Merge tag 'drm/for-3.14-rc1-20140123' of git://anongit.freedesktop.org/tegra/linux...
[deliverable/linux.git] / fs / xfs / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_log_format.h"
38 #include "xfs_trans_resv.h"
39 #include "xfs_sb.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46
47 static struct workqueue_struct *xfslogd_workqueue;
48
49 #ifdef XFS_BUF_LOCK_TRACKING
50 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
51 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
52 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
53 #else
54 # define XB_SET_OWNER(bp) do { } while (0)
55 # define XB_CLEAR_OWNER(bp) do { } while (0)
56 # define XB_GET_OWNER(bp) do { } while (0)
57 #endif
58
59 #define xb_to_gfp(flags) \
60 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
61
62
63 static inline int
64 xfs_buf_is_vmapped(
65 struct xfs_buf *bp)
66 {
67 /*
68 * Return true if the buffer is vmapped.
69 *
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
73 */
74 return bp->b_addr && bp->b_page_count > 1;
75 }
76
77 static inline int
78 xfs_buf_vmap_len(
79 struct xfs_buf *bp)
80 {
81 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
82 }
83
84 /*
85 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
86 * b_lru_ref count so that the buffer is freed immediately when the buffer
87 * reference count falls to zero. If the buffer is already on the LRU, we need
88 * to remove the reference that LRU holds on the buffer.
89 *
90 * This prevents build-up of stale buffers on the LRU.
91 */
92 void
93 xfs_buf_stale(
94 struct xfs_buf *bp)
95 {
96 ASSERT(xfs_buf_islocked(bp));
97
98 bp->b_flags |= XBF_STALE;
99
100 /*
101 * Clear the delwri status so that a delwri queue walker will not
102 * flush this buffer to disk now that it is stale. The delwri queue has
103 * a reference to the buffer, so this is safe to do.
104 */
105 bp->b_flags &= ~_XBF_DELWRI_Q;
106
107 spin_lock(&bp->b_lock);
108 atomic_set(&bp->b_lru_ref, 0);
109 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
110 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
111 atomic_dec(&bp->b_hold);
112
113 ASSERT(atomic_read(&bp->b_hold) >= 1);
114 spin_unlock(&bp->b_lock);
115 }
116
117 static int
118 xfs_buf_get_maps(
119 struct xfs_buf *bp,
120 int map_count)
121 {
122 ASSERT(bp->b_maps == NULL);
123 bp->b_map_count = map_count;
124
125 if (map_count == 1) {
126 bp->b_maps = &bp->__b_map;
127 return 0;
128 }
129
130 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
131 KM_NOFS);
132 if (!bp->b_maps)
133 return ENOMEM;
134 return 0;
135 }
136
137 /*
138 * Frees b_pages if it was allocated.
139 */
140 static void
141 xfs_buf_free_maps(
142 struct xfs_buf *bp)
143 {
144 if (bp->b_maps != &bp->__b_map) {
145 kmem_free(bp->b_maps);
146 bp->b_maps = NULL;
147 }
148 }
149
150 struct xfs_buf *
151 _xfs_buf_alloc(
152 struct xfs_buftarg *target,
153 struct xfs_buf_map *map,
154 int nmaps,
155 xfs_buf_flags_t flags)
156 {
157 struct xfs_buf *bp;
158 int error;
159 int i;
160
161 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
162 if (unlikely(!bp))
163 return NULL;
164
165 /*
166 * We don't want certain flags to appear in b_flags unless they are
167 * specifically set by later operations on the buffer.
168 */
169 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
170
171 atomic_set(&bp->b_hold, 1);
172 atomic_set(&bp->b_lru_ref, 1);
173 init_completion(&bp->b_iowait);
174 INIT_LIST_HEAD(&bp->b_lru);
175 INIT_LIST_HEAD(&bp->b_list);
176 RB_CLEAR_NODE(&bp->b_rbnode);
177 sema_init(&bp->b_sema, 0); /* held, no waiters */
178 spin_lock_init(&bp->b_lock);
179 XB_SET_OWNER(bp);
180 bp->b_target = target;
181 bp->b_flags = flags;
182
183 /*
184 * Set length and io_length to the same value initially.
185 * I/O routines should use io_length, which will be the same in
186 * most cases but may be reset (e.g. XFS recovery).
187 */
188 error = xfs_buf_get_maps(bp, nmaps);
189 if (error) {
190 kmem_zone_free(xfs_buf_zone, bp);
191 return NULL;
192 }
193
194 bp->b_bn = map[0].bm_bn;
195 bp->b_length = 0;
196 for (i = 0; i < nmaps; i++) {
197 bp->b_maps[i].bm_bn = map[i].bm_bn;
198 bp->b_maps[i].bm_len = map[i].bm_len;
199 bp->b_length += map[i].bm_len;
200 }
201 bp->b_io_length = bp->b_length;
202
203 atomic_set(&bp->b_pin_count, 0);
204 init_waitqueue_head(&bp->b_waiters);
205
206 XFS_STATS_INC(xb_create);
207 trace_xfs_buf_init(bp, _RET_IP_);
208
209 return bp;
210 }
211
212 /*
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
215 */
216 STATIC int
217 _xfs_buf_get_pages(
218 xfs_buf_t *bp,
219 int page_count,
220 xfs_buf_flags_t flags)
221 {
222 /* Make sure that we have a page list */
223 if (bp->b_pages == NULL) {
224 bp->b_page_count = page_count;
225 if (page_count <= XB_PAGES) {
226 bp->b_pages = bp->b_page_array;
227 } else {
228 bp->b_pages = kmem_alloc(sizeof(struct page *) *
229 page_count, KM_NOFS);
230 if (bp->b_pages == NULL)
231 return -ENOMEM;
232 }
233 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
234 }
235 return 0;
236 }
237
238 /*
239 * Frees b_pages if it was allocated.
240 */
241 STATIC void
242 _xfs_buf_free_pages(
243 xfs_buf_t *bp)
244 {
245 if (bp->b_pages != bp->b_page_array) {
246 kmem_free(bp->b_pages);
247 bp->b_pages = NULL;
248 }
249 }
250
251 /*
252 * Releases the specified buffer.
253 *
254 * The modification state of any associated pages is left unchanged.
255 * The buffer must not be on any hash - use xfs_buf_rele instead for
256 * hashed and refcounted buffers
257 */
258 void
259 xfs_buf_free(
260 xfs_buf_t *bp)
261 {
262 trace_xfs_buf_free(bp, _RET_IP_);
263
264 ASSERT(list_empty(&bp->b_lru));
265
266 if (bp->b_flags & _XBF_PAGES) {
267 uint i;
268
269 if (xfs_buf_is_vmapped(bp))
270 vm_unmap_ram(bp->b_addr - bp->b_offset,
271 bp->b_page_count);
272
273 for (i = 0; i < bp->b_page_count; i++) {
274 struct page *page = bp->b_pages[i];
275
276 __free_page(page);
277 }
278 } else if (bp->b_flags & _XBF_KMEM)
279 kmem_free(bp->b_addr);
280 _xfs_buf_free_pages(bp);
281 xfs_buf_free_maps(bp);
282 kmem_zone_free(xfs_buf_zone, bp);
283 }
284
285 /*
286 * Allocates all the pages for buffer in question and builds it's page list.
287 */
288 STATIC int
289 xfs_buf_allocate_memory(
290 xfs_buf_t *bp,
291 uint flags)
292 {
293 size_t size;
294 size_t nbytes, offset;
295 gfp_t gfp_mask = xb_to_gfp(flags);
296 unsigned short page_count, i;
297 xfs_off_t start, end;
298 int error;
299
300 /*
301 * for buffers that are contained within a single page, just allocate
302 * the memory from the heap - there's no need for the complexity of
303 * page arrays to keep allocation down to order 0.
304 */
305 size = BBTOB(bp->b_length);
306 if (size < PAGE_SIZE) {
307 bp->b_addr = kmem_alloc(size, KM_NOFS);
308 if (!bp->b_addr) {
309 /* low memory - use alloc_page loop instead */
310 goto use_alloc_page;
311 }
312
313 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
314 ((unsigned long)bp->b_addr & PAGE_MASK)) {
315 /* b_addr spans two pages - use alloc_page instead */
316 kmem_free(bp->b_addr);
317 bp->b_addr = NULL;
318 goto use_alloc_page;
319 }
320 bp->b_offset = offset_in_page(bp->b_addr);
321 bp->b_pages = bp->b_page_array;
322 bp->b_pages[0] = virt_to_page(bp->b_addr);
323 bp->b_page_count = 1;
324 bp->b_flags |= _XBF_KMEM;
325 return 0;
326 }
327
328 use_alloc_page:
329 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
330 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
331 >> PAGE_SHIFT;
332 page_count = end - start;
333 error = _xfs_buf_get_pages(bp, page_count, flags);
334 if (unlikely(error))
335 return error;
336
337 offset = bp->b_offset;
338 bp->b_flags |= _XBF_PAGES;
339
340 for (i = 0; i < bp->b_page_count; i++) {
341 struct page *page;
342 uint retries = 0;
343 retry:
344 page = alloc_page(gfp_mask);
345 if (unlikely(page == NULL)) {
346 if (flags & XBF_READ_AHEAD) {
347 bp->b_page_count = i;
348 error = ENOMEM;
349 goto out_free_pages;
350 }
351
352 /*
353 * This could deadlock.
354 *
355 * But until all the XFS lowlevel code is revamped to
356 * handle buffer allocation failures we can't do much.
357 */
358 if (!(++retries % 100))
359 xfs_err(NULL,
360 "possible memory allocation deadlock in %s (mode:0x%x)",
361 __func__, gfp_mask);
362
363 XFS_STATS_INC(xb_page_retries);
364 congestion_wait(BLK_RW_ASYNC, HZ/50);
365 goto retry;
366 }
367
368 XFS_STATS_INC(xb_page_found);
369
370 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
371 size -= nbytes;
372 bp->b_pages[i] = page;
373 offset = 0;
374 }
375 return 0;
376
377 out_free_pages:
378 for (i = 0; i < bp->b_page_count; i++)
379 __free_page(bp->b_pages[i]);
380 return error;
381 }
382
383 /*
384 * Map buffer into kernel address-space if necessary.
385 */
386 STATIC int
387 _xfs_buf_map_pages(
388 xfs_buf_t *bp,
389 uint flags)
390 {
391 ASSERT(bp->b_flags & _XBF_PAGES);
392 if (bp->b_page_count == 1) {
393 /* A single page buffer is always mappable */
394 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
395 } else if (flags & XBF_UNMAPPED) {
396 bp->b_addr = NULL;
397 } else {
398 int retried = 0;
399
400 do {
401 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
402 -1, PAGE_KERNEL);
403 if (bp->b_addr)
404 break;
405 vm_unmap_aliases();
406 } while (retried++ <= 1);
407
408 if (!bp->b_addr)
409 return -ENOMEM;
410 bp->b_addr += bp->b_offset;
411 }
412
413 return 0;
414 }
415
416 /*
417 * Finding and Reading Buffers
418 */
419
420 /*
421 * Look up, and creates if absent, a lockable buffer for
422 * a given range of an inode. The buffer is returned
423 * locked. No I/O is implied by this call.
424 */
425 xfs_buf_t *
426 _xfs_buf_find(
427 struct xfs_buftarg *btp,
428 struct xfs_buf_map *map,
429 int nmaps,
430 xfs_buf_flags_t flags,
431 xfs_buf_t *new_bp)
432 {
433 size_t numbytes;
434 struct xfs_perag *pag;
435 struct rb_node **rbp;
436 struct rb_node *parent;
437 xfs_buf_t *bp;
438 xfs_daddr_t blkno = map[0].bm_bn;
439 xfs_daddr_t eofs;
440 int numblks = 0;
441 int i;
442
443 for (i = 0; i < nmaps; i++)
444 numblks += map[i].bm_len;
445 numbytes = BBTOB(numblks);
446
447 /* Check for IOs smaller than the sector size / not sector aligned */
448 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
449 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
450
451 /*
452 * Corrupted block numbers can get through to here, unfortunately, so we
453 * have to check that the buffer falls within the filesystem bounds.
454 */
455 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
456 if (blkno >= eofs) {
457 /*
458 * XXX (dgc): we should really be returning EFSCORRUPTED here,
459 * but none of the higher level infrastructure supports
460 * returning a specific error on buffer lookup failures.
461 */
462 xfs_alert(btp->bt_mount,
463 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
464 __func__, blkno, eofs);
465 WARN_ON(1);
466 return NULL;
467 }
468
469 /* get tree root */
470 pag = xfs_perag_get(btp->bt_mount,
471 xfs_daddr_to_agno(btp->bt_mount, blkno));
472
473 /* walk tree */
474 spin_lock(&pag->pag_buf_lock);
475 rbp = &pag->pag_buf_tree.rb_node;
476 parent = NULL;
477 bp = NULL;
478 while (*rbp) {
479 parent = *rbp;
480 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
481
482 if (blkno < bp->b_bn)
483 rbp = &(*rbp)->rb_left;
484 else if (blkno > bp->b_bn)
485 rbp = &(*rbp)->rb_right;
486 else {
487 /*
488 * found a block number match. If the range doesn't
489 * match, the only way this is allowed is if the buffer
490 * in the cache is stale and the transaction that made
491 * it stale has not yet committed. i.e. we are
492 * reallocating a busy extent. Skip this buffer and
493 * continue searching to the right for an exact match.
494 */
495 if (bp->b_length != numblks) {
496 ASSERT(bp->b_flags & XBF_STALE);
497 rbp = &(*rbp)->rb_right;
498 continue;
499 }
500 atomic_inc(&bp->b_hold);
501 goto found;
502 }
503 }
504
505 /* No match found */
506 if (new_bp) {
507 rb_link_node(&new_bp->b_rbnode, parent, rbp);
508 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
509 /* the buffer keeps the perag reference until it is freed */
510 new_bp->b_pag = pag;
511 spin_unlock(&pag->pag_buf_lock);
512 } else {
513 XFS_STATS_INC(xb_miss_locked);
514 spin_unlock(&pag->pag_buf_lock);
515 xfs_perag_put(pag);
516 }
517 return new_bp;
518
519 found:
520 spin_unlock(&pag->pag_buf_lock);
521 xfs_perag_put(pag);
522
523 if (!xfs_buf_trylock(bp)) {
524 if (flags & XBF_TRYLOCK) {
525 xfs_buf_rele(bp);
526 XFS_STATS_INC(xb_busy_locked);
527 return NULL;
528 }
529 xfs_buf_lock(bp);
530 XFS_STATS_INC(xb_get_locked_waited);
531 }
532
533 /*
534 * if the buffer is stale, clear all the external state associated with
535 * it. We need to keep flags such as how we allocated the buffer memory
536 * intact here.
537 */
538 if (bp->b_flags & XBF_STALE) {
539 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
540 ASSERT(bp->b_iodone == NULL);
541 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
542 bp->b_ops = NULL;
543 }
544
545 trace_xfs_buf_find(bp, flags, _RET_IP_);
546 XFS_STATS_INC(xb_get_locked);
547 return bp;
548 }
549
550 /*
551 * Assembles a buffer covering the specified range. The code is optimised for
552 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
553 * more hits than misses.
554 */
555 struct xfs_buf *
556 xfs_buf_get_map(
557 struct xfs_buftarg *target,
558 struct xfs_buf_map *map,
559 int nmaps,
560 xfs_buf_flags_t flags)
561 {
562 struct xfs_buf *bp;
563 struct xfs_buf *new_bp;
564 int error = 0;
565
566 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
567 if (likely(bp))
568 goto found;
569
570 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
571 if (unlikely(!new_bp))
572 return NULL;
573
574 error = xfs_buf_allocate_memory(new_bp, flags);
575 if (error) {
576 xfs_buf_free(new_bp);
577 return NULL;
578 }
579
580 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
581 if (!bp) {
582 xfs_buf_free(new_bp);
583 return NULL;
584 }
585
586 if (bp != new_bp)
587 xfs_buf_free(new_bp);
588
589 found:
590 if (!bp->b_addr) {
591 error = _xfs_buf_map_pages(bp, flags);
592 if (unlikely(error)) {
593 xfs_warn(target->bt_mount,
594 "%s: failed to map pagesn", __func__);
595 xfs_buf_relse(bp);
596 return NULL;
597 }
598 }
599
600 XFS_STATS_INC(xb_get);
601 trace_xfs_buf_get(bp, flags, _RET_IP_);
602 return bp;
603 }
604
605 STATIC int
606 _xfs_buf_read(
607 xfs_buf_t *bp,
608 xfs_buf_flags_t flags)
609 {
610 ASSERT(!(flags & XBF_WRITE));
611 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
612
613 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
614 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
615
616 xfs_buf_iorequest(bp);
617 if (flags & XBF_ASYNC)
618 return 0;
619 return xfs_buf_iowait(bp);
620 }
621
622 xfs_buf_t *
623 xfs_buf_read_map(
624 struct xfs_buftarg *target,
625 struct xfs_buf_map *map,
626 int nmaps,
627 xfs_buf_flags_t flags,
628 const struct xfs_buf_ops *ops)
629 {
630 struct xfs_buf *bp;
631
632 flags |= XBF_READ;
633
634 bp = xfs_buf_get_map(target, map, nmaps, flags);
635 if (bp) {
636 trace_xfs_buf_read(bp, flags, _RET_IP_);
637
638 if (!XFS_BUF_ISDONE(bp)) {
639 XFS_STATS_INC(xb_get_read);
640 bp->b_ops = ops;
641 _xfs_buf_read(bp, flags);
642 } else if (flags & XBF_ASYNC) {
643 /*
644 * Read ahead call which is already satisfied,
645 * drop the buffer
646 */
647 xfs_buf_relse(bp);
648 return NULL;
649 } else {
650 /* We do not want read in the flags */
651 bp->b_flags &= ~XBF_READ;
652 }
653 }
654
655 return bp;
656 }
657
658 /*
659 * If we are not low on memory then do the readahead in a deadlock
660 * safe manner.
661 */
662 void
663 xfs_buf_readahead_map(
664 struct xfs_buftarg *target,
665 struct xfs_buf_map *map,
666 int nmaps,
667 const struct xfs_buf_ops *ops)
668 {
669 if (bdi_read_congested(target->bt_bdi))
670 return;
671
672 xfs_buf_read_map(target, map, nmaps,
673 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
674 }
675
676 /*
677 * Read an uncached buffer from disk. Allocates and returns a locked
678 * buffer containing the disk contents or nothing.
679 */
680 struct xfs_buf *
681 xfs_buf_read_uncached(
682 struct xfs_buftarg *target,
683 xfs_daddr_t daddr,
684 size_t numblks,
685 int flags,
686 const struct xfs_buf_ops *ops)
687 {
688 struct xfs_buf *bp;
689
690 bp = xfs_buf_get_uncached(target, numblks, flags);
691 if (!bp)
692 return NULL;
693
694 /* set up the buffer for a read IO */
695 ASSERT(bp->b_map_count == 1);
696 bp->b_bn = daddr;
697 bp->b_maps[0].bm_bn = daddr;
698 bp->b_flags |= XBF_READ;
699 bp->b_ops = ops;
700
701 if (XFS_FORCED_SHUTDOWN(target->bt_mount)) {
702 xfs_buf_relse(bp);
703 return NULL;
704 }
705 xfs_buf_iorequest(bp);
706 xfs_buf_iowait(bp);
707 return bp;
708 }
709
710 /*
711 * Return a buffer allocated as an empty buffer and associated to external
712 * memory via xfs_buf_associate_memory() back to it's empty state.
713 */
714 void
715 xfs_buf_set_empty(
716 struct xfs_buf *bp,
717 size_t numblks)
718 {
719 if (bp->b_pages)
720 _xfs_buf_free_pages(bp);
721
722 bp->b_pages = NULL;
723 bp->b_page_count = 0;
724 bp->b_addr = NULL;
725 bp->b_length = numblks;
726 bp->b_io_length = numblks;
727
728 ASSERT(bp->b_map_count == 1);
729 bp->b_bn = XFS_BUF_DADDR_NULL;
730 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
731 bp->b_maps[0].bm_len = bp->b_length;
732 }
733
734 static inline struct page *
735 mem_to_page(
736 void *addr)
737 {
738 if ((!is_vmalloc_addr(addr))) {
739 return virt_to_page(addr);
740 } else {
741 return vmalloc_to_page(addr);
742 }
743 }
744
745 int
746 xfs_buf_associate_memory(
747 xfs_buf_t *bp,
748 void *mem,
749 size_t len)
750 {
751 int rval;
752 int i = 0;
753 unsigned long pageaddr;
754 unsigned long offset;
755 size_t buflen;
756 int page_count;
757
758 pageaddr = (unsigned long)mem & PAGE_MASK;
759 offset = (unsigned long)mem - pageaddr;
760 buflen = PAGE_ALIGN(len + offset);
761 page_count = buflen >> PAGE_SHIFT;
762
763 /* Free any previous set of page pointers */
764 if (bp->b_pages)
765 _xfs_buf_free_pages(bp);
766
767 bp->b_pages = NULL;
768 bp->b_addr = mem;
769
770 rval = _xfs_buf_get_pages(bp, page_count, 0);
771 if (rval)
772 return rval;
773
774 bp->b_offset = offset;
775
776 for (i = 0; i < bp->b_page_count; i++) {
777 bp->b_pages[i] = mem_to_page((void *)pageaddr);
778 pageaddr += PAGE_SIZE;
779 }
780
781 bp->b_io_length = BTOBB(len);
782 bp->b_length = BTOBB(buflen);
783
784 return 0;
785 }
786
787 xfs_buf_t *
788 xfs_buf_get_uncached(
789 struct xfs_buftarg *target,
790 size_t numblks,
791 int flags)
792 {
793 unsigned long page_count;
794 int error, i;
795 struct xfs_buf *bp;
796 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
797
798 bp = _xfs_buf_alloc(target, &map, 1, 0);
799 if (unlikely(bp == NULL))
800 goto fail;
801
802 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
803 error = _xfs_buf_get_pages(bp, page_count, 0);
804 if (error)
805 goto fail_free_buf;
806
807 for (i = 0; i < page_count; i++) {
808 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
809 if (!bp->b_pages[i])
810 goto fail_free_mem;
811 }
812 bp->b_flags |= _XBF_PAGES;
813
814 error = _xfs_buf_map_pages(bp, 0);
815 if (unlikely(error)) {
816 xfs_warn(target->bt_mount,
817 "%s: failed to map pages", __func__);
818 goto fail_free_mem;
819 }
820
821 trace_xfs_buf_get_uncached(bp, _RET_IP_);
822 return bp;
823
824 fail_free_mem:
825 while (--i >= 0)
826 __free_page(bp->b_pages[i]);
827 _xfs_buf_free_pages(bp);
828 fail_free_buf:
829 xfs_buf_free_maps(bp);
830 kmem_zone_free(xfs_buf_zone, bp);
831 fail:
832 return NULL;
833 }
834
835 /*
836 * Increment reference count on buffer, to hold the buffer concurrently
837 * with another thread which may release (free) the buffer asynchronously.
838 * Must hold the buffer already to call this function.
839 */
840 void
841 xfs_buf_hold(
842 xfs_buf_t *bp)
843 {
844 trace_xfs_buf_hold(bp, _RET_IP_);
845 atomic_inc(&bp->b_hold);
846 }
847
848 /*
849 * Releases a hold on the specified buffer. If the
850 * the hold count is 1, calls xfs_buf_free.
851 */
852 void
853 xfs_buf_rele(
854 xfs_buf_t *bp)
855 {
856 struct xfs_perag *pag = bp->b_pag;
857
858 trace_xfs_buf_rele(bp, _RET_IP_);
859
860 if (!pag) {
861 ASSERT(list_empty(&bp->b_lru));
862 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
863 if (atomic_dec_and_test(&bp->b_hold))
864 xfs_buf_free(bp);
865 return;
866 }
867
868 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
869
870 ASSERT(atomic_read(&bp->b_hold) > 0);
871 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
872 spin_lock(&bp->b_lock);
873 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
874 /*
875 * If the buffer is added to the LRU take a new
876 * reference to the buffer for the LRU and clear the
877 * (now stale) dispose list state flag
878 */
879 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
880 bp->b_state &= ~XFS_BSTATE_DISPOSE;
881 atomic_inc(&bp->b_hold);
882 }
883 spin_unlock(&bp->b_lock);
884 spin_unlock(&pag->pag_buf_lock);
885 } else {
886 /*
887 * most of the time buffers will already be removed from
888 * the LRU, so optimise that case by checking for the
889 * XFS_BSTATE_DISPOSE flag indicating the last list the
890 * buffer was on was the disposal list
891 */
892 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
893 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
894 } else {
895 ASSERT(list_empty(&bp->b_lru));
896 }
897 spin_unlock(&bp->b_lock);
898
899 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
900 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
901 spin_unlock(&pag->pag_buf_lock);
902 xfs_perag_put(pag);
903 xfs_buf_free(bp);
904 }
905 }
906 }
907
908
909 /*
910 * Lock a buffer object, if it is not already locked.
911 *
912 * If we come across a stale, pinned, locked buffer, we know that we are
913 * being asked to lock a buffer that has been reallocated. Because it is
914 * pinned, we know that the log has not been pushed to disk and hence it
915 * will still be locked. Rather than continuing to have trylock attempts
916 * fail until someone else pushes the log, push it ourselves before
917 * returning. This means that the xfsaild will not get stuck trying
918 * to push on stale inode buffers.
919 */
920 int
921 xfs_buf_trylock(
922 struct xfs_buf *bp)
923 {
924 int locked;
925
926 locked = down_trylock(&bp->b_sema) == 0;
927 if (locked)
928 XB_SET_OWNER(bp);
929
930 trace_xfs_buf_trylock(bp, _RET_IP_);
931 return locked;
932 }
933
934 /*
935 * Lock a buffer object.
936 *
937 * If we come across a stale, pinned, locked buffer, we know that we
938 * are being asked to lock a buffer that has been reallocated. Because
939 * it is pinned, we know that the log has not been pushed to disk and
940 * hence it will still be locked. Rather than sleeping until someone
941 * else pushes the log, push it ourselves before trying to get the lock.
942 */
943 void
944 xfs_buf_lock(
945 struct xfs_buf *bp)
946 {
947 trace_xfs_buf_lock(bp, _RET_IP_);
948
949 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
950 xfs_log_force(bp->b_target->bt_mount, 0);
951 down(&bp->b_sema);
952 XB_SET_OWNER(bp);
953
954 trace_xfs_buf_lock_done(bp, _RET_IP_);
955 }
956
957 void
958 xfs_buf_unlock(
959 struct xfs_buf *bp)
960 {
961 XB_CLEAR_OWNER(bp);
962 up(&bp->b_sema);
963
964 trace_xfs_buf_unlock(bp, _RET_IP_);
965 }
966
967 STATIC void
968 xfs_buf_wait_unpin(
969 xfs_buf_t *bp)
970 {
971 DECLARE_WAITQUEUE (wait, current);
972
973 if (atomic_read(&bp->b_pin_count) == 0)
974 return;
975
976 add_wait_queue(&bp->b_waiters, &wait);
977 for (;;) {
978 set_current_state(TASK_UNINTERRUPTIBLE);
979 if (atomic_read(&bp->b_pin_count) == 0)
980 break;
981 io_schedule();
982 }
983 remove_wait_queue(&bp->b_waiters, &wait);
984 set_current_state(TASK_RUNNING);
985 }
986
987 /*
988 * Buffer Utility Routines
989 */
990
991 STATIC void
992 xfs_buf_iodone_work(
993 struct work_struct *work)
994 {
995 struct xfs_buf *bp =
996 container_of(work, xfs_buf_t, b_iodone_work);
997 bool read = !!(bp->b_flags & XBF_READ);
998
999 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1000
1001 /* only validate buffers that were read without errors */
1002 if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
1003 bp->b_ops->verify_read(bp);
1004
1005 if (bp->b_iodone)
1006 (*(bp->b_iodone))(bp);
1007 else if (bp->b_flags & XBF_ASYNC)
1008 xfs_buf_relse(bp);
1009 else {
1010 ASSERT(read && bp->b_ops);
1011 complete(&bp->b_iowait);
1012 }
1013 }
1014
1015 void
1016 xfs_buf_ioend(
1017 struct xfs_buf *bp,
1018 int schedule)
1019 {
1020 bool read = !!(bp->b_flags & XBF_READ);
1021
1022 trace_xfs_buf_iodone(bp, _RET_IP_);
1023
1024 if (bp->b_error == 0)
1025 bp->b_flags |= XBF_DONE;
1026
1027 if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1028 if (schedule) {
1029 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1030 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1031 } else {
1032 xfs_buf_iodone_work(&bp->b_iodone_work);
1033 }
1034 } else {
1035 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1036 complete(&bp->b_iowait);
1037 }
1038 }
1039
1040 void
1041 xfs_buf_ioerror(
1042 xfs_buf_t *bp,
1043 int error)
1044 {
1045 ASSERT(error >= 0 && error <= 0xffff);
1046 bp->b_error = (unsigned short)error;
1047 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1048 }
1049
1050 void
1051 xfs_buf_ioerror_alert(
1052 struct xfs_buf *bp,
1053 const char *func)
1054 {
1055 xfs_alert(bp->b_target->bt_mount,
1056 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1057 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
1058 }
1059
1060 /*
1061 * Called when we want to stop a buffer from getting written or read.
1062 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1063 * so that the proper iodone callbacks get called.
1064 */
1065 STATIC int
1066 xfs_bioerror(
1067 xfs_buf_t *bp)
1068 {
1069 #ifdef XFSERRORDEBUG
1070 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1071 #endif
1072
1073 /*
1074 * No need to wait until the buffer is unpinned, we aren't flushing it.
1075 */
1076 xfs_buf_ioerror(bp, EIO);
1077
1078 /*
1079 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1080 */
1081 XFS_BUF_UNREAD(bp);
1082 XFS_BUF_UNDONE(bp);
1083 xfs_buf_stale(bp);
1084
1085 xfs_buf_ioend(bp, 0);
1086
1087 return EIO;
1088 }
1089
1090 /*
1091 * Same as xfs_bioerror, except that we are releasing the buffer
1092 * here ourselves, and avoiding the xfs_buf_ioend call.
1093 * This is meant for userdata errors; metadata bufs come with
1094 * iodone functions attached, so that we can track down errors.
1095 */
1096 int
1097 xfs_bioerror_relse(
1098 struct xfs_buf *bp)
1099 {
1100 int64_t fl = bp->b_flags;
1101 /*
1102 * No need to wait until the buffer is unpinned.
1103 * We aren't flushing it.
1104 *
1105 * chunkhold expects B_DONE to be set, whether
1106 * we actually finish the I/O or not. We don't want to
1107 * change that interface.
1108 */
1109 XFS_BUF_UNREAD(bp);
1110 XFS_BUF_DONE(bp);
1111 xfs_buf_stale(bp);
1112 bp->b_iodone = NULL;
1113 if (!(fl & XBF_ASYNC)) {
1114 /*
1115 * Mark b_error and B_ERROR _both_.
1116 * Lot's of chunkcache code assumes that.
1117 * There's no reason to mark error for
1118 * ASYNC buffers.
1119 */
1120 xfs_buf_ioerror(bp, EIO);
1121 complete(&bp->b_iowait);
1122 } else {
1123 xfs_buf_relse(bp);
1124 }
1125
1126 return EIO;
1127 }
1128
1129 STATIC int
1130 xfs_bdstrat_cb(
1131 struct xfs_buf *bp)
1132 {
1133 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1134 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1135 /*
1136 * Metadata write that didn't get logged but
1137 * written delayed anyway. These aren't associated
1138 * with a transaction, and can be ignored.
1139 */
1140 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1141 return xfs_bioerror_relse(bp);
1142 else
1143 return xfs_bioerror(bp);
1144 }
1145
1146 xfs_buf_iorequest(bp);
1147 return 0;
1148 }
1149
1150 int
1151 xfs_bwrite(
1152 struct xfs_buf *bp)
1153 {
1154 int error;
1155
1156 ASSERT(xfs_buf_islocked(bp));
1157
1158 bp->b_flags |= XBF_WRITE;
1159 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | XBF_WRITE_FAIL);
1160
1161 xfs_bdstrat_cb(bp);
1162
1163 error = xfs_buf_iowait(bp);
1164 if (error) {
1165 xfs_force_shutdown(bp->b_target->bt_mount,
1166 SHUTDOWN_META_IO_ERROR);
1167 }
1168 return error;
1169 }
1170
1171 STATIC void
1172 _xfs_buf_ioend(
1173 xfs_buf_t *bp,
1174 int schedule)
1175 {
1176 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1177 xfs_buf_ioend(bp, schedule);
1178 }
1179
1180 STATIC void
1181 xfs_buf_bio_end_io(
1182 struct bio *bio,
1183 int error)
1184 {
1185 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1186
1187 /*
1188 * don't overwrite existing errors - otherwise we can lose errors on
1189 * buffers that require multiple bios to complete.
1190 */
1191 if (!bp->b_error)
1192 xfs_buf_ioerror(bp, -error);
1193
1194 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1195 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1196
1197 _xfs_buf_ioend(bp, 1);
1198 bio_put(bio);
1199 }
1200
1201 static void
1202 xfs_buf_ioapply_map(
1203 struct xfs_buf *bp,
1204 int map,
1205 int *buf_offset,
1206 int *count,
1207 int rw)
1208 {
1209 int page_index;
1210 int total_nr_pages = bp->b_page_count;
1211 int nr_pages;
1212 struct bio *bio;
1213 sector_t sector = bp->b_maps[map].bm_bn;
1214 int size;
1215 int offset;
1216
1217 total_nr_pages = bp->b_page_count;
1218
1219 /* skip the pages in the buffer before the start offset */
1220 page_index = 0;
1221 offset = *buf_offset;
1222 while (offset >= PAGE_SIZE) {
1223 page_index++;
1224 offset -= PAGE_SIZE;
1225 }
1226
1227 /*
1228 * Limit the IO size to the length of the current vector, and update the
1229 * remaining IO count for the next time around.
1230 */
1231 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1232 *count -= size;
1233 *buf_offset += size;
1234
1235 next_chunk:
1236 atomic_inc(&bp->b_io_remaining);
1237 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1238 if (nr_pages > total_nr_pages)
1239 nr_pages = total_nr_pages;
1240
1241 bio = bio_alloc(GFP_NOIO, nr_pages);
1242 bio->bi_bdev = bp->b_target->bt_bdev;
1243 bio->bi_sector = sector;
1244 bio->bi_end_io = xfs_buf_bio_end_io;
1245 bio->bi_private = bp;
1246
1247
1248 for (; size && nr_pages; nr_pages--, page_index++) {
1249 int rbytes, nbytes = PAGE_SIZE - offset;
1250
1251 if (nbytes > size)
1252 nbytes = size;
1253
1254 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1255 offset);
1256 if (rbytes < nbytes)
1257 break;
1258
1259 offset = 0;
1260 sector += BTOBB(nbytes);
1261 size -= nbytes;
1262 total_nr_pages--;
1263 }
1264
1265 if (likely(bio->bi_size)) {
1266 if (xfs_buf_is_vmapped(bp)) {
1267 flush_kernel_vmap_range(bp->b_addr,
1268 xfs_buf_vmap_len(bp));
1269 }
1270 submit_bio(rw, bio);
1271 if (size)
1272 goto next_chunk;
1273 } else {
1274 /*
1275 * This is guaranteed not to be the last io reference count
1276 * because the caller (xfs_buf_iorequest) holds a count itself.
1277 */
1278 atomic_dec(&bp->b_io_remaining);
1279 xfs_buf_ioerror(bp, EIO);
1280 bio_put(bio);
1281 }
1282
1283 }
1284
1285 STATIC void
1286 _xfs_buf_ioapply(
1287 struct xfs_buf *bp)
1288 {
1289 struct blk_plug plug;
1290 int rw;
1291 int offset;
1292 int size;
1293 int i;
1294
1295 /*
1296 * Make sure we capture only current IO errors rather than stale errors
1297 * left over from previous use of the buffer (e.g. failed readahead).
1298 */
1299 bp->b_error = 0;
1300
1301 if (bp->b_flags & XBF_WRITE) {
1302 if (bp->b_flags & XBF_SYNCIO)
1303 rw = WRITE_SYNC;
1304 else
1305 rw = WRITE;
1306 if (bp->b_flags & XBF_FUA)
1307 rw |= REQ_FUA;
1308 if (bp->b_flags & XBF_FLUSH)
1309 rw |= REQ_FLUSH;
1310
1311 /*
1312 * Run the write verifier callback function if it exists. If
1313 * this function fails it will mark the buffer with an error and
1314 * the IO should not be dispatched.
1315 */
1316 if (bp->b_ops) {
1317 bp->b_ops->verify_write(bp);
1318 if (bp->b_error) {
1319 xfs_force_shutdown(bp->b_target->bt_mount,
1320 SHUTDOWN_CORRUPT_INCORE);
1321 return;
1322 }
1323 }
1324 } else if (bp->b_flags & XBF_READ_AHEAD) {
1325 rw = READA;
1326 } else {
1327 rw = READ;
1328 }
1329
1330 /* we only use the buffer cache for meta-data */
1331 rw |= REQ_META;
1332
1333 /*
1334 * Walk all the vectors issuing IO on them. Set up the initial offset
1335 * into the buffer and the desired IO size before we start -
1336 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1337 * subsequent call.
1338 */
1339 offset = bp->b_offset;
1340 size = BBTOB(bp->b_io_length);
1341 blk_start_plug(&plug);
1342 for (i = 0; i < bp->b_map_count; i++) {
1343 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1344 if (bp->b_error)
1345 break;
1346 if (size <= 0)
1347 break; /* all done */
1348 }
1349 blk_finish_plug(&plug);
1350 }
1351
1352 void
1353 xfs_buf_iorequest(
1354 xfs_buf_t *bp)
1355 {
1356 trace_xfs_buf_iorequest(bp, _RET_IP_);
1357
1358 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1359
1360 if (bp->b_flags & XBF_WRITE)
1361 xfs_buf_wait_unpin(bp);
1362 xfs_buf_hold(bp);
1363
1364 /* Set the count to 1 initially, this will stop an I/O
1365 * completion callout which happens before we have started
1366 * all the I/O from calling xfs_buf_ioend too early.
1367 */
1368 atomic_set(&bp->b_io_remaining, 1);
1369 _xfs_buf_ioapply(bp);
1370 _xfs_buf_ioend(bp, 1);
1371
1372 xfs_buf_rele(bp);
1373 }
1374
1375 /*
1376 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1377 * no I/O is pending or there is already a pending error on the buffer. It
1378 * returns the I/O error code, if any, or 0 if there was no error.
1379 */
1380 int
1381 xfs_buf_iowait(
1382 xfs_buf_t *bp)
1383 {
1384 trace_xfs_buf_iowait(bp, _RET_IP_);
1385
1386 if (!bp->b_error)
1387 wait_for_completion(&bp->b_iowait);
1388
1389 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1390 return bp->b_error;
1391 }
1392
1393 xfs_caddr_t
1394 xfs_buf_offset(
1395 xfs_buf_t *bp,
1396 size_t offset)
1397 {
1398 struct page *page;
1399
1400 if (bp->b_addr)
1401 return bp->b_addr + offset;
1402
1403 offset += bp->b_offset;
1404 page = bp->b_pages[offset >> PAGE_SHIFT];
1405 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1406 }
1407
1408 /*
1409 * Move data into or out of a buffer.
1410 */
1411 void
1412 xfs_buf_iomove(
1413 xfs_buf_t *bp, /* buffer to process */
1414 size_t boff, /* starting buffer offset */
1415 size_t bsize, /* length to copy */
1416 void *data, /* data address */
1417 xfs_buf_rw_t mode) /* read/write/zero flag */
1418 {
1419 size_t bend;
1420
1421 bend = boff + bsize;
1422 while (boff < bend) {
1423 struct page *page;
1424 int page_index, page_offset, csize;
1425
1426 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1427 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1428 page = bp->b_pages[page_index];
1429 csize = min_t(size_t, PAGE_SIZE - page_offset,
1430 BBTOB(bp->b_io_length) - boff);
1431
1432 ASSERT((csize + page_offset) <= PAGE_SIZE);
1433
1434 switch (mode) {
1435 case XBRW_ZERO:
1436 memset(page_address(page) + page_offset, 0, csize);
1437 break;
1438 case XBRW_READ:
1439 memcpy(data, page_address(page) + page_offset, csize);
1440 break;
1441 case XBRW_WRITE:
1442 memcpy(page_address(page) + page_offset, data, csize);
1443 }
1444
1445 boff += csize;
1446 data += csize;
1447 }
1448 }
1449
1450 /*
1451 * Handling of buffer targets (buftargs).
1452 */
1453
1454 /*
1455 * Wait for any bufs with callbacks that have been submitted but have not yet
1456 * returned. These buffers will have an elevated hold count, so wait on those
1457 * while freeing all the buffers only held by the LRU.
1458 */
1459 static enum lru_status
1460 xfs_buftarg_wait_rele(
1461 struct list_head *item,
1462 spinlock_t *lru_lock,
1463 void *arg)
1464
1465 {
1466 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1467 struct list_head *dispose = arg;
1468
1469 if (atomic_read(&bp->b_hold) > 1) {
1470 /* need to wait, so skip it this pass */
1471 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1472 return LRU_SKIP;
1473 }
1474 if (!spin_trylock(&bp->b_lock))
1475 return LRU_SKIP;
1476
1477 /*
1478 * clear the LRU reference count so the buffer doesn't get
1479 * ignored in xfs_buf_rele().
1480 */
1481 atomic_set(&bp->b_lru_ref, 0);
1482 bp->b_state |= XFS_BSTATE_DISPOSE;
1483 list_move(item, dispose);
1484 spin_unlock(&bp->b_lock);
1485 return LRU_REMOVED;
1486 }
1487
1488 void
1489 xfs_wait_buftarg(
1490 struct xfs_buftarg *btp)
1491 {
1492 LIST_HEAD(dispose);
1493 int loop = 0;
1494
1495 /* loop until there is nothing left on the lru list. */
1496 while (list_lru_count(&btp->bt_lru)) {
1497 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1498 &dispose, LONG_MAX);
1499
1500 while (!list_empty(&dispose)) {
1501 struct xfs_buf *bp;
1502 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1503 list_del_init(&bp->b_lru);
1504 if (bp->b_flags & XBF_WRITE_FAIL) {
1505 xfs_alert(btp->bt_mount,
1506 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
1507 "Please run xfs_repair to determine the extent of the problem.",
1508 (long long)bp->b_bn);
1509 }
1510 xfs_buf_rele(bp);
1511 }
1512 if (loop++ != 0)
1513 delay(100);
1514 }
1515 }
1516
1517 static enum lru_status
1518 xfs_buftarg_isolate(
1519 struct list_head *item,
1520 spinlock_t *lru_lock,
1521 void *arg)
1522 {
1523 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1524 struct list_head *dispose = arg;
1525
1526 /*
1527 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1528 * If we fail to get the lock, just skip it.
1529 */
1530 if (!spin_trylock(&bp->b_lock))
1531 return LRU_SKIP;
1532 /*
1533 * Decrement the b_lru_ref count unless the value is already
1534 * zero. If the value is already zero, we need to reclaim the
1535 * buffer, otherwise it gets another trip through the LRU.
1536 */
1537 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1538 spin_unlock(&bp->b_lock);
1539 return LRU_ROTATE;
1540 }
1541
1542 bp->b_state |= XFS_BSTATE_DISPOSE;
1543 list_move(item, dispose);
1544 spin_unlock(&bp->b_lock);
1545 return LRU_REMOVED;
1546 }
1547
1548 static unsigned long
1549 xfs_buftarg_shrink_scan(
1550 struct shrinker *shrink,
1551 struct shrink_control *sc)
1552 {
1553 struct xfs_buftarg *btp = container_of(shrink,
1554 struct xfs_buftarg, bt_shrinker);
1555 LIST_HEAD(dispose);
1556 unsigned long freed;
1557 unsigned long nr_to_scan = sc->nr_to_scan;
1558
1559 freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
1560 &dispose, &nr_to_scan);
1561
1562 while (!list_empty(&dispose)) {
1563 struct xfs_buf *bp;
1564 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1565 list_del_init(&bp->b_lru);
1566 xfs_buf_rele(bp);
1567 }
1568
1569 return freed;
1570 }
1571
1572 static unsigned long
1573 xfs_buftarg_shrink_count(
1574 struct shrinker *shrink,
1575 struct shrink_control *sc)
1576 {
1577 struct xfs_buftarg *btp = container_of(shrink,
1578 struct xfs_buftarg, bt_shrinker);
1579 return list_lru_count_node(&btp->bt_lru, sc->nid);
1580 }
1581
1582 void
1583 xfs_free_buftarg(
1584 struct xfs_mount *mp,
1585 struct xfs_buftarg *btp)
1586 {
1587 unregister_shrinker(&btp->bt_shrinker);
1588 list_lru_destroy(&btp->bt_lru);
1589
1590 if (mp->m_flags & XFS_MOUNT_BARRIER)
1591 xfs_blkdev_issue_flush(btp);
1592
1593 kmem_free(btp);
1594 }
1595
1596 STATIC int
1597 xfs_setsize_buftarg_flags(
1598 xfs_buftarg_t *btp,
1599 unsigned int blocksize,
1600 unsigned int sectorsize,
1601 int verbose)
1602 {
1603 btp->bt_bsize = blocksize;
1604 btp->bt_sshift = ffs(sectorsize) - 1;
1605 btp->bt_smask = sectorsize - 1;
1606
1607 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1608 char name[BDEVNAME_SIZE];
1609
1610 bdevname(btp->bt_bdev, name);
1611
1612 xfs_warn(btp->bt_mount,
1613 "Cannot set_blocksize to %u on device %s",
1614 sectorsize, name);
1615 return EINVAL;
1616 }
1617
1618 return 0;
1619 }
1620
1621 /*
1622 * When allocating the initial buffer target we have not yet
1623 * read in the superblock, so don't know what sized sectors
1624 * are being used at this early stage. Play safe.
1625 */
1626 STATIC int
1627 xfs_setsize_buftarg_early(
1628 xfs_buftarg_t *btp,
1629 struct block_device *bdev)
1630 {
1631 return xfs_setsize_buftarg_flags(btp,
1632 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1633 }
1634
1635 int
1636 xfs_setsize_buftarg(
1637 xfs_buftarg_t *btp,
1638 unsigned int blocksize,
1639 unsigned int sectorsize)
1640 {
1641 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1642 }
1643
1644 xfs_buftarg_t *
1645 xfs_alloc_buftarg(
1646 struct xfs_mount *mp,
1647 struct block_device *bdev,
1648 int external,
1649 const char *fsname)
1650 {
1651 xfs_buftarg_t *btp;
1652
1653 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1654
1655 btp->bt_mount = mp;
1656 btp->bt_dev = bdev->bd_dev;
1657 btp->bt_bdev = bdev;
1658 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1659 if (!btp->bt_bdi)
1660 goto error;
1661
1662 if (xfs_setsize_buftarg_early(btp, bdev))
1663 goto error;
1664
1665 if (list_lru_init(&btp->bt_lru))
1666 goto error;
1667
1668 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1669 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1670 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1671 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1672 register_shrinker(&btp->bt_shrinker);
1673 return btp;
1674
1675 error:
1676 kmem_free(btp);
1677 return NULL;
1678 }
1679
1680 /*
1681 * Add a buffer to the delayed write list.
1682 *
1683 * This queues a buffer for writeout if it hasn't already been. Note that
1684 * neither this routine nor the buffer list submission functions perform
1685 * any internal synchronization. It is expected that the lists are thread-local
1686 * to the callers.
1687 *
1688 * Returns true if we queued up the buffer, or false if it already had
1689 * been on the buffer list.
1690 */
1691 bool
1692 xfs_buf_delwri_queue(
1693 struct xfs_buf *bp,
1694 struct list_head *list)
1695 {
1696 ASSERT(xfs_buf_islocked(bp));
1697 ASSERT(!(bp->b_flags & XBF_READ));
1698
1699 /*
1700 * If the buffer is already marked delwri it already is queued up
1701 * by someone else for imediate writeout. Just ignore it in that
1702 * case.
1703 */
1704 if (bp->b_flags & _XBF_DELWRI_Q) {
1705 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1706 return false;
1707 }
1708
1709 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1710
1711 /*
1712 * If a buffer gets written out synchronously or marked stale while it
1713 * is on a delwri list we lazily remove it. To do this, the other party
1714 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1715 * It remains referenced and on the list. In a rare corner case it
1716 * might get readded to a delwri list after the synchronous writeout, in
1717 * which case we need just need to re-add the flag here.
1718 */
1719 bp->b_flags |= _XBF_DELWRI_Q;
1720 if (list_empty(&bp->b_list)) {
1721 atomic_inc(&bp->b_hold);
1722 list_add_tail(&bp->b_list, list);
1723 }
1724
1725 return true;
1726 }
1727
1728 /*
1729 * Compare function is more complex than it needs to be because
1730 * the return value is only 32 bits and we are doing comparisons
1731 * on 64 bit values
1732 */
1733 static int
1734 xfs_buf_cmp(
1735 void *priv,
1736 struct list_head *a,
1737 struct list_head *b)
1738 {
1739 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1740 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1741 xfs_daddr_t diff;
1742
1743 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1744 if (diff < 0)
1745 return -1;
1746 if (diff > 0)
1747 return 1;
1748 return 0;
1749 }
1750
1751 static int
1752 __xfs_buf_delwri_submit(
1753 struct list_head *buffer_list,
1754 struct list_head *io_list,
1755 bool wait)
1756 {
1757 struct blk_plug plug;
1758 struct xfs_buf *bp, *n;
1759 int pinned = 0;
1760
1761 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1762 if (!wait) {
1763 if (xfs_buf_ispinned(bp)) {
1764 pinned++;
1765 continue;
1766 }
1767 if (!xfs_buf_trylock(bp))
1768 continue;
1769 } else {
1770 xfs_buf_lock(bp);
1771 }
1772
1773 /*
1774 * Someone else might have written the buffer synchronously or
1775 * marked it stale in the meantime. In that case only the
1776 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1777 * reference and remove it from the list here.
1778 */
1779 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1780 list_del_init(&bp->b_list);
1781 xfs_buf_relse(bp);
1782 continue;
1783 }
1784
1785 list_move_tail(&bp->b_list, io_list);
1786 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1787 }
1788
1789 list_sort(NULL, io_list, xfs_buf_cmp);
1790
1791 blk_start_plug(&plug);
1792 list_for_each_entry_safe(bp, n, io_list, b_list) {
1793 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1794 bp->b_flags |= XBF_WRITE;
1795
1796 if (!wait) {
1797 bp->b_flags |= XBF_ASYNC;
1798 list_del_init(&bp->b_list);
1799 }
1800 xfs_bdstrat_cb(bp);
1801 }
1802 blk_finish_plug(&plug);
1803
1804 return pinned;
1805 }
1806
1807 /*
1808 * Write out a buffer list asynchronously.
1809 *
1810 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1811 * out and not wait for I/O completion on any of the buffers. This interface
1812 * is only safely useable for callers that can track I/O completion by higher
1813 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1814 * function.
1815 */
1816 int
1817 xfs_buf_delwri_submit_nowait(
1818 struct list_head *buffer_list)
1819 {
1820 LIST_HEAD (io_list);
1821 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1822 }
1823
1824 /*
1825 * Write out a buffer list synchronously.
1826 *
1827 * This will take the @buffer_list, write all buffers out and wait for I/O
1828 * completion on all of the buffers. @buffer_list is consumed by the function,
1829 * so callers must have some other way of tracking buffers if they require such
1830 * functionality.
1831 */
1832 int
1833 xfs_buf_delwri_submit(
1834 struct list_head *buffer_list)
1835 {
1836 LIST_HEAD (io_list);
1837 int error = 0, error2;
1838 struct xfs_buf *bp;
1839
1840 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1841
1842 /* Wait for IO to complete. */
1843 while (!list_empty(&io_list)) {
1844 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1845
1846 list_del_init(&bp->b_list);
1847 error2 = xfs_buf_iowait(bp);
1848 xfs_buf_relse(bp);
1849 if (!error)
1850 error = error2;
1851 }
1852
1853 return error;
1854 }
1855
1856 int __init
1857 xfs_buf_init(void)
1858 {
1859 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1860 KM_ZONE_HWALIGN, NULL);
1861 if (!xfs_buf_zone)
1862 goto out;
1863
1864 xfslogd_workqueue = alloc_workqueue("xfslogd",
1865 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1866 if (!xfslogd_workqueue)
1867 goto out_free_buf_zone;
1868
1869 return 0;
1870
1871 out_free_buf_zone:
1872 kmem_zone_destroy(xfs_buf_zone);
1873 out:
1874 return -ENOMEM;
1875 }
1876
1877 void
1878 xfs_buf_terminate(void)
1879 {
1880 destroy_workqueue(xfslogd_workqueue);
1881 kmem_zone_destroy(xfs_buf_zone);
1882 }
This page took 0.097058 seconds and 5 git commands to generate.