xfs: factor all the kmalloc-or-vmalloc fallback allocations
[deliverable/linux.git] / fs / xfs / xfs_buf_item.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31
32
33 kmem_zone_t *xfs_buf_item_zone;
34
35 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
36 {
37 return container_of(lip, struct xfs_buf_log_item, bli_item);
38 }
39
40 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
41
42 static inline int
43 xfs_buf_log_format_size(
44 struct xfs_buf_log_format *blfp)
45 {
46 return offsetof(struct xfs_buf_log_format, blf_data_map) +
47 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
48 }
49
50 /*
51 * This returns the number of log iovecs needed to log the
52 * given buf log item.
53 *
54 * It calculates this as 1 iovec for the buf log format structure
55 * and 1 for each stretch of non-contiguous chunks to be logged.
56 * Contiguous chunks are logged in a single iovec.
57 *
58 * If the XFS_BLI_STALE flag has been set, then log nothing.
59 */
60 STATIC void
61 xfs_buf_item_size_segment(
62 struct xfs_buf_log_item *bip,
63 struct xfs_buf_log_format *blfp,
64 int *nvecs,
65 int *nbytes)
66 {
67 struct xfs_buf *bp = bip->bli_buf;
68 int next_bit;
69 int last_bit;
70
71 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
72 if (last_bit == -1)
73 return;
74
75 /*
76 * initial count for a dirty buffer is 2 vectors - the format structure
77 * and the first dirty region.
78 */
79 *nvecs += 2;
80 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
81
82 while (last_bit != -1) {
83 /*
84 * This takes the bit number to start looking from and
85 * returns the next set bit from there. It returns -1
86 * if there are no more bits set or the start bit is
87 * beyond the end of the bitmap.
88 */
89 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
90 last_bit + 1);
91 /*
92 * If we run out of bits, leave the loop,
93 * else if we find a new set of bits bump the number of vecs,
94 * else keep scanning the current set of bits.
95 */
96 if (next_bit == -1) {
97 break;
98 } else if (next_bit != last_bit + 1) {
99 last_bit = next_bit;
100 (*nvecs)++;
101 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
102 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
103 XFS_BLF_CHUNK)) {
104 last_bit = next_bit;
105 (*nvecs)++;
106 } else {
107 last_bit++;
108 }
109 *nbytes += XFS_BLF_CHUNK;
110 }
111 }
112
113 /*
114 * This returns the number of log iovecs needed to log the given buf log item.
115 *
116 * It calculates this as 1 iovec for the buf log format structure and 1 for each
117 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
118 * in a single iovec.
119 *
120 * Discontiguous buffers need a format structure per region that that is being
121 * logged. This makes the changes in the buffer appear to log recovery as though
122 * they came from separate buffers, just like would occur if multiple buffers
123 * were used instead of a single discontiguous buffer. This enables
124 * discontiguous buffers to be in-memory constructs, completely transparent to
125 * what ends up on disk.
126 *
127 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
128 * format structures.
129 */
130 STATIC void
131 xfs_buf_item_size(
132 struct xfs_log_item *lip,
133 int *nvecs,
134 int *nbytes)
135 {
136 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
137 int i;
138
139 ASSERT(atomic_read(&bip->bli_refcount) > 0);
140 if (bip->bli_flags & XFS_BLI_STALE) {
141 /*
142 * The buffer is stale, so all we need to log
143 * is the buf log format structure with the
144 * cancel flag in it.
145 */
146 trace_xfs_buf_item_size_stale(bip);
147 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
148 *nvecs += bip->bli_format_count;
149 for (i = 0; i < bip->bli_format_count; i++) {
150 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
151 }
152 return;
153 }
154
155 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
156
157 if (bip->bli_flags & XFS_BLI_ORDERED) {
158 /*
159 * The buffer has been logged just to order it.
160 * It is not being included in the transaction
161 * commit, so no vectors are used at all.
162 */
163 trace_xfs_buf_item_size_ordered(bip);
164 *nvecs = XFS_LOG_VEC_ORDERED;
165 return;
166 }
167
168 /*
169 * the vector count is based on the number of buffer vectors we have
170 * dirty bits in. This will only be greater than one when we have a
171 * compound buffer with more than one segment dirty. Hence for compound
172 * buffers we need to track which segment the dirty bits correspond to,
173 * and when we move from one segment to the next increment the vector
174 * count for the extra buf log format structure that will need to be
175 * written.
176 */
177 for (i = 0; i < bip->bli_format_count; i++) {
178 xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
179 nvecs, nbytes);
180 }
181 trace_xfs_buf_item_size(bip);
182 }
183
184 static struct xfs_log_iovec *
185 xfs_buf_item_format_segment(
186 struct xfs_buf_log_item *bip,
187 struct xfs_log_iovec *vecp,
188 uint offset,
189 struct xfs_buf_log_format *blfp)
190 {
191 struct xfs_buf *bp = bip->bli_buf;
192 uint base_size;
193 uint nvecs;
194 int first_bit;
195 int last_bit;
196 int next_bit;
197 uint nbits;
198 uint buffer_offset;
199
200 /* copy the flags across from the base format item */
201 blfp->blf_flags = bip->__bli_format.blf_flags;
202
203 /*
204 * Base size is the actual size of the ondisk structure - it reflects
205 * the actual size of the dirty bitmap rather than the size of the in
206 * memory structure.
207 */
208 base_size = xfs_buf_log_format_size(blfp);
209
210 nvecs = 0;
211 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
212 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
213 /*
214 * If the map is not be dirty in the transaction, mark
215 * the size as zero and do not advance the vector pointer.
216 */
217 goto out;
218 }
219
220 vecp->i_addr = blfp;
221 vecp->i_len = base_size;
222 vecp->i_type = XLOG_REG_TYPE_BFORMAT;
223 vecp++;
224 nvecs = 1;
225
226 if (bip->bli_flags & XFS_BLI_STALE) {
227 /*
228 * The buffer is stale, so all we need to log
229 * is the buf log format structure with the
230 * cancel flag in it.
231 */
232 trace_xfs_buf_item_format_stale(bip);
233 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
234 goto out;
235 }
236
237
238 /*
239 * Fill in an iovec for each set of contiguous chunks.
240 */
241
242 last_bit = first_bit;
243 nbits = 1;
244 for (;;) {
245 /*
246 * This takes the bit number to start looking from and
247 * returns the next set bit from there. It returns -1
248 * if there are no more bits set or the start bit is
249 * beyond the end of the bitmap.
250 */
251 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
252 (uint)last_bit + 1);
253 /*
254 * If we run out of bits fill in the last iovec and get
255 * out of the loop.
256 * Else if we start a new set of bits then fill in the
257 * iovec for the series we were looking at and start
258 * counting the bits in the new one.
259 * Else we're still in the same set of bits so just
260 * keep counting and scanning.
261 */
262 if (next_bit == -1) {
263 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
264 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
265 vecp->i_len = nbits * XFS_BLF_CHUNK;
266 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
267 nvecs++;
268 break;
269 } else if (next_bit != last_bit + 1) {
270 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
271 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
272 vecp->i_len = nbits * XFS_BLF_CHUNK;
273 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
274 nvecs++;
275 vecp++;
276 first_bit = next_bit;
277 last_bit = next_bit;
278 nbits = 1;
279 } else if (xfs_buf_offset(bp, offset +
280 (next_bit << XFS_BLF_SHIFT)) !=
281 (xfs_buf_offset(bp, offset +
282 (last_bit << XFS_BLF_SHIFT)) +
283 XFS_BLF_CHUNK)) {
284 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
285 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
286 vecp->i_len = nbits * XFS_BLF_CHUNK;
287 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
288 nvecs++;
289 vecp++;
290 first_bit = next_bit;
291 last_bit = next_bit;
292 nbits = 1;
293 } else {
294 last_bit++;
295 nbits++;
296 }
297 }
298 out:
299 blfp->blf_size = nvecs;
300 return vecp;
301 }
302
303 /*
304 * This is called to fill in the vector of log iovecs for the
305 * given log buf item. It fills the first entry with a buf log
306 * format structure, and the rest point to contiguous chunks
307 * within the buffer.
308 */
309 STATIC void
310 xfs_buf_item_format(
311 struct xfs_log_item *lip,
312 struct xfs_log_iovec *vecp)
313 {
314 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
315 struct xfs_buf *bp = bip->bli_buf;
316 uint offset = 0;
317 int i;
318
319 ASSERT(atomic_read(&bip->bli_refcount) > 0);
320 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
321 (bip->bli_flags & XFS_BLI_STALE));
322
323 /*
324 * If it is an inode buffer, transfer the in-memory state to the
325 * format flags and clear the in-memory state.
326 *
327 * For buffer based inode allocation, we do not transfer
328 * this state if the inode buffer allocation has not yet been committed
329 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
330 * correct replay of the inode allocation.
331 *
332 * For icreate item based inode allocation, the buffers aren't written
333 * to the journal during allocation, and hence we should always tag the
334 * buffer as an inode buffer so that the correct unlinked list replay
335 * occurs during recovery.
336 */
337 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
338 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
339 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
340 xfs_log_item_in_current_chkpt(lip)))
341 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
342 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
343 }
344
345 if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
346 XFS_BLI_ORDERED) {
347 /*
348 * The buffer has been logged just to order it. It is not being
349 * included in the transaction commit, so don't format it.
350 */
351 trace_xfs_buf_item_format_ordered(bip);
352 return;
353 }
354
355 for (i = 0; i < bip->bli_format_count; i++) {
356 vecp = xfs_buf_item_format_segment(bip, vecp, offset,
357 &bip->bli_formats[i]);
358 offset += bp->b_maps[i].bm_len;
359 }
360
361 /*
362 * Check to make sure everything is consistent.
363 */
364 trace_xfs_buf_item_format(bip);
365 }
366
367 /*
368 * This is called to pin the buffer associated with the buf log item in memory
369 * so it cannot be written out.
370 *
371 * We also always take a reference to the buffer log item here so that the bli
372 * is held while the item is pinned in memory. This means that we can
373 * unconditionally drop the reference count a transaction holds when the
374 * transaction is completed.
375 */
376 STATIC void
377 xfs_buf_item_pin(
378 struct xfs_log_item *lip)
379 {
380 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
381
382 ASSERT(atomic_read(&bip->bli_refcount) > 0);
383 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
384 (bip->bli_flags & XFS_BLI_ORDERED) ||
385 (bip->bli_flags & XFS_BLI_STALE));
386
387 trace_xfs_buf_item_pin(bip);
388
389 atomic_inc(&bip->bli_refcount);
390 atomic_inc(&bip->bli_buf->b_pin_count);
391 }
392
393 /*
394 * This is called to unpin the buffer associated with the buf log
395 * item which was previously pinned with a call to xfs_buf_item_pin().
396 *
397 * Also drop the reference to the buf item for the current transaction.
398 * If the XFS_BLI_STALE flag is set and we are the last reference,
399 * then free up the buf log item and unlock the buffer.
400 *
401 * If the remove flag is set we are called from uncommit in the
402 * forced-shutdown path. If that is true and the reference count on
403 * the log item is going to drop to zero we need to free the item's
404 * descriptor in the transaction.
405 */
406 STATIC void
407 xfs_buf_item_unpin(
408 struct xfs_log_item *lip,
409 int remove)
410 {
411 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
412 xfs_buf_t *bp = bip->bli_buf;
413 struct xfs_ail *ailp = lip->li_ailp;
414 int stale = bip->bli_flags & XFS_BLI_STALE;
415 int freed;
416
417 ASSERT(bp->b_fspriv == bip);
418 ASSERT(atomic_read(&bip->bli_refcount) > 0);
419
420 trace_xfs_buf_item_unpin(bip);
421
422 freed = atomic_dec_and_test(&bip->bli_refcount);
423
424 if (atomic_dec_and_test(&bp->b_pin_count))
425 wake_up_all(&bp->b_waiters);
426
427 if (freed && stale) {
428 ASSERT(bip->bli_flags & XFS_BLI_STALE);
429 ASSERT(xfs_buf_islocked(bp));
430 ASSERT(XFS_BUF_ISSTALE(bp));
431 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
432
433 trace_xfs_buf_item_unpin_stale(bip);
434
435 if (remove) {
436 /*
437 * If we are in a transaction context, we have to
438 * remove the log item from the transaction as we are
439 * about to release our reference to the buffer. If we
440 * don't, the unlock that occurs later in
441 * xfs_trans_uncommit() will try to reference the
442 * buffer which we no longer have a hold on.
443 */
444 if (lip->li_desc)
445 xfs_trans_del_item(lip);
446
447 /*
448 * Since the transaction no longer refers to the buffer,
449 * the buffer should no longer refer to the transaction.
450 */
451 bp->b_transp = NULL;
452 }
453
454 /*
455 * If we get called here because of an IO error, we may
456 * or may not have the item on the AIL. xfs_trans_ail_delete()
457 * will take care of that situation.
458 * xfs_trans_ail_delete() drops the AIL lock.
459 */
460 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
461 xfs_buf_do_callbacks(bp);
462 bp->b_fspriv = NULL;
463 bp->b_iodone = NULL;
464 } else {
465 spin_lock(&ailp->xa_lock);
466 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
467 xfs_buf_item_relse(bp);
468 ASSERT(bp->b_fspriv == NULL);
469 }
470 xfs_buf_relse(bp);
471 } else if (freed && remove) {
472 /*
473 * There are currently two references to the buffer - the active
474 * LRU reference and the buf log item. What we are about to do
475 * here - simulate a failed IO completion - requires 3
476 * references.
477 *
478 * The LRU reference is removed by the xfs_buf_stale() call. The
479 * buf item reference is removed by the xfs_buf_iodone()
480 * callback that is run by xfs_buf_do_callbacks() during ioend
481 * processing (via the bp->b_iodone callback), and then finally
482 * the ioend processing will drop the IO reference if the buffer
483 * is marked XBF_ASYNC.
484 *
485 * Hence we need to take an additional reference here so that IO
486 * completion processing doesn't free the buffer prematurely.
487 */
488 xfs_buf_lock(bp);
489 xfs_buf_hold(bp);
490 bp->b_flags |= XBF_ASYNC;
491 xfs_buf_ioerror(bp, EIO);
492 XFS_BUF_UNDONE(bp);
493 xfs_buf_stale(bp);
494 xfs_buf_ioend(bp, 0);
495 }
496 }
497
498 STATIC uint
499 xfs_buf_item_push(
500 struct xfs_log_item *lip,
501 struct list_head *buffer_list)
502 {
503 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
504 struct xfs_buf *bp = bip->bli_buf;
505 uint rval = XFS_ITEM_SUCCESS;
506
507 if (xfs_buf_ispinned(bp))
508 return XFS_ITEM_PINNED;
509 if (!xfs_buf_trylock(bp)) {
510 /*
511 * If we have just raced with a buffer being pinned and it has
512 * been marked stale, we could end up stalling until someone else
513 * issues a log force to unpin the stale buffer. Check for the
514 * race condition here so xfsaild recognizes the buffer is pinned
515 * and queues a log force to move it along.
516 */
517 if (xfs_buf_ispinned(bp))
518 return XFS_ITEM_PINNED;
519 return XFS_ITEM_LOCKED;
520 }
521
522 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
523
524 trace_xfs_buf_item_push(bip);
525
526 if (!xfs_buf_delwri_queue(bp, buffer_list))
527 rval = XFS_ITEM_FLUSHING;
528 xfs_buf_unlock(bp);
529 return rval;
530 }
531
532 /*
533 * Release the buffer associated with the buf log item. If there is no dirty
534 * logged data associated with the buffer recorded in the buf log item, then
535 * free the buf log item and remove the reference to it in the buffer.
536 *
537 * This call ignores the recursion count. It is only called when the buffer
538 * should REALLY be unlocked, regardless of the recursion count.
539 *
540 * We unconditionally drop the transaction's reference to the log item. If the
541 * item was logged, then another reference was taken when it was pinned, so we
542 * can safely drop the transaction reference now. This also allows us to avoid
543 * potential races with the unpin code freeing the bli by not referencing the
544 * bli after we've dropped the reference count.
545 *
546 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
547 * if necessary but do not unlock the buffer. This is for support of
548 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
549 * free the item.
550 */
551 STATIC void
552 xfs_buf_item_unlock(
553 struct xfs_log_item *lip)
554 {
555 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
556 struct xfs_buf *bp = bip->bli_buf;
557 bool clean;
558 bool aborted;
559 int flags;
560
561 /* Clear the buffer's association with this transaction. */
562 bp->b_transp = NULL;
563
564 /*
565 * If this is a transaction abort, don't return early. Instead, allow
566 * the brelse to happen. Normally it would be done for stale
567 * (cancelled) buffers at unpin time, but we'll never go through the
568 * pin/unpin cycle if we abort inside commit.
569 */
570 aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
571 /*
572 * Before possibly freeing the buf item, copy the per-transaction state
573 * so we can reference it safely later after clearing it from the
574 * buffer log item.
575 */
576 flags = bip->bli_flags;
577 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
578
579 /*
580 * If the buf item is marked stale, then don't do anything. We'll
581 * unlock the buffer and free the buf item when the buffer is unpinned
582 * for the last time.
583 */
584 if (flags & XFS_BLI_STALE) {
585 trace_xfs_buf_item_unlock_stale(bip);
586 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
587 if (!aborted) {
588 atomic_dec(&bip->bli_refcount);
589 return;
590 }
591 }
592
593 trace_xfs_buf_item_unlock(bip);
594
595 /*
596 * If the buf item isn't tracking any data, free it, otherwise drop the
597 * reference we hold to it. If we are aborting the transaction, this may
598 * be the only reference to the buf item, so we free it anyway
599 * regardless of whether it is dirty or not. A dirty abort implies a
600 * shutdown, anyway.
601 *
602 * Ordered buffers are dirty but may have no recorded changes, so ensure
603 * we only release clean items here.
604 */
605 clean = (flags & XFS_BLI_DIRTY) ? false : true;
606 if (clean) {
607 int i;
608 for (i = 0; i < bip->bli_format_count; i++) {
609 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
610 bip->bli_formats[i].blf_map_size)) {
611 clean = false;
612 break;
613 }
614 }
615 }
616 if (clean || aborted) {
617 if (atomic_dec_and_test(&bip->bli_refcount)) {
618 ASSERT(!aborted || XFS_FORCED_SHUTDOWN(lip->li_mountp));
619 xfs_buf_item_relse(bp);
620 }
621 } else
622 atomic_dec(&bip->bli_refcount);
623
624 if (!(flags & XFS_BLI_HOLD))
625 xfs_buf_relse(bp);
626 }
627
628 /*
629 * This is called to find out where the oldest active copy of the
630 * buf log item in the on disk log resides now that the last log
631 * write of it completed at the given lsn.
632 * We always re-log all the dirty data in a buffer, so usually the
633 * latest copy in the on disk log is the only one that matters. For
634 * those cases we simply return the given lsn.
635 *
636 * The one exception to this is for buffers full of newly allocated
637 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
638 * flag set, indicating that only the di_next_unlinked fields from the
639 * inodes in the buffers will be replayed during recovery. If the
640 * original newly allocated inode images have not yet been flushed
641 * when the buffer is so relogged, then we need to make sure that we
642 * keep the old images in the 'active' portion of the log. We do this
643 * by returning the original lsn of that transaction here rather than
644 * the current one.
645 */
646 STATIC xfs_lsn_t
647 xfs_buf_item_committed(
648 struct xfs_log_item *lip,
649 xfs_lsn_t lsn)
650 {
651 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
652
653 trace_xfs_buf_item_committed(bip);
654
655 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
656 return lip->li_lsn;
657 return lsn;
658 }
659
660 STATIC void
661 xfs_buf_item_committing(
662 struct xfs_log_item *lip,
663 xfs_lsn_t commit_lsn)
664 {
665 }
666
667 /*
668 * This is the ops vector shared by all buf log items.
669 */
670 static const struct xfs_item_ops xfs_buf_item_ops = {
671 .iop_size = xfs_buf_item_size,
672 .iop_format = xfs_buf_item_format,
673 .iop_pin = xfs_buf_item_pin,
674 .iop_unpin = xfs_buf_item_unpin,
675 .iop_unlock = xfs_buf_item_unlock,
676 .iop_committed = xfs_buf_item_committed,
677 .iop_push = xfs_buf_item_push,
678 .iop_committing = xfs_buf_item_committing
679 };
680
681 STATIC int
682 xfs_buf_item_get_format(
683 struct xfs_buf_log_item *bip,
684 int count)
685 {
686 ASSERT(bip->bli_formats == NULL);
687 bip->bli_format_count = count;
688
689 if (count == 1) {
690 bip->bli_formats = &bip->__bli_format;
691 return 0;
692 }
693
694 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
695 KM_SLEEP);
696 if (!bip->bli_formats)
697 return ENOMEM;
698 return 0;
699 }
700
701 STATIC void
702 xfs_buf_item_free_format(
703 struct xfs_buf_log_item *bip)
704 {
705 if (bip->bli_formats != &bip->__bli_format) {
706 kmem_free(bip->bli_formats);
707 bip->bli_formats = NULL;
708 }
709 }
710
711 /*
712 * Allocate a new buf log item to go with the given buffer.
713 * Set the buffer's b_fsprivate field to point to the new
714 * buf log item. If there are other item's attached to the
715 * buffer (see xfs_buf_attach_iodone() below), then put the
716 * buf log item at the front.
717 */
718 void
719 xfs_buf_item_init(
720 xfs_buf_t *bp,
721 xfs_mount_t *mp)
722 {
723 xfs_log_item_t *lip = bp->b_fspriv;
724 xfs_buf_log_item_t *bip;
725 int chunks;
726 int map_size;
727 int error;
728 int i;
729
730 /*
731 * Check to see if there is already a buf log item for
732 * this buffer. If there is, it is guaranteed to be
733 * the first. If we do already have one, there is
734 * nothing to do here so return.
735 */
736 ASSERT(bp->b_target->bt_mount == mp);
737 if (lip != NULL && lip->li_type == XFS_LI_BUF)
738 return;
739
740 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
741 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
742 bip->bli_buf = bp;
743 xfs_buf_hold(bp);
744
745 /*
746 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
747 * can be divided into. Make sure not to truncate any pieces.
748 * map_size is the size of the bitmap needed to describe the
749 * chunks of the buffer.
750 *
751 * Discontiguous buffer support follows the layout of the underlying
752 * buffer. This makes the implementation as simple as possible.
753 */
754 error = xfs_buf_item_get_format(bip, bp->b_map_count);
755 ASSERT(error == 0);
756
757 for (i = 0; i < bip->bli_format_count; i++) {
758 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
759 XFS_BLF_CHUNK);
760 map_size = DIV_ROUND_UP(chunks, NBWORD);
761
762 bip->bli_formats[i].blf_type = XFS_LI_BUF;
763 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
764 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
765 bip->bli_formats[i].blf_map_size = map_size;
766 }
767
768 #ifdef XFS_TRANS_DEBUG
769 /*
770 * Allocate the arrays for tracking what needs to be logged
771 * and what our callers request to be logged. bli_orig
772 * holds a copy of the original, clean buffer for comparison
773 * against, and bli_logged keeps a 1 bit flag per byte in
774 * the buffer to indicate which bytes the callers have asked
775 * to have logged.
776 */
777 bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
778 memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
779 bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
780 #endif
781
782 /*
783 * Put the buf item into the list of items attached to the
784 * buffer at the front.
785 */
786 if (bp->b_fspriv)
787 bip->bli_item.li_bio_list = bp->b_fspriv;
788 bp->b_fspriv = bip;
789 }
790
791
792 /*
793 * Mark bytes first through last inclusive as dirty in the buf
794 * item's bitmap.
795 */
796 void
797 xfs_buf_item_log_segment(
798 struct xfs_buf_log_item *bip,
799 uint first,
800 uint last,
801 uint *map)
802 {
803 uint first_bit;
804 uint last_bit;
805 uint bits_to_set;
806 uint bits_set;
807 uint word_num;
808 uint *wordp;
809 uint bit;
810 uint end_bit;
811 uint mask;
812
813 /*
814 * Convert byte offsets to bit numbers.
815 */
816 first_bit = first >> XFS_BLF_SHIFT;
817 last_bit = last >> XFS_BLF_SHIFT;
818
819 /*
820 * Calculate the total number of bits to be set.
821 */
822 bits_to_set = last_bit - first_bit + 1;
823
824 /*
825 * Get a pointer to the first word in the bitmap
826 * to set a bit in.
827 */
828 word_num = first_bit >> BIT_TO_WORD_SHIFT;
829 wordp = &map[word_num];
830
831 /*
832 * Calculate the starting bit in the first word.
833 */
834 bit = first_bit & (uint)(NBWORD - 1);
835
836 /*
837 * First set any bits in the first word of our range.
838 * If it starts at bit 0 of the word, it will be
839 * set below rather than here. That is what the variable
840 * bit tells us. The variable bits_set tracks the number
841 * of bits that have been set so far. End_bit is the number
842 * of the last bit to be set in this word plus one.
843 */
844 if (bit) {
845 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
846 mask = ((1 << (end_bit - bit)) - 1) << bit;
847 *wordp |= mask;
848 wordp++;
849 bits_set = end_bit - bit;
850 } else {
851 bits_set = 0;
852 }
853
854 /*
855 * Now set bits a whole word at a time that are between
856 * first_bit and last_bit.
857 */
858 while ((bits_to_set - bits_set) >= NBWORD) {
859 *wordp |= 0xffffffff;
860 bits_set += NBWORD;
861 wordp++;
862 }
863
864 /*
865 * Finally, set any bits left to be set in one last partial word.
866 */
867 end_bit = bits_to_set - bits_set;
868 if (end_bit) {
869 mask = (1 << end_bit) - 1;
870 *wordp |= mask;
871 }
872 }
873
874 /*
875 * Mark bytes first through last inclusive as dirty in the buf
876 * item's bitmap.
877 */
878 void
879 xfs_buf_item_log(
880 xfs_buf_log_item_t *bip,
881 uint first,
882 uint last)
883 {
884 int i;
885 uint start;
886 uint end;
887 struct xfs_buf *bp = bip->bli_buf;
888
889 /*
890 * walk each buffer segment and mark them dirty appropriately.
891 */
892 start = 0;
893 for (i = 0; i < bip->bli_format_count; i++) {
894 if (start > last)
895 break;
896 end = start + BBTOB(bp->b_maps[i].bm_len);
897 if (first > end) {
898 start += BBTOB(bp->b_maps[i].bm_len);
899 continue;
900 }
901 if (first < start)
902 first = start;
903 if (end > last)
904 end = last;
905
906 xfs_buf_item_log_segment(bip, first, end,
907 &bip->bli_formats[i].blf_data_map[0]);
908
909 start += bp->b_maps[i].bm_len;
910 }
911 }
912
913
914 /*
915 * Return 1 if the buffer has been logged or ordered in a transaction (at any
916 * point, not just the current transaction) and 0 if not.
917 */
918 uint
919 xfs_buf_item_dirty(
920 xfs_buf_log_item_t *bip)
921 {
922 return (bip->bli_flags & XFS_BLI_DIRTY);
923 }
924
925 STATIC void
926 xfs_buf_item_free(
927 xfs_buf_log_item_t *bip)
928 {
929 #ifdef XFS_TRANS_DEBUG
930 kmem_free(bip->bli_orig);
931 kmem_free(bip->bli_logged);
932 #endif /* XFS_TRANS_DEBUG */
933
934 xfs_buf_item_free_format(bip);
935 kmem_zone_free(xfs_buf_item_zone, bip);
936 }
937
938 /*
939 * This is called when the buf log item is no longer needed. It should
940 * free the buf log item associated with the given buffer and clear
941 * the buffer's pointer to the buf log item. If there are no more
942 * items in the list, clear the b_iodone field of the buffer (see
943 * xfs_buf_attach_iodone() below).
944 */
945 void
946 xfs_buf_item_relse(
947 xfs_buf_t *bp)
948 {
949 xfs_buf_log_item_t *bip = bp->b_fspriv;
950
951 trace_xfs_buf_item_relse(bp, _RET_IP_);
952 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
953
954 bp->b_fspriv = bip->bli_item.li_bio_list;
955 if (bp->b_fspriv == NULL)
956 bp->b_iodone = NULL;
957
958 xfs_buf_rele(bp);
959 xfs_buf_item_free(bip);
960 }
961
962
963 /*
964 * Add the given log item with its callback to the list of callbacks
965 * to be called when the buffer's I/O completes. If it is not set
966 * already, set the buffer's b_iodone() routine to be
967 * xfs_buf_iodone_callbacks() and link the log item into the list of
968 * items rooted at b_fsprivate. Items are always added as the second
969 * entry in the list if there is a first, because the buf item code
970 * assumes that the buf log item is first.
971 */
972 void
973 xfs_buf_attach_iodone(
974 xfs_buf_t *bp,
975 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
976 xfs_log_item_t *lip)
977 {
978 xfs_log_item_t *head_lip;
979
980 ASSERT(xfs_buf_islocked(bp));
981
982 lip->li_cb = cb;
983 head_lip = bp->b_fspriv;
984 if (head_lip) {
985 lip->li_bio_list = head_lip->li_bio_list;
986 head_lip->li_bio_list = lip;
987 } else {
988 bp->b_fspriv = lip;
989 }
990
991 ASSERT(bp->b_iodone == NULL ||
992 bp->b_iodone == xfs_buf_iodone_callbacks);
993 bp->b_iodone = xfs_buf_iodone_callbacks;
994 }
995
996 /*
997 * We can have many callbacks on a buffer. Running the callbacks individually
998 * can cause a lot of contention on the AIL lock, so we allow for a single
999 * callback to be able to scan the remaining lip->li_bio_list for other items
1000 * of the same type and callback to be processed in the first call.
1001 *
1002 * As a result, the loop walking the callback list below will also modify the
1003 * list. it removes the first item from the list and then runs the callback.
1004 * The loop then restarts from the new head of the list. This allows the
1005 * callback to scan and modify the list attached to the buffer and we don't
1006 * have to care about maintaining a next item pointer.
1007 */
1008 STATIC void
1009 xfs_buf_do_callbacks(
1010 struct xfs_buf *bp)
1011 {
1012 struct xfs_log_item *lip;
1013
1014 while ((lip = bp->b_fspriv) != NULL) {
1015 bp->b_fspriv = lip->li_bio_list;
1016 ASSERT(lip->li_cb != NULL);
1017 /*
1018 * Clear the next pointer so we don't have any
1019 * confusion if the item is added to another buf.
1020 * Don't touch the log item after calling its
1021 * callback, because it could have freed itself.
1022 */
1023 lip->li_bio_list = NULL;
1024 lip->li_cb(bp, lip);
1025 }
1026 }
1027
1028 /*
1029 * This is the iodone() function for buffers which have had callbacks
1030 * attached to them by xfs_buf_attach_iodone(). It should remove each
1031 * log item from the buffer's list and call the callback of each in turn.
1032 * When done, the buffer's fsprivate field is set to NULL and the buffer
1033 * is unlocked with a call to iodone().
1034 */
1035 void
1036 xfs_buf_iodone_callbacks(
1037 struct xfs_buf *bp)
1038 {
1039 struct xfs_log_item *lip = bp->b_fspriv;
1040 struct xfs_mount *mp = lip->li_mountp;
1041 static ulong lasttime;
1042 static xfs_buftarg_t *lasttarg;
1043
1044 if (likely(!xfs_buf_geterror(bp)))
1045 goto do_callbacks;
1046
1047 /*
1048 * If we've already decided to shutdown the filesystem because of
1049 * I/O errors, there's no point in giving this a retry.
1050 */
1051 if (XFS_FORCED_SHUTDOWN(mp)) {
1052 xfs_buf_stale(bp);
1053 XFS_BUF_DONE(bp);
1054 trace_xfs_buf_item_iodone(bp, _RET_IP_);
1055 goto do_callbacks;
1056 }
1057
1058 if (bp->b_target != lasttarg ||
1059 time_after(jiffies, (lasttime + 5*HZ))) {
1060 lasttime = jiffies;
1061 xfs_buf_ioerror_alert(bp, __func__);
1062 }
1063 lasttarg = bp->b_target;
1064
1065 /*
1066 * If the write was asynchronous then no one will be looking for the
1067 * error. Clear the error state and write the buffer out again.
1068 *
1069 * XXX: This helps against transient write errors, but we need to find
1070 * a way to shut the filesystem down if the writes keep failing.
1071 *
1072 * In practice we'll shut the filesystem down soon as non-transient
1073 * erorrs tend to affect the whole device and a failing log write
1074 * will make us give up. But we really ought to do better here.
1075 */
1076 if (XFS_BUF_ISASYNC(bp)) {
1077 ASSERT(bp->b_iodone != NULL);
1078
1079 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1080
1081 xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
1082
1083 if (!XFS_BUF_ISSTALE(bp)) {
1084 bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
1085 xfs_buf_iorequest(bp);
1086 } else {
1087 xfs_buf_relse(bp);
1088 }
1089
1090 return;
1091 }
1092
1093 /*
1094 * If the write of the buffer was synchronous, we want to make
1095 * sure to return the error to the caller of xfs_bwrite().
1096 */
1097 xfs_buf_stale(bp);
1098 XFS_BUF_DONE(bp);
1099
1100 trace_xfs_buf_error_relse(bp, _RET_IP_);
1101
1102 do_callbacks:
1103 xfs_buf_do_callbacks(bp);
1104 bp->b_fspriv = NULL;
1105 bp->b_iodone = NULL;
1106 xfs_buf_ioend(bp, 0);
1107 }
1108
1109 /*
1110 * This is the iodone() function for buffers which have been
1111 * logged. It is called when they are eventually flushed out.
1112 * It should remove the buf item from the AIL, and free the buf item.
1113 * It is called by xfs_buf_iodone_callbacks() above which will take
1114 * care of cleaning up the buffer itself.
1115 */
1116 void
1117 xfs_buf_iodone(
1118 struct xfs_buf *bp,
1119 struct xfs_log_item *lip)
1120 {
1121 struct xfs_ail *ailp = lip->li_ailp;
1122
1123 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1124
1125 xfs_buf_rele(bp);
1126
1127 /*
1128 * If we are forcibly shutting down, this may well be
1129 * off the AIL already. That's because we simulate the
1130 * log-committed callbacks to unpin these buffers. Or we may never
1131 * have put this item on AIL because of the transaction was
1132 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1133 *
1134 * Either way, AIL is useless if we're forcing a shutdown.
1135 */
1136 spin_lock(&ailp->xa_lock);
1137 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1138 xfs_buf_item_free(BUF_ITEM(lip));
1139 }
This page took 0.056287 seconds and 6 git commands to generate.