xfs: merge iop_unpin_remove into iop_unpin
[deliverable/linux.git] / fs / xfs / xfs_extfree_item.c
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_extfree_item.h"
30
31
32 kmem_zone_t *xfs_efi_zone;
33 kmem_zone_t *xfs_efd_zone;
34
35 STATIC void xfs_efi_item_unlock(xfs_efi_log_item_t *);
36
37 void
38 xfs_efi_item_free(xfs_efi_log_item_t *efip)
39 {
40 int nexts = efip->efi_format.efi_nextents;
41
42 if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
43 kmem_free(efip);
44 } else {
45 kmem_zone_free(xfs_efi_zone, efip);
46 }
47 }
48
49 /*
50 * This returns the number of iovecs needed to log the given efi item.
51 * We only need 1 iovec for an efi item. It just logs the efi_log_format
52 * structure.
53 */
54 /*ARGSUSED*/
55 STATIC uint
56 xfs_efi_item_size(xfs_efi_log_item_t *efip)
57 {
58 return 1;
59 }
60
61 /*
62 * This is called to fill in the vector of log iovecs for the
63 * given efi log item. We use only 1 iovec, and we point that
64 * at the efi_log_format structure embedded in the efi item.
65 * It is at this point that we assert that all of the extent
66 * slots in the efi item have been filled.
67 */
68 STATIC void
69 xfs_efi_item_format(xfs_efi_log_item_t *efip,
70 xfs_log_iovec_t *log_vector)
71 {
72 uint size;
73
74 ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents);
75
76 efip->efi_format.efi_type = XFS_LI_EFI;
77
78 size = sizeof(xfs_efi_log_format_t);
79 size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
80 efip->efi_format.efi_size = 1;
81
82 log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format);
83 log_vector->i_len = size;
84 log_vector->i_type = XLOG_REG_TYPE_EFI_FORMAT;
85 ASSERT(size >= sizeof(xfs_efi_log_format_t));
86 }
87
88
89 /*
90 * Pinning has no meaning for an efi item, so just return.
91 */
92 /*ARGSUSED*/
93 STATIC void
94 xfs_efi_item_pin(xfs_efi_log_item_t *efip)
95 {
96 return;
97 }
98
99
100 /*
101 * While EFIs cannot really be pinned, the unpin operation is the
102 * last place at which the EFI is manipulated during a transaction.
103 * Here we coordinate with xfs_efi_cancel() to determine who gets to
104 * free the EFI.
105 */
106 STATIC void
107 xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int remove)
108 {
109 struct xfs_ail *ailp = efip->efi_item.li_ailp;
110
111 spin_lock(&ailp->xa_lock);
112 if (efip->efi_flags & XFS_EFI_CANCELED) {
113 struct xfs_log_item *lip = &efip->efi_item;
114
115 if (remove)
116 xfs_trans_del_item(lip);
117
118 /* xfs_trans_ail_delete() drops the AIL lock. */
119 xfs_trans_ail_delete(ailp, lip);
120 xfs_efi_item_free(efip);
121 } else {
122 efip->efi_flags |= XFS_EFI_COMMITTED;
123 spin_unlock(&ailp->xa_lock);
124 }
125 }
126
127 /*
128 * Efi items have no locking or pushing. However, since EFIs are
129 * pulled from the AIL when their corresponding EFDs are committed
130 * to disk, their situation is very similar to being pinned. Return
131 * XFS_ITEM_PINNED so that the caller will eventually flush the log.
132 * This should help in getting the EFI out of the AIL.
133 */
134 /*ARGSUSED*/
135 STATIC uint
136 xfs_efi_item_trylock(xfs_efi_log_item_t *efip)
137 {
138 return XFS_ITEM_PINNED;
139 }
140
141 /*
142 * Efi items have no locking, so just return.
143 */
144 /*ARGSUSED*/
145 STATIC void
146 xfs_efi_item_unlock(xfs_efi_log_item_t *efip)
147 {
148 if (efip->efi_item.li_flags & XFS_LI_ABORTED)
149 xfs_efi_item_free(efip);
150 return;
151 }
152
153 /*
154 * The EFI is logged only once and cannot be moved in the log, so
155 * simply return the lsn at which it's been logged. The canceled
156 * flag is not paid any attention here. Checking for that is delayed
157 * until the EFI is unpinned.
158 */
159 /*ARGSUSED*/
160 STATIC xfs_lsn_t
161 xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
162 {
163 return lsn;
164 }
165
166 /*
167 * There isn't much you can do to push on an efi item. It is simply
168 * stuck waiting for all of its corresponding efd items to be
169 * committed to disk.
170 */
171 /*ARGSUSED*/
172 STATIC void
173 xfs_efi_item_push(xfs_efi_log_item_t *efip)
174 {
175 return;
176 }
177
178 /*
179 * The EFI dependency tracking op doesn't do squat. It can't because
180 * it doesn't know where the free extent is coming from. The dependency
181 * tracking has to be handled by the "enclosing" metadata object. For
182 * example, for inodes, the inode is locked throughout the extent freeing
183 * so the dependency should be recorded there.
184 */
185 /*ARGSUSED*/
186 STATIC void
187 xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
188 {
189 return;
190 }
191
192 /*
193 * This is the ops vector shared by all efi log items.
194 */
195 static struct xfs_item_ops xfs_efi_item_ops = {
196 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efi_item_size,
197 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
198 xfs_efi_item_format,
199 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efi_item_pin,
200 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin,
201 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock,
202 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efi_item_unlock,
203 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
204 xfs_efi_item_committed,
205 .iop_push = (void(*)(xfs_log_item_t*))xfs_efi_item_push,
206 .iop_pushbuf = NULL,
207 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
208 xfs_efi_item_committing
209 };
210
211
212 /*
213 * Allocate and initialize an efi item with the given number of extents.
214 */
215 xfs_efi_log_item_t *
216 xfs_efi_init(xfs_mount_t *mp,
217 uint nextents)
218
219 {
220 xfs_efi_log_item_t *efip;
221 uint size;
222
223 ASSERT(nextents > 0);
224 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
225 size = (uint)(sizeof(xfs_efi_log_item_t) +
226 ((nextents - 1) * sizeof(xfs_extent_t)));
227 efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP);
228 } else {
229 efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone,
230 KM_SLEEP);
231 }
232
233 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
234 efip->efi_format.efi_nextents = nextents;
235 efip->efi_format.efi_id = (__psint_t)(void*)efip;
236
237 return (efip);
238 }
239
240 /*
241 * Copy an EFI format buffer from the given buf, and into the destination
242 * EFI format structure.
243 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
244 * one of which will be the native format for this kernel.
245 * It will handle the conversion of formats if necessary.
246 */
247 int
248 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
249 {
250 xfs_efi_log_format_t *src_efi_fmt = (xfs_efi_log_format_t *)buf->i_addr;
251 uint i;
252 uint len = sizeof(xfs_efi_log_format_t) +
253 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
254 uint len32 = sizeof(xfs_efi_log_format_32_t) +
255 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
256 uint len64 = sizeof(xfs_efi_log_format_64_t) +
257 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
258
259 if (buf->i_len == len) {
260 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
261 return 0;
262 } else if (buf->i_len == len32) {
263 xfs_efi_log_format_32_t *src_efi_fmt_32 =
264 (xfs_efi_log_format_32_t *)buf->i_addr;
265
266 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
267 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
268 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
269 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
270 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
271 dst_efi_fmt->efi_extents[i].ext_start =
272 src_efi_fmt_32->efi_extents[i].ext_start;
273 dst_efi_fmt->efi_extents[i].ext_len =
274 src_efi_fmt_32->efi_extents[i].ext_len;
275 }
276 return 0;
277 } else if (buf->i_len == len64) {
278 xfs_efi_log_format_64_t *src_efi_fmt_64 =
279 (xfs_efi_log_format_64_t *)buf->i_addr;
280
281 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
282 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
283 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
284 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
285 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
286 dst_efi_fmt->efi_extents[i].ext_start =
287 src_efi_fmt_64->efi_extents[i].ext_start;
288 dst_efi_fmt->efi_extents[i].ext_len =
289 src_efi_fmt_64->efi_extents[i].ext_len;
290 }
291 return 0;
292 }
293 return EFSCORRUPTED;
294 }
295
296 /*
297 * This is called by the efd item code below to release references to
298 * the given efi item. Each efd calls this with the number of
299 * extents that it has logged, and when the sum of these reaches
300 * the total number of extents logged by this efi item we can free
301 * the efi item.
302 *
303 * Freeing the efi item requires that we remove it from the AIL.
304 * We'll use the AIL lock to protect our counters as well as
305 * the removal from the AIL.
306 */
307 void
308 xfs_efi_release(xfs_efi_log_item_t *efip,
309 uint nextents)
310 {
311 struct xfs_ail *ailp = efip->efi_item.li_ailp;
312 int extents_left;
313
314 ASSERT(efip->efi_next_extent > 0);
315 ASSERT(efip->efi_flags & XFS_EFI_COMMITTED);
316
317 spin_lock(&ailp->xa_lock);
318 ASSERT(efip->efi_next_extent >= nextents);
319 efip->efi_next_extent -= nextents;
320 extents_left = efip->efi_next_extent;
321 if (extents_left == 0) {
322 /* xfs_trans_ail_delete() drops the AIL lock. */
323 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)efip);
324 xfs_efi_item_free(efip);
325 } else {
326 spin_unlock(&ailp->xa_lock);
327 }
328 }
329
330 STATIC void
331 xfs_efd_item_free(xfs_efd_log_item_t *efdp)
332 {
333 int nexts = efdp->efd_format.efd_nextents;
334
335 if (nexts > XFS_EFD_MAX_FAST_EXTENTS) {
336 kmem_free(efdp);
337 } else {
338 kmem_zone_free(xfs_efd_zone, efdp);
339 }
340 }
341
342 /*
343 * This returns the number of iovecs needed to log the given efd item.
344 * We only need 1 iovec for an efd item. It just logs the efd_log_format
345 * structure.
346 */
347 /*ARGSUSED*/
348 STATIC uint
349 xfs_efd_item_size(xfs_efd_log_item_t *efdp)
350 {
351 return 1;
352 }
353
354 /*
355 * This is called to fill in the vector of log iovecs for the
356 * given efd log item. We use only 1 iovec, and we point that
357 * at the efd_log_format structure embedded in the efd item.
358 * It is at this point that we assert that all of the extent
359 * slots in the efd item have been filled.
360 */
361 STATIC void
362 xfs_efd_item_format(xfs_efd_log_item_t *efdp,
363 xfs_log_iovec_t *log_vector)
364 {
365 uint size;
366
367 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
368
369 efdp->efd_format.efd_type = XFS_LI_EFD;
370
371 size = sizeof(xfs_efd_log_format_t);
372 size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
373 efdp->efd_format.efd_size = 1;
374
375 log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format);
376 log_vector->i_len = size;
377 log_vector->i_type = XLOG_REG_TYPE_EFD_FORMAT;
378 ASSERT(size >= sizeof(xfs_efd_log_format_t));
379 }
380
381
382 /*
383 * Pinning has no meaning for an efd item, so just return.
384 */
385 /*ARGSUSED*/
386 STATIC void
387 xfs_efd_item_pin(xfs_efd_log_item_t *efdp)
388 {
389 return;
390 }
391
392
393 /*
394 * Since pinning has no meaning for an efd item, unpinning does
395 * not either.
396 */
397 /*ARGSUSED*/
398 STATIC void
399 xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int remove)
400 {
401 return;
402 }
403
404 /*
405 * Efd items have no locking, so just return success.
406 */
407 /*ARGSUSED*/
408 STATIC uint
409 xfs_efd_item_trylock(xfs_efd_log_item_t *efdp)
410 {
411 return XFS_ITEM_LOCKED;
412 }
413
414 /*
415 * Efd items have no locking or pushing, so return failure
416 * so that the caller doesn't bother with us.
417 */
418 /*ARGSUSED*/
419 STATIC void
420 xfs_efd_item_unlock(xfs_efd_log_item_t *efdp)
421 {
422 if (efdp->efd_item.li_flags & XFS_LI_ABORTED)
423 xfs_efd_item_free(efdp);
424 return;
425 }
426
427 /*
428 * When the efd item is committed to disk, all we need to do
429 * is delete our reference to our partner efi item and then
430 * free ourselves. Since we're freeing ourselves we must
431 * return -1 to keep the transaction code from further referencing
432 * this item.
433 */
434 /*ARGSUSED*/
435 STATIC xfs_lsn_t
436 xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn)
437 {
438 /*
439 * If we got a log I/O error, it's always the case that the LR with the
440 * EFI got unpinned and freed before the EFD got aborted.
441 */
442 if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0)
443 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
444
445 xfs_efd_item_free(efdp);
446 return (xfs_lsn_t)-1;
447 }
448
449 /*
450 * There isn't much you can do to push on an efd item. It is simply
451 * stuck waiting for the log to be flushed to disk.
452 */
453 /*ARGSUSED*/
454 STATIC void
455 xfs_efd_item_push(xfs_efd_log_item_t *efdp)
456 {
457 return;
458 }
459
460 /*
461 * The EFD dependency tracking op doesn't do squat. It can't because
462 * it doesn't know where the free extent is coming from. The dependency
463 * tracking has to be handled by the "enclosing" metadata object. For
464 * example, for inodes, the inode is locked throughout the extent freeing
465 * so the dependency should be recorded there.
466 */
467 /*ARGSUSED*/
468 STATIC void
469 xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn)
470 {
471 return;
472 }
473
474 /*
475 * This is the ops vector shared by all efd log items.
476 */
477 static struct xfs_item_ops xfs_efd_item_ops = {
478 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efd_item_size,
479 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
480 xfs_efd_item_format,
481 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efd_item_pin,
482 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin,
483 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock,
484 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efd_item_unlock,
485 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
486 xfs_efd_item_committed,
487 .iop_push = (void(*)(xfs_log_item_t*))xfs_efd_item_push,
488 .iop_pushbuf = NULL,
489 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
490 xfs_efd_item_committing
491 };
492
493
494 /*
495 * Allocate and initialize an efd item with the given number of extents.
496 */
497 xfs_efd_log_item_t *
498 xfs_efd_init(xfs_mount_t *mp,
499 xfs_efi_log_item_t *efip,
500 uint nextents)
501
502 {
503 xfs_efd_log_item_t *efdp;
504 uint size;
505
506 ASSERT(nextents > 0);
507 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
508 size = (uint)(sizeof(xfs_efd_log_item_t) +
509 ((nextents - 1) * sizeof(xfs_extent_t)));
510 efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP);
511 } else {
512 efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone,
513 KM_SLEEP);
514 }
515
516 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
517 efdp->efd_efip = efip;
518 efdp->efd_format.efd_nextents = nextents;
519 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
520
521 return (efdp);
522 }
This page took 0.052958 seconds and 5 git commands to generate.