Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / xfs / xfs_extfree_item.c
1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_extfree_item.h"
30
31
32 kmem_zone_t *xfs_efi_zone;
33 kmem_zone_t *xfs_efd_zone;
34
35 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
36 {
37 return container_of(lip, struct xfs_efi_log_item, efi_item);
38 }
39
40 void
41 xfs_efi_item_free(
42 struct xfs_efi_log_item *efip)
43 {
44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
45 kmem_free(efip);
46 else
47 kmem_zone_free(xfs_efi_zone, efip);
48 }
49
50 /*
51 * This returns the number of iovecs needed to log the given efi item.
52 * We only need 1 iovec for an efi item. It just logs the efi_log_format
53 * structure.
54 */
55 STATIC uint
56 xfs_efi_item_size(
57 struct xfs_log_item *lip)
58 {
59 return 1;
60 }
61
62 /*
63 * This is called to fill in the vector of log iovecs for the
64 * given efi log item. We use only 1 iovec, and we point that
65 * at the efi_log_format structure embedded in the efi item.
66 * It is at this point that we assert that all of the extent
67 * slots in the efi item have been filled.
68 */
69 STATIC void
70 xfs_efi_item_format(
71 struct xfs_log_item *lip,
72 struct xfs_log_iovec *log_vector)
73 {
74 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
75 uint size;
76
77 ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents);
78
79 efip->efi_format.efi_type = XFS_LI_EFI;
80
81 size = sizeof(xfs_efi_log_format_t);
82 size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
83 efip->efi_format.efi_size = 1;
84
85 log_vector->i_addr = &efip->efi_format;
86 log_vector->i_len = size;
87 log_vector->i_type = XLOG_REG_TYPE_EFI_FORMAT;
88 ASSERT(size >= sizeof(xfs_efi_log_format_t));
89 }
90
91
92 /*
93 * Pinning has no meaning for an efi item, so just return.
94 */
95 STATIC void
96 xfs_efi_item_pin(
97 struct xfs_log_item *lip)
98 {
99 }
100
101 /*
102 * While EFIs cannot really be pinned, the unpin operation is the
103 * last place at which the EFI is manipulated during a transaction.
104 * Here we coordinate with xfs_efi_cancel() to determine who gets to
105 * free the EFI.
106 */
107 STATIC void
108 xfs_efi_item_unpin(
109 struct xfs_log_item *lip,
110 int remove)
111 {
112 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
113 struct xfs_ail *ailp = lip->li_ailp;
114
115 spin_lock(&ailp->xa_lock);
116 if (efip->efi_flags & XFS_EFI_CANCELED) {
117 if (remove)
118 xfs_trans_del_item(lip);
119
120 /* xfs_trans_ail_delete() drops the AIL lock. */
121 xfs_trans_ail_delete(ailp, lip);
122 xfs_efi_item_free(efip);
123 } else {
124 efip->efi_flags |= XFS_EFI_COMMITTED;
125 spin_unlock(&ailp->xa_lock);
126 }
127 }
128
129 /*
130 * Efi items have no locking or pushing. However, since EFIs are
131 * pulled from the AIL when their corresponding EFDs are committed
132 * to disk, their situation is very similar to being pinned. Return
133 * XFS_ITEM_PINNED so that the caller will eventually flush the log.
134 * This should help in getting the EFI out of the AIL.
135 */
136 STATIC uint
137 xfs_efi_item_trylock(
138 struct xfs_log_item *lip)
139 {
140 return XFS_ITEM_PINNED;
141 }
142
143 /*
144 * Efi items have no locking, so just return.
145 */
146 STATIC void
147 xfs_efi_item_unlock(
148 struct xfs_log_item *lip)
149 {
150 if (lip->li_flags & XFS_LI_ABORTED)
151 xfs_efi_item_free(EFI_ITEM(lip));
152 }
153
154 /*
155 * The EFI is logged only once and cannot be moved in the log, so
156 * simply return the lsn at which it's been logged. The canceled
157 * flag is not paid any attention here. Checking for that is delayed
158 * until the EFI is unpinned.
159 */
160 STATIC xfs_lsn_t
161 xfs_efi_item_committed(
162 struct xfs_log_item *lip,
163 xfs_lsn_t lsn)
164 {
165 return lsn;
166 }
167
168 /*
169 * There isn't much you can do to push on an efi item. It is simply
170 * stuck waiting for all of its corresponding efd items to be
171 * committed to disk.
172 */
173 STATIC void
174 xfs_efi_item_push(
175 struct xfs_log_item *lip)
176 {
177 }
178
179 /*
180 * The EFI dependency tracking op doesn't do squat. It can't because
181 * it doesn't know where the free extent is coming from. The dependency
182 * tracking has to be handled by the "enclosing" metadata object. For
183 * example, for inodes, the inode is locked throughout the extent freeing
184 * so the dependency should be recorded there.
185 */
186 STATIC void
187 xfs_efi_item_committing(
188 struct xfs_log_item *lip,
189 xfs_lsn_t lsn)
190 {
191 }
192
193 /*
194 * This is the ops vector shared by all efi log items.
195 */
196 static struct xfs_item_ops xfs_efi_item_ops = {
197 .iop_size = xfs_efi_item_size,
198 .iop_format = xfs_efi_item_format,
199 .iop_pin = xfs_efi_item_pin,
200 .iop_unpin = xfs_efi_item_unpin,
201 .iop_trylock = xfs_efi_item_trylock,
202 .iop_unlock = xfs_efi_item_unlock,
203 .iop_committed = xfs_efi_item_committed,
204 .iop_push = xfs_efi_item_push,
205 .iop_committing = xfs_efi_item_committing
206 };
207
208
209 /*
210 * Allocate and initialize an efi item with the given number of extents.
211 */
212 struct xfs_efi_log_item *
213 xfs_efi_init(
214 struct xfs_mount *mp,
215 uint nextents)
216
217 {
218 struct xfs_efi_log_item *efip;
219 uint size;
220
221 ASSERT(nextents > 0);
222 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
223 size = (uint)(sizeof(xfs_efi_log_item_t) +
224 ((nextents - 1) * sizeof(xfs_extent_t)));
225 efip = kmem_zalloc(size, KM_SLEEP);
226 } else {
227 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
228 }
229
230 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
231 efip->efi_format.efi_nextents = nextents;
232 efip->efi_format.efi_id = (__psint_t)(void*)efip;
233
234 return efip;
235 }
236
237 /*
238 * Copy an EFI format buffer from the given buf, and into the destination
239 * EFI format structure.
240 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
241 * one of which will be the native format for this kernel.
242 * It will handle the conversion of formats if necessary.
243 */
244 int
245 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
246 {
247 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
248 uint i;
249 uint len = sizeof(xfs_efi_log_format_t) +
250 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
251 uint len32 = sizeof(xfs_efi_log_format_32_t) +
252 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
253 uint len64 = sizeof(xfs_efi_log_format_64_t) +
254 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
255
256 if (buf->i_len == len) {
257 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
258 return 0;
259 } else if (buf->i_len == len32) {
260 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
261
262 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
263 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
264 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
265 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
266 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
267 dst_efi_fmt->efi_extents[i].ext_start =
268 src_efi_fmt_32->efi_extents[i].ext_start;
269 dst_efi_fmt->efi_extents[i].ext_len =
270 src_efi_fmt_32->efi_extents[i].ext_len;
271 }
272 return 0;
273 } else if (buf->i_len == len64) {
274 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
275
276 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
277 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
278 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
279 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
280 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
281 dst_efi_fmt->efi_extents[i].ext_start =
282 src_efi_fmt_64->efi_extents[i].ext_start;
283 dst_efi_fmt->efi_extents[i].ext_len =
284 src_efi_fmt_64->efi_extents[i].ext_len;
285 }
286 return 0;
287 }
288 return EFSCORRUPTED;
289 }
290
291 /*
292 * This is called by the efd item code below to release references to
293 * the given efi item. Each efd calls this with the number of
294 * extents that it has logged, and when the sum of these reaches
295 * the total number of extents logged by this efi item we can free
296 * the efi item.
297 *
298 * Freeing the efi item requires that we remove it from the AIL.
299 * We'll use the AIL lock to protect our counters as well as
300 * the removal from the AIL.
301 */
302 void
303 xfs_efi_release(xfs_efi_log_item_t *efip,
304 uint nextents)
305 {
306 struct xfs_ail *ailp = efip->efi_item.li_ailp;
307 int extents_left;
308
309 ASSERT(efip->efi_next_extent > 0);
310 ASSERT(efip->efi_flags & XFS_EFI_COMMITTED);
311
312 spin_lock(&ailp->xa_lock);
313 ASSERT(efip->efi_next_extent >= nextents);
314 efip->efi_next_extent -= nextents;
315 extents_left = efip->efi_next_extent;
316 if (extents_left == 0) {
317 /* xfs_trans_ail_delete() drops the AIL lock. */
318 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)efip);
319 xfs_efi_item_free(efip);
320 } else {
321 spin_unlock(&ailp->xa_lock);
322 }
323 }
324
325 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
326 {
327 return container_of(lip, struct xfs_efd_log_item, efd_item);
328 }
329
330 STATIC void
331 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
332 {
333 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
334 kmem_free(efdp);
335 else
336 kmem_zone_free(xfs_efd_zone, efdp);
337 }
338
339 /*
340 * This returns the number of iovecs needed to log the given efd item.
341 * We only need 1 iovec for an efd item. It just logs the efd_log_format
342 * structure.
343 */
344 STATIC uint
345 xfs_efd_item_size(
346 struct xfs_log_item *lip)
347 {
348 return 1;
349 }
350
351 /*
352 * This is called to fill in the vector of log iovecs for the
353 * given efd log item. We use only 1 iovec, and we point that
354 * at the efd_log_format structure embedded in the efd item.
355 * It is at this point that we assert that all of the extent
356 * slots in the efd item have been filled.
357 */
358 STATIC void
359 xfs_efd_item_format(
360 struct xfs_log_item *lip,
361 struct xfs_log_iovec *log_vector)
362 {
363 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
364 uint size;
365
366 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
367
368 efdp->efd_format.efd_type = XFS_LI_EFD;
369
370 size = sizeof(xfs_efd_log_format_t);
371 size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
372 efdp->efd_format.efd_size = 1;
373
374 log_vector->i_addr = &efdp->efd_format;
375 log_vector->i_len = size;
376 log_vector->i_type = XLOG_REG_TYPE_EFD_FORMAT;
377 ASSERT(size >= sizeof(xfs_efd_log_format_t));
378 }
379
380 /*
381 * Pinning has no meaning for an efd item, so just return.
382 */
383 STATIC void
384 xfs_efd_item_pin(
385 struct xfs_log_item *lip)
386 {
387 }
388
389 /*
390 * Since pinning has no meaning for an efd item, unpinning does
391 * not either.
392 */
393 STATIC void
394 xfs_efd_item_unpin(
395 struct xfs_log_item *lip,
396 int remove)
397 {
398 }
399
400 /*
401 * Efd items have no locking, so just return success.
402 */
403 STATIC uint
404 xfs_efd_item_trylock(
405 struct xfs_log_item *lip)
406 {
407 return XFS_ITEM_LOCKED;
408 }
409
410 /*
411 * Efd items have no locking or pushing, so return failure
412 * so that the caller doesn't bother with us.
413 */
414 STATIC void
415 xfs_efd_item_unlock(
416 struct xfs_log_item *lip)
417 {
418 if (lip->li_flags & XFS_LI_ABORTED)
419 xfs_efd_item_free(EFD_ITEM(lip));
420 }
421
422 /*
423 * When the efd item is committed to disk, all we need to do
424 * is delete our reference to our partner efi item and then
425 * free ourselves. Since we're freeing ourselves we must
426 * return -1 to keep the transaction code from further referencing
427 * this item.
428 */
429 STATIC xfs_lsn_t
430 xfs_efd_item_committed(
431 struct xfs_log_item *lip,
432 xfs_lsn_t lsn)
433 {
434 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
435
436 /*
437 * If we got a log I/O error, it's always the case that the LR with the
438 * EFI got unpinned and freed before the EFD got aborted.
439 */
440 if (!(lip->li_flags & XFS_LI_ABORTED))
441 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
442
443 xfs_efd_item_free(efdp);
444 return (xfs_lsn_t)-1;
445 }
446
447 /*
448 * There isn't much you can do to push on an efd item. It is simply
449 * stuck waiting for the log to be flushed to disk.
450 */
451 STATIC void
452 xfs_efd_item_push(
453 struct xfs_log_item *lip)
454 {
455 }
456
457 /*
458 * The EFD dependency tracking op doesn't do squat. It can't because
459 * it doesn't know where the free extent is coming from. The dependency
460 * tracking has to be handled by the "enclosing" metadata object. For
461 * example, for inodes, the inode is locked throughout the extent freeing
462 * so the dependency should be recorded there.
463 */
464 STATIC void
465 xfs_efd_item_committing(
466 struct xfs_log_item *lip,
467 xfs_lsn_t lsn)
468 {
469 }
470
471 /*
472 * This is the ops vector shared by all efd log items.
473 */
474 static struct xfs_item_ops xfs_efd_item_ops = {
475 .iop_size = xfs_efd_item_size,
476 .iop_format = xfs_efd_item_format,
477 .iop_pin = xfs_efd_item_pin,
478 .iop_unpin = xfs_efd_item_unpin,
479 .iop_trylock = xfs_efd_item_trylock,
480 .iop_unlock = xfs_efd_item_unlock,
481 .iop_committed = xfs_efd_item_committed,
482 .iop_push = xfs_efd_item_push,
483 .iop_committing = xfs_efd_item_committing
484 };
485
486 /*
487 * Allocate and initialize an efd item with the given number of extents.
488 */
489 struct xfs_efd_log_item *
490 xfs_efd_init(
491 struct xfs_mount *mp,
492 struct xfs_efi_log_item *efip,
493 uint nextents)
494
495 {
496 struct xfs_efd_log_item *efdp;
497 uint size;
498
499 ASSERT(nextents > 0);
500 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
501 size = (uint)(sizeof(xfs_efd_log_item_t) +
502 ((nextents - 1) * sizeof(xfs_extent_t)));
503 efdp = kmem_zalloc(size, KM_SLEEP);
504 } else {
505 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
506 }
507
508 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
509 efdp->efd_efip = efip;
510 efdp->efd_format.efd_nextents = nextents;
511 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
512
513 return efdp;
514 }
This page took 0.06551 seconds and 5 git commands to generate.