xfs: remove xfs_get_buftarg_list
[deliverable/linux.git] / fs / xfs / xfs_buf.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_sb.h"
38 #include "xfs_inum.h"
39 #include "xfs_log.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43
44 static kmem_zone_t *xfs_buf_zone;
45 STATIC int xfsbufd(void *);
46
47 static struct workqueue_struct *xfslogd_workqueue;
48 struct workqueue_struct *xfsdatad_workqueue;
49 struct workqueue_struct *xfsconvertd_workqueue;
50
51 #ifdef XFS_BUF_LOCK_TRACKING
52 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
53 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
54 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
55 #else
56 # define XB_SET_OWNER(bp) do { } while (0)
57 # define XB_CLEAR_OWNER(bp) do { } while (0)
58 # define XB_GET_OWNER(bp) do { } while (0)
59 #endif
60
61 #define xb_to_gfp(flags) \
62 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
63 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
64
65 #define xb_to_km(flags) \
66 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
67
68 #define xfs_buf_allocate(flags) \
69 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
70 #define xfs_buf_deallocate(bp) \
71 kmem_zone_free(xfs_buf_zone, (bp));
72
73 static inline int
74 xfs_buf_is_vmapped(
75 struct xfs_buf *bp)
76 {
77 /*
78 * Return true if the buffer is vmapped.
79 *
80 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
81 * code is clever enough to know it doesn't have to map a single page,
82 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
83 */
84 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
85 }
86
87 static inline int
88 xfs_buf_vmap_len(
89 struct xfs_buf *bp)
90 {
91 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
92 }
93
94 /*
95 * xfs_buf_lru_add - add a buffer to the LRU.
96 *
97 * The LRU takes a new reference to the buffer so that it will only be freed
98 * once the shrinker takes the buffer off the LRU.
99 */
100 STATIC void
101 xfs_buf_lru_add(
102 struct xfs_buf *bp)
103 {
104 struct xfs_buftarg *btp = bp->b_target;
105
106 spin_lock(&btp->bt_lru_lock);
107 if (list_empty(&bp->b_lru)) {
108 atomic_inc(&bp->b_hold);
109 list_add_tail(&bp->b_lru, &btp->bt_lru);
110 btp->bt_lru_nr++;
111 }
112 spin_unlock(&btp->bt_lru_lock);
113 }
114
115 /*
116 * xfs_buf_lru_del - remove a buffer from the LRU
117 *
118 * The unlocked check is safe here because it only occurs when there are not
119 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
120 * to optimise the shrinker removing the buffer from the LRU and calling
121 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
122 * bt_lru_lock.
123 */
124 STATIC void
125 xfs_buf_lru_del(
126 struct xfs_buf *bp)
127 {
128 struct xfs_buftarg *btp = bp->b_target;
129
130 if (list_empty(&bp->b_lru))
131 return;
132
133 spin_lock(&btp->bt_lru_lock);
134 if (!list_empty(&bp->b_lru)) {
135 list_del_init(&bp->b_lru);
136 btp->bt_lru_nr--;
137 }
138 spin_unlock(&btp->bt_lru_lock);
139 }
140
141 /*
142 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
143 * b_lru_ref count so that the buffer is freed immediately when the buffer
144 * reference count falls to zero. If the buffer is already on the LRU, we need
145 * to remove the reference that LRU holds on the buffer.
146 *
147 * This prevents build-up of stale buffers on the LRU.
148 */
149 void
150 xfs_buf_stale(
151 struct xfs_buf *bp)
152 {
153 bp->b_flags |= XBF_STALE;
154 atomic_set(&(bp)->b_lru_ref, 0);
155 if (!list_empty(&bp->b_lru)) {
156 struct xfs_buftarg *btp = bp->b_target;
157
158 spin_lock(&btp->bt_lru_lock);
159 if (!list_empty(&bp->b_lru)) {
160 list_del_init(&bp->b_lru);
161 btp->bt_lru_nr--;
162 atomic_dec(&bp->b_hold);
163 }
164 spin_unlock(&btp->bt_lru_lock);
165 }
166 ASSERT(atomic_read(&bp->b_hold) >= 1);
167 }
168
169 STATIC void
170 _xfs_buf_initialize(
171 xfs_buf_t *bp,
172 xfs_buftarg_t *target,
173 xfs_off_t range_base,
174 size_t range_length,
175 xfs_buf_flags_t flags)
176 {
177 /*
178 * We don't want certain flags to appear in b_flags.
179 */
180 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
181
182 memset(bp, 0, sizeof(xfs_buf_t));
183 atomic_set(&bp->b_hold, 1);
184 atomic_set(&bp->b_lru_ref, 1);
185 init_completion(&bp->b_iowait);
186 INIT_LIST_HEAD(&bp->b_lru);
187 INIT_LIST_HEAD(&bp->b_list);
188 RB_CLEAR_NODE(&bp->b_rbnode);
189 sema_init(&bp->b_sema, 0); /* held, no waiters */
190 XB_SET_OWNER(bp);
191 bp->b_target = target;
192 bp->b_file_offset = range_base;
193 /*
194 * Set buffer_length and count_desired to the same value initially.
195 * I/O routines should use count_desired, which will be the same in
196 * most cases but may be reset (e.g. XFS recovery).
197 */
198 bp->b_buffer_length = bp->b_count_desired = range_length;
199 bp->b_flags = flags;
200 bp->b_bn = XFS_BUF_DADDR_NULL;
201 atomic_set(&bp->b_pin_count, 0);
202 init_waitqueue_head(&bp->b_waiters);
203
204 XFS_STATS_INC(xb_create);
205
206 trace_xfs_buf_init(bp, _RET_IP_);
207 }
208
209 /*
210 * Allocate a page array capable of holding a specified number
211 * of pages, and point the page buf at it.
212 */
213 STATIC int
214 _xfs_buf_get_pages(
215 xfs_buf_t *bp,
216 int page_count,
217 xfs_buf_flags_t flags)
218 {
219 /* Make sure that we have a page list */
220 if (bp->b_pages == NULL) {
221 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
222 bp->b_page_count = page_count;
223 if (page_count <= XB_PAGES) {
224 bp->b_pages = bp->b_page_array;
225 } else {
226 bp->b_pages = kmem_alloc(sizeof(struct page *) *
227 page_count, xb_to_km(flags));
228 if (bp->b_pages == NULL)
229 return -ENOMEM;
230 }
231 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
232 }
233 return 0;
234 }
235
236 /*
237 * Frees b_pages if it was allocated.
238 */
239 STATIC void
240 _xfs_buf_free_pages(
241 xfs_buf_t *bp)
242 {
243 if (bp->b_pages != bp->b_page_array) {
244 kmem_free(bp->b_pages);
245 bp->b_pages = NULL;
246 }
247 }
248
249 /*
250 * Releases the specified buffer.
251 *
252 * The modification state of any associated pages is left unchanged.
253 * The buffer most not be on any hash - use xfs_buf_rele instead for
254 * hashed and refcounted buffers
255 */
256 void
257 xfs_buf_free(
258 xfs_buf_t *bp)
259 {
260 trace_xfs_buf_free(bp, _RET_IP_);
261
262 ASSERT(list_empty(&bp->b_lru));
263
264 if (bp->b_flags & _XBF_PAGES) {
265 uint i;
266
267 if (xfs_buf_is_vmapped(bp))
268 vm_unmap_ram(bp->b_addr - bp->b_offset,
269 bp->b_page_count);
270
271 for (i = 0; i < bp->b_page_count; i++) {
272 struct page *page = bp->b_pages[i];
273
274 __free_page(page);
275 }
276 } else if (bp->b_flags & _XBF_KMEM)
277 kmem_free(bp->b_addr);
278 _xfs_buf_free_pages(bp);
279 xfs_buf_deallocate(bp);
280 }
281
282 /*
283 * Allocates all the pages for buffer in question and builds it's page list.
284 */
285 STATIC int
286 xfs_buf_allocate_memory(
287 xfs_buf_t *bp,
288 uint flags)
289 {
290 size_t size = bp->b_count_desired;
291 size_t nbytes, offset;
292 gfp_t gfp_mask = xb_to_gfp(flags);
293 unsigned short page_count, i;
294 xfs_off_t end;
295 int error;
296
297 /*
298 * for buffers that are contained within a single page, just allocate
299 * the memory from the heap - there's no need for the complexity of
300 * page arrays to keep allocation down to order 0.
301 */
302 if (bp->b_buffer_length < PAGE_SIZE) {
303 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
304 if (!bp->b_addr) {
305 /* low memory - use alloc_page loop instead */
306 goto use_alloc_page;
307 }
308
309 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
310 PAGE_MASK) !=
311 ((unsigned long)bp->b_addr & PAGE_MASK)) {
312 /* b_addr spans two pages - use alloc_page instead */
313 kmem_free(bp->b_addr);
314 bp->b_addr = NULL;
315 goto use_alloc_page;
316 }
317 bp->b_offset = offset_in_page(bp->b_addr);
318 bp->b_pages = bp->b_page_array;
319 bp->b_pages[0] = virt_to_page(bp->b_addr);
320 bp->b_page_count = 1;
321 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
322 return 0;
323 }
324
325 use_alloc_page:
326 end = bp->b_file_offset + bp->b_buffer_length;
327 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
328 error = _xfs_buf_get_pages(bp, page_count, flags);
329 if (unlikely(error))
330 return error;
331
332 offset = bp->b_offset;
333 bp->b_flags |= _XBF_PAGES;
334
335 for (i = 0; i < bp->b_page_count; i++) {
336 struct page *page;
337 uint retries = 0;
338 retry:
339 page = alloc_page(gfp_mask);
340 if (unlikely(page == NULL)) {
341 if (flags & XBF_READ_AHEAD) {
342 bp->b_page_count = i;
343 error = ENOMEM;
344 goto out_free_pages;
345 }
346
347 /*
348 * This could deadlock.
349 *
350 * But until all the XFS lowlevel code is revamped to
351 * handle buffer allocation failures we can't do much.
352 */
353 if (!(++retries % 100))
354 xfs_err(NULL,
355 "possible memory allocation deadlock in %s (mode:0x%x)",
356 __func__, gfp_mask);
357
358 XFS_STATS_INC(xb_page_retries);
359 congestion_wait(BLK_RW_ASYNC, HZ/50);
360 goto retry;
361 }
362
363 XFS_STATS_INC(xb_page_found);
364
365 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
366 size -= nbytes;
367 bp->b_pages[i] = page;
368 offset = 0;
369 }
370 return 0;
371
372 out_free_pages:
373 for (i = 0; i < bp->b_page_count; i++)
374 __free_page(bp->b_pages[i]);
375 return error;
376 }
377
378 /*
379 * Map buffer into kernel address-space if necessary.
380 */
381 STATIC int
382 _xfs_buf_map_pages(
383 xfs_buf_t *bp,
384 uint flags)
385 {
386 ASSERT(bp->b_flags & _XBF_PAGES);
387 if (bp->b_page_count == 1) {
388 /* A single page buffer is always mappable */
389 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390 bp->b_flags |= XBF_MAPPED;
391 } else if (flags & XBF_MAPPED) {
392 int retried = 0;
393
394 do {
395 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
396 -1, PAGE_KERNEL);
397 if (bp->b_addr)
398 break;
399 vm_unmap_aliases();
400 } while (retried++ <= 1);
401
402 if (!bp->b_addr)
403 return -ENOMEM;
404 bp->b_addr += bp->b_offset;
405 bp->b_flags |= XBF_MAPPED;
406 }
407
408 return 0;
409 }
410
411 /*
412 * Finding and Reading Buffers
413 */
414
415 /*
416 * Look up, and creates if absent, a lockable buffer for
417 * a given range of an inode. The buffer is returned
418 * locked. No I/O is implied by this call.
419 */
420 xfs_buf_t *
421 _xfs_buf_find(
422 xfs_buftarg_t *btp, /* block device target */
423 xfs_off_t ioff, /* starting offset of range */
424 size_t isize, /* length of range */
425 xfs_buf_flags_t flags,
426 xfs_buf_t *new_bp)
427 {
428 xfs_off_t range_base;
429 size_t range_length;
430 struct xfs_perag *pag;
431 struct rb_node **rbp;
432 struct rb_node *parent;
433 xfs_buf_t *bp;
434
435 range_base = (ioff << BBSHIFT);
436 range_length = (isize << BBSHIFT);
437
438 /* Check for IOs smaller than the sector size / not sector aligned */
439 ASSERT(!(range_length < (1 << btp->bt_sshift)));
440 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
441
442 /* get tree root */
443 pag = xfs_perag_get(btp->bt_mount,
444 xfs_daddr_to_agno(btp->bt_mount, ioff));
445
446 /* walk tree */
447 spin_lock(&pag->pag_buf_lock);
448 rbp = &pag->pag_buf_tree.rb_node;
449 parent = NULL;
450 bp = NULL;
451 while (*rbp) {
452 parent = *rbp;
453 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
454
455 if (range_base < bp->b_file_offset)
456 rbp = &(*rbp)->rb_left;
457 else if (range_base > bp->b_file_offset)
458 rbp = &(*rbp)->rb_right;
459 else {
460 /*
461 * found a block offset match. If the range doesn't
462 * match, the only way this is allowed is if the buffer
463 * in the cache is stale and the transaction that made
464 * it stale has not yet committed. i.e. we are
465 * reallocating a busy extent. Skip this buffer and
466 * continue searching to the right for an exact match.
467 */
468 if (bp->b_buffer_length != range_length) {
469 ASSERT(bp->b_flags & XBF_STALE);
470 rbp = &(*rbp)->rb_right;
471 continue;
472 }
473 atomic_inc(&bp->b_hold);
474 goto found;
475 }
476 }
477
478 /* No match found */
479 if (new_bp) {
480 rb_link_node(&new_bp->b_rbnode, parent, rbp);
481 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
482 /* the buffer keeps the perag reference until it is freed */
483 new_bp->b_pag = pag;
484 spin_unlock(&pag->pag_buf_lock);
485 } else {
486 XFS_STATS_INC(xb_miss_locked);
487 spin_unlock(&pag->pag_buf_lock);
488 xfs_perag_put(pag);
489 }
490 return new_bp;
491
492 found:
493 spin_unlock(&pag->pag_buf_lock);
494 xfs_perag_put(pag);
495
496 if (!xfs_buf_trylock(bp)) {
497 if (flags & XBF_TRYLOCK) {
498 xfs_buf_rele(bp);
499 XFS_STATS_INC(xb_busy_locked);
500 return NULL;
501 }
502 xfs_buf_lock(bp);
503 XFS_STATS_INC(xb_get_locked_waited);
504 }
505
506 /*
507 * if the buffer is stale, clear all the external state associated with
508 * it. We need to keep flags such as how we allocated the buffer memory
509 * intact here.
510 */
511 if (bp->b_flags & XBF_STALE) {
512 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
513 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
514 }
515
516 trace_xfs_buf_find(bp, flags, _RET_IP_);
517 XFS_STATS_INC(xb_get_locked);
518 return bp;
519 }
520
521 /*
522 * Assembles a buffer covering the specified range. The code is optimised for
523 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
524 * more hits than misses.
525 */
526 struct xfs_buf *
527 xfs_buf_get(
528 xfs_buftarg_t *target,/* target for buffer */
529 xfs_off_t ioff, /* starting offset of range */
530 size_t isize, /* length of range */
531 xfs_buf_flags_t flags)
532 {
533 struct xfs_buf *bp;
534 struct xfs_buf *new_bp;
535 int error = 0;
536
537 bp = _xfs_buf_find(target, ioff, isize, flags, NULL);
538 if (likely(bp))
539 goto found;
540
541 new_bp = xfs_buf_allocate(flags);
542 if (unlikely(!new_bp))
543 return NULL;
544
545 _xfs_buf_initialize(new_bp, target,
546 ioff << BBSHIFT, isize << BBSHIFT, flags);
547
548 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
549 if (!bp) {
550 xfs_buf_deallocate(new_bp);
551 return NULL;
552 }
553
554 if (bp == new_bp) {
555 error = xfs_buf_allocate_memory(bp, flags);
556 if (error)
557 goto no_buffer;
558 } else
559 xfs_buf_deallocate(new_bp);
560
561 /*
562 * Now we have a workable buffer, fill in the block number so
563 * that we can do IO on it.
564 */
565 bp->b_bn = ioff;
566 bp->b_count_desired = bp->b_buffer_length;
567
568 found:
569 if (!(bp->b_flags & XBF_MAPPED)) {
570 error = _xfs_buf_map_pages(bp, flags);
571 if (unlikely(error)) {
572 xfs_warn(target->bt_mount,
573 "%s: failed to map pages\n", __func__);
574 goto no_buffer;
575 }
576 }
577
578 XFS_STATS_INC(xb_get);
579 trace_xfs_buf_get(bp, flags, _RET_IP_);
580 return bp;
581
582 no_buffer:
583 if (flags & (XBF_LOCK | XBF_TRYLOCK))
584 xfs_buf_unlock(bp);
585 xfs_buf_rele(bp);
586 return NULL;
587 }
588
589 STATIC int
590 _xfs_buf_read(
591 xfs_buf_t *bp,
592 xfs_buf_flags_t flags)
593 {
594 int status;
595
596 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
597 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
598
599 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD);
600 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
601
602 status = xfs_buf_iorequest(bp);
603 if (status || bp->b_error || (flags & XBF_ASYNC))
604 return status;
605 return xfs_buf_iowait(bp);
606 }
607
608 xfs_buf_t *
609 xfs_buf_read(
610 xfs_buftarg_t *target,
611 xfs_off_t ioff,
612 size_t isize,
613 xfs_buf_flags_t flags)
614 {
615 xfs_buf_t *bp;
616
617 flags |= XBF_READ;
618
619 bp = xfs_buf_get(target, ioff, isize, flags);
620 if (bp) {
621 trace_xfs_buf_read(bp, flags, _RET_IP_);
622
623 if (!XFS_BUF_ISDONE(bp)) {
624 XFS_STATS_INC(xb_get_read);
625 _xfs_buf_read(bp, flags);
626 } else if (flags & XBF_ASYNC) {
627 /*
628 * Read ahead call which is already satisfied,
629 * drop the buffer
630 */
631 goto no_buffer;
632 } else {
633 /* We do not want read in the flags */
634 bp->b_flags &= ~XBF_READ;
635 }
636 }
637
638 return bp;
639
640 no_buffer:
641 if (flags & (XBF_LOCK | XBF_TRYLOCK))
642 xfs_buf_unlock(bp);
643 xfs_buf_rele(bp);
644 return NULL;
645 }
646
647 /*
648 * If we are not low on memory then do the readahead in a deadlock
649 * safe manner.
650 */
651 void
652 xfs_buf_readahead(
653 xfs_buftarg_t *target,
654 xfs_off_t ioff,
655 size_t isize)
656 {
657 if (bdi_read_congested(target->bt_bdi))
658 return;
659
660 xfs_buf_read(target, ioff, isize,
661 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
662 }
663
664 /*
665 * Read an uncached buffer from disk. Allocates and returns a locked
666 * buffer containing the disk contents or nothing.
667 */
668 struct xfs_buf *
669 xfs_buf_read_uncached(
670 struct xfs_mount *mp,
671 struct xfs_buftarg *target,
672 xfs_daddr_t daddr,
673 size_t length,
674 int flags)
675 {
676 xfs_buf_t *bp;
677 int error;
678
679 bp = xfs_buf_get_uncached(target, length, flags);
680 if (!bp)
681 return NULL;
682
683 /* set up the buffer for a read IO */
684 XFS_BUF_SET_ADDR(bp, daddr);
685 XFS_BUF_READ(bp);
686
687 xfsbdstrat(mp, bp);
688 error = xfs_buf_iowait(bp);
689 if (error || bp->b_error) {
690 xfs_buf_relse(bp);
691 return NULL;
692 }
693 return bp;
694 }
695
696 xfs_buf_t *
697 xfs_buf_get_empty(
698 size_t len,
699 xfs_buftarg_t *target)
700 {
701 xfs_buf_t *bp;
702
703 bp = xfs_buf_allocate(0);
704 if (bp)
705 _xfs_buf_initialize(bp, target, 0, len, 0);
706 return bp;
707 }
708
709 /*
710 * Return a buffer allocated as an empty buffer and associated to external
711 * memory via xfs_buf_associate_memory() back to it's empty state.
712 */
713 void
714 xfs_buf_set_empty(
715 struct xfs_buf *bp,
716 size_t len)
717 {
718 if (bp->b_pages)
719 _xfs_buf_free_pages(bp);
720
721 bp->b_pages = NULL;
722 bp->b_page_count = 0;
723 bp->b_addr = NULL;
724 bp->b_file_offset = 0;
725 bp->b_buffer_length = bp->b_count_desired = len;
726 bp->b_bn = XFS_BUF_DADDR_NULL;
727 bp->b_flags &= ~XBF_MAPPED;
728 }
729
730 static inline struct page *
731 mem_to_page(
732 void *addr)
733 {
734 if ((!is_vmalloc_addr(addr))) {
735 return virt_to_page(addr);
736 } else {
737 return vmalloc_to_page(addr);
738 }
739 }
740
741 int
742 xfs_buf_associate_memory(
743 xfs_buf_t *bp,
744 void *mem,
745 size_t len)
746 {
747 int rval;
748 int i = 0;
749 unsigned long pageaddr;
750 unsigned long offset;
751 size_t buflen;
752 int page_count;
753
754 pageaddr = (unsigned long)mem & PAGE_MASK;
755 offset = (unsigned long)mem - pageaddr;
756 buflen = PAGE_ALIGN(len + offset);
757 page_count = buflen >> PAGE_SHIFT;
758
759 /* Free any previous set of page pointers */
760 if (bp->b_pages)
761 _xfs_buf_free_pages(bp);
762
763 bp->b_pages = NULL;
764 bp->b_addr = mem;
765
766 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
767 if (rval)
768 return rval;
769
770 bp->b_offset = offset;
771
772 for (i = 0; i < bp->b_page_count; i++) {
773 bp->b_pages[i] = mem_to_page((void *)pageaddr);
774 pageaddr += PAGE_SIZE;
775 }
776
777 bp->b_count_desired = len;
778 bp->b_buffer_length = buflen;
779 bp->b_flags |= XBF_MAPPED;
780
781 return 0;
782 }
783
784 xfs_buf_t *
785 xfs_buf_get_uncached(
786 struct xfs_buftarg *target,
787 size_t len,
788 int flags)
789 {
790 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
791 int error, i;
792 xfs_buf_t *bp;
793
794 bp = xfs_buf_allocate(0);
795 if (unlikely(bp == NULL))
796 goto fail;
797 _xfs_buf_initialize(bp, target, 0, len, 0);
798
799 error = _xfs_buf_get_pages(bp, page_count, 0);
800 if (error)
801 goto fail_free_buf;
802
803 for (i = 0; i < page_count; i++) {
804 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
805 if (!bp->b_pages[i])
806 goto fail_free_mem;
807 }
808 bp->b_flags |= _XBF_PAGES;
809
810 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
811 if (unlikely(error)) {
812 xfs_warn(target->bt_mount,
813 "%s: failed to map pages\n", __func__);
814 goto fail_free_mem;
815 }
816
817 trace_xfs_buf_get_uncached(bp, _RET_IP_);
818 return bp;
819
820 fail_free_mem:
821 while (--i >= 0)
822 __free_page(bp->b_pages[i]);
823 _xfs_buf_free_pages(bp);
824 fail_free_buf:
825 xfs_buf_deallocate(bp);
826 fail:
827 return NULL;
828 }
829
830 /*
831 * Increment reference count on buffer, to hold the buffer concurrently
832 * with another thread which may release (free) the buffer asynchronously.
833 * Must hold the buffer already to call this function.
834 */
835 void
836 xfs_buf_hold(
837 xfs_buf_t *bp)
838 {
839 trace_xfs_buf_hold(bp, _RET_IP_);
840 atomic_inc(&bp->b_hold);
841 }
842
843 /*
844 * Releases a hold on the specified buffer. If the
845 * the hold count is 1, calls xfs_buf_free.
846 */
847 void
848 xfs_buf_rele(
849 xfs_buf_t *bp)
850 {
851 struct xfs_perag *pag = bp->b_pag;
852
853 trace_xfs_buf_rele(bp, _RET_IP_);
854
855 if (!pag) {
856 ASSERT(list_empty(&bp->b_lru));
857 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
858 if (atomic_dec_and_test(&bp->b_hold))
859 xfs_buf_free(bp);
860 return;
861 }
862
863 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
864
865 ASSERT(atomic_read(&bp->b_hold) > 0);
866 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
867 if (!(bp->b_flags & XBF_STALE) &&
868 atomic_read(&bp->b_lru_ref)) {
869 xfs_buf_lru_add(bp);
870 spin_unlock(&pag->pag_buf_lock);
871 } else {
872 xfs_buf_lru_del(bp);
873 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
874 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
875 spin_unlock(&pag->pag_buf_lock);
876 xfs_perag_put(pag);
877 xfs_buf_free(bp);
878 }
879 }
880 }
881
882
883 /*
884 * Lock a buffer object, if it is not already locked.
885 *
886 * If we come across a stale, pinned, locked buffer, we know that we are
887 * being asked to lock a buffer that has been reallocated. Because it is
888 * pinned, we know that the log has not been pushed to disk and hence it
889 * will still be locked. Rather than continuing to have trylock attempts
890 * fail until someone else pushes the log, push it ourselves before
891 * returning. This means that the xfsaild will not get stuck trying
892 * to push on stale inode buffers.
893 */
894 int
895 xfs_buf_trylock(
896 struct xfs_buf *bp)
897 {
898 int locked;
899
900 locked = down_trylock(&bp->b_sema) == 0;
901 if (locked)
902 XB_SET_OWNER(bp);
903 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
904 xfs_log_force(bp->b_target->bt_mount, 0);
905
906 trace_xfs_buf_trylock(bp, _RET_IP_);
907 return locked;
908 }
909
910 /*
911 * Lock a buffer object.
912 *
913 * If we come across a stale, pinned, locked buffer, we know that we
914 * are being asked to lock a buffer that has been reallocated. Because
915 * it is pinned, we know that the log has not been pushed to disk and
916 * hence it will still be locked. Rather than sleeping until someone
917 * else pushes the log, push it ourselves before trying to get the lock.
918 */
919 void
920 xfs_buf_lock(
921 struct xfs_buf *bp)
922 {
923 trace_xfs_buf_lock(bp, _RET_IP_);
924
925 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
926 xfs_log_force(bp->b_target->bt_mount, 0);
927 down(&bp->b_sema);
928 XB_SET_OWNER(bp);
929
930 trace_xfs_buf_lock_done(bp, _RET_IP_);
931 }
932
933 /*
934 * Releases the lock on the buffer object.
935 * If the buffer is marked delwri but is not queued, do so before we
936 * unlock the buffer as we need to set flags correctly. We also need to
937 * take a reference for the delwri queue because the unlocker is going to
938 * drop their's and they don't know we just queued it.
939 */
940 void
941 xfs_buf_unlock(
942 struct xfs_buf *bp)
943 {
944 XB_CLEAR_OWNER(bp);
945 up(&bp->b_sema);
946
947 trace_xfs_buf_unlock(bp, _RET_IP_);
948 }
949
950 STATIC void
951 xfs_buf_wait_unpin(
952 xfs_buf_t *bp)
953 {
954 DECLARE_WAITQUEUE (wait, current);
955
956 if (atomic_read(&bp->b_pin_count) == 0)
957 return;
958
959 add_wait_queue(&bp->b_waiters, &wait);
960 for (;;) {
961 set_current_state(TASK_UNINTERRUPTIBLE);
962 if (atomic_read(&bp->b_pin_count) == 0)
963 break;
964 io_schedule();
965 }
966 remove_wait_queue(&bp->b_waiters, &wait);
967 set_current_state(TASK_RUNNING);
968 }
969
970 /*
971 * Buffer Utility Routines
972 */
973
974 STATIC void
975 xfs_buf_iodone_work(
976 struct work_struct *work)
977 {
978 xfs_buf_t *bp =
979 container_of(work, xfs_buf_t, b_iodone_work);
980
981 if (bp->b_iodone)
982 (*(bp->b_iodone))(bp);
983 else if (bp->b_flags & XBF_ASYNC)
984 xfs_buf_relse(bp);
985 }
986
987 void
988 xfs_buf_ioend(
989 xfs_buf_t *bp,
990 int schedule)
991 {
992 trace_xfs_buf_iodone(bp, _RET_IP_);
993
994 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
995 if (bp->b_error == 0)
996 bp->b_flags |= XBF_DONE;
997
998 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
999 if (schedule) {
1000 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1001 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1002 } else {
1003 xfs_buf_iodone_work(&bp->b_iodone_work);
1004 }
1005 } else {
1006 complete(&bp->b_iowait);
1007 }
1008 }
1009
1010 void
1011 xfs_buf_ioerror(
1012 xfs_buf_t *bp,
1013 int error)
1014 {
1015 ASSERT(error >= 0 && error <= 0xffff);
1016 bp->b_error = (unsigned short)error;
1017 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1018 }
1019
1020 int
1021 xfs_bwrite(
1022 struct xfs_buf *bp)
1023 {
1024 int error;
1025
1026 bp->b_flags |= XBF_WRITE;
1027 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1028
1029 xfs_buf_delwri_dequeue(bp);
1030 xfs_bdstrat_cb(bp);
1031
1032 error = xfs_buf_iowait(bp);
1033 if (error) {
1034 xfs_force_shutdown(bp->b_target->bt_mount,
1035 SHUTDOWN_META_IO_ERROR);
1036 }
1037 return error;
1038 }
1039
1040 /*
1041 * Called when we want to stop a buffer from getting written or read.
1042 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1043 * so that the proper iodone callbacks get called.
1044 */
1045 STATIC int
1046 xfs_bioerror(
1047 xfs_buf_t *bp)
1048 {
1049 #ifdef XFSERRORDEBUG
1050 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1051 #endif
1052
1053 /*
1054 * No need to wait until the buffer is unpinned, we aren't flushing it.
1055 */
1056 xfs_buf_ioerror(bp, EIO);
1057
1058 /*
1059 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1060 */
1061 XFS_BUF_UNREAD(bp);
1062 xfs_buf_delwri_dequeue(bp);
1063 XFS_BUF_UNDONE(bp);
1064 XFS_BUF_STALE(bp);
1065
1066 xfs_buf_ioend(bp, 0);
1067
1068 return EIO;
1069 }
1070
1071 /*
1072 * Same as xfs_bioerror, except that we are releasing the buffer
1073 * here ourselves, and avoiding the xfs_buf_ioend call.
1074 * This is meant for userdata errors; metadata bufs come with
1075 * iodone functions attached, so that we can track down errors.
1076 */
1077 STATIC int
1078 xfs_bioerror_relse(
1079 struct xfs_buf *bp)
1080 {
1081 int64_t fl = bp->b_flags;
1082 /*
1083 * No need to wait until the buffer is unpinned.
1084 * We aren't flushing it.
1085 *
1086 * chunkhold expects B_DONE to be set, whether
1087 * we actually finish the I/O or not. We don't want to
1088 * change that interface.
1089 */
1090 XFS_BUF_UNREAD(bp);
1091 xfs_buf_delwri_dequeue(bp);
1092 XFS_BUF_DONE(bp);
1093 XFS_BUF_STALE(bp);
1094 bp->b_iodone = NULL;
1095 if (!(fl & XBF_ASYNC)) {
1096 /*
1097 * Mark b_error and B_ERROR _both_.
1098 * Lot's of chunkcache code assumes that.
1099 * There's no reason to mark error for
1100 * ASYNC buffers.
1101 */
1102 xfs_buf_ioerror(bp, EIO);
1103 XFS_BUF_FINISH_IOWAIT(bp);
1104 } else {
1105 xfs_buf_relse(bp);
1106 }
1107
1108 return EIO;
1109 }
1110
1111
1112 /*
1113 * All xfs metadata buffers except log state machine buffers
1114 * get this attached as their b_bdstrat callback function.
1115 * This is so that we can catch a buffer
1116 * after prematurely unpinning it to forcibly shutdown the filesystem.
1117 */
1118 int
1119 xfs_bdstrat_cb(
1120 struct xfs_buf *bp)
1121 {
1122 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1123 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1124 /*
1125 * Metadata write that didn't get logged but
1126 * written delayed anyway. These aren't associated
1127 * with a transaction, and can be ignored.
1128 */
1129 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1130 return xfs_bioerror_relse(bp);
1131 else
1132 return xfs_bioerror(bp);
1133 }
1134
1135 xfs_buf_iorequest(bp);
1136 return 0;
1137 }
1138
1139 /*
1140 * Wrapper around bdstrat so that we can stop data from going to disk in case
1141 * we are shutting down the filesystem. Typically user data goes thru this
1142 * path; one of the exceptions is the superblock.
1143 */
1144 void
1145 xfsbdstrat(
1146 struct xfs_mount *mp,
1147 struct xfs_buf *bp)
1148 {
1149 if (XFS_FORCED_SHUTDOWN(mp)) {
1150 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1151 xfs_bioerror_relse(bp);
1152 return;
1153 }
1154
1155 xfs_buf_iorequest(bp);
1156 }
1157
1158 STATIC void
1159 _xfs_buf_ioend(
1160 xfs_buf_t *bp,
1161 int schedule)
1162 {
1163 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1164 xfs_buf_ioend(bp, schedule);
1165 }
1166
1167 STATIC void
1168 xfs_buf_bio_end_io(
1169 struct bio *bio,
1170 int error)
1171 {
1172 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1173
1174 xfs_buf_ioerror(bp, -error);
1175
1176 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1177 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1178
1179 _xfs_buf_ioend(bp, 1);
1180 bio_put(bio);
1181 }
1182
1183 STATIC void
1184 _xfs_buf_ioapply(
1185 xfs_buf_t *bp)
1186 {
1187 int rw, map_i, total_nr_pages, nr_pages;
1188 struct bio *bio;
1189 int offset = bp->b_offset;
1190 int size = bp->b_count_desired;
1191 sector_t sector = bp->b_bn;
1192
1193 total_nr_pages = bp->b_page_count;
1194 map_i = 0;
1195
1196 if (bp->b_flags & XBF_WRITE) {
1197 if (bp->b_flags & XBF_SYNCIO)
1198 rw = WRITE_SYNC;
1199 else
1200 rw = WRITE;
1201 if (bp->b_flags & XBF_FUA)
1202 rw |= REQ_FUA;
1203 if (bp->b_flags & XBF_FLUSH)
1204 rw |= REQ_FLUSH;
1205 } else if (bp->b_flags & XBF_READ_AHEAD) {
1206 rw = READA;
1207 } else {
1208 rw = READ;
1209 }
1210
1211 /* we only use the buffer cache for meta-data */
1212 rw |= REQ_META;
1213
1214 next_chunk:
1215 atomic_inc(&bp->b_io_remaining);
1216 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1217 if (nr_pages > total_nr_pages)
1218 nr_pages = total_nr_pages;
1219
1220 bio = bio_alloc(GFP_NOIO, nr_pages);
1221 bio->bi_bdev = bp->b_target->bt_bdev;
1222 bio->bi_sector = sector;
1223 bio->bi_end_io = xfs_buf_bio_end_io;
1224 bio->bi_private = bp;
1225
1226
1227 for (; size && nr_pages; nr_pages--, map_i++) {
1228 int rbytes, nbytes = PAGE_SIZE - offset;
1229
1230 if (nbytes > size)
1231 nbytes = size;
1232
1233 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1234 if (rbytes < nbytes)
1235 break;
1236
1237 offset = 0;
1238 sector += nbytes >> BBSHIFT;
1239 size -= nbytes;
1240 total_nr_pages--;
1241 }
1242
1243 if (likely(bio->bi_size)) {
1244 if (xfs_buf_is_vmapped(bp)) {
1245 flush_kernel_vmap_range(bp->b_addr,
1246 xfs_buf_vmap_len(bp));
1247 }
1248 submit_bio(rw, bio);
1249 if (size)
1250 goto next_chunk;
1251 } else {
1252 xfs_buf_ioerror(bp, EIO);
1253 bio_put(bio);
1254 }
1255 }
1256
1257 int
1258 xfs_buf_iorequest(
1259 xfs_buf_t *bp)
1260 {
1261 trace_xfs_buf_iorequest(bp, _RET_IP_);
1262
1263 ASSERT(!(bp->b_flags & XBF_DELWRI));
1264
1265 if (bp->b_flags & XBF_WRITE)
1266 xfs_buf_wait_unpin(bp);
1267 xfs_buf_hold(bp);
1268
1269 /* Set the count to 1 initially, this will stop an I/O
1270 * completion callout which happens before we have started
1271 * all the I/O from calling xfs_buf_ioend too early.
1272 */
1273 atomic_set(&bp->b_io_remaining, 1);
1274 _xfs_buf_ioapply(bp);
1275 _xfs_buf_ioend(bp, 0);
1276
1277 xfs_buf_rele(bp);
1278 return 0;
1279 }
1280
1281 /*
1282 * Waits for I/O to complete on the buffer supplied.
1283 * It returns immediately if no I/O is pending.
1284 * It returns the I/O error code, if any, or 0 if there was no error.
1285 */
1286 int
1287 xfs_buf_iowait(
1288 xfs_buf_t *bp)
1289 {
1290 trace_xfs_buf_iowait(bp, _RET_IP_);
1291
1292 wait_for_completion(&bp->b_iowait);
1293
1294 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1295 return bp->b_error;
1296 }
1297
1298 xfs_caddr_t
1299 xfs_buf_offset(
1300 xfs_buf_t *bp,
1301 size_t offset)
1302 {
1303 struct page *page;
1304
1305 if (bp->b_flags & XBF_MAPPED)
1306 return bp->b_addr + offset;
1307
1308 offset += bp->b_offset;
1309 page = bp->b_pages[offset >> PAGE_SHIFT];
1310 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1311 }
1312
1313 /*
1314 * Move data into or out of a buffer.
1315 */
1316 void
1317 xfs_buf_iomove(
1318 xfs_buf_t *bp, /* buffer to process */
1319 size_t boff, /* starting buffer offset */
1320 size_t bsize, /* length to copy */
1321 void *data, /* data address */
1322 xfs_buf_rw_t mode) /* read/write/zero flag */
1323 {
1324 size_t bend, cpoff, csize;
1325 struct page *page;
1326
1327 bend = boff + bsize;
1328 while (boff < bend) {
1329 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1330 cpoff = xfs_buf_poff(boff + bp->b_offset);
1331 csize = min_t(size_t,
1332 PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1333
1334 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1335
1336 switch (mode) {
1337 case XBRW_ZERO:
1338 memset(page_address(page) + cpoff, 0, csize);
1339 break;
1340 case XBRW_READ:
1341 memcpy(data, page_address(page) + cpoff, csize);
1342 break;
1343 case XBRW_WRITE:
1344 memcpy(page_address(page) + cpoff, data, csize);
1345 }
1346
1347 boff += csize;
1348 data += csize;
1349 }
1350 }
1351
1352 /*
1353 * Handling of buffer targets (buftargs).
1354 */
1355
1356 /*
1357 * Wait for any bufs with callbacks that have been submitted but have not yet
1358 * returned. These buffers will have an elevated hold count, so wait on those
1359 * while freeing all the buffers only held by the LRU.
1360 */
1361 void
1362 xfs_wait_buftarg(
1363 struct xfs_buftarg *btp)
1364 {
1365 struct xfs_buf *bp;
1366
1367 restart:
1368 spin_lock(&btp->bt_lru_lock);
1369 while (!list_empty(&btp->bt_lru)) {
1370 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1371 if (atomic_read(&bp->b_hold) > 1) {
1372 spin_unlock(&btp->bt_lru_lock);
1373 delay(100);
1374 goto restart;
1375 }
1376 /*
1377 * clear the LRU reference count so the bufer doesn't get
1378 * ignored in xfs_buf_rele().
1379 */
1380 atomic_set(&bp->b_lru_ref, 0);
1381 spin_unlock(&btp->bt_lru_lock);
1382 xfs_buf_rele(bp);
1383 spin_lock(&btp->bt_lru_lock);
1384 }
1385 spin_unlock(&btp->bt_lru_lock);
1386 }
1387
1388 int
1389 xfs_buftarg_shrink(
1390 struct shrinker *shrink,
1391 struct shrink_control *sc)
1392 {
1393 struct xfs_buftarg *btp = container_of(shrink,
1394 struct xfs_buftarg, bt_shrinker);
1395 struct xfs_buf *bp;
1396 int nr_to_scan = sc->nr_to_scan;
1397 LIST_HEAD(dispose);
1398
1399 if (!nr_to_scan)
1400 return btp->bt_lru_nr;
1401
1402 spin_lock(&btp->bt_lru_lock);
1403 while (!list_empty(&btp->bt_lru)) {
1404 if (nr_to_scan-- <= 0)
1405 break;
1406
1407 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1408
1409 /*
1410 * Decrement the b_lru_ref count unless the value is already
1411 * zero. If the value is already zero, we need to reclaim the
1412 * buffer, otherwise it gets another trip through the LRU.
1413 */
1414 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1415 list_move_tail(&bp->b_lru, &btp->bt_lru);
1416 continue;
1417 }
1418
1419 /*
1420 * remove the buffer from the LRU now to avoid needing another
1421 * lock round trip inside xfs_buf_rele().
1422 */
1423 list_move(&bp->b_lru, &dispose);
1424 btp->bt_lru_nr--;
1425 }
1426 spin_unlock(&btp->bt_lru_lock);
1427
1428 while (!list_empty(&dispose)) {
1429 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1430 list_del_init(&bp->b_lru);
1431 xfs_buf_rele(bp);
1432 }
1433
1434 return btp->bt_lru_nr;
1435 }
1436
1437 void
1438 xfs_free_buftarg(
1439 struct xfs_mount *mp,
1440 struct xfs_buftarg *btp)
1441 {
1442 unregister_shrinker(&btp->bt_shrinker);
1443
1444 xfs_flush_buftarg(btp, 1);
1445 if (mp->m_flags & XFS_MOUNT_BARRIER)
1446 xfs_blkdev_issue_flush(btp);
1447
1448 kthread_stop(btp->bt_task);
1449 kmem_free(btp);
1450 }
1451
1452 STATIC int
1453 xfs_setsize_buftarg_flags(
1454 xfs_buftarg_t *btp,
1455 unsigned int blocksize,
1456 unsigned int sectorsize,
1457 int verbose)
1458 {
1459 btp->bt_bsize = blocksize;
1460 btp->bt_sshift = ffs(sectorsize) - 1;
1461 btp->bt_smask = sectorsize - 1;
1462
1463 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1464 xfs_warn(btp->bt_mount,
1465 "Cannot set_blocksize to %u on device %s\n",
1466 sectorsize, xfs_buf_target_name(btp));
1467 return EINVAL;
1468 }
1469
1470 return 0;
1471 }
1472
1473 /*
1474 * When allocating the initial buffer target we have not yet
1475 * read in the superblock, so don't know what sized sectors
1476 * are being used is at this early stage. Play safe.
1477 */
1478 STATIC int
1479 xfs_setsize_buftarg_early(
1480 xfs_buftarg_t *btp,
1481 struct block_device *bdev)
1482 {
1483 return xfs_setsize_buftarg_flags(btp,
1484 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1485 }
1486
1487 int
1488 xfs_setsize_buftarg(
1489 xfs_buftarg_t *btp,
1490 unsigned int blocksize,
1491 unsigned int sectorsize)
1492 {
1493 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1494 }
1495
1496 STATIC int
1497 xfs_alloc_delwri_queue(
1498 xfs_buftarg_t *btp,
1499 const char *fsname)
1500 {
1501 INIT_LIST_HEAD(&btp->bt_delwri_queue);
1502 spin_lock_init(&btp->bt_delwri_lock);
1503 btp->bt_flags = 0;
1504 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1505 if (IS_ERR(btp->bt_task))
1506 return PTR_ERR(btp->bt_task);
1507 return 0;
1508 }
1509
1510 xfs_buftarg_t *
1511 xfs_alloc_buftarg(
1512 struct xfs_mount *mp,
1513 struct block_device *bdev,
1514 int external,
1515 const char *fsname)
1516 {
1517 xfs_buftarg_t *btp;
1518
1519 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1520
1521 btp->bt_mount = mp;
1522 btp->bt_dev = bdev->bd_dev;
1523 btp->bt_bdev = bdev;
1524 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1525 if (!btp->bt_bdi)
1526 goto error;
1527
1528 INIT_LIST_HEAD(&btp->bt_lru);
1529 spin_lock_init(&btp->bt_lru_lock);
1530 if (xfs_setsize_buftarg_early(btp, bdev))
1531 goto error;
1532 if (xfs_alloc_delwri_queue(btp, fsname))
1533 goto error;
1534 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1535 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1536 register_shrinker(&btp->bt_shrinker);
1537 return btp;
1538
1539 error:
1540 kmem_free(btp);
1541 return NULL;
1542 }
1543
1544
1545 /*
1546 * Delayed write buffer handling
1547 */
1548 void
1549 xfs_buf_delwri_queue(
1550 xfs_buf_t *bp)
1551 {
1552 struct xfs_buftarg *btp = bp->b_target;
1553
1554 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1555
1556 ASSERT(!(bp->b_flags & XBF_READ));
1557
1558 spin_lock(&btp->bt_delwri_lock);
1559 if (!list_empty(&bp->b_list)) {
1560 /* if already in the queue, move it to the tail */
1561 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1562 list_move_tail(&bp->b_list, &btp->bt_delwri_queue);
1563 } else {
1564 /* start xfsbufd as it is about to have something to do */
1565 if (list_empty(&btp->bt_delwri_queue))
1566 wake_up_process(bp->b_target->bt_task);
1567
1568 atomic_inc(&bp->b_hold);
1569 bp->b_flags |= XBF_DELWRI | _XBF_DELWRI_Q | XBF_ASYNC;
1570 list_add_tail(&bp->b_list, &btp->bt_delwri_queue);
1571 }
1572 bp->b_queuetime = jiffies;
1573 spin_unlock(&btp->bt_delwri_lock);
1574 }
1575
1576 void
1577 xfs_buf_delwri_dequeue(
1578 xfs_buf_t *bp)
1579 {
1580 int dequeued = 0;
1581
1582 spin_lock(&bp->b_target->bt_delwri_lock);
1583 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1584 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1585 list_del_init(&bp->b_list);
1586 dequeued = 1;
1587 }
1588 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1589 spin_unlock(&bp->b_target->bt_delwri_lock);
1590
1591 if (dequeued)
1592 xfs_buf_rele(bp);
1593
1594 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1595 }
1596
1597 /*
1598 * If a delwri buffer needs to be pushed before it has aged out, then promote
1599 * it to the head of the delwri queue so that it will be flushed on the next
1600 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1601 * than the age currently needed to flush the buffer. Hence the next time the
1602 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1603 */
1604 void
1605 xfs_buf_delwri_promote(
1606 struct xfs_buf *bp)
1607 {
1608 struct xfs_buftarg *btp = bp->b_target;
1609 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1610
1611 ASSERT(bp->b_flags & XBF_DELWRI);
1612 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1613
1614 /*
1615 * Check the buffer age before locking the delayed write queue as we
1616 * don't need to promote buffers that are already past the flush age.
1617 */
1618 if (bp->b_queuetime < jiffies - age)
1619 return;
1620 bp->b_queuetime = jiffies - age;
1621 spin_lock(&btp->bt_delwri_lock);
1622 list_move(&bp->b_list, &btp->bt_delwri_queue);
1623 spin_unlock(&btp->bt_delwri_lock);
1624 }
1625
1626 STATIC void
1627 xfs_buf_runall_queues(
1628 struct workqueue_struct *queue)
1629 {
1630 flush_workqueue(queue);
1631 }
1632
1633 /*
1634 * Move as many buffers as specified to the supplied list
1635 * idicating if we skipped any buffers to prevent deadlocks.
1636 */
1637 STATIC int
1638 xfs_buf_delwri_split(
1639 xfs_buftarg_t *target,
1640 struct list_head *list,
1641 unsigned long age)
1642 {
1643 xfs_buf_t *bp, *n;
1644 int skipped = 0;
1645 int force;
1646
1647 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1648 INIT_LIST_HEAD(list);
1649 spin_lock(&target->bt_delwri_lock);
1650 list_for_each_entry_safe(bp, n, &target->bt_delwri_queue, b_list) {
1651 ASSERT(bp->b_flags & XBF_DELWRI);
1652
1653 if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) {
1654 if (!force &&
1655 time_before(jiffies, bp->b_queuetime + age)) {
1656 xfs_buf_unlock(bp);
1657 break;
1658 }
1659
1660 bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q);
1661 bp->b_flags |= XBF_WRITE;
1662 list_move_tail(&bp->b_list, list);
1663 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1664 } else
1665 skipped++;
1666 }
1667
1668 spin_unlock(&target->bt_delwri_lock);
1669 return skipped;
1670 }
1671
1672 /*
1673 * Compare function is more complex than it needs to be because
1674 * the return value is only 32 bits and we are doing comparisons
1675 * on 64 bit values
1676 */
1677 static int
1678 xfs_buf_cmp(
1679 void *priv,
1680 struct list_head *a,
1681 struct list_head *b)
1682 {
1683 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1684 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1685 xfs_daddr_t diff;
1686
1687 diff = ap->b_bn - bp->b_bn;
1688 if (diff < 0)
1689 return -1;
1690 if (diff > 0)
1691 return 1;
1692 return 0;
1693 }
1694
1695 STATIC int
1696 xfsbufd(
1697 void *data)
1698 {
1699 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1700
1701 current->flags |= PF_MEMALLOC;
1702
1703 set_freezable();
1704
1705 do {
1706 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1707 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1708 struct list_head tmp;
1709 struct blk_plug plug;
1710
1711 if (unlikely(freezing(current))) {
1712 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1713 refrigerator();
1714 } else {
1715 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1716 }
1717
1718 /* sleep for a long time if there is nothing to do. */
1719 if (list_empty(&target->bt_delwri_queue))
1720 tout = MAX_SCHEDULE_TIMEOUT;
1721 schedule_timeout_interruptible(tout);
1722
1723 xfs_buf_delwri_split(target, &tmp, age);
1724 list_sort(NULL, &tmp, xfs_buf_cmp);
1725
1726 blk_start_plug(&plug);
1727 while (!list_empty(&tmp)) {
1728 struct xfs_buf *bp;
1729 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1730 list_del_init(&bp->b_list);
1731 xfs_bdstrat_cb(bp);
1732 }
1733 blk_finish_plug(&plug);
1734 } while (!kthread_should_stop());
1735
1736 return 0;
1737 }
1738
1739 /*
1740 * Go through all incore buffers, and release buffers if they belong to
1741 * the given device. This is used in filesystem error handling to
1742 * preserve the consistency of its metadata.
1743 */
1744 int
1745 xfs_flush_buftarg(
1746 xfs_buftarg_t *target,
1747 int wait)
1748 {
1749 xfs_buf_t *bp;
1750 int pincount = 0;
1751 LIST_HEAD(tmp_list);
1752 LIST_HEAD(wait_list);
1753 struct blk_plug plug;
1754
1755 xfs_buf_runall_queues(xfsconvertd_workqueue);
1756 xfs_buf_runall_queues(xfsdatad_workqueue);
1757 xfs_buf_runall_queues(xfslogd_workqueue);
1758
1759 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1760 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1761
1762 /*
1763 * Dropped the delayed write list lock, now walk the temporary list.
1764 * All I/O is issued async and then if we need to wait for completion
1765 * we do that after issuing all the IO.
1766 */
1767 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1768
1769 blk_start_plug(&plug);
1770 while (!list_empty(&tmp_list)) {
1771 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1772 ASSERT(target == bp->b_target);
1773 list_del_init(&bp->b_list);
1774 if (wait) {
1775 bp->b_flags &= ~XBF_ASYNC;
1776 list_add(&bp->b_list, &wait_list);
1777 }
1778 xfs_bdstrat_cb(bp);
1779 }
1780 blk_finish_plug(&plug);
1781
1782 if (wait) {
1783 /* Wait for IO to complete. */
1784 while (!list_empty(&wait_list)) {
1785 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1786
1787 list_del_init(&bp->b_list);
1788 xfs_buf_iowait(bp);
1789 xfs_buf_relse(bp);
1790 }
1791 }
1792
1793 return pincount;
1794 }
1795
1796 int __init
1797 xfs_buf_init(void)
1798 {
1799 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1800 KM_ZONE_HWALIGN, NULL);
1801 if (!xfs_buf_zone)
1802 goto out;
1803
1804 xfslogd_workqueue = alloc_workqueue("xfslogd",
1805 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1806 if (!xfslogd_workqueue)
1807 goto out_free_buf_zone;
1808
1809 xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1810 if (!xfsdatad_workqueue)
1811 goto out_destroy_xfslogd_workqueue;
1812
1813 xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1814 WQ_MEM_RECLAIM, 1);
1815 if (!xfsconvertd_workqueue)
1816 goto out_destroy_xfsdatad_workqueue;
1817
1818 return 0;
1819
1820 out_destroy_xfsdatad_workqueue:
1821 destroy_workqueue(xfsdatad_workqueue);
1822 out_destroy_xfslogd_workqueue:
1823 destroy_workqueue(xfslogd_workqueue);
1824 out_free_buf_zone:
1825 kmem_zone_destroy(xfs_buf_zone);
1826 out:
1827 return -ENOMEM;
1828 }
1829
1830 void
1831 xfs_buf_terminate(void)
1832 {
1833 destroy_workqueue(xfsconvertd_workqueue);
1834 destroy_workqueue(xfsdatad_workqueue);
1835 destroy_workqueue(xfslogd_workqueue);
1836 kmem_zone_destroy(xfs_buf_zone);
1837 }
This page took 0.079133 seconds and 6 git commands to generate.