[PATCH] v9fs: VFS superblock operations and glue
[deliverable/linux.git] / fs / xfs / xfs_extfree_item.c
1 /*
2 * Copyright (c) 2000-2001 Silicon Graphics, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11 *
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22 *
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
25 *
26 * http://www.sgi.com
27 *
28 * For further information regarding this notice, see:
29 *
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31 */
32
33 /*
34 * This file contains the implementation of the xfs_efi_log_item
35 * and xfs_efd_log_item items.
36 */
37
38 #include "xfs.h"
39
40 #include "xfs_macros.h"
41 #include "xfs_types.h"
42 #include "xfs_inum.h"
43 #include "xfs_log.h"
44 #include "xfs_trans.h"
45 #include "xfs_buf_item.h"
46 #include "xfs_sb.h"
47 #include "xfs_dir.h"
48 #include "xfs_dmapi.h"
49 #include "xfs_mount.h"
50 #include "xfs_trans_priv.h"
51 #include "xfs_extfree_item.h"
52
53
54 kmem_zone_t *xfs_efi_zone;
55 kmem_zone_t *xfs_efd_zone;
56
57 STATIC void xfs_efi_item_unlock(xfs_efi_log_item_t *);
58 STATIC void xfs_efi_item_abort(xfs_efi_log_item_t *);
59 STATIC void xfs_efd_item_abort(xfs_efd_log_item_t *);
60
61
62 void
63 xfs_efi_item_free(xfs_efi_log_item_t *efip)
64 {
65 int nexts = efip->efi_format.efi_nextents;
66
67 if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
68 kmem_free(efip, sizeof(xfs_efi_log_item_t) +
69 (nexts - 1) * sizeof(xfs_extent_t));
70 } else {
71 kmem_zone_free(xfs_efi_zone, efip);
72 }
73 }
74
75 /*
76 * This returns the number of iovecs needed to log the given efi item.
77 * We only need 1 iovec for an efi item. It just logs the efi_log_format
78 * structure.
79 */
80 /*ARGSUSED*/
81 STATIC uint
82 xfs_efi_item_size(xfs_efi_log_item_t *efip)
83 {
84 return 1;
85 }
86
87 /*
88 * This is called to fill in the vector of log iovecs for the
89 * given efi log item. We use only 1 iovec, and we point that
90 * at the efi_log_format structure embedded in the efi item.
91 * It is at this point that we assert that all of the extent
92 * slots in the efi item have been filled.
93 */
94 STATIC void
95 xfs_efi_item_format(xfs_efi_log_item_t *efip,
96 xfs_log_iovec_t *log_vector)
97 {
98 uint size;
99
100 ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents);
101
102 efip->efi_format.efi_type = XFS_LI_EFI;
103
104 size = sizeof(xfs_efi_log_format_t);
105 size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
106 efip->efi_format.efi_size = 1;
107
108 log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format);
109 log_vector->i_len = size;
110 XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFI_FORMAT);
111 ASSERT(size >= sizeof(xfs_efi_log_format_t));
112 }
113
114
115 /*
116 * Pinning has no meaning for an efi item, so just return.
117 */
118 /*ARGSUSED*/
119 STATIC void
120 xfs_efi_item_pin(xfs_efi_log_item_t *efip)
121 {
122 return;
123 }
124
125
126 /*
127 * While EFIs cannot really be pinned, the unpin operation is the
128 * last place at which the EFI is manipulated during a transaction.
129 * Here we coordinate with xfs_efi_cancel() to determine who gets to
130 * free the EFI.
131 */
132 /*ARGSUSED*/
133 STATIC void
134 xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int stale)
135 {
136 xfs_mount_t *mp;
137 SPLDECL(s);
138
139 mp = efip->efi_item.li_mountp;
140 AIL_LOCK(mp, s);
141 if (efip->efi_flags & XFS_EFI_CANCELED) {
142 /*
143 * xfs_trans_delete_ail() drops the AIL lock.
144 */
145 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
146 xfs_efi_item_free(efip);
147 } else {
148 efip->efi_flags |= XFS_EFI_COMMITTED;
149 AIL_UNLOCK(mp, s);
150 }
151 }
152
153 /*
154 * like unpin only we have to also clear the xaction descriptor
155 * pointing the log item if we free the item. This routine duplicates
156 * unpin because efi_flags is protected by the AIL lock. Freeing
157 * the descriptor and then calling unpin would force us to drop the AIL
158 * lock which would open up a race condition.
159 */
160 STATIC void
161 xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp)
162 {
163 xfs_mount_t *mp;
164 xfs_log_item_desc_t *lidp;
165 SPLDECL(s);
166
167 mp = efip->efi_item.li_mountp;
168 AIL_LOCK(mp, s);
169 if (efip->efi_flags & XFS_EFI_CANCELED) {
170 /*
171 * free the xaction descriptor pointing to this item
172 */
173 lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip);
174 xfs_trans_free_item(tp, lidp);
175 /*
176 * pull the item off the AIL.
177 * xfs_trans_delete_ail() drops the AIL lock.
178 */
179 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
180 xfs_efi_item_free(efip);
181 } else {
182 efip->efi_flags |= XFS_EFI_COMMITTED;
183 AIL_UNLOCK(mp, s);
184 }
185 }
186
187 /*
188 * Efi items have no locking or pushing. However, since EFIs are
189 * pulled from the AIL when their corresponding EFDs are committed
190 * to disk, their situation is very similar to being pinned. Return
191 * XFS_ITEM_PINNED so that the caller will eventually flush the log.
192 * This should help in getting the EFI out of the AIL.
193 */
194 /*ARGSUSED*/
195 STATIC uint
196 xfs_efi_item_trylock(xfs_efi_log_item_t *efip)
197 {
198 return XFS_ITEM_PINNED;
199 }
200
201 /*
202 * Efi items have no locking, so just return.
203 */
204 /*ARGSUSED*/
205 STATIC void
206 xfs_efi_item_unlock(xfs_efi_log_item_t *efip)
207 {
208 if (efip->efi_item.li_flags & XFS_LI_ABORTED)
209 xfs_efi_item_abort(efip);
210 return;
211 }
212
213 /*
214 * The EFI is logged only once and cannot be moved in the log, so
215 * simply return the lsn at which it's been logged. The canceled
216 * flag is not paid any attention here. Checking for that is delayed
217 * until the EFI is unpinned.
218 */
219 /*ARGSUSED*/
220 STATIC xfs_lsn_t
221 xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
222 {
223 return lsn;
224 }
225
226 /*
227 * This is called when the transaction logging the EFI is aborted.
228 * Free up the EFI and return. No need to clean up the slot for
229 * the item in the transaction. That was done by the unpin code
230 * which is called prior to this routine in the abort/fs-shutdown path.
231 */
232 STATIC void
233 xfs_efi_item_abort(xfs_efi_log_item_t *efip)
234 {
235 xfs_efi_item_free(efip);
236 }
237
238 /*
239 * There isn't much you can do to push on an efi item. It is simply
240 * stuck waiting for all of its corresponding efd items to be
241 * committed to disk.
242 */
243 /*ARGSUSED*/
244 STATIC void
245 xfs_efi_item_push(xfs_efi_log_item_t *efip)
246 {
247 return;
248 }
249
250 /*
251 * The EFI dependency tracking op doesn't do squat. It can't because
252 * it doesn't know where the free extent is coming from. The dependency
253 * tracking has to be handled by the "enclosing" metadata object. For
254 * example, for inodes, the inode is locked throughout the extent freeing
255 * so the dependency should be recorded there.
256 */
257 /*ARGSUSED*/
258 STATIC void
259 xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
260 {
261 return;
262 }
263
264 /*
265 * This is the ops vector shared by all efi log items.
266 */
267 STATIC struct xfs_item_ops xfs_efi_item_ops = {
268 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efi_item_size,
269 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
270 xfs_efi_item_format,
271 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efi_item_pin,
272 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin,
273 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *))
274 xfs_efi_item_unpin_remove,
275 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock,
276 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efi_item_unlock,
277 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
278 xfs_efi_item_committed,
279 .iop_push = (void(*)(xfs_log_item_t*))xfs_efi_item_push,
280 .iop_abort = (void(*)(xfs_log_item_t*))xfs_efi_item_abort,
281 .iop_pushbuf = NULL,
282 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
283 xfs_efi_item_committing
284 };
285
286
287 /*
288 * Allocate and initialize an efi item with the given number of extents.
289 */
290 xfs_efi_log_item_t *
291 xfs_efi_init(xfs_mount_t *mp,
292 uint nextents)
293
294 {
295 xfs_efi_log_item_t *efip;
296 uint size;
297
298 ASSERT(nextents > 0);
299 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
300 size = (uint)(sizeof(xfs_efi_log_item_t) +
301 ((nextents - 1) * sizeof(xfs_extent_t)));
302 efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP);
303 } else {
304 efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone,
305 KM_SLEEP);
306 }
307
308 efip->efi_item.li_type = XFS_LI_EFI;
309 efip->efi_item.li_ops = &xfs_efi_item_ops;
310 efip->efi_item.li_mountp = mp;
311 efip->efi_format.efi_nextents = nextents;
312 efip->efi_format.efi_id = (__psint_t)(void*)efip;
313
314 return (efip);
315 }
316
317 /*
318 * This is called by the efd item code below to release references to
319 * the given efi item. Each efd calls this with the number of
320 * extents that it has logged, and when the sum of these reaches
321 * the total number of extents logged by this efi item we can free
322 * the efi item.
323 *
324 * Freeing the efi item requires that we remove it from the AIL.
325 * We'll use the AIL lock to protect our counters as well as
326 * the removal from the AIL.
327 */
328 void
329 xfs_efi_release(xfs_efi_log_item_t *efip,
330 uint nextents)
331 {
332 xfs_mount_t *mp;
333 int extents_left;
334 SPLDECL(s);
335
336 mp = efip->efi_item.li_mountp;
337 ASSERT(efip->efi_next_extent > 0);
338 ASSERT(efip->efi_flags & XFS_EFI_COMMITTED);
339
340 AIL_LOCK(mp, s);
341 ASSERT(efip->efi_next_extent >= nextents);
342 efip->efi_next_extent -= nextents;
343 extents_left = efip->efi_next_extent;
344 if (extents_left == 0) {
345 /*
346 * xfs_trans_delete_ail() drops the AIL lock.
347 */
348 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
349 xfs_efi_item_free(efip);
350 } else {
351 AIL_UNLOCK(mp, s);
352 }
353 }
354
355 /*
356 * This is called when the transaction that should be committing the
357 * EFD corresponding to the given EFI is aborted. The committed and
358 * canceled flags are used to coordinate the freeing of the EFI and
359 * the references by the transaction that committed it.
360 */
361 STATIC void
362 xfs_efi_cancel(
363 xfs_efi_log_item_t *efip)
364 {
365 xfs_mount_t *mp;
366 SPLDECL(s);
367
368 mp = efip->efi_item.li_mountp;
369 AIL_LOCK(mp, s);
370 if (efip->efi_flags & XFS_EFI_COMMITTED) {
371 /*
372 * xfs_trans_delete_ail() drops the AIL lock.
373 */
374 xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s);
375 xfs_efi_item_free(efip);
376 } else {
377 efip->efi_flags |= XFS_EFI_CANCELED;
378 AIL_UNLOCK(mp, s);
379 }
380 }
381
382 STATIC void
383 xfs_efd_item_free(xfs_efd_log_item_t *efdp)
384 {
385 int nexts = efdp->efd_format.efd_nextents;
386
387 if (nexts > XFS_EFD_MAX_FAST_EXTENTS) {
388 kmem_free(efdp, sizeof(xfs_efd_log_item_t) +
389 (nexts - 1) * sizeof(xfs_extent_t));
390 } else {
391 kmem_zone_free(xfs_efd_zone, efdp);
392 }
393 }
394
395 /*
396 * This returns the number of iovecs needed to log the given efd item.
397 * We only need 1 iovec for an efd item. It just logs the efd_log_format
398 * structure.
399 */
400 /*ARGSUSED*/
401 STATIC uint
402 xfs_efd_item_size(xfs_efd_log_item_t *efdp)
403 {
404 return 1;
405 }
406
407 /*
408 * This is called to fill in the vector of log iovecs for the
409 * given efd log item. We use only 1 iovec, and we point that
410 * at the efd_log_format structure embedded in the efd item.
411 * It is at this point that we assert that all of the extent
412 * slots in the efd item have been filled.
413 */
414 STATIC void
415 xfs_efd_item_format(xfs_efd_log_item_t *efdp,
416 xfs_log_iovec_t *log_vector)
417 {
418 uint size;
419
420 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
421
422 efdp->efd_format.efd_type = XFS_LI_EFD;
423
424 size = sizeof(xfs_efd_log_format_t);
425 size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
426 efdp->efd_format.efd_size = 1;
427
428 log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format);
429 log_vector->i_len = size;
430 XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFD_FORMAT);
431 ASSERT(size >= sizeof(xfs_efd_log_format_t));
432 }
433
434
435 /*
436 * Pinning has no meaning for an efd item, so just return.
437 */
438 /*ARGSUSED*/
439 STATIC void
440 xfs_efd_item_pin(xfs_efd_log_item_t *efdp)
441 {
442 return;
443 }
444
445
446 /*
447 * Since pinning has no meaning for an efd item, unpinning does
448 * not either.
449 */
450 /*ARGSUSED*/
451 STATIC void
452 xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int stale)
453 {
454 return;
455 }
456
457 /*ARGSUSED*/
458 STATIC void
459 xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp)
460 {
461 return;
462 }
463
464 /*
465 * Efd items have no locking, so just return success.
466 */
467 /*ARGSUSED*/
468 STATIC uint
469 xfs_efd_item_trylock(xfs_efd_log_item_t *efdp)
470 {
471 return XFS_ITEM_LOCKED;
472 }
473
474 /*
475 * Efd items have no locking or pushing, so return failure
476 * so that the caller doesn't bother with us.
477 */
478 /*ARGSUSED*/
479 STATIC void
480 xfs_efd_item_unlock(xfs_efd_log_item_t *efdp)
481 {
482 if (efdp->efd_item.li_flags & XFS_LI_ABORTED)
483 xfs_efd_item_abort(efdp);
484 return;
485 }
486
487 /*
488 * When the efd item is committed to disk, all we need to do
489 * is delete our reference to our partner efi item and then
490 * free ourselves. Since we're freeing ourselves we must
491 * return -1 to keep the transaction code from further referencing
492 * this item.
493 */
494 /*ARGSUSED*/
495 STATIC xfs_lsn_t
496 xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn)
497 {
498 /*
499 * If we got a log I/O error, it's always the case that the LR with the
500 * EFI got unpinned and freed before the EFD got aborted.
501 */
502 if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0)
503 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
504
505 xfs_efd_item_free(efdp);
506 return (xfs_lsn_t)-1;
507 }
508
509 /*
510 * The transaction of which this EFD is a part has been aborted.
511 * Inform its companion EFI of this fact and then clean up after
512 * ourselves. No need to clean up the slot for the item in the
513 * transaction. That was done by the unpin code which is called
514 * prior to this routine in the abort/fs-shutdown path.
515 */
516 STATIC void
517 xfs_efd_item_abort(xfs_efd_log_item_t *efdp)
518 {
519 /*
520 * If we got a log I/O error, it's always the case that the LR with the
521 * EFI got unpinned and freed before the EFD got aborted. So don't
522 * reference the EFI at all in that case.
523 */
524 if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0)
525 xfs_efi_cancel(efdp->efd_efip);
526
527 xfs_efd_item_free(efdp);
528 }
529
530 /*
531 * There isn't much you can do to push on an efd item. It is simply
532 * stuck waiting for the log to be flushed to disk.
533 */
534 /*ARGSUSED*/
535 STATIC void
536 xfs_efd_item_push(xfs_efd_log_item_t *efdp)
537 {
538 return;
539 }
540
541 /*
542 * The EFD dependency tracking op doesn't do squat. It can't because
543 * it doesn't know where the free extent is coming from. The dependency
544 * tracking has to be handled by the "enclosing" metadata object. For
545 * example, for inodes, the inode is locked throughout the extent freeing
546 * so the dependency should be recorded there.
547 */
548 /*ARGSUSED*/
549 STATIC void
550 xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn)
551 {
552 return;
553 }
554
555 /*
556 * This is the ops vector shared by all efd log items.
557 */
558 STATIC struct xfs_item_ops xfs_efd_item_ops = {
559 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efd_item_size,
560 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
561 xfs_efd_item_format,
562 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efd_item_pin,
563 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin,
564 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
565 xfs_efd_item_unpin_remove,
566 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock,
567 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efd_item_unlock,
568 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
569 xfs_efd_item_committed,
570 .iop_push = (void(*)(xfs_log_item_t*))xfs_efd_item_push,
571 .iop_abort = (void(*)(xfs_log_item_t*))xfs_efd_item_abort,
572 .iop_pushbuf = NULL,
573 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
574 xfs_efd_item_committing
575 };
576
577
578 /*
579 * Allocate and initialize an efd item with the given number of extents.
580 */
581 xfs_efd_log_item_t *
582 xfs_efd_init(xfs_mount_t *mp,
583 xfs_efi_log_item_t *efip,
584 uint nextents)
585
586 {
587 xfs_efd_log_item_t *efdp;
588 uint size;
589
590 ASSERT(nextents > 0);
591 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
592 size = (uint)(sizeof(xfs_efd_log_item_t) +
593 ((nextents - 1) * sizeof(xfs_extent_t)));
594 efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP);
595 } else {
596 efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone,
597 KM_SLEEP);
598 }
599
600 efdp->efd_item.li_type = XFS_LI_EFD;
601 efdp->efd_item.li_ops = &xfs_efd_item_ops;
602 efdp->efd_item.li_mountp = mp;
603 efdp->efd_efip = efip;
604 efdp->efd_format.efd_nextents = nextents;
605 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
606
607 return (efdp);
608 }
This page took 0.047024 seconds and 5 git commands to generate.