
1247 nr_pages = total_nr_pages;
1248
1249 bio = bio_alloc(GFP_NOIO, nr_pages);
1250 bio->bi_bdev = bp->b_target->bt_bdev;
1251 bio->bi_sector = sector;
1252 bio->bi_end_io = xfs_buf_bio_end_io;
1253 bio->bi_private = bp;
1254
1255
1256 for (; size && nr_pages; nr_pages--, page_index++) {
1257 int rbytes, nbytes = PAGE_SIZE - offset;
1258
1259 if (nbytes > size)
1260 nbytes = size;
1261
1262 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1263 offset);
1264 if (rbytes < nbytes)
1265 break;
1266
1267 offset = 0;
1268 sector += BTOBB(nbytes);
1269 size -= nbytes;
1270 total_nr_pages--;
1271 }
1272
1273 if (likely(bio->bi_size)) {
1274 if (xfs_buf_is_vmapped(bp)) {
1275 flush_kernel_vmap_range(bp->b_addr,
1276 xfs_buf_vmap_len(bp));
1277 }
1278 submit_bio(rw, bio);
1279 if (size)
1280 goto next_chunk;
1281 } else {
1282 xfs_buf_ioerror(bp, EIO);
1283 bio_put(bio);
1284 }
1285
1286 }
1287
1288 STATIC void
1289 _xfs_buf_ioapply(
1290 struct xfs_buf *bp)
1291 {
1292 struct blk_plug plug;
1293 int rw;
1294 int offset;
1295 int size;
1296 int i;
1297
1298 if (bp->b_flags & XBF_WRITE) {
1299 if (bp->b_flags & XBF_SYNCIO)
1300 rw = WRITE_SYNC;
1301 else
1302 rw = WRITE;
1303 if (bp->b_flags & XBF_FUA)
1304 rw |= REQ_FUA;
1305 if (bp->b_flags & XBF_FLUSH)
1306 rw |= REQ_FLUSH;
1307 } else if (bp->b_flags & XBF_READ_AHEAD) {
1308 rw = READA;
1309 } else {
1310 rw = READ;
1311 }
1312
1313 /* we only use the buffer cache for meta-data */
1314 rw |= REQ_META;
1315
1316 /*
1317 * Walk all the vectors issuing IO on them. Set up the initial offset
1318 * into the buffer and the desired IO size before we start -
1319 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1320 * subsequent call.
1321 */
1322 offset = bp->b_offset;
1323 size = BBTOB(bp->b_io_length);
1324 blk_start_plug(&plug);
1325 for (i = 0; i < bp->b_map_count; i++) {
1326 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1327 if (bp->b_error)
1328 break;
1329 if (size <= 0)
1330 break; /* all done */
1331 }
1332 blk_finish_plug(&plug);
1333 }
1334
1335 void
1336 xfs_buf_iorequest(
1337 xfs_buf_t *bp)
1338 {
1339 trace_xfs_buf_iorequest(bp, _RET_IP_);
1340
1341 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1342
1343 if (bp->b_flags & XBF_WRITE)
1344 xfs_buf_wait_unpin(bp);
1345 xfs_buf_hold(bp);
1346
1347 /* Set the count to 1 initially, this will stop an I/O
1348 * completion callout which happens before we have started
1349 * all the I/O from calling xfs_buf_ioend too early.
1350 */
1351 atomic_set(&bp->b_io_remaining, 1);
1352 _xfs_buf_ioapply(bp);
1353 _xfs_buf_ioend(bp, 1);
1354
1355 xfs_buf_rele(bp);
1356 }
1357
1358 /*
1359 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1360 * no I/O is pending or there is already a pending error on the buffer. It
1361 * returns the I/O error code, if any, or 0 if there was no error.
1362 */
1363 int
1364 xfs_buf_iowait(
1365 xfs_buf_t *bp)
1366 {
1367 trace_xfs_buf_iowait(bp, _RET_IP_);
1368
1369 if (!bp->b_error)
1370 wait_for_completion(&bp->b_iowait);
1371
1372 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1373 return bp->b_error;
1374 }
1375
1376 xfs_caddr_t
1377 xfs_buf_offset(
1378 xfs_buf_t *bp,
1379 size_t offset)
1380 {
1381 struct page *page;
1382
1383 if (bp->b_addr)
1384 return bp->b_addr + offset;
1385
1386 offset += bp->b_offset;
1387 page = bp->b_pages[offset >> PAGE_SHIFT];
1388 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1389 }
1390
1391 /*
1392 * Move data into or out of a buffer.
1393 */
1394 void
1395 xfs_buf_iomove(
1396 xfs_buf_t *bp, /* buffer to process */
1397 size_t boff, /* starting buffer offset */
1398 size_t bsize, /* length to copy */
1399 void *data, /* data address */
1400 xfs_buf_rw_t mode) /* read/write/zero flag */
1401 {
1402 size_t bend;
1403
1404 bend = boff + bsize;
1405 while (boff < bend) {
1406 struct page *page;
1407 int page_index, page_offset, csize;
1408
1409 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1410 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1411 page = bp->b_pages[page_index];
1412 csize = min_t(size_t, PAGE_SIZE - page_offset,
1413 BBTOB(bp->b_io_length) - boff);
1414
1415 ASSERT((csize + page_offset) <= PAGE_SIZE);
1416
1417 switch (mode) {
1418 case XBRW_ZERO:
1419 memset(page_address(page) + page_offset, 0, csize);
1420 break;
1421 case XBRW_READ:
1422 memcpy(data, page_address(page) + page_offset, csize);
1423 break;
1424 case XBRW_WRITE:
1425 memcpy(page_address(page) + page_offset, data, csize);
1426 }
1427
1428 boff += csize;
1429 data += csize;
1430 }
1431 }
1432
1433 /*
1434 * Handling of buffer targets (buftargs).
1435 */
1436
1437 /*
1438 * Wait for any bufs with callbacks that have been submitted but have not yet
1439 * returned. These buffers will have an elevated hold count, so wait on those
1440 * while freeing all the buffers only held by the LRU.
1441 */
1442 void
1443 xfs_wait_buftarg(
1444 struct xfs_buftarg *btp)
1445 {
1446 struct xfs_buf *bp;
1447
1448 restart:
1449 spin_lock(&btp->bt_lru_lock);
1450 while (!list_empty(&btp->bt_lru)) {
1451 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1452 if (atomic_read(&bp->b_hold) > 1) {
1453 spin_unlock(&btp->bt_lru_lock);
1454 delay(100);
1455 goto restart;
1456 }
1457 /*
1458 * clear the LRU reference count so the buffer doesn't get
1459 * ignored in xfs_buf_rele().
1460 */
1461 atomic_set(&bp->b_lru_ref, 0);
1462 spin_unlock(&btp->bt_lru_lock);
1463 xfs_buf_rele(bp);
1464 spin_lock(&btp->bt_lru_lock);
1465 }
1466 spin_unlock(&btp->bt_lru_lock);
1467 }
1468
1469 int
1470 xfs_buftarg_shrink(
1471 struct shrinker *shrink,
1472 struct shrink_control *sc)
1473 {
1474 struct xfs_buftarg *btp = container_of(shrink,
1475 struct xfs_buftarg, bt_shrinker);
1476 struct xfs_buf *bp;
1477 int nr_to_scan = sc->nr_to_scan;
1478 LIST_HEAD(dispose);
1479
1480 if (!nr_to_scan)
1481 return btp->bt_lru_nr;
1482
1483 spin_lock(&btp->bt_lru_lock);
1484 while (!list_empty(&btp->bt_lru)) {
1485 if (nr_to_scan-- <= 0)
1486 break;
1487
1488 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1489
1490 /*
1491 * Decrement the b_lru_ref count unless the value is already
1492 * zero. If the value is already zero, we need to reclaim the
1493 * buffer, otherwise it gets another trip through the LRU.
1494 */
1495 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1496 list_move_tail(&bp->b_lru, &btp->bt_lru);
1497 continue;
1498 }
1499
1500 /*
1501 * remove the buffer from the LRU now to avoid needing another
1502 * lock round trip inside xfs_buf_rele().
1503 */
1504 list_move(&bp->b_lru, &dispose);
1505 btp->bt_lru_nr--;
1506 bp->b_lru_flags |= _XBF_LRU_DISPOSE;
1507 }
1508 spin_unlock(&btp->bt_lru_lock);
1509
1510 while (!list_empty(&dispose)) {
1511 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1512 list_del_init(&bp->b_lru);
1513 xfs_buf_rele(bp);
1514 }
1515
1516 return btp->bt_lru_nr;
1517 }
1518
1519 void
1520 xfs_free_buftarg(
1521 struct xfs_mount *mp,
1522 struct xfs_buftarg *btp)
1523 {
1524 unregister_shrinker(&btp->bt_shrinker);
1525
1526 if (mp->m_flags & XFS_MOUNT_BARRIER)
1527 xfs_blkdev_issue_flush(btp);
1528
1529 kmem_free(btp);
1530 }
1531
1532 STATIC int
1533 xfs_setsize_buftarg_flags(
1534 xfs_buftarg_t *btp,
1535 unsigned int blocksize,
1536 unsigned int sectorsize,
1537 int verbose)
1538 {
1539 btp->bt_bsize = blocksize;
1540 btp->bt_sshift = ffs(sectorsize) - 1;
1541 btp->bt_smask = sectorsize - 1;
1542
1543 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1544 char name[BDEVNAME_SIZE];
1545
1546 bdevname(btp->bt_bdev, name);
1547
1548 xfs_warn(btp->bt_mount,
1549 "Cannot set_blocksize to %u on device %s\n",
1550 sectorsize, name);
1551 return EINVAL;
1552 }
1553
1554 return 0;
1555 }
1556
1557 /*
1558 * When allocating the initial buffer target we have not yet
1559 * read in the superblock, so don't know what sized sectors
1560 * are being used is at this early stage. Play safe.
1561 */
1562 STATIC int
1563 xfs_setsize_buftarg_early(
1564 xfs_buftarg_t *btp,
1565 struct block_device *bdev)
1566 {
1567 return xfs_setsize_buftarg_flags(btp,
1568 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1569 }
1570
1571 int
1572 xfs_setsize_buftarg(
1573 xfs_buftarg_t *btp,
1574 unsigned int blocksize,
1575 unsigned int sectorsize)
1576 {
1577 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1578 }
1579
1580 xfs_buftarg_t *
1581 xfs_alloc_buftarg(
1582 struct xfs_mount *mp,
1583 struct block_device *bdev,
1584 int external,
1585 const char *fsname)
1586 {
1587 xfs_buftarg_t *btp;
1588
1589 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1590
1591 btp->bt_mount = mp;
1592 btp->bt_dev = bdev->bd_dev;
1593 btp->bt_bdev = bdev;
1594 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1595 if (!btp->bt_bdi)
1596 goto error;
1597
1598 INIT_LIST_HEAD(&btp->bt_lru);
1599 spin_lock_init(&btp->bt_lru_lock);
1600 if (xfs_setsize_buftarg_early(btp, bdev))
1601 goto error;
1602 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1603 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1604 register_shrinker(&btp->bt_shrinker);
1605 return btp;
1606
1607 error:
1608 kmem_free(btp);
1609 return NULL;
1610 }
1611
1612 /*
1613 * Add a buffer to the delayed write list.
1614 *
1615 * This queues a buffer for writeout if it hasn't already been. Note that
1616 * neither this routine nor the buffer list submission functions perform
1617 * any internal synchronization. It is expected that the lists are thread-local
1618 * to the callers.
1619 *
1620 * Returns true if we queued up the buffer, or false if it already had
1621 * been on the buffer list.
1622 */
1623 bool
1624 xfs_buf_delwri_queue(
1625 struct xfs_buf *bp,
1626 struct list_head *list)
1627 {
1628 ASSERT(xfs_buf_islocked(bp));
1629 ASSERT(!(bp->b_flags & XBF_READ));
1630
1631 /*
1632 * If the buffer is already marked delwri it already is queued up
1633 * by someone else for imediate writeout. Just ignore it in that
1634 * case.
1635 */
1636 if (bp->b_flags & _XBF_DELWRI_Q) {
1637 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1638 return false;
1639 }
1640
1641 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1642
1643 /*
1644 * If a buffer gets written out synchronously or marked stale while it
1645 * is on a delwri list we lazily remove it. To do this, the other party
1646 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1647 * It remains referenced and on the list. In a rare corner case it
1648 * might get readded to a delwri list after the synchronous writeout, in
1649 * which case we need just need to re-add the flag here.
1650 */
1651 bp->b_flags |= _XBF_DELWRI_Q;
1652 if (list_empty(&bp->b_list)) {
1653 atomic_inc(&bp->b_hold);
1654 list_add_tail(&bp->b_list, list);
1655 }
1656
1657 return true;
1658 }
1659
1660 /*
1661 * Compare function is more complex than it needs to be because
1662 * the return value is only 32 bits and we are doing comparisons
1663 * on 64 bit values
1664 */
1665 static int
1666 xfs_buf_cmp(
1667 void *priv,
1668 struct list_head *a,
1669 struct list_head *b)
1670 {
1671 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1672 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1673 xfs_daddr_t diff;
1674
1675 diff = ap->b_map.bm_bn - bp->b_map.bm_bn;
1676 if (diff < 0)
1677 return -1;
1678 if (diff > 0)
1679 return 1;
1680 return 0;
1681 }
1682
1683 static int
1684 __xfs_buf_delwri_submit(
1685 struct list_head *buffer_list,
1686 struct list_head *io_list,
1687 bool wait)
1688 {
1689 struct blk_plug plug;
1690 struct xfs_buf *bp, *n;
1691 int pinned = 0;
1692
1693 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1694 if (!wait) {
1695 if (xfs_buf_ispinned(bp)) {
1696 pinned++;
1697 continue;
1698 }
1699 if (!xfs_buf_trylock(bp))
1700 continue;
1701 } else {
1702 xfs_buf_lock(bp);
1703 }
1704
1705 /*
1706 * Someone else might have written the buffer synchronously or
1707 * marked it stale in the meantime. In that case only the
1708 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1709 * reference and remove it from the list here.
1710 */
1711 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1712 list_del_init(&bp->b_list);
1713 xfs_buf_relse(bp);
1714 continue;
1715 }
1716
1717 list_move_tail(&bp->b_list, io_list);
1718 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1719 }
1720
1721 list_sort(NULL, io_list, xfs_buf_cmp);
1722
1723 blk_start_plug(&plug);
1724 list_for_each_entry_safe(bp, n, io_list, b_list) {
1725 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1726 bp->b_flags |= XBF_WRITE;
1727
1728 if (!wait) {
1729 bp->b_flags |= XBF_ASYNC;
1730 list_del_init(&bp->b_list);
1731 }
1732 xfs_bdstrat_cb(bp);
1733 }
1734 blk_finish_plug(&plug);
1735
1736 return pinned;
1737 }
1738
1739 /*
1740 * Write out a buffer list asynchronously.
1741 *
1742 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1743 * out and not wait for I/O completion on any of the buffers. This interface
1744 * is only safely useable for callers that can track I/O completion by higher
1745 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1746 * function.
1747 */
1748 int
1749 xfs_buf_delwri_submit_nowait(
1750 struct list_head *buffer_list)
1751 {
1752 LIST_HEAD (io_list);
1753 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1754 }
1755
1756 /*
1757 * Write out a buffer list synchronously.
1758 *
1759 * This will take the @buffer_list, write all buffers out and wait for I/O
1760 * completion on all of the buffers. @buffer_list is consumed by the function,
1761 * so callers must have some other way of tracking buffers if they require such
1762 * functionality.
1763 */
1764 int
1765 xfs_buf_delwri_submit(
1766 struct list_head *buffer_list)
1767 {
1768 LIST_HEAD (io_list);
1769 int error = 0, error2;
1770 struct xfs_buf *bp;
1771
1772 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1773
1774 /* Wait for IO to complete. */
1775 while (!list_empty(&io_list)) {
1776 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1777
1778 list_del_init(&bp->b_list);
1779 error2 = xfs_buf_iowait(bp);
1780 xfs_buf_relse(bp);
1781 if (!error)
1782 error = error2;
1783 }
1784
1785 return error;
1786 }
1787
1788 int __init
1789 xfs_buf_init(void)
1790 {
1791 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1792 KM_ZONE_HWALIGN, NULL);
1793 if (!xfs_buf_zone)
1794 goto out;
1795
1796 xfslogd_workqueue = alloc_workqueue("xfslogd",
1797 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1798 if (!xfslogd_workqueue)
1799 goto out_free_buf_zone;
1800
1801 return 0;
1802
1803 out_free_buf_zone:
1804 kmem_zone_destroy(xfs_buf_zone);
1805 out:
1806 return -ENOMEM;
1807 }
1808
1809 void
1810 xfs_buf_terminate(void)
1811 {
1812 destroy_workqueue(xfslogd_workqueue);
1813 kmem_zone_destroy(xfs_buf_zone);
1814 }
This page took 0.07531 seconds and 5 git commands to generate.